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Abstract Estuaries are sinks for various anthropogenic con-
taminants, such as petroleum hydrocarbons, giving rise to
significant environmental concern. The demand for organisms
and processes capable of degrading pollutants in a clean,
effective, and less expensive process is of great importance.
Phytoremedition approaches involving plant/bacteria interac-
tions have been explored as an alternative, and halophyte
vegetation has potential for use in phytoremedition of hydro-
carbon contamination. Studies with plant species potentially
suitable for microbe-assisted phytoremediation are widely
represented in scientific literature. However, the in-depth un-
derstanding of the biological processes associated with the re-
introduction of indigenous bacteria and plants and their per-
formance in the degradation of hydrocarbons is still the lim-
iting step for the application of these bioremediation solutions
in a field context. The intent of the present review is to
summarize the sources and effects of hydrocarbon contami-
nation in estuarine environments, the strategies currently
available for bioremediation (potential and limitations), and
the perspectives of the use of halophyte plants in microbe-
assisted phytoremediation approaches.

Introduction

Salt marshes are complex coastal environments usually situ-
ated within estuarine systems. They represent dynamic

habitats, developing along the coast line and inside estuaries
and are characterized by high concentration of soluble salts
(prevailing NaCl), relatively low diversity of species, and high
biomass productivity [1, 2]. Estuarine salt marshes are among
the most productive ecosystems on Earth [3] promoting plant
and microbial activity [4–6], representing a preferential habi-
tat for many organisms (fish, bird, and other wildlife) [7, 8]
and providing important ecosystem services [9]. Salt marshes
are highly dynamic areas, influenced by the joint action of
water, sediment, and vegetation, providing a buffer zone be-
tween terrestrial and aquatic ecosystems in urban and indus-
trial areas. They contribute to flood control and erosion pre-
vention and may act as protective filters and final repositories
for runoff pollutants, pathogens, and nutrients [1, 9, 10].

Salt marshes are sinks for various pollutants (e.g., metal
and polycyclic aromatic hydrocarbon), receiving important
anthropogenic inputs from urban areas, industries, and agri-
cultural compounds, namely, polycyclic aromatic hydrocar-
bons (PAHs), polychlorobiphenyls (PCBs), dichlorodiphenyl-
trichloroethane (DDT), hexachlorobenzene (HCB), hexachlo-
rocyclohexane (HCH), and hexachlorodimethanonaphthalene
(Dieldrin), as summarized in Table 1. Due to their ecological
importance, the cleanup and recovery of these ecosystems is
an issue of public concern.

Petroleum hydrocarbons (PHs) represent one of the most
common groups of persistent organic pollutants in coastal and
estuarine systems [22]. They are continuously released, per-
sistent in the environment, toxic to many organism, and haz-
ardous to human health [24]. This class of contaminants may
be originated from industrial release products or from acci-
dental spills [24]. Numerous studies indicate that salt marsh
sediments are capable of retaining PHs and that the stimula-
tion of microbial activity in the rhizosphere of plants can
accelerate their biodegradation [25, 26]. Phytoremediation is
one of the processes of hydrocarbon bioremediation, which
has been intensively studied in the last decade. The continuous

V. Oliveira :N. C. M. Gomes :A. Almeida :H. Silva :
Â. Cunha (*)
Centre for Environmental and Marine Studies (CESAM) and
Department of Biology, University of Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
e-mail: acunha@ua.pt

A. M. S. Silva
QOPNA and Department of Chemistry, University of Aveiro,
Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Microb Ecol (2015) 69:1–12
DOI 10.1007/s00248-014-0455-9



release of hydrocarbons and their degradation products
caused by anthropogenic activities around estuary areas
leads to the necessity for efficient, inexpensive, and
environmental friendly processes of hydrocarbon decon-
tamination, such as phytoremedition. In that perspective, the
interactions between halophytes, plants capable of growing in
salt marshes, and their root-associated bacteria may play a
relevant role in the remediation of contaminated areas.
Cultivation-dependent and -independent approaches to-
gether with molecular approaches have been used to
characterize plant–hydrocarbonclastic bacteria partnerships
in the perspective of their exploitation for microbe-assisted
phytoremediation. However, particular features of salt marsh
ecosystems may impose difficulties in the process of
implementation of these strategies in the field, and
considerable research effort has been directed to a deeper
understanding of halophyte-microbe interactions in oil-
polluted environments.

The purpose of this paper is to summarize recent knowl-
edge on the degradation of petroleum hydrocarbons in salt
marsh sediments and to critically discuss the potential and
limitations of microbe-assisted phytoremediation approaches
for the recovery of oil-impacted ecosystems.

Hydrocarbons

Petroleum hydrocarbons (PHs) are common environmental
contaminants and represent a serious problem in many parts
of world [27–32], particularly in coastal and estuarine systems
which may become seriously affected [33–35]. They are the
principal components in a range of commercial products (e.g.,
gasoline, fuel oils, lubricating oils, solvents, mineral spirits,
mineral oils, and crude oil). Petroleum products are a complex
mixture of hundreds of hydrocarbon compounds, including

Table 1 Concentration of various pollutants detected in sediments at
estuaries from around the world

Site Pollutanta Concentration
(μg/g)b

Reference

Charleston Harbor Estuary,
SC, USA

Al 8.54 [11]

Cd 0.28

Cr 94.1

Cu 32.4

Fe 4.28

Pb 31.7

Mn 247.7

Hg 0.13

Ni 28.1

Zn 111.7

Chesapeake Bay, MD, USA Cd 17.6 [12]

Cr 1,831.1

Cu 396

Fe 14.74

Mn 3,381.0

Ni 157.7

Pb 348.6

Zn 2,105.4

Hg 2,340.3

PAHs 23,322.8

PCBs 2,148.2

San Francisco Bay, CA, USA Cd 5.733 [13]

Ni 39.677

Cu 126.076

Pb 265.229

Zn 295.527

Humber Estuary, Eastern
England

Cu 60 [14]

Pb 127

Zn 344

Mersey Estuary, UK DDT 0.773 [15]

PCBs 0.173

HCB 0.022

HCH 0.003

Dieldrin 0.167

Suir Estuary, Ireland Cu 23.194 [16]

Pb 69.208

Bay of Fundy, Canada Hg 0.079 [17]

Mersey Estuary, UK PAHs 3.766 [18]

PCBs 1.409

Salt marsh along coastal zone
of Portugal

Hg >10 to <0.5 ppm [19]

Site Pollutanta Concentration
(μg/g)b

Reference

Mitrena salt marsh, Sado,
Portugal

PAHs 7.35 [20]

Yangtze River intertidal zone,
China

Al 97213 [21]

Fe 49627

Cd 0.750

Table 1 (continued)

Site Pollutanta Concentration
(μg/g)b

Reference

Cr 173

Cu 49.7

Mn 1112

Ni 48

Pb 44.1

Zn 154

Cávado River estuary,
Portugal

PAHs 0.4023 [22]

Lima River estuary, Portugal PAHs 800 [23]

a PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorobiphenyls;
DDT, dichlorodiphenyltrichloroethane; HCB, hexachlorobenzene; HCH,
hexachlorocyclohexane Dieldrin:hexachlorodimethanonaphthalene.
bMaximum concentration found in soil or sediments
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various amounts of aliphatic and aromatic molecules. They
enter and spread through the environment in many different
ways [24]. Certain petroleum hydrocarbons are directly re-
leased in the water column, forming surface films while others
tend to accumulate in the sediment.

PAHs are widespread in air, soil, sediment, surface water,
groundwater, and runoff and are also found to accumulate in
plants and aquatic organism [36–38]. In estuarine environ-
ments, polycyclic aromatic hydrocarbons (PAHs) are of great
concern due to their potential for bioaccumulation, persis-
tence, transport, toxicity, mutagenicity, and carcinogenicity
[36, 39–41]. These compounds are introduced into estuarine
environments from different sources and by a variety of pro-
cesses (Fig. 1). Although PAHs are ubiquitous in the environ-
ment (fossil fuels, brush fires, volcanoes, and burning natural
vegetation), anthropogenic activities, such as petroleum refin-
ing and transport activities dependent on the combustion of
fossil fuels, are the major contributors to their release in the
environment [39–42].

PAHs are classified as low molecular weight (LMW) and
high molecular weight (HMW) according to the number and
type of rings they have in the structure [43]. Based on their
abundance and toxicity, 16 PAHs have been included in the
list of priority pollutants of the US Soil Protection Agency
[44]. Because of their high hydrophobicity and low lability,
the process of PAHs remediation, especially in soils and
sediments, is generally slow and expensive. The fate of
PAHs in the environment depends on abiotic and biotic
processes such as stabilization, landfarming (stimulation
of indigenous microorganisms in the soil by providing
nutrients, water, and oxygen), steam and thermal heating,
chemical oxidation, bioremediation (bioaugmentation and

biostimulation), and phytoremedition, which have been ap-
plied to the restoration of groundwater and soils/sediments
[40, 45].

Phytoremediation of Hydrocarbons

Halophytes are defined as plants capable of completing their
life cycle in salt concentrations around 0.200 M NaCl or even
higher [46]. Moreover, many of these plants inhabit environ-
ments subject to constant flooding (e.g., coastal mangroves
and salt marshes) [47]. Because estuaries and coastal
habitats are highly exposed to environmental contami-
nation, many studies addressed the use of halophytes in the
phytoremediation of many pollutants (e.g., heavy metals,
xenobiotics, and PHs) [48–52]. The physiological mecha-
nisms that these plants use to tolerate salts are partly analogous
to those involved in heavy metal resistance. Therefore, halo-
phyte plants can accumulate metals, being therefore regarded
as promising candidates for the removal or stabilization of
heavy metals in polluted soils [53].

According to the fate of the contaminant or to the mecha-
nism by which plants remediate contamination, these ap-
proaches are referred to as phytoextraction, rhyzofiltration,
phytostabilization, phytovolatilization, phytodegradation, or
rhizodegradation [54, 55]. Phytoextraction refers to the up-
take, translocation, and accumulation of contaminants in the
soil by plant roots into aboveground components of the plants.
This technique involves the introduction of plants referred to
as hyperaccumulators in polluted sites that after grown, are
harvested. So, phytoextraction involves the repeated cropping
of plants in contaminated soil until contaminant concentration

Fig. 1 Sources and processes
involved in hydrocarbon release
into estuarine ecosystems
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decreases to acceptable levels. After harvesting, contaminated
biomass needs treatments prior to disposal that can pass to
secure landfills, incineration, or more recently thermo-
chemical conversion processes (combustion, gasification,
and pyrolysis) [56]. Rhyzofiltration involves the absorption
or adsorption of contaminants through roots or other
plant parts [54, 55]. In phytostabilization, plants reduce
the bioavailability of contaminants immobilizing them in
soil/sediment, reducing the mobility of contaminants and
preventingmigration to water or air [54, 55]. For the removal of
lowmolecular weight compounds from soil, phytovolatilization
is used. In this technique, plants volatilize contaminants that are
biologically converting to gaseous species and releasing them
through leaves via evapotranspiration process [54, 55]. Organic
contaminants such as petroleum, PAHs, BTEX, TNT, chlori-
nated solvents, and pesticides are degraded only by plants
(phytodegradation) or by microorganism and plants, in a pro-
cess denominated as rhizodegradation [55].

Comparatively with application for the sequestration or
removal of metals, studies involving halophytes for
phytoremedition of PHs are still rather scarce. However, spe-
cies of Spartina, Salicornia, Juncus, Halonemum, Halimione,
and Scirpus have been tested for the remediation of hydrocar-
bons in wetlands with encouraging results (Table 2). The
ability for PAH bioaccumulation was described for
Salicornia fragilis shoots by a process of soil-to-plant trans-
ference that is dependent of exposure duration and pollution
degree. High molecular weight PAHs were detected in aerial
parts of the plant [58]. In a study conducted in greenhouse
conditions, the use of Juncus roemerianus transplanted to salt
marsh sediment contaminated with different diesel oil dosages
was tested. The results revealed the reduction of PHs in
J. roemerianus treatments, in relation to control sediments,
suggesting that these plants may simultaneously contribute to
the restoration and remediation of diesel-contaminated wet-
lands. Phytoremediation by J. roemerianus was even more
effective for PAHs than for n-alkanes [48]. In an outdoor
laboratory experiment (microcosm-scale), the potential of
the salt marsh plants Halimione portulacoides, Scirpus
maritimus, and Juncus maritimus for the remediation of soil
contaminated with refinery waste was tested. Moreover, two

situations are tested: (i) the use of each individual plant species
or the use of an association of two plants (S. maritimus and
J. maritimus) and (ii) soil with old contamination (crude oil) or
a mixture of the old and recent (turbine oil) contamination.
Combined transplants of S. maritimus and H. portulacoides
plants were efficient in removing not only all the recent and
old contamination, and the process was faster and more effi-
cient than natural attenuation [49].

Despite existing evidence that the halophytes can be used
successfully for the phytoremediation of estuarine areas, such
as oil- or diesel-polluted sites (Table 2), there are still some
limitations to the extensive use of this bioremediation ap-
proach. The efficiency of halophytes, as phytoremedition
agents, depends on the plant species. For example, a compar-
ative study of the efficiency of the salt marsh species
H. portulacoides, S. maritimus, and J. maritimus for remedi-
ation of PHs revealed that plant species is determinant in the
rate of hydrocarbon clearance and, more importantly, that
different associations between these plants can interfere with
or even inhibit the process [49].

Microbial Hydrocarbon Degradation

Contrasting with the prospective character of the use halo-
phytes, the use of microorganisms for the clearance of hydro-
carbons in the environment has long been regarded with
interest. Through microbial activity, hydrocarbons are con-
verted into carbon dioxide, water, and living biomass [60]. A
diversity of bacteria, fungi, and algae has been characterized
as to their capacity to degrade PAHs [36].

Microorganisms have been found to degrade PAHs via
different catabolic pathways, such as anaerobic or aerobic
metabolism, or co-metabolism which is important for the
degradation of mixtures of PAHs and high molecular weight
PAHs [38, 61, 62]. The initial step in aerobic metabolism of
PAHs usually occurs via the incorporation of oxygen into
aromatic rings followed by the systematic breakdown of the
compound to PAHs metabolites and/or carbon dioxide.
Anaerobic metabolism occurs via hydrogenation of aromatic
rings [40, 62]. In co-metabolism, the range and extent of high

Table 2 Halophytes used for phytoremediation of hydrocarbons in estuarine areas

Plant Result Reference

Spartina alterniflora and Spartina patens Restoration of oil-contaminated wetlands and accelerated oil degradation in soil [57]

Salicornia fragilis Intense bioaccumulation of PAHs from oil-polluted sediments in the shoots [58]

Juncus roemerianus Phytoremediation of diesel-contaminated wetlands [48]

Halonemum strobilaceum Phytoremediation of oil-polluted hypersaline environments via rhizosphere technology [59]

Halimione portulacoides, Scirpus maritimus,
and Juncus maritimus

Removal of petroleum hydrocarbons from soil [49]

Scirpus triqueter Enhanced biodegradation of diesel pollutants [51]
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molecular weight PAH degradation is influenced by an im-
portant interaction that transforms the non-growth substrate
(PAHs) in the presence of growth substrates [62].

Physicochemical factors, such as soil type and structure,
pH, temperature, electron acceptors, and nutrients, will affect
microbial activity and determine the persistence of hydrocar-
bons (such PAHs) in polluted environments (Table 3). In
estuarine areas, such as salt marshes, salinity fluctuations
represent one of major challenges for hydrocarbon degrada-
tion that may even compromise the overall success of the
process. There is an inverse relation between salinity and
hydrocarbon solubility, with the consequent inhibitory effect
of salinity on hydrocarbon bioremediation [71]. However,
successful hydrocarbon degradation has been reported over a
wide range of salinity values. A consortium of bacteria isolat-
ed from oil-contaminated sediments demonstrated the highest
rate of hydrocarbon degradation with a salinity of 0.4 MNaCl,
and the degradation was attenuated below and above this limit
[72]. In a study with two bacterial consortia isolated from
crude oil and mangrove sediments, the highest rate of degra-
dation of aliphatic and aromatic hydrocarbons occurred in a
salinity range between 0 and 0.171 M and decreased with
increasing salinity [73]. Riis [74] reported diesel fuel degrada-
tion by microbial communities from saline soils in Patagonia
up to a salinity of 2.997 M. Although hydrocarbon contami-
nation is still persistent and recalcitrant in its nature, the fact
that microbes from vegetated saline sediments can still active-
ly degrade hydrocarbons in the presence of variable and rela-
tively high concentrations of salt opens promising perspec-
tives for microbe-assisted phytoremediation in estuarine areas.

Microbe-Assisted Phytoremediation

The microbial communities associated with plants and plant-
microbe interactions established between them have a

significant role in the physiology and health of the plant,
exerted through inhibition of phytopatogens (e.g., antibiotic
and siderophore production or nutrient competition), release
of growth-promoting molecules, enhancement of nutrient
availability, promotion of detoxification (e.g., sequestration,
volatilization, and degradation of pollutants), and improve-
ment of stress tolerance by induction of systematic acquired
host resistance (Fig. 2).

The use of plants and their associated microorganisms for
the removal of contaminants from the environment is based on
the increase of microbial population numbers in the rhizo-
sphere and/or endosphere and on the stimulation of their
metabolic activity [75]. So, microbe-assisted phytoremedition
represents a powerful emerging approach to sequester, de-
grade, transform, assimilate, metabolize, or detoxify contam-
inants from soil, sediment, or groundwater [54, 76].

Numerous bacteria found in association with plants are
capable of degrading hydrocarbons, namely, PAHs, suggest-
ing that indigenous rhizobacteria and endophytic bacteria may
have potential for bioremediation of polluted sites [77]. In the
particular case of estuarine environments, a diversity of
hydrocarbon-degrading microbial populations has been found
in association with the rhizosphere of salt marsh plants, where
they actively contribute to hydrocarbon removal and degrada-
tion [23, 26]. The use of rhizosphere and phyllosphere (aerial
portion of plants) of the halophyte Halonemum strobilaceum
was also proposed for phytoremediation of oil-polluted hy-
persaline environments, via rhizosphere technology [59].

Rhizodegradation appears to be a particularly interesting
phytoremediation process for the removal and/or degradation
of organic contaminants, such as PH. The rhizosphere is
defined as a zone directly influenced by plant root system.
Plants provide root exudates rich in carbon sources, nutrients,
enzymes, and sometimes oxygen, creating a favorable envi-
ronment in which microbial activity is stimulated [75, 78, 79].
However, microbial interactions with plants are not limited to

Table 3 Factors affecting the biodegradation of petroleum hydrocarbons

Factor Effect Reference

Bioavailability Composition and concentration of hydrocarbons affect the rate and extent of biodegradation [40, 63, 64]

Temperature Affects the physicochemical behavior of hydrocarbons (viscosity, diffusion, solubility) [40, 63–65]

Affects the physiology and diversity of microorganism

pH Inhibits microbial activity by regulating microbial metabolism [40, 63, 66]

Nutrients Availability of limiting nutrients (N, P, K, Fe) affects microbial growth and consequently biodegradation rates [40, 63, 64,
67]

Oxygen Despite the occurrence of biodegradation of hydrocarbons in anaerobic and aerobic conditions, oxygen depletion
decreases biodegradation rates

[36, 40, 63]

Salinity Changes in salinity promote alteration of themicrobial population that affects biodegradation rates. High concentration
of salt inhibits hydrocarbon degradation

[63, 68]

Organic matter Promotes sequestration of contaminants, interfering in their availability [36, 70]

Soil type and
structure

Soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant
degradation

[69, 112]
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the rhizosphere; rather, they extend to the interior of the plant
[80]. Endophytic-assisted phytoremedition, involving micro-
organisms that are capable of living within various plant
tissues (roots, stems, and leaves), has been reported in recent
years as successful in the degradation of some pollutants, such
as explosives, herbicides, and hydrocarbons [77, 81, 82]. In
fact, remediation of hydrocarbons by combined use of plants
and rhizobacteria and endophytic bacteria have been widely
described (Table 4). Genetically engineered endophyte micro-
organisms enhance the overall health of theirs hosts [92] and
may indirectly improve biodegradation of contaminants in the
rhizosphere. Experiments in which pea plants were inoculated
with the naphthalene degrader Pseudomonas putida VM1441
(pNAH7) and exposed to naphthalene contamination revealed

that naphthalene degradation rate (~40 %), seed germination,
and plant transpiration were enhanced in inoculated plants
than in non-inoculated controls. Moreover, inoculation result-
ed in an overall protection of the host plants from the phyto-
toxic effects of naphthalene [85]. A study carried out in a
mangrove showed that nursery conditions and early microbial
colonization patterns had long-term effect on the rhizosphere
of transplanted mangroves. This phenomenon may have po-
tential application for introducing new rhizocompetent bacte-
ria carrying genes or plasmids to improve plant growth or
bioremediation purpose (rhizoengineering) [93].

Several studies reported the enhancement of PH degrada-
tion in association with the presence of bacteria carrying PH
degradation genes (Table 4). A high diversity of hydrocarbon

Fig. 2 Plant-microbe interactions and plant-growth-promoting effects of rhizosphere and endosphere bacteria
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degradative genes, such as alkane monooxygenase (alkB),
naphthalene dioxygenase (ndoB), phenanthrene dioxygenase
(phnAc), and cytochrome P450 alkane hydroxylase, has been
detected in plant microhabitats (rhizosphere and endosphere)
[82, 84, 85]. In fact, the monitoring of gene abundance and
expression during phytoremedition of contaminated sites can
give indications about the persistence and functional activity
of inoculated microorganisms [94]. A study conducted at a
long-term phytoremediation field site revealed that both rhi-
zosphere and endophytic communities showed substantial
interspecies variation in hydrocarbon degradation potential
and activity levels, with an increase in catabolic genotypes
in specific plant treatments [82].

Recently, it was suggested that for certain phytoremedition
approaches, it may be essential or at least important that
bacteria also act as plant growth promoters, in addition to their
pollutant-degrading activity. In experiments with Italian rye-
grass, plant biomass production and alkane degradation were
significantly enhanced by inoculation with bacterial strains
expressing hydrocarbon-degrading genes (e.g., alkB) as well
as plant-promoting activity (1-aminocyclopropane-1-carbox-
ylate (ACC) deaminase activity) [90, 95]. So, the combined
use of plant and bacteria can be exploited to relieve plant
stress, and enhance bioremediation of PH-contaminated sites.

Current Limitations to the Microbe-Assisted
Phytoremediation of Hydrocarbons

Microbe-assisted phytoremediation has been broadly tested
for the degradation or sequestration of hydrocarbons in estu-
arine environments. Despite being considered an inexpensive,
sustainable, and environment-friendly technique,
phytoremedition is not exempt of controversy, and the success
of this type of approach is significantly affected by environ-
mental factors and particular features of each ecosystem. One
major limitation is time, considering that successful
phytoremediation is a process that goes on for long periods
which is partially determined by the slow growth and pheno-
logical (or life) cycle of plants, the limited depth of root
system, and the fact that many plant species are sensitive to
the contaminants that are being remediated [75, 96].

The bioavailability of petroleum hydrocarbons is another
important factor in the success of bioremediation, and it can be
significantly affected by soil type and organic matter content.
Water content (affects the availability of oxygen required for
aerobic respiration), temperature, and nutrient availability (in-
fluences the rate and extent of biodegradation) are relevant
determinants of the efficiency of the PH bioremediation pro-
cess [78]. The competition for nutrients between plants and
microorganisms can be a restriction to the remediation effi-
ciency. A reduction inmicrobial abundance and an attenuation
of degradation of higher molecular weight PAHs in sediments

were observed in H. portulacoides banks, and this effect
was associated to nutrient limitation [22]. Therefore,
fertilization may be required for optimal rhizoremediation of
hydrocarbons.

Although a wide range of hydrocarbon-degrading bacteria
have been isolated from contaminated environments, little is
known about the stability of the association with salt marsh
plants and the success of the re-introduction of plant-bacteria
systems for potential phytoremediation processes in saline
sediments. The fact that these biotopes are colonized in a
particular type of plants, well adapted to flooding and to
salinity fluctuations, reinforces the need to incorporate basic
knowledge on their interaction with sediment microbes in the
design of phytoremediation approaches. The ability to moni-
tor the survival and efficiency of hydrocarbon degradation of
inoculated strains is essential for the in-depth understanding of
the network of relations established between sediments,
plants, and microbes that underlies microbe-assisted
phytoremediation.

Monitoring Plant-Bacteria Interactions Involved
in Microbe-Assisted Phytoremediation

The efficient colonization of plants by microbial pollutant
degraders is an essential contribution for plant survival and
hydrocarbon degradation [90, 97]. Despite the lack of knowl-
edge on inoculation and bacterial colonization of halophyte
plants, the monitoring of plant-bacteria interaction in
hydrocarbon-polluted sites has been addressed by different
approaches. In bioremediation, the use of culture-dependent
methodologies, such as dilution plating on agar plates con-
taining antibiotics, the most-probable-number (MPN)method,
and direct counting, are insufficient for an accurate and sensi-
tive monitoring of the inoculation and colonization processes
[98]. Molecular techniques, including polymerase chain reac-
tion (PCR), real-time PCR, and DNA hybridization, reporter
genes, or genetically marker microorganisms (biomarkers)
have been used to check on microbe survival, efficiency of
colonization, and activity [77, 90, 94, 99, 100]. For example,
antibiotic resistance and green fluorescent protein (gfp)
genes have been proposed as useful tools for monitoring
the colonization of bacterial endophytes, inoculated in
poplar trees [100]. Endophyte colonization has also been
monitored with the use of gusA marker gene encoding the
enzyme β-glucuronidase. A gus-marked strain, Burkholderia
phytofirmans PsJN, was inoculated in seeds of ryegrass
(Lolium multiflorum Lam.). B. phytofirmans PsJN:gusA10
revealed that this bacterium has the ability to colonize the
rhizosphere and endosphere of ryegrass vegetation in a diesel-
contaminated soil and generally improved plant biomass pro-
duction and hydrocarbon degradation [101]. Other study,
using restriction fragment length polymorphism (RFLP),
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showed that Enterobacter ludwigii strains were able to effi-
ciently colonize the rhizosphere and endosphere of Italian
ryegrass, birdsfoot trefoil, and alfalfa. Moreover, E. ludwigii
strains contain a cytochrome-P450-type alkane hydroxylase
(CYP153), and the quantification and expression of these
genes by real-time PCR indicate an active role in hydrocarbon
degradation, in the rhizosphere and endosphere of all
three plant species [95]. Quantitative PCR has emerged
as a useful and rapid tool for monitoring catabolic genes
during bioremediation processes. As an example, this tech-
nique was used for the assessment of hydrocarbon degradation
activity of Nocardia sp. H17-1 during remediation of crude-
contaminated soil [102]. A similar approach was used to
demonstrate that hydrocarbon degradation was associated
with functional changes in microbial communities, in which
high copy numbers of catechol 2,3-dioxygenase and naphtha-
lene dioxygenase correlated with PAH mineralization [103].

Metagenomic pyrosequencing, which allows the recovery
of a very large number of microbial sequences directly from
environmental samples, has more recently emerged as a pow-
erful technique to follow plant-microbe interactions during the
bioremediation process [104, 105]. The sequences obtained
can be compared with reference libraries, and then taxa pres-
ent in an environmental sample can be identified with high
confidence. The massive data sets generated provide informa-
tion that can be used for a variety of applications, such as the
comprehensive understanding of within-site and between-site
variability of microbial communities and the impact of this
variability in ecosystem-scale processes in salt marshes [106].
The pyrosequencing analysis of bacterial 16S ribosomal RNA
(16S rRNA) gene fragments of different Phragmites australis
rhizospheres revealed a trend in the variation of bacterial
community structure during wetland degradation and identi-
fied sulfur and sulfate-reducing bacteria, nitrifying and
nitrogen-fixing bacteria, and methane-oxidizing bacteria as
crucial in the protection and ecological restoration of wetlands
[107]. Recent bioremediation studies have used pyrosequenc-
ing analysis of bacterial 16S rRNA gene to describe microbial
community dynamics in hydrocarbon-contaminated sites, thus
providing basis for the development of strategies for monitor-
ing remediation processes [108, 109]. For example, the rela-
tive abundance of Chloroflexi, Firmicutes, and Euryarchaeota
was directly correlated with the presence of diesel [109].

Future Perspectives

Despite numerous limitations, phytoremediation and, particu-
larly, microbe-assisted phytoremediation have undeniable ad-
vantages, and research must now specifically address the
aspects that can allow the scaling up from laboratory to the
field for the practical implementation of this approach.

Each salt marsh displays particularly biological, chemical,
and physical characteristics that will ultimately determine the
success of phytoremediation. Therefore, field studies, com-
bined with laboratory approaches, are required for the under-
standing of the interplay of biological and chemical processes
involved in microbe-assisted phytoremediation of oil-
impacted sites.

Considering that plant-microbe interactions play a key role
in the process of environment and in planta detoxification, (a)
the identification of autochthonous hydrocarbon-degrading
bacterial populations associated to salt marsh plants (rhizo-
sphere and aboveground plant tissues), (b) the identification of
degradative plasmids, and (c) the selection of petroleum-
resistant plants are key issues for the success of environmental
restoration. The detection of genes related to hydrocarbon
degradation pathways in halophyte plants can be useful to
screen for lineages of plants that can be used in efficient
phytoremediation protocols. Moreover, these genes can be
used for the genetic engineered design of plants for novel
phytoremediation approaches for hydrocarbon-polluted wet-
lands and soils [110]. Recent plant biotechnology approaches
involving the introduction of specialized bacterial endophytes
in plants or the design of genetically engineered plants con-
taining interesting bacterial genes [92, 111] create new per-
spectives for future phytoremedition protocols. Endophytic
hydrocarbon-degrading bacteria may have a growth-
promoting effect on the wild salt marsh halophyte plants and
may be regarded as promising when field microbe-assisted
phytoremediation approaches are envisaged.
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