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Abstract In soils, bacteria are very abundant and diverse.
They are involved in various agro-ecosystem processes such
as the nitrogen cycle, organic matter degradation, and soil
formation. Yet, little is known about the distribution and
composition of bacterial communities through the soil profile,
particularly in agricultural soils, as most studies have focused
only on topsoils or forest and grassland soils. In the present
work, we have used bar-coded pyrosequencing analysis of the
V3 region of the 16S rRNA gene to analyze bacterial diversity
in a profile (depths 10, 25, and 45 cm) of a well-characterized
field of winter wheat. Taxonomic assignment was carried out
with the Ribosomal Database Project (RDP) Classifier

program with three bootstrap scores: a main run at 0.80, a
confirmation run at 0.99, and a run at 0 to gain information on
the unknown bacteria. Our results show that biomass and
bacterial quantity and diversity decreased greatly with depth.
Depth also had an impact, in terms of relative sequence
abundance, on 81% of the most represented taxonomic ranks,
notably the ranks Proteobacteria , Bacteroidetes ,
Actinobacteridae, and Acidobacteria. Bacterial community
composition differed more strongly between the topsoil (10
and 25 cm) and subsoil (45 cm) than between levels in the
topsoil, mainly because of shifts in the carbon, nitrogen, and
potassium contents. The subsoil also contained more un-
known bacteria, 53.96 % on the average, than did the topsoil,
with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these
unknown bacteria seem to belong to Deltaproteobacteria,
Actinobacteria, Rhizobiales, and Acidobacteria.

Introduction

Bacteria are the most abundant and diverse microorganisms in
soils. They play an important role in soil formation, contribute
to plant nutrition, and are involved in various ecosystem
functions, such as nutrient cycling, but many things remain
to discover about bacterial soil communities: how environ-
mental factors affect them and how their alteration affects
ecosystems. This knowledge gap is due principally to the
incredible diversity and complexity of the soil [1, 2]. Of the
more than 50 bacterial phyla believed to exist, at least 32 are
thought to be present in soils [3], and nearly half of these
would appear to comprise only bacteria that have never been
cultured [4, 5]. Furthermore, many studies based on soil
bacterial communities have focused on forest soil [6–8] or
grassland soil [9, 10], and although an increasing number of
recent studies have analyzed the bacterial diversity of agricul-
tural soils, these studies have focused generally on the topsoil
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(0–10 cm) [11, 12] or on mixed soil samples corresponding to
depths from 0 to 20 or 30 cm (plowing layer) [13–15]. This is
a problem, as Fierer et al. in 2003 [16] and Schutz et al. [17]
have respectively found 35 and 50% of the microbial biomass
to be present in the subsoil (below 25 cm in the former study
and below 40 cm in the latter). Furthermore, most wheat roots
extend through the 0–60-cm horizon [18].

Until recently, bacterial diversity was analyzed by tech-
niques such as denaturing gradient gel electrophoresis, auto-
mated ribosomal intergenic spacer analysis, or terminal re-
striction fragment length polymorphism analysis. These tech-
niques provide access to only a small fraction of the total
bacteria present in an environment. Today, high-throughput
sequencing allows large-scale analysis of the microbial com-
position of an environment [19, 20] and is widely used in
bacterial diversity analyses. Taxonomic assignment of se-
quences is usually carried out with the Ribosomal Database
Project (RDP) Classifier program [21], with a bootstrap score
of 0.80 to 0.99. This program is based on a naïve Bayesian
assignment algorithm and gives bootstrap scores for the
assigned ranks. The bootstrap score decreases as the taxonom-
ic rank assignment becomes more specific (from domain to
genus). Using a threshold bootstrap score to sort the rank
assignments introduces a new dimension into the analysis,
as only the best assignments are kept, at the cost of generating
a category of unclassified reads for each rank (and this cate-
gory may be large in a very diversified environment such as a
soil).

Here, we have investigated the diversity of bacterial com-
munities at three depths (10, 25, and 45 cm) in a conventional
tillage and a simplified tillage plot in a well-characterized field
of winter wheat. The depth of 10 cm corresponds with the
tilled layer in both tillage systems, 25 cm corresponds with the
tilled layer in the conventional tillage plot and with a previ-
ously plowed layer in the simplified tillage plot, and 45 cm
corresponds with an undisturbed layer in both plots. Our
objectives were to demonstrate, in an agricultural soil, the
impact of depth on the known and unknown members of
bacterial communities and to detect correlations between soil
bacterial communities and physicochemical parameters of the
soil. For this, we used high-throughput bar-coded pyrose-
quencing and the RDP Classifier program for taxonomic
assignment of the reads. This assignment was done with three
bootstrap scores: 0, 0.80, and 0.99. The score 0.80 is recom-
mended by Wang et al., and its accuracy ranges from 83.2 %
for the genus to 99.5 % for the phylum. It was used to analyze
shifts in bacterial communities between the three depths. The
score 0.99 is very stringent and was used to confirm the
accuracy of assignments obtained with score 0.80. Finally,
the score 0 was used to assign all reads, each read being
therefore assigned to its closest known genus. This score is
very lax and was used to calculate for each rank the contribu-
tion of reads that could not be assigned in the run at score 0.80.

Methods

Soil Description and Sampling

The experimental site is located in Gembloux (50° 33′ N, 4°
42′E), Belgium. The soil is a luvisoil (FAO classification). For
the topsoil (0 to 30 cm), the texture is silt loam (clay 14–16%;
silt 75–80%; sand 5–6 %) and the pH is neutral (6.5–7.0). For
the subsoil (30–100 cm), the texture is silt loam (clay 20–
25 %; silt 70–75 %; sand 3–6 %) and the pH is slightly acidic
(6.2–6.5). The structure is blocky angular to blocky
subangular/compact. A winter wheat crop was grown on the
field in 2011 and again in 2012. The field was divided into
plots subjected to simplified tillage (surperficial works 0–
10 cm depth) or conventional tillage (plowing depth 30 cm).
The simplified tillage scheme began in 2007.

Samplings were performed on 18 May 2011 and 30 May
2012 in a conventional tillage and a simplified tillage plot, the
same plots both years, at three depths: 10, 25, and 45 cm. For
each year, soil samples were taken in triplicates in two places
for each plot and depth. The triplicates were then gathered on a
composite sample. The following parameters were measured
directly on these composite samples: pH, soil moisture, and
soil total nitrogen, carbon, potassium, magnesium, and calci-
um contents.

DNA Extraction

Eight grams of each composite sample was used to extract
genomic DNA from the soil with the PowerMax™ Soil DNA
Isolation Kit (MO BIO Laboratories, Solana Beach, CA)
according to the manufacturer’s instructions. The quality of
the DNA was checked by gel electrophoresis, and it was
quantified with the Qubit Fluorometer (Invitrogen, Carlsbad,
CA, USA) prior to storage at −20 °C. This quantification was
used to calculate the biomass which represents the DNA
quantity extracted from 1 g of soil.

Quantification of Total Bacteria and 16S rRNA Genes
by qPCR

Total bacteria (in Escherichia coli equivalents/g of dry soil)
and the total concentration of 16S rDNA (in gene copies/g of
dry soil) were determined on each composite sample by real-
time PCR amplification of the DNA segment encoding the
V3–V4 region of the 16S rDNA. The primers used were All-
Bact-F (forward) 5′-TCCTACGGGAGGCAGCAGT-3′ and
All-Bact-R (reverse) 5′-GGACTACCAGGGTATCTAATCC
TGTT-3′ [22]. The hydrolysis probe was All-Bact-P (6-
FAM)-5′-CGTATTACCGCGGCTGCTGGCAC-3′-(TAMRA)
[22]. Real-time PCRwas carried out on a StepOnePlus™Real-
Time PCR System (Applied Biosystems, Foster City, CA,
USA) with the following cycle conditions: 50 °C for
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2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 s,
and 60 °C for 1 min. The PCR reaction mixture
consisted of 12.5 μl TaqMan® Universal PCR Master
Mix (Applied Biosystems, Foster City, CA, USA),
100 nM of each primer, 0.625 μl BSA (4 μg/μl),
100 nM probe, and 5 μl of gDNA (5 ng/μl) in a total
volume of 25 μl. The standard curve yielding E. coli
equivalents was constructed by PCR amplification of the
same target gene in gDNA extracted from known num-
bers of cells from a culture of E. coli XL1 Blue, and
the results were converted to a number of 16S rDNAs
by multiplying by 7, i.e., the number of 16S rRNA
gene copies per E. coli genome.

Pyrosequencing

The hypervariable V3 region of the 16S rRNA gene was
amplified by PCR with bar-coded primers 337F (5′-GACT
CCTACGGGAGGCWGCAG-3′) and 533R (5′-TTACCG
CGGCTGCTGGCAC-3′). The PCR reaction was carried
out in a total volume of 50 μl containing 5 μl tenfold
reaction buffer, 500 μM of each deoxynucleotide triphos-
phate, 0.01 % BSA, 200 mM of each primer, 1.5 U
AmpliTaq Gold 360 DNA Polymerase (Applied
Biosystems, Foster City, CA, USA), and 50 ng genomic
DNA of each composite sample. The following PCR
program was used: initial denaturation at 95 °C for
11 min, 30 cycles of 95 °C for 30 s, 48 °C for 30 s, and
72 °C for 2 min, followed by a final elongation step of
72 °C for 35 min. After the amplification, the size and
specificity of each PCR product were evaluated by gel
electrophoresis (1.5 % agarose). The products were
pooled in equimolar concentrations, and the pool was
purified and concentrated with the High Pure PCR
Product Purification Kit (Roche Diagnostics, Basel,
Switzerland) according to the manufacturer’s instructions.
This product (100 ng to 1 μg) was used for DNA se-
quencing on the Ion Torrent PGM Platform. The library
was built with the Ion Plus Fragment Library Kit (Life
Technologies, Foster City, CA, USA) and the Agencourt
AMPure XP Kit (Beckman Coulter, Brea, CA, USA). The
quality of the library was checked on an Agilent 2100
Bioanalyser with a High Sensitivity DNA chip (Agilent
Technologies, Palo Alto, CA, USA) and quantified with
the Ion Library Quantification Kit (Life Technologies,
Foster City, CA, USA). Clonal amplification of the library
was done on a OneTouch instrument with the Ion
OneTouch 200 Reagents Kit, and template preparation
for the sequencing reaction was performed with the Ion
OneTouch ES instrument. The template was loaded onto
an Ion 316 chip and sequenced on the Ion PGM System
with the Ion PGM 200 sequencing kit.

Sequence Analysis

The raw reads obtained from the high-throughput sequencing
step were processed through two different filters in order to
retain only the reads with the highest quality, i.e., reads with a
low rate of sequencing error. Firstly, reads lacking a valid pool
tag sequence and/or a valid primer sequence were discarded.
The tag and primer sequences were then removed from the
reads and, on the basis of the tag sequence, each read was
assigned to the corresponding sample. Secondly, reads shorter
than 50 bp were eliminated from the analysis remaining to a
total of 1,598,114 quality reads. After the filtering step, the
reads were assigned with the RDP Classifier program with
bootstrap scores 0, 0.80, and 0.98 as described in the
“Introduction” and the related publications. The number of
sequences corresponding to each identified rank was divided
by the total number of sequences retained after filtering and
multiplied by 100 to yield a relative abundance expressed as a
percentage. The Shannon index was used to estimate bacterial
diversity, as recommended by Hill et al. [23].

Statistical Analysis

All physicochemical and biological parameters were log2-
transformed before statistical analysis. The effect of depth on
the physicochemical and biological parameters (biomass and
Shannon diversity index) was assessed using ANOVA with
the R software. Relationships between bacterial communities
and physicochemical parameters were determined with the
Spearman rank correlations (XLSTAT 2012) and redundancy
analyses (RDA, vegan-R package) [24].

Results

Physicochemical and Biological Parameters

Soil samples were taken in May 2011 and May 2012, at
different depths, from a plowed and an unplowed plot. The
depths were chosen to allow a comparison of topsoil samples
(taken at 10 and 25 cm) with deep soil samples (taken at
45 cm). Several physicochemical and biological parameters
were measured directly on the samples (Table 1). These pa-
rameters proved relatively constant in the topsoil, but some
were lower in the deep soil. Both biological parameters mea-
sured, the biomass (Pvalue<0.001) and the bacterial diversity
(Pvalue<0.01) represented by the Shannon diversity index
(Table 1), were found to decrease very significantly with
increasing depth. Biomass dropped from 9.75 μg DNA/g
dry soil at 10 cm to 1.38 μg DNA/g dry soil at 45 cm and
the bacterial diversity from 4.60 at 10 cm to 3.98 at 45 cm. The
pH (Pvalue<0.01) and the total nitrogen (Pvalue<0.001), carbon
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(Pvalue<0.001), phosphorous (Pvalue<0.001), and potassium
(Pvalue<0.001) contents decreased very significantly with
depth, while the calcium and magnesium contents were not
significantly impacted by depth. The RDA analysis (Fig. 1a)
showed clear differences in bacterial communities according
to the depth, the difference being considerable between the
deep soil and the top soil. This variation appeared associated
mainly with the variation of the potassium, carbon, and total
nitrogen contents between deep soil and top soil. In addition,
these parameters appeared strongly linked. Furthermore, there
was no variation in bacterial community composition accord-
ing to the year or management type.

Effect of Depth on the Total Bacteria and the Concentration
of 16S rRNA Gene Copies

The related quantities of total bacteria (expressed in E. coli
equivalents/g of dry soil) and total 16S rDNA (expressed in
gene copies/g of dry soil) were determined from the same real-
time PCR data (see “Methods”). These quantities were found
to decrease slightly (1.3-fold on average) between 10 and
25 cm and greatly (12.5-fold on average) between 25 and
45 cm (Fig. 2). Furthermore, they were, on average, twice as
high in 2011 as in 2012. This difference is probably due to the
fact that the 2 weeks preceding sampling were dry in 2011
(1.8 mm rainfall) and relatively wet in 2012 (28.2 mm rain-
fall). This is reflected in the soil humidity measurements
(Table 1).

Bacterial Community Composition and Diversity

Bacterial diversity was characterized in the various sam-
ples by high-throughput sequencing of the hypervariable
region V3 of the 16S rRNA gene, followed by sequence
assignment with the RDP Classifier program. As the
impact of depth was our main focus and the main factor
influencing bacterial community composition (Fig. 1a),
the results of a first program run (at bootstrap score
0.80, see “Introduction” and “Methods”) were recorded
by depth: 10, 25, and 45 cm. This first phylogenetic
analysis identified 29 phyla. The communities were found to
be composed principally of the following phyla/classes:
Alphaproteobacteria, Acidobacteria, Actinobacteria,
Bac tero ide tes , Ni t rosp i ra , Betapro teobac ter ia ,
Deltaproteobacteria , Gammaproteobacteria , and
Planctomycetes, and the respective average relative
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�Fig. 1 Redundancy analysis (RDA) of the most abundant bacterial
communities (relative abundances ≥1 %) in a profile of a winter wheat
field in relation to physicochemical parameters. RDA of samples (a) and
bacterial ranks (b). Samples are in red and begin with soil management
(ST simplified tillage, CT conventional tillage) followed by depth (10, 25,
or 45 cm) and year (2011 or 2012). Bacterial ranks are in gray and
physicochemical parameters in green
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abundances of the corresponding sequences were 19.4, 12,
7.5, 3.4, 2.5, 2.1, 2, 1.7, and 0.7 % (Fig. 3). Unknown
sequences increased with depth from 42.06 % at 10 cm to
53.96 % at 45 cm, and bacterial diversity, represented by the
Shannon index in Table 1, differed more strongly between 25
and 45 cm than between 10 and 25 cm. The sequences
corresponding to 38 taxonomic ranks displayed relative abun-
dances above 1 % (Fig. 4 and Supplementary Table 1). Depth
had an impact on 81 % of these ranks. This impact was
significant (P<0.05) for 21 % of them, e.g., for Nitrospira,
Flavobacteria, and Burkholderiales, and highly significant
(P<0.01) for 60 % of them, e.g., many classes of
Proteobacteria, Bacteroidetes, Actinomycetales, and many
classes of Acidobacteria. Some Acidobacteria subdivisions,
e.g., subdivisions 6 and 4, appeared to decrease with increas-
ing depth, while others, e.g., 1, 3, and 16, appeared to increase.
The relative abundance of Bacteroidetes sequences was found

to decrease with depth, from 5.84 % at 10 cm to 0.73 % at
45 cm. This decrease was due to the drop in Bacteroidetes
incertae-sedis (consisted only of the genus Ohtaekwangia),
Chitinophagaceae, and Flavobacteriaceae sequences
(Supplementary Table 1). Likewise, Deltaproteobacteria se-
quences (because of the drop in Myxococcales sequences)
were found to decrease from 2.75 % at 10 cm to 0.77 % at
45 cm. Within the class Alphaproteobacteria, depth appeared
to affect principally the order Sphingomonadales, whose se-
quences decreased in relative abundance from 4.89 % at
10 cm to 1.53 % at 45 cm. The relative abundance of
Betaproteobacteria and Gammaproteobacteria sequences al-
so varied, from 2.76 and 2.30 %, respectively, at 10 cm to
1.21 % and 0.64 % at 45 cm. Sequences corresponding
to the phylum Nitrospira, and essentially Nitrospira sp.,
increased with depth from 1.89 % at 10 cm to 2.88 %
at 45 cm, unlike those corresponding to the order

0

10

20

30

40

50

0.E+00 2.E+08 4.E+08 6.E+08

D
e
p

th
 (

c
m

)

Number of 16S rDNA/g dry soil

ST 2011 CT 2011 ST 2012 CT 2012

Fig. 2 Number of 16S rRNA
gene copies at the three depths, in
2011 and 2012, in a plowed and
an unplowed plot. ST simplified
tillage, CT conventional tillage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 cm 25 cm 45 cm

R
e
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 (

%
)

Depth (cm)

Unknown

Others

Planctomycetes

Nitrospira

Gammaproteobacteria

Deltaproteobacteria

Betaproteobacteria

Bacteroidetes

Actinobacteria

Acidobacteria

Alphaproteobacteria

Fig. 3 Relative distribution of
sequences corresponding to the
most abundant phyla/classes at
10, 25, and 45 cm. For each
taxonomic rank, the relative
abundance of 16S rDNA
sequences was obtained by
dividing the number of sequences
corresponding to that rank
number by the total number of
16S sequences retained.
Sequences were assigned with
confidence score 0.80

Bacterial Diversity in a profile of a wheat field 827



Actinomycetales, which decreased from 4.07 % at 10 cm
to 2.50 % at 45 cm. Most of these results were con-
firmed in a second RDP Classifier run at the more stringent
confidence level 0.99 (Fig. 4 and Supplementary Table 1). The

only difference was that the relative abundance of
Betaproteobacteria and Nitrospira sequences showed little
change with depth, in contrast to the shift observed at
score 0.80.

Fig. 4 Heat map of the composition of bacterial communities present in
the soil at three depths: 10, 25, and 45 cm. Thirty-eight taxonomic ranks
showed a relative abundance above 1 %. Ranks corresponding to family
or an upper rank are displayed in the heat map. The scale shows the
relative abundances of the corresponding 16S rDNA sequences,

calculated on the basis of an RDP Classifier run with the indicated
bootstrap score (0.80, 0.99, or 0). Detailed values were available in the
Supplementary Table 1. Asterisk: To increase the color resolution, relative
abundances of sequences corresponding to the phylum, Proteobacteria
(until 45 %) are not shown on the heat map
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Assigning Unknown Sequences

To gain some information on the sequences that proved
unassignable when bootstrap score 0.80 was applied, the
RDP Classifier program was run with bootstrap score 0 and
the relative abundance of sequences corresponding to each
rank was calculated as after the program run at bootstrap score
0.80 (Fig. 4). This run made it possible to assign each se-
quence to its closest known genus. Assigning all sequences
had an impact on the calculated relative abundances. Some
ranks showed an altered impact of depth after the run at
boo t s t r ap s co r e 0 : t h e r e l a t i v e abundance o f
Deltaproteobacteria sequences appeared to increase with
depth (from 11.53 % at 10 cm to 18.38 % at 45 cm) instead
of decreasing; that of Actinomycetales sequences, instead of
decreasingwith depth, remained relatively constant from 10 to
25 cm (at 6.49 and 6.06 %, respectively) and increased to
8.11 % at 45 cm; and the relative abundance of
Alphaproteobacteria sequences, instead of remaining relative-
ly constant as depth increased, decreased from 24.47 % at
10 cm to 19.67 % at 45 cm. The relative abundances calcu-
lated with score 0, compared to those obtained with score
0.80, indicated that most sequences unassignable with score
0.80 were close to the Deltaproteobacteria (8.78 % at 10 cm,
9.66 % at 25 cm, and 17.61 % at 45 cm), Actinobacteria
(4.06 % at 10 cm, 4.64 % at 25 cm, and 9.11 % at 45 cm),
Rhizobiales (6.89 % at 10 cm, 6.18 % at 25 cm, and 5.22 % at
45 cm), and Acidobacteria (6.71 % at 10 cm, 7.99% at 25 cm,
and 5.27 % at 45 cm). An assignment percentage, i.e., the
percentage ratio of sequences assigned with score 0.80 to
sequences assigned with score 0, was also calculated
(Fig. 5). This assignment percentage varied considerably ac-
cording to the taxonomic rank. For the well-knownNitrospira
phylum, for example, it was 85.55, 88.62, and 95.40 % at 10,
25, and 45 cm, respectively, while for Deltaproteobacteria, it
was only 23.84, 19.83, and 4.18 %, and for Acidobacteria, it
ranged from 61.61 to 70.06 %.

Correlations with Physicochemical Parameters

We next examined to what extent the composition of bacterial
communities might correlate with pH, soil moisture, or the
total nitrogen, carbon, potassium, magnesium, or calcium
contents. Spearman correlation coefficients were calculated,
and significant correlations were found between bacterial
communities and these parameters (Table 2). Soil pH was
found to correlate positively with the relative abundance of
sequences corresponding to Acidobacteria subdivisions 6 and
4, Bacteroidetes, Actinobacteridae, and Beta/Delta/
Gammaproteobacteria. Nitrogen, carbon, and potassiumwere
strongly related (Fig. 1a) and found to correlate positively
with the relative abundances of sequences of Bacteroidetes,
Beta/Delta/Gammaproteobacteria, Sphingomonadales,

Actinobacteridae, and Acidobacteria subdivisions 6 and 4
and negatively with sequences corresponding to
Acidobacteria subdivisions 1 and 3. The relative abundances
of sequences of Acidobacteria subdivisions 6 and 4,
Bacteroidetes, and Beta/Delta/Gammaproteobacteria in-
creased with the concentration of phosphorous. The relative
abundance of Actinobacteria sequences was found to correlate
only, and negatively, with soil moisture and magnesium, while
Nitrospira sequences showed no correlation with any mea-
sured parameter.

Finally, RDA analysis was used to illustrate correlations
between physicochemical parameters and bacterial communi-
ties (Fig. 1). A total of 89 % of the variations observed in
bacterial community composition was explained by the first
RDA axis. The potassium, carbon, and total nitrogen contents
were identified as the most important parameters explaining
bacterial community composition. This analysis confirms re-
sults obtained with the Spearman correlation (Table 2).

Discussion

On the basis of our high-throughput sequencing data, we have
investigated the composition of bacterial soil of a winter wheat
field at three depths (10, 25, and 45 cm), in relation to various
soil parameters. Overall, our results highlight the relative
similarity of soil samples taken at 10 and 25 cm but a real
difference in samples taken at 45 cm, at which many physi-
cochemical parameters are much lower than at 10 or 25 cm.
This notably concerns the carbon, the potassium, and the
nitrogen contents. In keeping with previous studies [6, 16,
25], our data show a strong decrease in biomass and bacterial
quantity with increasing depth. This is paralleled by a decrease
in bacterial diversity, as also described previously [8, 10, 26,
27]. These effects seem to be mainly due to the decrease in the
quantity, and probably the quality [28], of carbon [29].

We have identified 29 phyla in our soil samples. Among
the dominant taxonomic ranks, 81% show an impact of depth.
The phyla Proteobacteria and Bacteroidetes, the subclass
Actinobacteridae, and many classes of Acidobacteria emerge
as the most affected (Fig. 4). The downshift in the relative
abundance of Bacteroidetes sequences, due principally to the
drop in sequences corresponding to the class B. incertae-sedis
and families Chitinophagaceae and Flavobacteriaceae, is the
most striking. Such an effect has been reported previously by
Will et al. [10] and Eilers et al. [8]. It has been suggested that

�Fig. 5 Heat map of the percentages of assignment. The percentages were
calculated for each taxonomic rank by dividing the relative abundance of
the relevant sequences obtained after the RDP Classifier run at 0.80 by
that obtained after the run at score 0. Detailed values were available in the
Supplementary Table 2

Bacterial Diversity in a profile of a wheat field 829



830 A. Stroobants et al.



bacteroidetes are copiotrophic and more abundant in soils
containing a lot of organic carbon [29]. We accordingly ob-
serve a correlation between the soil carbon content and this
phylum (Table 2 and Fig. 1b). In our samples, Ohtaekwangia
appears as the most abundant Bacteroidetes genus,
representing about 25 % of this phylum. It is a novel genus
isolated by Yoon et al. in 2011 [30] from marine sand, and in
soils, it has only been referenced so far in the sunflower
rhizosphere [31].

In the phylum Acidobacteria, we find, like Janssen [3],
subdivisions 1, 4, and 6 to be those most abundantly repre-
sented. It is noteworthy that many acidobacterial subdivisions
appear to vary greatly between our topsoil (10–25 cm) and
deep soil samples (45 cm). Some, such as subdivisions 6 and
4, show a decrease with increasing depth, while others, such
as subdivisions 1, 3, and 16, show an increase. In contrast to
the results of Jones et al. [32], who found all Acidobacteria

subdivisions to correlate (negatively or positively) with
soil pH, we find only two subdivisions (4 and 6) to
correlate (positively) with this parameter (Table 2 and
Fig. 1). This discrepancy is probably due to the fact that
only two-thirds of the putative Acidobacteria sequences
present in our samples were assigned in the run at score
0.80 (Fig. 5). Accordingly, only members of subdivision
1 are easily isolated and cultured [33–36], whereas only
a few members of subdivisions 2, 3, 4, 8, and 10 [35,
37, 38] and none of subdivisions 6 and 7 [3] have been
isolated. It is noteworthy, however, that we evidence
here a strong positive correlation between subdivisions
4 and 6 and the phosphorus, nitrogen, and carbon con-
tents, a negative correlation between subdivisions 1 and
3 and the nitrogen, carbon, and potassium contents, and
a negative correlation between subdivision 16 and the
potassium content only.

Table 2 Correlations between physicochemical parameters and the bacterial taxonomic ranks (relative abundance of corresponding sequences;
Spearman rank correlations)

Taxonomic ranks pH Soil moisture N total C P K Ca Mg

Proteobacteria 0.24 0.23 0.41 0.62* 0.19 0.74** −0.08 0.25

Alphaproteobacteria 0.03 0.28 0.08 0.32 −0.06 0.48 −0.16 0.18

Sphingomonadales 0.48 0.13 0.63* 0.82** 0.48 0.87*** 0.20 0.30

Rhizobiales −0.08 −0.04 −0.13 0.02 −0.20 −0.03 0.04 −0.01
Rhodospirillales 0.27 −0.38 0.34 0.26 0.37 0.24 0.39 −0.17
Betaproteobacteria 0.60* −0.19 0.84*** 0.89*** 0.68* 0.83*** 0.48 0.19

Burkholderiales 0.25 0.01 0.52 0.64* 0.31 0.59* 0.43 0.46

Deltaproteobacteria 0.69* −0.34 0.91*** 0.91*** 0.78** 0.83** 0.62* 0.08

Myxococcales 0.69* −0.34 0.91*** 0.91*** 0.78** 0.83** 0.62* 0.08

Gammaproteobacteria 0.70* −0.12 0.78** 0.86*** 0.70* 0.91*** 0.55 0.14

Acidobacteria 0.46 −0.80** 0.24 0.02 0.39 −0.19 0.41 −0.80**
Acidobacteria_Gp6 0.87*** −0.53 0.85*** 0.74** 0.93*** 0.65* 0.63* −0.30
Acidobacteria_Gp4 0.82** −0.48 0.83** 0.72* 0.92*** 0.59* 0.70* −0.14
Acidobacteria_Gp1 −0.57 −0.03 −0.67* −0.82** −0.56 −0.88*** −0.31 −0.22
Acidobacteria_Gp3 −0.55 0.04 −0.70* −0.86*** −0.56 −0.82** −0.27 −0.20
Acidobacteria_Gp16 −0.28 −0.24 −0.44 −0.57 −0.39 −0.76** −0.10 −0.42
Actinobacteria 0.38 −0.73** 0.15 0.15 0.15 0.11 0.22 −0.84***
Actinobacteria 0.38 −0.73** 0.15 0.15 0.15 0.11 0.22 −0.84***
Actinobacteridae 0.59* −0.24 0.64* 0.79** 0.51 0.81** 0.28 −0.08
Bacteroidetes 0.78** −0.34 0.92*** 0.90*** 0.80** 0.73** 0.47 −0.06
Bacteroidetes incertae-sedis 0.83*** −0.45 0.93*** 0.89*** 0.84*** 0.76** 0.55 −0.19
Ohtaekwangia 0.83*** −0.45 0.93*** 0.89*** 0.84*** 0.76** 0.55 −0.19
Sphingobacteria 0.71* −0.34 0.90*** 0.90*** 0.76** 0.77** 0.52 0.01

Flavobacteria 0.68* −0.15 0.82** 0.86*** 0.71* 0.79** 0.48 0.13

Flavobacteriales 0.68* −0.15 0.82** 0.86*** 0.71* 0.79** 0.48 0.13

Nitrospira 0.04 −0.28 −0.24 −0.39 −0.01 −0.39 −0.04 −0.58
Nitrospira 0.04 −0.28 −0.24 −0.39 −0.01 −0.39 −0.04 −0.58
Shannon index 0.73** −0.17 0.75** 0.84*** 0.67* 0.84*** 0.27 −0.07

Significant correlations are indicated in bold

*P<0.05; **P<0.01; and ***P<0.001
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Alphaproteobacteria are proposed by Fierer et al. [29] to be
oligotrophic. We, accordingly, find no correlation between the
relative abundance of Alphaproteobacteria sequences and the
soil carbon content (Table 2 and Fig. 1). Yet, we do show an
overall decrease in Proteobacteria sequences with increasing
depth, as observed byWill et al. in a grassland soil [10] and by
Eilers et al. in a forest soil [8]. Some proteobacterial taxa are
viewed, like the Bacteroidetes, as copiotrophic [7, 29, 39].
This might explain some of the decreases observed, as beta-,
delta-, and gammaproteobacterial sequences are all found here
to decrease with depth and to show a strong correlation with
the carbon content (Table 2 and Fig. 1). Yet, we also evidence
positive correlations between these sequences and the nitro-
gen, potassium, and phosphorus contents. It is worth noting
that conclusions regarding the Deltaproteobacteria should be
considered with caution because this class is not well-known
and only 23.84, 19.83, and 4.18 % of the sequences collected
at 10, 25, and 45 cm, respectively, were assigned in the run at
score 0.80 (Fig. 5). Furthermore, the results of the run at score
0 contradict the findings of the run at score 0.80 (Fig. 4): they
show an increase in deltaproteobacterial sequences with in-
creasing depth.

The reality is likely to be closer to the results obtained with
score 0, which includes all the reads obtained by high-
throughput sequencing. Our poor knowledge of
Deltaproteobacteria is confirmed by Janssen in 2006 and is
due to the focus of most studies on unknownAcidobacteria and
Verrucomicrobia rather than on unknownDeltaproteobacteria.

Our runs at score 0.80 and score 0 yield conflicting results
for Actinomycetales sequences; also, a decrease with depth at
score 0.80 and no change in the topsoil followed by an
increase at 45 cm at score 0. One should stress that many
Actinomycetales genera remain unknown [3], and the percent-
ages of assignment observed here (62.70, 54.51, and 30.83 %
at 10, 25, and 45 cm, respectively) suggest that the proportion
of unknown Actinobacteridae members increases with in-
creasing depth. This might explain the discrepancy. Unlike
the other taxonomic ranks studied here, the Actinobacteria
seem not to be influenced by the measured physicochemical
parameters, apart from the observed negative correlations with
soil moisture and magnesium content. The Actinobacteria are
indeed believed to be adapted to resource-limited conditions
and to life in the deep soil [40, 41], where competition be-
tween bacteria is furthermore less important.

In conclusion, we have investigated the diversity of
bacterial communities in a profile of a winter wheat
field with a new taxonomic assignment approach. The
depth appears to affect most of the bacterial taxonomic
ranks identified here, and Proteobacteria, Bacteroidetes,
Acidobacteria, and Actinobacteridae appear as the most
affected. The observed shifts correlate with shifts in
physicochemical parameters, especially the carbon, ni-
trogen, and/or potassium content, and/or the decrease in

oxygen with increasing depth. The observed changes in
parameters and communities are more pronounced be-
tween 25 and 45 cm than between 10 and 25 cm, and
the number of unknown bacteria increases with depth.
By including an RDP Classifier run at score 0, in
addition to the main run at 0.80 and a confirmation
run at 0.99 (yielding good confirmation in most cases),
we have been able to gain information on the unknown
as well as the known bacteria in our samples. The
results obtained with score 0 highlight the bias intro-
duced at higher confidence levels: if one considers the
samples taken at 45 cm, for example, the assignment
percentage of the run at score 0.80 versus the run at
score 0 was only 4.18 % for deltaproteobacterial se-
quences and 18.81 % for sphingobacterial sequences.
The assignment percentage of a run at score 0.95 to
0.98 would have been even lower, and these scores are
sometimes used in the literature [42–44]. This bias can
lead to erroneous conclusions (see the above-mentioned
conflicting results regarding the influence of depth on
deltaproteobacteria). We therefore recommend using
bootstrap score 0 in addition to a higher score such as
0.50 or 0.80 when assigning sequences with RDP
Classifier. Yet, the use of score 0 does not enable one
to identify the exact species, and agricultural soils con-
tain many unknown species that remain to be identified
and studied.

Sequence Accession Number

Pyrotag sequences reported in this study were deposited in the
GenBank database with the accession number SRP029463.
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