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Abstract Image analysis of fractal geometry can be used to
gain deeper insights into complex ecophysiological patterns
and processes occurring within natural microbial biofilm land-
scapes, including the scale-dependent heterogeneities of their
spatial architecture, biomass, and cell-cell interactions, all
driven by the colonization behavior of optimal spatial posi-
tioning of organisms tomaximize their efficiency in utilization
of allocated nutrient resources. Here, we introduce CMEIAS
JFrad, a new computing technology that analyzes the fractal
geometry of complex biofilm architectures in digital land-
scape images. The software uniquely features a data-mining
opportunity based on a comprehensive collection of 11 differ-
ent mathematical methods to compute fractal dimension that
are implemented into a wizard design tomaximize ease-of-use
for semi-automatic analysis of single images or fully automat-
ic analysis of multiple images in a batch process. As examples
of application, quantitative analyses of fractal dimension were
used to optimize the important variable settings of brightness
threshold andminimum object size in order to discriminate the
complex architecture of freshwater microbial biofilms at mul-
tiple spatial scales, and also to differentiate the spatial patterns
of individual bacterial cells that influence their cooperative
interactions, resource use, and apportionment in situ. Version
1.0 of JFrad is implemented into a software package contain-
ing the program files, user manual, and tutorial images that
will be freely available at http://cme.msu.edu/cmeias/. This
improvement in computational image informatics will
strengthen microscopy-based approaches to analyze the

dynamic landscape ecology of microbial biofilm populations
and communities in situ at spatial resolutions that range from
single cells to microcolonies.

Keywords Biofilm architecture . CMEIAS . Fractal
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Introduction

Since Mandelbrot’s 1982 first description of fractals in the
natural world and their use to analyze the self-similarity of
complex coastlines across a range of spatial scales [1], appli-
cations of fractal analysis have rapidly infiltrated through
many fields of physics and biology, including ecology [2].
This is largely because fractal geometry provides better quan-
titative tools than Euclidean models to describe complex
natural shapes, and allows for the integration of dynamic
factors such as spatial and temporal scales that other methods
cannot account for [3].

One of the main problems encountered when describing
and modeling spatially distributed landscapes is the natural
spatial variability of ecologically vital factors such as the
physicochemical environment, biomass and productivity,
and hydrological characteristics. Since natural variability is
not constant, using simple point models are ineffective.
Therefore, the ecological analysis of a landscape system at
any spatial scale will benefit by applications of fractal geom-
etry analysis to describe, define, and model its scale-
dependent heterogeneity in structure, especially when its ar-
chitecture has high complexity [3, 4]. Nowadays, the fractal
landscape is used as the “default”model where real patterns of
complex landscape heterogeneity may be compared quantita-
tively [2].

A prevailing theme within landscape ecology is to use
fractal geometry when analyzing the configurations of spatial
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mosaics since they greatly influence the wide range of eco-
logical phenomena that connect population dynamics and the
structure of their habitat [3]. Fractal geometry is better suited
to describe these various phenomena because landscape
shapes are irregular and fragmented; therefore, they have a
greater degree of complexity when compared with Euclidean
approximations [5]. For instance, at the core of the allometric
scaling relationships between body size and metabolic rate in
ecophysiology are the local variations in nutrient resource
allocation within habitats being colonized. Acquiring enough
food is the first key requirement for successful colonization of
habitats in all of biology. Various ecological studies suggest
that metabolic processes used for growth physiology rely on
the hierarchical, fractal-like nature of resource distribution
networks, and that organisms have exploited a fourth spatial
dimension by evolving hierarchical fractal-like structured spa-
tial distributions designed to maximize nutrient resource allo-
cation and acquisition [4, 6, 7]. Fractal descriptions of this
self-similarity metric for communities provide quantitative
insights about the spatial distribution of resources in situ and
how organisms exploit and compete for those resources [7, 8].
For instance, fractal geometry has been used to quantify
differences in the morphology of growing microbial colonies
in relation to resource apportionment within their habitat, and
changes induced by the addition of new carbon sources and
competing microorganisms to establish their colony systems
[5]. This fractal partitioning of heterogeneous distributions
and allocations of the same resource is an important trade-
off constraint that enables the coexistence of multiple species
among community participants [7, 9]. Thus, a fractal analysis
of landscapes can provide insights that help to explain the
ecophysiology ofmicrobial colonization behavior on surfaces,
driven by their nutrient resource allocation and optimal posi-
tioning to maximize their utilization efficiency of nutrients
[10].

Bacterial biofilms exhibit self-similar fractal geometry at
multiple spatial scales [6, 11, 12], reflecting the complex
morphology of their microcolony coastline borders that typi-
cally result from microhabitat fragmentation and heterogene-
ity in their resource utilization rates. Some image analysis
software applications have included fractal analysis that can
analyze and map biofilm architectures [13–15]. Among the
freely-available, stand-alone image analysis softwares that
include fractal dimension (FD) analysis are ImageJ [16],
Fractal Dimension Estimator (www.fractal-lab.org/
Downloads/FDEstimator.html), and Fractal3 [17] that use
the box count method, and FragStats [18] that uses a
perimeter-area regressionmethod to compute fractal geometry
of landscapes in digital images. Other free programs include
Fractalyse designed for urban planning and feature a combi-
nation of box count and dilation methods to analyze fractal
geometry [19], and FracTop to analyze branched neurons
using the fractal mass-radius method [20].

Many mathematical methods to compute fractal dimension
have been proposed and used independently in ecological
research [21]. Since each metric quantifies a discrete charac-
teristic of the fractal landscape, there is a need for a well-
documented and freely-available image analysis system that
takes advantage of the wider range of methods (more so than
currently available) to measure fractal dimension, and also
features a more comprehensive yet easy to use fractal geom-
etry analysis tool optimized to support microbial biofilm
research. An early prototype named Biofilm Image
Processing (BIP) was designed and developed [22, 23] to take
advantage of the data-mining opportunities made possible by
the range of different methods available to compute fractal
dimension. However, BIP was implemented in an obsolete
version of Microsoft Visual Studio and was no longer sup-
ported. Later, we recognized the benefits of using multiple
methods of fractal dimension analysis (as originally imple-
mented in BIP) to discriminate biofilm architectures.
Therefore, we have recreated this opportunity to data-mine
the fractal analysis of biofilm architectures by developing an
improved reimplementation of BIP software. Here, we intro-
duce this new software application, named CMEIAS JFrad,
that uniquely features a comprehensive collection of 11 dif-
ferent fractal dimension methods implemented into a semi-
automatic wizard designed to maximize ease-of-use for anal-
ysis of biofilms and other landscapes in single images, or
multiple images in an automated batch process. We also
describe the protocols of CMEIAS JFrad to rank the impor-
tance of different fractal analysis methods that discriminate
biofilm architecture, to optimize the variable settings of key
image processing steps that must precede fractal analysis, and
examples of its use to compare the spatial ecology of micro-
bial biofilm landscapes.

Materials and Methods

Coding Information

CMEIAS JFrad code is implemented using Java and so all
features are easily available to both Windows and non-
Windows users. Java 6 or higher (freely available at https://
www.java.com/en/) must be installed in order to run JFrad.

Biofilm Development, Microscopy, and Image
pre-Processing

Clean borosilicate glass microscope slides (considered “con-
trol”) and polylysine-coated glass slides were submerged for
four summer days from a fishing line approximately 1 ft
below the surface of the Red Cedar River that flows through
the campus of Michigan State University (East Lansing, MI,
USA). Slides were retrieved, their underside wiped clean,
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mounted in filter-sterilized water with a No. 1.5 thickness
glass cover slip, and examined by brightfield light microscopy
using a 1× and 10× Neofluor objective lens. Digital 8-bit
grayscale images of the freshwater microbial biofilms devel-
oped on control glass and polylysine-coated glass were ac-
quired using a monochrome digital camera, processed to
invert their image brightness table (dark→light, light→dark)
using Adobe Photoshop CS3, and analyzed using CMEIAS
JFrad.

Data Analysis

The output data of biofilm fractal dimensions were saved as
*csv files and analyzed statistically using the StatistiXL addin
[24] running within Microsoft Excel.

Results and Discussion

Software Logic of Mathematical Methods Used by JFrad
to Analyze Fractal Dimension

The term “fractal dimension” can be used in a more general
sense referring to any of the dimensions commonly used to
characterize fractals [25]. Most commonly it is used in its
narrowest meaning, i.e., capacity dimension [26] according
to the following:

dcapacity≡− lim
∈→0þ

lnN

ln∈
ð1Þ

where N is the number of elements forming the finite cover
and ε is the size of each element. For a straight line, this value
is evaluated to be 1 becauseN=1/ε; for a 2-dimensional shape,
say, a square, the value is 2 because N=1/ε2; for a fractal,
dcapacity is typically a value between 1 and 2, indicating its
departure from Euclidian geometry.

The fractals of interest in the image are not the objects
themselves (e.g., biofilm microcolonies), but rather the com-
plexity of their border coastlines. Furthermore, such “fractals”
in a digital image are not fractal in the strictest sense of being
self-similar over all spatial scales because of the finite size of
the pixels [27, 28]. In a digital image, the pixel is the smallest
scale that can be evaluated and the mathematical limit is
interpreted as over the extrapolation. However, if the image
represents some real objects that are fractals, the fractal di-
mension of the object (or its borders) can be evaluated using
the shapes defined by the pixel values. The relationship be-
tween such evaluation and the real fractal dimension is math-
ematical and is based on the assumption that the underlying
objects, or more precisely their border coastlines, are really
fractals.

CMEIAS JFrad typically analyzes digital binary images in
which the pixels of the foreground objects (e.g., individual
cells or microcolony biofilms) are represented by pure white
color against a black background. The program utilizes a user-
defined brightness threshold setting to convert the input image
if not already binary (methods to optimize that setting are
described here). Elevenmathematical methods are implement-
ed to evaluate the fractal dimension of the 2-dimensional
border coastline of those foreground objects, not their volume,
mass, or surface texture (lacunarity). These eleven fractal
methods can be categorized into four groups. Group 1 is based
on the purely pixel-represented borders, i.e., individual objects
are not differentiated. Group 2 is based on the so-called
“traced-border”, i.e., each object is considered separately and
the sequential order of its border pixels is used in the proce-
dure of evaluation. Group 3 is based on mass-based methods.
Although the mass here actually refers to the mass of the
border, this group of methods treats the border (represented
either as simply a set of pixels or a traced pixel sequence) as a
solid object instead of merely a digital representation of the
width-less separation between the real object and its immedi-
ate surroundings. Group 4 is based on the concept of “corners”
along the border. All the methods follow the same pattern: for
a sequence of an incremental variable , the method-specific
image measurement A is calculated for each value of r; then a
linear regression is used to obtain the slope of the log−log plot
of A vs. r; and finally the fractal dimension is then evaluated
by some simple conversion from the slope.

We will use the term “the slope of the log(A)~log(r)” in the
following description. The slope with the simple notation of:

slope e y

x

is defined, for a sequence of y: y1, y2, ···, yn and a sequence of
x: x1, x2, ···, xn, as the regression coefficient b for the linear
least squares fitting [29] of yi versus xi in: byi ¼ aþ bxi: We
will denote the fractal dimension as Df .

Group 1 Methods Based on Simple Length-Related Pixel
Borders

The first method in Group 1 is called “dilation” [30–32]. It
represents the dilation of the borders and has the following
algorithm-specific features: let r be the radius of dilation, A be
the area of the dilated border, slope~log A/log r,Df=2−slope,
and d=2r (called the “kernel diameter”). For a straight line, A/
d is constant so the slope is 0 and d=1.When log (A/d) vs. log
(d) is linear, then A/d vs. d is exponential, so A vs. d is
exponential as well.

The second method in Group 1 is called the “Euclidean
Distance Map.” It has the following algorithm-specific fea-
tures: let d be the shortest Euclidean distance to the border
pixels, A be the area within that distance, slope~log A/log d
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and Df = 2−slope. The direct difference between this method
and the dilation method described above is that the Euclidian
distance used here is based on the original border pixels. In the
dilation method, the new area at each step is based on the
previous step, not the original starting status.

The third method in Group 1 is called “box counting” (also
known as the “grid” method [33]. It has the following
algorithm-specific features: let a be the box size (i.e., the
number of pixels on each side of the square area), N be the
number of boxes covering all border pixels,in terms of the
number of pixels; slope~log N/log a, and Df=−slope.

Group 2 Methods Based on Traced Borders [34–36]

The three methods in this group treat the border of each
individual object as a sequence of pixels.

The first method in Group 2 is called “fast.” It has the
following algorithm-specific features: let a be the interval
between pixels, in terms of the number of pixels; L be the
perimeter connecting the interval pixels, slope~log L/log a
and Df=1−slope.

The second method in Group 2 is called “fast (hybrid).” It
has the following algorithm-specific features: let a be the dis-
tance interval between pixels along the traced border, L be the
perimeter connecting the interval pixels, slope~log L/log a and
Df=1−slope. This method is similar to the fast method except
that each pixel connects to the closest pixel at least distance a
away. By contrast, in the fast method, the pixel connects to the
next pixel by skipping a−1 pixels between them.

The third method in Group 2 is called “parallel lines.” It has
the following algorithm-specific features: let d be the interval
between parallel horizontal lines, L be the perimeter
connecting the pixels on those lines along the traced border,
slope~log L/log d, and Df=1−slope. This method is also
similar to the fast and fast (hybrid) methods, but with it each
segment along the perimeter is more likely to be different.
Conceptually, the parallel lines could be chosen as vertical
instead of horizontal lines, and the choice is arbitrary.

Group 3 Methods Centered on Mass-Based Borders [31]

Like in Group 2, methods in Group 3 are based on the pixel
boundary but treat it differently as mass instead of boundary.

The first method in Group 3 is called “cumulative intersec-
tion.” It has the following algorithm-specific features: let r be
the radius of the circle, A be the area of the object within the
circle, slope~log A/log r, andDf=slope. The area is decided as
the count of the pixels within the circle. This method was
originally used to describe the fractal dimension of neurons
[33] or the cross-section of some objects, meaning it has a core
and the algorithm starts reasonably from radius 0 or a very
small radius. In the case of the “blob-like” microcolonies
commonly occurring in microbial biofilms, the cumulative

intersection method regards the border pixels instead of the
original blobs as the “objects.” Otherwise, the resulted fractal
dimension will always be a number very close to 2, not what
we really want to evaluate in this case.

The computation of the fractal dimension using the
cumulative intersection method could return a result outside
the range of 1.0–2.0, which is only a numeric artifact.
When the growing circle of enclosure exceeds the size of
the object, then the cumulative intersection will not in-
crease, the slope and the calculated fractal dimension will
decrease below 1 and could even approach 0.
Consequently, the cumulative intersection method is de-
signed to stop once the circle of enclosure grows beyond
the entire object. On the other hand, if there is a hole inside
the “object,” the increment of cumulative intersection count
will be faster than the entirely filled area and result in a
calculated fractal dimension that is larger than 2. There are
two possible ways to avoid this illogic result: either add
one pixel for a given circle that contains no pixel, or start
the method only when it actually intersects the objects.
There are two shortcomings for the second situation that
must be accommodated. First, the fractal dimension can
still be larger than 2.0 if it requires only a few steps that
produce a very large slope. For example, a pixel count of
1, 10, 1000, and 1,000,000,000 is theoretically possible
when not starting from the origin (usually the object’s
center). Second, in the case of multiple separated objects
in the image, the existing space between them will cause
JFrad to calculate a fractal dimension that is either much
larger or smaller than the actual object’s fractal dimension
in a misleading way. So, the final algorithm implemented
into JFrad to handle these scenarios is thus designed so that
each object is handled separately, i.e., each object’s iteration
starts from the original and one artificial pixel is added if
there is an internal hole; then, the ultimate result is an
accurate average of the fractal dimensions of all objects
weighed on each object’s pixel’s count.

The second method in Group 3 is called “mass radius
(long).” It has the following algorithm-specific features: let r
be the radius of the circle around chosen border pixels, A be
the area of the objects (total pixel count) within the circles,
slope~log A/log r, and Df=slope. Conceptually, this method
does not need traced borders. However, using both the pixel
array and the traced list of the borders, the algorithm can be
implemented more efficiently.

The third method in Group 3 is called “mass radius
(short).” It has the following algorithm-specific features: let
r be the radius of the circle around chosen border pixels, A be
the area of objects (total pixel count) within the circles, slope=
log A/log r, andDf=slope. This method uses the same strategy
as the mass radius (long) except that only a subset of pixels are
used as the object centers to evaluate mass radius, whereas the
mass radius (long) version uses all the object pixels. The
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subset can be chosen randomly [22]. This method generally
needs to use traced borders.

Group 4 Methods Based on Corner-Analysis

The two methods in this group are based on the traced borders
of the objects within the image [22]. They are sensitive to the
selection of the control parameters and are more likely than
other methods to produce numeric results that are out of the
theoretical range of 1–2. A corner is defined as the pixel along
the object’s border, or vertex, whose height is at least h. The
concept of the height is defined for vertex Pi as the distance
from the vertex Pi to the line P0Pi+1, where P0 is a reference
point and Pi+1 is the following pixel along the traced border.
After a corner is found, it serves as the reference point to
search for the next corner along the traced border of the
objects.

The first method in Group 4 is called “corner count.” It has
the following algorithm-specific features: let h be the mini-
mum height to define a corner,N be the number of the corners,
slope~log N/log h, and Df=−slope.

This method is based on the assumption that on a fractal,
the largest size of “corners” being considered, as represented
by S, is related to the number of such corners, n, in this way:

O
1

S

� �
≤n≤O

1

S2

� �
ð3Þ

This translates to −2≤log n/log S≤−1. So, the fractal di-
mension is evaluated as −slope, which will be between 1.0 and
2.0. The actually pixel-represented objects may not satisfy the

above assumption though. Consequently, it is still possible to
get a result outside of the range between 1.0 and 2.0. This
relationship is meaningful when considering the limit of S→
0+ but definitely not when S→∞. So, the larger S should be
considered less desirable than the smaller S. Much of the
discussion of this method also applies to the corner
(perimeter) method described next.

The secondmethod in Group 4 is called “corner perimeter.”
It has the following algorithm-specific features: let h be the
minimum height to define a corner, L be the perimeter
connecting all the corners, slope~log L/log h, and Df=1−
slope. This method is based on the assumption that on a fractal
object, the largest size of its “corners” being considered,
represented as S, is related to the perimeter connecting such
corners, p, in this way:

O 1ð Þ≤p≤O 1

S

� �
ð4ÞÞ

This translates to −1≤log p/log S≤0. So, the fractal dimen-
sion is evaluated as 1−slope, which will lie within the range
between 1 and 2.

Fractal Analysis Protocol Using CMEIAS JFrad

JFrad supports multiple image formats, including tiff, bmp,
png, jpg, and gif. Input images can be either 8-bit grayscale or
24-bit RGB images. Its graphical user interface (Fig. 1) has a
semi-automated wizard design to maximize ease-of-use for
analysis of biofilms and other landscapes in single images and
a fully automated mode for analysis of multiple images in a

Fig. 1 CMEIAS JFrad graphical
user interface and fractal analysis
of a single biofilm image. Shown
is the input biofilm image [21] (a
open image), and the output
images produced at each
intermediate step of the wizard
sequence for fractal analysis, b
binarize, c remove small particles,
d fill holes, e decide border, and f
calculate fractal dimension. The
right panel (F) displays the basic
image statistics and fractal
dimension data after completion
of the final step. The
specifications of control
parameters to perform these steps
are entered in the Option>Setting
menu
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batch process. Before starting the image processing and anal-
ysis sequences, the user should specify several control param-
eters (Main Menu Option>Settings), including the percentage
or brightness method and its threshold boundary used to find
and binarize the objects, the maximum particle size (pixels) to
be removed as background, the maximum internal hole size
(pixels) to be filled, the selection of any combination of the
eleven methods of fractal dimension for analysis, and the
decimal precision to display the fractal dimension output
(default is 5). The wizard sequence to analyze a single image
(Fig. 1a–f) is open image→binarize→remove particles→fill
holes→decide border→calculate fractal dimension→copy/
print/save data output. At any step of this sequence, the current
processed image in the GUI can be copied to the clipboard and
saved (default in bmp format). The data output for analysis of
individual images (Fig. 1f) includes the file name of the input
image, its pixel dimensions (width/height/total area), the cu-
mulative number of pixels of all foreground objects and their
traced borders, the % of the input image pixels covered by the
area and border of all foreground objects, and the fractal
dimensions of the foreground objects in the landscape image
calculated by each of the user-selected methods. To analyze
multiple images in a batch process, the user first builds a
suitable batch folder containing the images of interest, then
indicates its location (Main Menu File>Open Image
Directory), and finally specifies the name and location of the
output data file (automatically saved in *.csv format) contain-
ing a table that lists rows of the individual image names and
their fractal dimensions calculated by each of the user-selected
methods. A progression bar displays when the automated
batch analysis commences, informing the user about its pres-
ent status and final completion.

Optimizing the Default Settings of Minimum Object Size
and Brightness Threshold

The default settings of some control parameters in JFrad
(Option>Settings) are arbitrary, including the choices of max-
imum hole size to be filled within foreground objects,
methods to threshold and find object borders, iteration

parameters, and decimal precision of the reported fractal di-
mension value. The challenge to explore their effects on the
estimated fractal dimension of biofilms is simplified by using
its wizard design. Aside from these, the minimum object size
and brightness threshold values represent two important set-
tings that can significantly influence the amount of fractal
dimension detected in digital images of immature microbial
biofilms acquired at spatial scales that resolve microcolonies.
Both variables should be optimized experimentally since they
greatly influence the signal-to-noise relationship of image
segmentation that classifies the pixels as either foreground
objects of microcolony biofilms to be retained and analyzed,
or as background to be excluded from analysis. The goal is to
use optimal settings of these two parameters that will exclude
the microcolony “noise” or invalid objects that are smaller
than the specified minimum size and/or darker than the min-
imum brightness threshold. The noise of very small
microcolonies in the biofilm landscape images may be abun-
dant, lack fractal geometry, and/or can overwhelm the dis-
criminatory analysis of larger microcolonies in immature
biofilms. Examples of applying the brightness threshold and
minimum object size processes to a landscape biofilm image
are illustrated in Fig. 1b, c. The following section describes
how these two settings were optimized and implemented as
default in JFrad. A similar examination is recommended when
investigating other biofilms.

We used the automated batch process mode of JFrad to
analyze 50 inverted-brightness images of the freshwater bio-
film communities, 25 of which sample the biofilm developed
on control glass slides and 25 on polylysine-coated glass
slides. These two biofilm landscapes differ in microcolony
architecture because of their different colonization behaviors
on physicochemically dissimilar substrata (Fig. 2a, b).

The first set of experiments was designed to identify the
optimal decision boundary of minimum object size for mea-
surement of fractal dimensions in these two biofilm land-
scapes. The fractal dimension of each image was analyzed
using all 11 methods, with the minimum object size set at ten
different pixel values while maintaining the brightness thresh-
old at a constant setting of 125 gray level and the maximum

Fig. 2 Representative brightness
inverted micrographs of
freshwater biofilm communities
developed for 4 days on
microscope slides of a control
glass and b polylysine-coated
glass and acquired using the
10× objective lens. Bar scales
are 100 μm
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hole size to be filled at 300 pixels. A univariate analysis of
variance [24] indicated that the fractal dimension methods
differ significantly in their ability to detect fractal geometry
in these biofilms, and a ranked order evaluation indicated that
the fast method was most influenced by variations in mini-
mum foreground object size for the biofilm on the control
glass slides and the fast (hybrid) method for the biofilm on the
polylysine-coated slides (Table 1). The post hoc Tukey Q
multivariate test [24] was then performed to measure the
significance in mean differences between nine pairs of mini-
mum object sizes (5 pixel reference vs. 10, 15, 20, 25, 50, 75,
100, 125, and 150 pixels) using these optimized fractal di-
mension methods. Plots of the sum of post hoc Tukey Q
values that were statistically significant (p ranged from
<0.000 to 0.049) for each pair of minimum object sizes were
similar for both biofilm types (Fig. 3).

To finalize the decision of the default setting value for mini-
mum object size, we further evaluated the differences in TukeyQ
values between closest pairs [24]. Using the highest discriminat-
ing fast method for the biofilm developed on control glass slides,
the difference inQ values between the 50 and 75 pixel sizes was
statistically significant (p=0.002), but was not statistically differ-
ent between the 75 and 100, the 100 and 125, and the 125 and
150 pixel sizes (p=0.335, 0.934, and 0.994, respectively). Using
the fast (hybrid) method applied to images of the biofilm devel-
oped on polylysine-coated glass slides, the difference inQ values
between the 50 and 75 pixel sizeswas statistically significant (p=
0.004), but was not statistically different between the 75 and 100,
the 100 and 125, and the 125 and 150 pixel sizes (p=0.669, 0.
994, and 1.000, respectively). Based on these similar statistical
results obtained with both biofilm types, we assigned the optimal
minimum object size of 75 pixels as default for JFrad.

The second set of experiments followed a similar protocol
to identify the optimal setting for the brightness threshold
value of the gray level (on a scale of 0 for pure black to 255
for pure white) used by JFrad to classify pixels in the inverted
image as either foreground objects (≥threshold) or excluded as
background (<threshold). With settings of 75 pixels for min-
imum object size and 300 pixels for maximum hole to be
filled, we measured the fractal dimension of the aquatic
biofilms developed on control glass slides and polylysine-
coated slides over a range of ten different grayscale brightness
values (5, 10, 15, 20, 25, 50, 75, 100, 125, and 150). The
univariate analysis of variance [24] indicated that the cumu-
lative intersection method was most sensitive to variations in
brightness threshold settings among the 11 fractal dimension
methods for both biofilm types (Table 2).

The post hoc Tukey Q test [24] was then performed to
measure the difference in means of fractal dimension between
nine pairs of the brightness threshold values (reference value
of 5 vs. 10, 15, 20, 25, 50, 75, 100, 125, and 150 brightness)
using the optimized cumulative intersection method. The sum
of statistically significant Tukey Q values (p range from

Table 1 Univariate analysis of variance of the minimum object size for
freshwater aquatic biofilms developed on plain glass slides or polylysine-
coated glass slides and measured by 11 mathematical methods of fractal
dimensiona

Fractal dimension method Control glass Polylysine substratum

Corner (perimeter) 4.428 5.664

Box counting 11.027 0.786

Mass radius (long) 41.951 9.496

Dilation 42.204 7.368

Mass radius (short) 43.479 9.580

Euclidean distance map 55.840 11.614

Cumulative intersection 58.123 74.654

Corner (count) 92.472 53.513

Parallel lines 178.849 130.969

Fast (hybrid) 378.259 240.329

Fast 412.763 228.216

a Reported values are the Anova F statistic, and all were highly significant
at p<0.000 except for the polylysine biofilm measured by the box
counting method (p=0.629)

Fig. 3 Optimization of the minimal object size setting for the fractal
analysis of the aquatic biofilm developing on control glass slides (a) and
polylysine-coated glass slides (b) using the optimized fast and fast (hy-
brid) methods of fractal dimension analysis, respectively. All plotted

values that were significantly different (p<0.05) from the 5 pixel refer-
ence value are noted with an asterisk. The down arrow denotes the
75 pixel minimum object size assigned as default for JFrad
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<0.000 to 0.049) for each pair of brightness threshold settings
for the biofilms developing on control glass slides and
polylysine-coated slides are presented in Figure 4. The results
for both biofilms indicated an ascending slope of influence of
the brightness threshold setting with an apparent asymptote
value of 50. Validation of this value to assign as the default
was done by a similar statistical method as described above for
minimum object size. Using the cumulative intersection meth-
od applied to images of both biofilm types, the difference in
Tukey Q values between incremental pairs of 50 and 75, 75
and 100, 100 and 125, and 125 and 150 brightness were not
statistically significant ( p=0.973, 0. 989, and 0.899, and
0.934, respectively, for the biofilm on control glass, and p=

1.000 for all pairs for the biofilm on polylysine-coated slides).
This statistical result confirmed the choice of 50 as the optimal
default brightness threshold setting for JFrad analysis of these
biofilm images.

Data-Mining Analysis of Biofilm Architecture by Fractal
Geometry

The unique design of JFrad to include 11 different methods to
measure the fractal geometry of digital landscapes in the fully
automated batchmode facilitates the analysis, especially when
the most discriminating FD methods are not known in ad-
vance. This analysis of unobvious patterns that transform into
useful data creates a “data-mining” opportunity, thereby sig-
nificantly increasing the probability of finding the best fractal
dimension method(s) to discriminate landscapes that may not
be apparent if using software featuring only one or a few
methods for comparison. As an example of application, we
measured the fractal coastline complexity of biofilm land-
scapes containing microcolonies developed on control glass
slides and polylysine-coated slides at two spatial scales (ac-
quired using 1× and 10× microscope objective lenses, and
optimal control parameter settings). The results (Table 3) in-
dicate that both biofilms exhibit fractal geometry at multiple
spatial scales, and the ability of this characteristic to discrim-
inate their architecture is significantly influence by the FD
method(s) used.

Analysis of variance [24] indicated statistically significant
differences in fractal geometry between the two biofilm types
using four of the eleven FD methods (mass radius-short, mass
radius-long, Euclidian distance map, and dilation) when ex-
amined at the 1× spatial scale, and using five other FD
methods (box counting, fast, fast hybrid, corner count, and
parallel lines) when examined at the 10× spatial scale
(Table 3). The differences in fractal geometry between the
two biofilm types were significantly greater (lower p values)

Table 2 Univariate analysis of variance of the brightness threshold value
for fractal analysis of the biofilms developed on control glass slides and
polylysine-coated slides measured by 11 mathematical methods of fractal
dimensiona

Fractal dimension
method

Control glass
substratum

Polylysine
substratum

Corner (perimeter) 2.492 2.896

Box counting 35.354 106.281

Euclidean distance map 38.347 97.215

Dilation 51.618 130.940

Mass radius (short) 57.016 103.586

Mass radius (long) 58.743 109.012

Corner (count) 59.468 60.195

Fast (hybrid) 128.854 217.430

Fast 166.970 281.725

Parallel lines 175.567 277.601

Cumulative intersection 319.005 445.631

a Reported values are the Anova F statistic, and all were highly significant
at p<0.000 except for the control glass and polylysine biofilms measured
by the corner (Perimeter) method (p=0.010 and p=0.003, respectively)

Fig. 4 Optimization of the
brightness threshold setting for
the fractal dimension analysis of
the aquatic freshwater biofilms
developing on control glass slides
(closed circle, solid line) and
polylysine-coated glass slides
(triangle, dash line) using the
optimized cumulative intersection
method. Plotted values with an
asterisk are significantly different
from the 5 brightness reference
value. The down arrow denotes
the 50 grayscale brightness
threshold assigned as default for
JFrad
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using images acquired at the 10× spatial scale than at the 1×
spatial scale. These results indicate that both biofilm architec-
tures have fractal geometry at multiple spatial scales, the
comprehensive collection of fractal dimension methods fea-
tured in JFrad provides sufficient versatility to detect signifi-
cant differences between biofilms, and the methods with
greatest discriminating power are not necessarily the same
when biofilms are analyzed at all spatial scales.

Distinguishing Spatial Patterns of Single Cells in Biofilms
by Fractal Analysis

Quantifying the spatial heterogeneity ofmicrobial biomass in situ
can reveal important insights into their colonization behavior in
spatially structured landscapes, such as what typically occurs
during biofilm development [10, 37, 38]. Spatial analyses that
find patterns of distribution with significant departure from com-
plete spatial randomness indicate that operations of colonization
behavior involve a spatially explicit process with unique causes
and biological consequences rather than occurring randomly and
independent of their location [10, 11]. Also, fractal dimension
analysis can provide insights into various ecophysiological ac-
tivities of colonization behavior that relate to the fractal-like
apportionment and use of limiting nutrient resources [7, 10].
For instance, spatial patterns with fractal geometry result from
optimal cellular positioning of organisms to maximize their
utilization efficiency of allocated nutrient resources during colo-
nization of a landscape, and how the fractal nature of food cluster
availability and local concentration enable the coexistence of
multiple species among communitymembers [5, 7]. Thus, fractal
dimension analysis can be a useful measure of the space-time

complexity of surface colonization and provides several advan-
tages over other descriptive indices of ecological patchiness [5].

We prepared and examined a set of test images containing
1, 2, and 3 identical repeats of 14 microbial cells arranged in
clustered, random, and uniform spatial patterns (Fig. 5a–c) to
determine if fractal dimension analysis can discriminate these
different types of biofilm colonization behavior. Statistical
analysis of the results indicated that three of the fractal dimen-
sion methods featured in JFrad (dilation, Euclidian distance

Table 3 Fractal analysis of freshwater biofilms developed on control glass slides and polylysine-coated slides at 2 spatial scales. Images were acquired
using 1× and 10× microscope objective lenses

Fractal dimension method 1× Spatial scale 10× Spatial scale

Mean control glass Mean polylysine Anova F Prob. Mean control glass Mean polylysine Anova F Prob.

Corner (perimeter) 1.55471 1.56489 0.128 0.724 1.60254 1.60217 0.00123 0.972

Mass radius (short) 1.41980 1.37548 13.189a 0.002 1.31903 1.32135 0.03401 0.854

Mass radius (long) 1.41787 1.37497 12.175a 0.003 1.31799 1.32073 0.04791 0.828

Euclidean distance map 1.50314 1.45163 6.171a 0.023 1.36137 1.37822 1.31689 0.257

Dilation 1.54301 1.49521 4.967a 0.039 1.40010 1.41879 1.63548 0.207

Cumulative intersection 1.74182 1.82268 1.584 0.224 1.83456 1.86489 2.37202 0.130

Box counting 1.59186 1.53823 1.912 0.184 1.35243 1.41140 5.56434a 0.022

Fast 1.24565 1.23968 2.302 0.147 1.24358 1.22931 19.81396a 5×10−5

Fast (hybrid) 1.28094 1.27644 1.126 0.303 1.29313 1.27036 39.06367a 1×10−7

Corner (count) 1.45710 1.44266 0.294 0.594 1.38296 1.45969 68.72056a 8×10−11

Parallel lines 1.33275 1.34004 1.208 0.286 1.36635 1.32785 80.63050a 8×10−12

a Statistically significant differences (p<0.05) between the fractal dimensions of the biofilms developed on slides of control glass vs. polylysine-coated
glass measured by the same method

Fig. 5 1× version of 3 distinct spatial patterns of the same 14 identical
cells arranged in a study area. The patterns of spatial distribution are
clustered (a), random (b), and uniform (c). These three images were the
sources to make the 2× and 3× versions of the same individual cells that
were included to determine which fractal dimension method(s) can dis-
criminate these spatial patterns independent of object shape and sample
size
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map, and box counting) had significant discriminating power
to distinguish these three patterns of spatial distribution from
each other at the 1×, 2×, and 3× abundance levels (Table 4),
further illustrating the data-mining benefit of including a
comprehensive collection of methods for analysis of biofilm
architecture. All three of the Group 1 methods indicated that
the means of the fractal dimension values have a statistically
significant ranked order of clustered>random>uniform. This
ranking of the spatial patterns is indicative of the scale-
dependent heterogeneous fractal variability in limiting re-
source partitioning, and reflects the high efficiency at which
cells actively disperse and cooperatively position themselves
spatially and physiologically when faced with the interactive
forces of microbial coexistence to optimize their allocation of
nutrient resources on a local competitive scale [5–7, 10, 27,
37, 38]. Thus, fractal discrimination of aggregated vs. random
vs. uniform (overdispersed) distribution patterns provides a
significant insight into the microbial colonization behaviors
that direct biofilm development, where these competitive or
cooperative forces are dependent in part on limiting nutrient
partitioning and allocation [7, 10, 37, 38].

Concluding Statements

Concepts derived from fractal theory are fundamental to an
understanding of the landscape complexity of scale-related

phenomena in ecology [3–7]. Fractal geometry can be used
to gain deeper insights into complex ecological patterns and
processes occurring within natural landscapes, including the
scale-dependent heterogeneities of spatial architecture, bio-
mass and ecophysiology of colonization behavior, all driven
by the ecological theory of optimal spatial positioning of
organisms to maximize their efficiency in utilization of allo-
cated nutrient resources [5–7, 10]. Here, we introduced
CMEIAS JFrad, a new computing technology of image pro-
cessing and analysis for research and educational applications
to analyze the fractal geometry of foreground objects in digital
images of complex landscapes. JFrad uniquely features a data-
mining opportunity based on a comprehensive collection of 11
different fractal dimension methods implemented into a wiz-
ard design to maximize ease-of-use for semi-automatic anal-
ysis of single images or fully automatic analysis of multiple
images in a batch process. As examples of application, quan-
titative analyses of fractal dimension are used to discriminate
the complex architecture of freshwater microbial biofilms at
multiple spatial scales and the positioning of individual cells
to optimize their spatial patterns indicative of cooperative
interactions, resource use, and apportionment in situ. Version
1.0 of JFrad will be implemented into a software package
containing the program files, user manual, and tutorial images,
and provided as a freely available download at http://cme.
msu.edu/cmeias/. This improvement in computational image
informatics adds to our CMEIAS suite of integrated software
whose combined mission is to strengthen microscopy-based

Table 4 Discrimination of the spatial patterns of distribution among bacterial cells by fractal dimension analysisa

Fractal dimension method Anova F (p value) Spatial pattern Mean +/− std. dev. Pattern pair difference (Tukey Q; p values)

Euclidean distance map 3413.03
(6.77×10−10)

Clustered 1.17429±0.00055 C>U
(110.436; 4.93×10−8)

Random 1.14758±0.00072 C>R
(88.263; 4.92×10−8)

Uniform 1.14087±0.00002 R>U
(22.173; 1.04×10−5)

Dilation 1565.77
(6.99×10−9)

Clustered 1.22470±0.00082 C>U
(75.928; 4.86×10−8)

Random 1.19159±0.00147 C>R
(58.743; 3.73×10−8)

Uniform 1.18225±0.00017 R>U
(16.556; 5.77×10−5)

Box counting 132.43
(1.09×10−5)

Clustered 1.17466±0.00784 C>U
(21.982; 1.10×10−5)

Random 1.09632±0.00872 C>R
(16.898; 5.13×10−5)

Uniform 1.07274±0.00748 R>U
(5.084; 2.66×10−2)

a Reported values are the statistical analyses of the fractal dimension of the 1× (14 cells), 2× (28 cells), and 3× (42 cells) images derived from the 1× (14
cells) images in Fig. 5a–c analyzed by the indicated fractal dimension methods. Only these three fractal dimension methods featured in JFrad provided
statistically significant discrimination of all three spatial patterns at all three tested abundances
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approaches for advancing a greater understanding of microbi-
al ecology in situ at spatial resolutions that range from single
cells to microcolonies.
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