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Abstract Forest pathology, the science of forest health and
tree diseases, is operating in a rapidly developing environ-
ment. Most importantly, global trade and climate change are
increasing the threat to forest ecosystems posed by new dis-
eases. Various studies relevant to forest pathology in a chang-
ing world are accumulating, thus making it necessary to
provide an update of recent literature. In this contribution,
we summarize research at the interface between forest pathol-
ogy and landscape ecology, biogeography, global change
science and research on tree endophytes. Regional outbreaks
of tree diseases are requiring interdisciplinary collaboration,
e.g. between forest pathologists and landscape ecologists.
When tree pathogens are widely distributed, the factors deter-
mining their broad-scale distribution can be studied using a
biogeographic approach. Global change, the combination of
climate and land use change, increased pollution, trade and
urbanization, as well as invasive species, will influence the
effects of forest disturbances such as wildfires, droughts,
storms, diseases and insect outbreaks, thus affecting the health
and resilience of forest ecosystems worldwide. Tree endo-
phytes can contribute to biological control of infectious dis-
eases, enhance tolerance to environmental stress or behave as
opportunistic weak pathogens potentially competing with
more harmful ones. New molecular techniques are available
for studying the complete tree endobiome under the influence

of global change stressors from the landscape to the intercon-
tinental level. Given that exotic tree diseases have both eco-
logic and economic consequences, we call for increased inter-
disciplinary collaboration in the coming decades between
forest pathologists and researchers studying endophytes with
tree geneticists, evolutionary and landscape ecologists, bioge-
ographers, conservation biologists and global change scien-
tists and outline interdisciplinary research gaps.
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Introduction

Traditionally, forest pathologists have investigated the symp-
toms and causes of tree diseases, as well as the methods to
prevent them or reduce their damage. In the last decades, there
has been a shift in the perspective of forest pathologists
because of the recognition that tree diseases play an important
ecological role in the overall functioning of forest ecosystems
and their health [1, 2]. For example, it is now recognized that
native fungal diseases of trees contribute in maintaining the
tree species diversity of forests, thereby making them more
resilient to other disturbances [3, 4]. Moreover, both native
and exotic tree diseases can be regarded as biological control
tools which diversify uniform plantations of exotic trees,
thereby reducing their commercial value but increasing their
biodiversity and aesthetics [5, 6]. However, some invasive
exotic pathogens can drive tree species close to extinction
[7, 8] and threaten whole ecosystems [9, 10].

Forest pathology is operating in a changing context [11, 12].
Forests are changing due to ecological succession, shifts in
species distributions, habitat fragmentation, overexploitation,
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degradation and, in some cases, lack of management. Stake-
holder views on forests are also developing, from a traditional
focus on the sustainability of timber production to a recognition
of the multi-purpose role of many forests, including recreation
and themaintenance of clean air andwater [13, 14]. At the same
time, forest health is challenged worldwide by increased long-
distance trade in plant commodities and a rapidly shifting
climate [15, 16]. Together, these two global change drivers
are likely to increase the opportunities for the establishment,
spread and impact of new pests and pathogens.

Researchers interested in forest health are also changing.
Taxonomic and morphological expertise is being lost be-
cause of the retirement, often without replacement, of many
teachers and practitioners [17, 18]. At the same time,
modelling is becoming more and more fashionable, also
regarding disturbances in forest ecosystems [19, 20]. New
molecular methods are being introduced at an accelerating
pace, thus making it possible, e.g. to distinguish cryptic
species that could previously not be differentiated. Such
rapid methodological developments are also a challenge for
keeping updated and teaching [21, 22]. In addition, inter-
disciplinary opportunities are shaping forest pathology in a
changing world. For example, the application of landscape
ecology tools and perspectives to forest pathology is im-
proving our understanding of regional outbreaks of exotic
tree fungal pathogens [23, 24]. New insights on the health
of trees have been obtained by investigating the diversity of
endophytes of tree species [25, 26]. Interdisciplinary re-
search has also been achieved on the conservation biology
implications of exotic tree diseases [27–30].

Various literature reviews are available on these topics, but
the subject is developing rapidly so that there is a need for an
update focusing on recent studies involving infectious dis-
eases. The main aim of this contribution is, thus, to selectively
survey the literature relevant to forest health in a changing
world from the last 10 years (but citing previous papers when
appropriate). For summaries of previous relevant literature,
the reader is referred to other literature reviews (Table 1). A
secondary aim of this brief overview is to map some bridges
between forest pathology and neighbouring disciplines, from
landscape ecology to disease biogeography, global change
ecology and research on endophytes. However, these are not
the only disciplines at the borders of forest pathology. Due to
space constraints, we have for example not covered the liter-
ature on (i) environmental pollution and forest health, (ii) tools
and indicators for monitoring forest health, (iii) resistance
breeding and (iv) defining forest health.

Landscape Pathology

Tree pathogens propagate in heterogeneous landscapes
resulting in non-random spatial patterns of disease expression

[23]. Using landscape ecology tools and approaches, it is
possible to gain a better grasp of the factors associated with
variation in tree disease incidence at various sites, e.g. altitude,
soil type, slope exposure, stand age and management factors
[31–34]. For example, even at the extreme climatic conditions
of the treeline environment, topography and moisture-related
variables were shown to influence the landscape pattern of
white pine (Pinus albicaulis) blister rust incidence, due to

Table 1 A selection of literature reviews of the last years (2003–2013)
relevant to forest pathology in a changing world. Additional reviews are
cited in the text and in each of the listed reviews

Topic Reference

Evolution of concepts in forest pathology [255]

Tree diseases and landscape processes [23]

Phytophthora ramorum: integrative research and
management

[256]

Molecular epidemiology of forest pathogens [257]

Interactive effects of drought and tree pathogens [258]

The fungal dimension of biological invasions [259]

Modelling disease spread and control in complex networks [260]

Forest structure and fungal endophytes [188]

Forest tree endophytes: are they mutualists? [25]

UK biosecurity and plant trade [107]

Exotic Phytophthora species as agents of forest change [252]

Forest pathogens and climate change [261]

Wood-decaying fungi: conservation and management [262]

Ancient woodlands: modern threats [263]

Ecological impacts of exotic forest pathogens [264]

Fungi and diseases as natural components of healthy forests [265]

Structural change in the horticultural industry [141]

Evolution of the international regulation of plant pests [266]

Climate change and urban tree pests and diseases [153]

Diversity of dark-septate endophytes [267]

Networks in plant epidemiology [142]

Emerging tree diseases in Europe and responses in society [268]

Climate change and forest diseases [269]

Diversity of fungal endophytes in temperate forest trees [189]

Concepts of plant health [270]

Emergence of the sudden oak death pathogen Phytophthora
ramorum

[143]

Contributions of genomics to forest pathology [21]

Phytophthora species in natural ecosystems [271]

Forests under climate change and air pollution [128]

Landscape epidemiology of plant diseases [33]

Interdisciplinary research on Phytophthora ramorum [148]

Biology, epidemiology and control ofHeterobasidion species [90]

Biogeography of invasive forest pathogens in Europe [108]

Forest pathogens as agents of past vegetation change [272]

Fungal pathogens and drought-induced tree mortality [273]
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Cronartium ribicola [35]. The disease was reported to affect
trees in tree islands more than isolated trees.

For generalist plant pathogens, it is important to study their
epidemiology not only in the major host of interest, but also in
supposedly minor hosts, because these secondary hosts might
have a minor economic role, but their co-occurrence can affect
the connectivity patterns from the point of view of the patho-
gen [36, 37]. For example, until the outbreaks in Japanese
larch (Larix kaempferi) plantations in 2009, the epidemic of
Phytophthora ramorum in Great Britain was largely driven
not by the presence of susceptible, yet dead-end host trees
such as Castanea sativa, Fagus sylvatica and Quercus ilex,
but by the distribution of Rhododendron ponticum, an exotic
yet widespread shrub in the UK, which enables sporulation of
the pathogen [38].

Landscape features are important determinants of tree dis-
ease epidemics, e.g. when dispersal preferentially occurs
along streams [39–41] or in combination with the trade in
plants [42–44]. Even in soil, tree fungal pathogens can dis-
perse by mycelial growth over considerable distances [45].
For example, genetic analysis of Armillaria gallica, a root rot
pathogen, in Massachusetts showed that the average size of
the fungal individuals (genets) was 0.13 ha and that basidio-
spores were able to establish new genets at distances up to
2 km [46]. Even larger genets of Armillaria species have been
reported, for example in the case of Armillaria borealis,
Armillaria cepistipes and Armillaria ostoyae in Swiss subal-
pine forests, with a range between 0.2 and ~7 ha [47]. How-
ever, the time since establishment is also important: in the
Golden Gate Park in San Francisco, which was established in
1871 on sandy dunes unlikely to support mycelium before the
planting of trees, the largest genotypes of Armillaria mellea
are now about 300 m in length [48]. A host-free barrier can
halt mycelial spread, but long distance dispersal limits the
efficacy of such control measures [49–51].

Variation in tree disease expression across landscapes can
also be influenced by the distribution of host genetic variation
[52, 53]. Within European ash (Fraxinus excelsior) tree pop-
ulations, individual differences in susceptibility to ash die-
back, due to Hymenoscyphus fraxineus [54–56], have been
reported from Denmark, Germany, Lithuania, Poland and
Sweden, thus providing a sign of hope for the future of ash
trees and their associated biodiversity [57–64]. Whilst differ-
ences in disease resistance or tolerance among tree prove-
nances have long been recognized [65–67], their implications
for the outbreaks of tree pests and diseases across landscapes
of seminatural forests (rather than tree plantations) have only
recently started to be explored [68–71]. A variety of new
genomic tools is available to tackle this and other related
issues (Table 2).

Often, site biophysical features mask the effect of land-
scape variation in tree genetic diversity on disease incidence
and severity, which can be clarified by excluding such

confounding factors, e.g. comparing the evidence obtained
from common garden experiments and from the field
[72–74]. Confounding factors are nevertheless widespread in
nature, where they can reinforce each other. A study of the
influences of site, forest type, and tree host species on the
presence of Armillaria species in forests of Massachusetts
found that stands of Tsuga canadensis are relatively resistant
to Armillaria species, but become susceptible when also af-
fected by insect defoliation and drought [75]. Interactions
between forest disturbances were also documented by a study
of the effects of wildfire onP. ramorum survival in Californian
forests, where the pathogen was more likely to persist when
wildfires left unburnt patches of bay laurel (Umbellularia
californica) [76]. The creation of deadwood by P. ramorum
in redwood (Sequoia sempervirens) forests makes wildfires
more severe, thus reducing the usual resilience of this tree
species to fires [77].

In some tree pathosystems, the landscape patterns of dis-
ease incidence and/or severity are affected by interactions with
biotic factors. For example, beech bark disease in North
America is associated with the invasive beech scale insect
Cryptococcus fagisuga which predisposes the trees to attack
by Neonectria fungi. A large-scale study across eastern North
America showed that the dispersal behaviour of the insect
makes it unlikely that any trees or stands will be spared by
beech bark disease [78]. Most of the regions where American
beech (Fagus grandifolia) is a dominant stand component are
affected by the disease, but these areas cover only 30 % of the
overall beech distribution [79]. The explanation of this pattern
remains a challenge: it is possible that the percentage of
American beech unaffected by beech bark disease is higher
in northern compared to southern areas of the maritime prov-
inces of New Brunswick, Nova Scotia and Prince Edward
Island (Eastern Canada) because the disease arrived later in
the north. Yet, more intensive silviculture (which favoured
pioneer tree species and reduced the abundance of beech [80])
and colder winters (which are likely to be lethal to the insect
[81]) could also play a role. In Europe, where the insect is
endemic, beech bark disease has indeed been shown to be
more severe in warmer regions [82].

A biotic factor that can reduce tree disease pressure is
parasitism on pathogens. The presence in Europe of
hypovirulence in the ascomycete Cryphonectria parasitica,
the causal agent of chestnut blight, explains the reduced viru-
lence of this introduced tree pathogen in Europe compared to
North America [83, 84]. The transmission of the virus depends
on the population structure of its host, among other factors
[85–87]. Recently, this was also shown for the North American
chestnut blight pathosystem, which is characterized by a much
higher genetic diversity of C. parasitica compared to Europe
[88]. An additional biotic factor affecting tree disease pressure
is human management of woodlands [89]. It is well known that
thinning creates an unnatural supply of freshly cut stumps, thus
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favouring root rot pathogens such as Heterobasidion or
Armillaria [90]. A study of Armillaria species in 150 km2 of
ancient unmanaged forests in the Ukrainian Carpathians docu-
mented a relative lack of pathogenic compared to saprotrophic
Armillaria species, thus supporting the view that the distur-
bances accompanying forest management can increase the
incidence of tree fungal pathogens [91].

Tree Disease Biogeography

Given the increased ease of travel, human beings are now
moving themselves, plants and associated organisms over the
planet, without much afterthought about the potential long-
term consequences of this unprecedented long-distance mo-
bility. Also forest pathologists now have the opportunity to
widen their analyses beyond the local and landscape levels, to
regions, countries and continents [92–95]. Broad-scale re-
search on tree pathogens was pioneered in the 1970s by forest
pathologists investigating Dutch elm disease, both in North
America and in Europe [96–98]. A large-scale approach was
also inherent in research on the decline affecting forests in
Europe (Waldsterben) and North America during the 1980s
[99–101]. Nowadays, broad-scale forest pathology is made
necessary by the realization of the common health problems
shared by exotic tree plantations in several continents [102,
103].

When tree health is investigated over biogeographic scales,
forest pathology and biogeography merge into tree disease
biogeography, the study of the factors determining the distri-
bution of tree diseases over large geographic scales. For
example, an investigation of records of seven Armillaria
species on conifers in Japan showed their association with
the host distribution and, thus, with climate [104]. A recon-
struction using nucleotide markers of the invasion history in
Europe of the fungal virus Cryphonectria hypovirus 1 sug-
gested a role of trade patterns for the spread of hypovirulence
(e.g. restrictions in trade between Greece and Turkey; Italy as
an important European hub for chestnut cultivation and trade
[105]). The host of this hypovirus, C. parasitica, has been
shown to have been introduced repeatedly to both North
America and Europe from two genetic lineages present in
the native Asiatic range, thus highlighting the importance of
restricting trade in potentially infected commodities also after
a pathogen has been introduced, so as to avoid the enhance-
ment of genetic diversity of the fungus. Higher genetic diver-
sity of the pathogen not only reduces the spread of
hypovirulence but also increases the adaptive potential of the
pathogen [106].

One important factor now shaping the distribution and
severity of tree fungal diseases is indeed the long-distance
trade of plant commodities [107–109]. For instance, genetic
analyses have shown the role of tree nurseries in the dispersal
across South Africa of Fusarium circinatum, which causes

Table 2 Selected (molecular) methods for the investigation of forest microbiota. See also the reviews by [21, 257, 274, 275]

Method Example of application Reference

Cultivation and identification Investigation of the spatial and temporal dynamics of
fungi inhabiting leaves of common ash (Fraxinus excelsior)

[187]

Cloning and sequencing of barcode regions Comprehensive census of soil fungi of Picea mariana forests in
interior Alaska, with a fungal:plant species ratio of at least 17:1,
and a global estimate of fungal species richness of 6 million species

[276]

High-throughput sequencing of barcode regions Documentation of a correlation between plant and fungal community
structure across western Amazonian rainforests using 454 pyrosequencing

[277]

Examination of Phytophtora communities in chestnut forests using 454
pyrosequencing, combined with traditional techniques

[278]

Estimation of plant species composition from roots sampled across a
chronosequence of deforestation in Amazonia using Illumina metabarcoding

[279]

Study of the impact on soil bacterial communities of the conversion of
tropical forests to oil palm plantations

[280]

Comparison of the diversity of leaf- and root-associated fungal assemblages
along an altitudinal gradient

[281]

Shotgun metagenomics Investigation of microbiota found in different soil types using shotgun
metagenomics and (for bacteria) barcoding

[282]

Meta-transcriptomics Analysis of the diversity of genes expressed by eukaryotes in forest soils [283]

Assessment of population structure Study of soil vs. leaf genotypes of Phytophthora ramorum under different
weather conditions in California using microsatellite markers

[284]

Whole genome sequencing Comparison of genomes of four Phytophthora lateralis individuals
(pathogen of Chamaecyparis lawsoniana) and development of SNPs
markers to track the dispersal of the fungus through trade pathways in Northern Ireland

[285]

Transcriptome characterization Study of Armillaria ostoyae candidate genes involved in host substrate
utilization at the host–pathogen interface

[286]
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pitch canker, a major disease of exotic pine plantations in
many countries [110, 111]. In many cases, there is evidence
that tree pathogens are likely to have been introduced to a
certain region, because of their low levels of genetic diversity
and absence of population structure in the invaded area, e.g.
for various Phytophthora species [112] and the ash dieback
pathogen H. fraxineus [113, 114]. Also, the high levels of
virulence and spatial expansion of a disease which was previ-
ously unrecorded in a region is an indicator of the presence of
an exotic invasive pathogen, as documented, e.g. for
H. fraxineus, which is likely to have been introduced to
Europe from East Asia [113, 114]. Often, we still do not know
the region of origin of such exotic tree diseases, so that
surveys in regions with related hosts and a climate similar to
the one of the region of the introduction are needed [115].
Also surveys in tree nurseries, together with data about
previous long-distance artificial movement of host trees, are
useful for reconstructing the invasion history of exotic tree
pathogens.

Tree species migrations have happened also in the past
and without human help, for example in response to chang-
es in climate, e.g. through the Beringian Strait at times
when Asia and North America were connected due to lower
sea levels. The fungal pathogen assemblage of Populus
angustifolia, a cottonwood species found in western North
America, was shown to be similar to the one of Populus
species in Asia and dissimilar to the one of Populus
trichocarpa, another western North American species, thus
confirming the hypothesis that P. angustifolia migrated
from Asia to North America [116]. Tree fungal pathogens
are interesting not only in their own right: they can also
provide evidence to understand the migration history of
their host tree species.

Nonetheless, genetic studies of tree fungal pathogens tend
not to be carried out together with an analysis of the genetic
diversity of their hosts. For example, a genetic study of the
root rot pathogen A. mellea in the Western and Eastern USA
found genetic divergence between the two regions, with East-
ern populations likely to have resulted from multiple intro-
ductions [117]. Also Ophiognomonia clavigignenti-
juglandacearum, which has caused range-wide mortality of
butternut trees (Juglans cinerea) in North America, was
shown using genetic analyses to be likely to have been intro-
duced several times, given the geographic clustering of the
pathogen genotypes [118]. A single source site in North
Amer ica and in t roduc t ion s i t e in cen t ra l I t a ly
(Castelporziano) was instead inferred for Heterobasidion
irregulare, a root rot pathogen whose genetic diversity in the
Italian invasive range decreases with the distance from its
putative introduction site [119]. A country-wide Swiss study
of the genetic diversity of A. cepistipes, a wood-decaying,
native fungus that can also be pathogenic when trees have
been stressed by other causes, found no isolation by distance

despite a long history of forest fragmentation in the Swiss
plateau, with fungal gene flow limited by the Alps only [120].

It is important to study the genetic diversity levels of exotic
tree pathogen populations because more genetically diverse
pathogens are more likely to overcome resistance [121–123].
Resistance (or tolerance) can be present in some tree individ-
uals despite lack of co-evolution with the pathogen (as for
European ash, F. excelsior, against ash dieback [64, 113]) or
can be obtained after long screening and breeding
programmes [124–126]. It is important to preserve the genetic
diversity of tree species in such breeding efforts, because this
is an insurance against other environmental stresses, pests and
diseases.

Global Change and Tree Health

Global change is a process involving the interaction between
climate and land use change, increased pollution, trade and
urbanization, as well as the invasion of exotic species. All
these factors, by modifying the effects of disturbances such as
wildfires, droughts, storms, diseases and herbivore outbreaks,
are likely to affect the health of forests throughout the planet,
although to varying degrees depending on the resilience of
each ecosystem [127–129]. Climate shifts over the next de-
cades are expected to lead to novel ecosystems, because of the
likely phenological changes and migration of species to cope
with the new climatic conditions, together with the artificial
long-distance movement of both hosts and pathogens
[130–132]. For trees (and their associated organisms), this is
likely to lead to selective pressure (in different directions) at
the rear, centre and expanding edge of the distribution range
[133]. In some cases, tree species are not expected to be able to
cope with the rapidity of the climate shifts, so that assisted
migration has been suggested to be necessary. This might lead
to additional forest health problems in case of unintentional
transfer of tree pathogens [134].

Predictions of likely changes in tree disease occurrence and
severity under climate change are complicated by model
uncertainties in the expected shifts in precipitation, an impor-
tant factor for the life cycle of many plant pathogens. For
example, models of the risk of occurrence of Phytophthora
cinnamomi in the southwestern USA under likely future cli-
mate change scenarios suggest that even if temperature rises
are likely to greatly expand the distribution range of the
pathogen, reductions in spring precipitation might still con-
strain that expansion [135]. A further source of uncertainty is
the lack of knowledge of the potential effects of climate
change and other global change drivers on competitors, mu-
tualists and enemies of tree diseases and insect herbivores
[136]. In some cases, for instance when tree disease severity
is already high, climate shifts might not result in additional
facilitation of fungal infection, as shown by experiments on
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the effects of high and low precipitation, increased air temper-
ature and Cytospora chrysosperma canker infection on Salix
monticola biomass in Colorado [137]. Many tree host-
pathogen interactions currently resulting in disease are depen-
dent on suitable climatic conditions during critical life cycle
phases of the pathogen [138]. Climate change might well
disrupt such synchronicity, as shown e.g. for the predicted
reduction in summer moisture in the 2080s in British Colum-
bia, which would reduce the climate suitability for spore
discharge and germination of cedar leaf blight (Didymascella
thujina) [139].

Climate change will not operate alone, but together with
increased quantities of plant commodities traded over long
distances, e.g. bonsai and other ornamental plants, nursery
stock, seed, wood and wood packing materials [140–142].
For example, the sudden oak death pathogen P. ramorum
and other Phytophthora tree pathogens were widely distribut-
ed by the nursery trade in the USA [143–146] and other
countries [147–150]. There is also evidence for long-
distance dispersal of the ash dieback pathogen by latently
infected plants [151] (Fig. 1). This makes it clear that net-
works spreading information about a certain disease (i.e. the
communication channels among researchers, practitioners and
other stakeholders) need to be more efficient than networks
spreading the disease. However, we have still little knowledge
about the structure of plant trade networks compared to animal
trade networks and human social networks [109].

Much of the plant trade is directed towards urbanized areas,
where most of the retailers and customers are located. Given
the heat island effect of urbanization, towns provide a repeated
experiment combining climate warming with the introduction
of exotic plants and pathogens. It would thus make sense to
focus some of the monitoring of new tree health problems in
and around towns, because this would often be likely to enable
early recognition of new outbreaks [152–154]. To some ex-
tent, this is already the case given that urbanized areas tend to

have more observers than rural regions [155]. Trees in urban
alleys, squares and parks are subjected to many sources of
stress other than disease, including (i) high levels of air, water
and soil pollution, (ii) wounds due to repeated pruning and
(iii) soil compaction and sealing. Chronic stress can debilitate
urban trees and facilitate the action of secondary pathogens. In
the urban forest of Perth, in southwestern Australia, a diversity
of Phytophthora species was detected [156], thus confirming
the suitability of the urban environment for many tree patho-
gens. In addition, trees planted in urban parks, gardens and
streets often originate from tree nurseries, a hub for the dis-
semination of the many organisms associated with trees.

Forest pathologists are thus confronted with a changing
world, not just because there are now data and tools to study
regional outbreaks of tree pathogens over landscape to conti-
nental scales, but also because tree health is increasingly
challenged by global change drivers and their interactions
[157–159]. The increasing number of newly reported tree
pathogens over the last decades is a sobering reminder of the
tree health problems to come. Indeed, the likely causes of new
exotic tree diseases (increased trade, higher temperatures,
shifts in host distribution) are supposed to intensify in the next
future [160–162]. First reports of crop pests and pathogens
have already been reported to have shifted towards the poles,
possibly in relation to a warming climate and a stronger
increase in economic activities in extratropical countries
[163, 164].

Tree Endophytology

In addition to variation in (i) the genetic make-up of hosts, (ii)
virulence among pathogen strains and (iii) environmental
(including global change) factors, tree health over local to
landscape and geographic scales is affected by endophytic
assemblages within trees [25, 26, 165, 166]. A beneficial
effect of endophytes on tree health has been demonstrated
experimentally (reviewed by [26]). Recently, this effect was
confirmed for example by studies showing that (i) various leaf
endophytes contribute toMelampsora rust resistance in poplar
[167] and (ii) tree root endophytes can control soil pathogens
[168, 169]. Moreover, enhancement of tolerance to abiotic
stresses by endophytes has been reported [170–175]. Endo-
phytes can also enhance pathogen virulence—a potentially
useful effect for the control of invasive plant species [176].
It is possible that, by systemic induction of defence responses,
some leaf endophytes might enable trees to withstand patho-
gen attacks to other plant organs [177, 178]. Nevertheless, the
importance of root endophytes should not be overlooked just
because they have tended to be less studied than leaf endo-
phytes [179].

It has been suggested that tree endophytes could be used as
indicators of the health and vitality of trees [180, 181]. Tree

Fig. 1 Number of ash saplings imported between 2003 and 2011 by the
UK from EU countries registered on the Forest Reproductive Material
database (Belgium, France, Germany, Hungary, Ireland, the Netherlands).
Data were obtained from [151]. The orange colour indicates ash saplings
imported from countries which had already reported the presence of ash
dieback. The pathogen was described as a new species by Kowalski in
2006 [54]
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(fungal) endophytes would be a suitable bio-indicator because
they have been shown to be ubiquitous [25, 182]. Moreover,
some endophytes can turn from mutualistic or neutral to
pathogenic depending on the environmental and host condi-
tions [25, 183, 184]. Tree endophytes could thus be used to
track variations in forest health conditions, by taking into
account that the factors shaping tree endophytic assemblages
vary in space and time, for example the season of the year
[185, 186].

However, using endophytes as health indicators is still
problematic because endophytic assemblages are shaped by
many further factors, including leaf age [187], host physio-
logical status and genetic variation [188–190]. Host genotype
is an important determinant of tree endophytes, as shown for
example in Populus balsamifera growing in a common garden
in Fairbanks, Alaska [191]. The right host genotype might be
required for successful infection by a particular endophyte
genotype, as shown by a study ofVenturia ditricha, a common
foliar endophyte of birch trees [192]. Interestingly, lower
frequency and diversity of endophytes have been reported
for clones of elms resistant to Dutch elm disease compared
to resistant ones [193]. When studied across several dozens of
tree species in sub-tropical, cool temperate and sub-boreal
forests in Japan, the presence of xylariaceous endophytes
was dependent on plant family and leaf traits, thus leading to
a certain degree of host recurrence [194].

In addition to host-related traits, variation in tree endophyte
assemblages has been shown to be associated with environ-
mental gradients [195, 196]. Relevant factors include the
following:

& altitude, e.g. for F. sylvatica leaves in the Pyrenees [197];
& latitude, e.g. for Pinus sylvestris needles in Finland [198];
& temperature, as found in Japan for Fagus crenata [199]
& as well as precipitation, as documented for Metrosideros

polymorpha in the Hawaii [200].

A further issue is the pervasive (but to varying degrees)
presence of human influences on forests, e.g. due to silvicul-
ture and gradients in land use intensity [201–204]. Given the
many confounding factors, studies of endophyte assemblages
in single stands and across landscapes are often not conclusive
regarding the causal influence of environmental features on
endophytic assemblages, because of the co-variation among
explanatory factors (e.g. host distribution and climate [205])
and the lack of experimental controls. It can indeed be difficult
to clarify the relative contributions of such factors in shaping
tree endophyte diversity, as shown by a study of the influence
of host identity and location on endophytes of trees of the
Cupressaceae family [206]. A study of leaf endophytic fungi
of three Nothofagus species growing in four mixed stands in
New Zealand found that the diversity of endophytes was more
affected by host species than by site [207]. As with tree

pathogens, multi-scale studies can help disentangle the factors
governing endophyte assemblages at different spatial resolu-
tions [208]. A study of F. sylvatica endophytes in a forest
stand in southeastern France found that the differences be-
tween assemblages of phyllosphere fungi increased with dis-
tance between sampled leaves within a single tree canopy and
with genetic distance (rather than spatial distance) between
sampled trees within the stand [209].

Although the endophytes of only about 10 % of the ~1000
temperate tree species have been investigated so far [189], tree
endophytes have tended to be studied in extratropical regions,
particularly in North America, Europe and Japan [195, 210].
Given the high diversity of tree species in the tropics and
given that endophytic assemblages appear to be specialized
to their hosts, it is reasonable to expect that tropical forests
harbour a great diversity of endophytic species, which still
need to be studied to better understand their role in ecosystem
functioning [211]. This goal is a challenge, because of the
difficulties inherent in cultivating tree endophytes and their
sheer diversity [212]. Determining the fungal endophyte spe-
cies hosted by trees, particularly in the tropics, is also ham-
pered by the lack of taxonomic knowledge for many fungal
genera [213]. But also outside of the tropics, new fungal
endophyte species are routinely encountered, as shown by a
study of the phyllosphere of Cephalotaxus harringtonia in
Japan and France [214].

Studying diversity data of fungal endophytes that rely only
on cultures in the lab can overlook species that are difficult to
culture, that grow slowly or those that are rare [215, 216].
Over the last few years, advances in molecular methods have
made it easier to obtain more exhaustive data about the diver-
sity of tree endophytes ([189, 217] and literature listed in
Table 2). This trend is expected to continue. There is thus an
opportunity to consider tree endophytes in local, landscape
and regional studies of tree diseases [218]. It is important to
realize that there is often a continuum ranging from pathogen-
ic to neutral and mutualistic status and that we still have little
knowledge of the asymptomatic hosts for many pathogens
with a cryptic biology [219].

Conclusions

Forest pathologists have to act in a world that is rapidly
changing in many respects, from the emergence of new,
aggressive exotic tree pathogens to the development of just
as new molecular techniques. These developments lead to the
increased need for interdisciplinary collaboration, e.g. involv-
ing (i) forest pathologists in research on assisted migration of
tree species, (ii) the collaboration of geneticists of trees and of
tree diseases and (iii) surveys of the network connectivity
patterns of tree nurseries and their customers, thus leading to
data suitable for analysis by network epidemiologists
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[220–222] (Table 3). This overview of recent literature pro-
vides evidence that forest pathology is a subject that has
established links with various other disciplines.

Remarkably, the proportion of publications in forest
sciences mentioning ‘forest health’ and ‘tree disease(s)’
has remained stable (at about one out of 200, or ~0.5 %
and one out of 2000, or ~0.05 %, respectively) over the
1990s and 2000s (Fig. 2), despite, e.g. methodological
developments, the rise of electronic publishing and the
emergence of various new exotic tree diseases. Howev-
er, the absolute numbers of research publications on
both forests and forest health/tree diseases have in-
creased steadily over the last two decades. Whether
the proportion of interdisciplinary studies related to
forest health and tree diseases has remained stable or
has increased is a knowledge gap that needs collabora-
tion between forest pathology and scientometrics
[223–225]. In this concluding section, we point out
some research gaps and opportunities for further re-
search at the interface between forest pathology and
neighbouring fields, with particular attention to endo-
phytes (Table 3).

Research on landscape features facilitating the establish-
ment and spread of exotic tree diseases appears to have
developed largely independently of research on the factors
shaping tree endophyte assemblages, but landscape ecology
tools and approaches can be beneficial also in the study of tree
endophytes. More diverse landscapes are likely to be less
conducive to the spread of exotic tree diseases under changing

environmental conditions [226]. This insurance effect of land-
scape diversity applies in some cases also to insect defoliators,
despite their ability to jump from patch to patch of suitable
hosts [227]. There is evidence from an archipelago in south-
western Finland that birch leaf endophytes are affected to
some extent by landscape fragmentation [228], but further
studies from other systems are needed to assess whether lack
of landscape connectivity generally reduces the protective role
of tree endophytes against diseases.

Despite the many landscape (and network) metrics that
can be calculated in geographic information systems, field
data are important also in landscape studies of tree path-
ogens, as shown by the better performance of models
using direct measurements of the density of P. ramorum
hosts compared to models using remotely sensed esti-
mates of host habitat in California [229]. Predicting tree
pathogen and endophyte assemblages from satellite mea-
surements might still look like an outlandish research

Table 3 A selection of interdisciplinary research gaps relevant to forest
health in a changing world

Forest pathogens and shifting treelines

Tree diseases in novel ecosystems

Effects of global change drivers on associated microbiota of tree diseases

Interacting disturbances and forest health in a changing climate

Landscape epidemiology of tree pathogens dispersed by trade networks

Comparative epidemiology of tree diseases in old-growth forests vs. tree
monocultures

Public understanding of the role of tree diseases for the health of forest
ecosystems

Using towns as replicated experiments combining warmer climates,
exotic tree hosts and increased propagule pressure of exotic tree
pathogens

Comparing endophytes with other bio-indicators of forest health (e.g.
lichens, birds, insects and deadwood)

Human impacts on large-scale patterns of tree endophytic assemblages

Forest tree species diversity and tree endophyte biodiversity

Endophytic assemblages in exotic trees

Risks for native species associated with plantations of exotic trees

Mechanisms of endophytic switches from mutualistic or neutral to
pathogenic lifestyle

Evolutionary epidemiology of emerging tree pathogens

Fig. 2 Temporal trend in the proportion of publications on forests
mentioning a forest health and b tree disease(s) (obtained by dividing
the number of papers retrieved each year searching for the keyword
‘forest health’ (or ‘tree disease’) by the number of papers retrieved that
year with the keyword ‘forest’), in Google Scholar and Web of Science
(1991–2010, as abstracts are searched in Web of Science starting from
1991 only; some papers published after 2010 may still need to be
indexed). Data were retrieved in March 2014. Whilst these proportions
have remained fairly stable, the absolute number of new yearly
publications (both on forests and on forest health/tree diseases) has
progressively increased in both databases
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proposal, but could well take place over the next years.
Comparative studies of tree microbial assemblages using
remotely sensed data vs. field measurements of habitat
variables would be needed to test the viability of this idea.

Regional tree mortality due to more frequent and se-
vere forest disturbances can have ecosystem impacts
through changes in plant species composition [230].
Widespread tree mortality can lead to the loss of many
associated organisms, as feared for ash dieback over the
coming years [29, 231–233]. Our understanding of the
biodiversity consequences of exotic tree diseases is still
limited to a few pathosystems and groups of organisms
[234–237]. Relatively, little information is available on
the potential consequences of outbreaks of exotic tree
pathogens for their associated microbiota, as most re-
search has focused on the effects on endophytes of en-
demic tree pathogens [238–245]. A similar lack of knowl-
edge applies to the likely impacts of global change drivers
on fungal endophytes.

An important requirement for successfully managing
exotic tree diseases such as ash dieback, Sudden Oak Death
and Dutch elm disease is collaboration with social scientists
and engagement with stakeholders [246–248]. Tree health
is just one of the many aims of land management, so that
multi-criteria risk analyses are needed to assess the impact
of various forest management scenarios on forest ecosys-
tem services [249]. Often, national forest inventories deliv-
er only coarse information for the study of specific tree
health problems, thus making tailored surveys necessary
for particular diseases [250]. For example, many forest
inventories clump together all broadleaved tree species in
one category, whereas standardized data on e.g. F. excelsior
would be needed to assess the potential impacts of ash
dieback in various regions.

Exotic tree pathogens have not just environmental and
evolutionary consequences [251], but can also be costly eco-
nomically [252]. Studies of the landscape features associated
with tree disease incidence can help prioritize monitoring
efforts [253]. A study of limber pine (Pinus flexilis) stands at
risk of infestation by C. ribicola across Wyoming (where pine
blister rust has long been present) and Colorado (where it is
now becoming established) found that about half of the vari-
ation among plots in disease incidence could be explained
using environmental variables (e.g. climate data at 1-km res-
olution) available to land managers [254]. There is the need to
adopt similar approaches in the study of regional variations of
tree endophyte assemblages.
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