
MICROBIOLOGY OFAQUATIC SYSTEMS

The Temporal Scaling of Bacterioplankton Composition: High
Turnover and Predictability during Shrimp Cultivation

Jinbo Xiong & Jianlin Zhu & Kai Wang & Xin Wang &

Xiansen Ye & Lian Liu & Qunfen Zhao & Manhua Hou &

Linglin Qiuqian & Demin Zhang

Received: 1 July 2013 /Accepted: 21 November 2013 /Published online: 5 December 2013
# Springer Science+Business Media New York 2013

Abstract The spatial distribution of microbial communities
has recently been reliably documented in the form of a dis-
tance–similarity decay relationship. In contrast, temporal scal-
ing, the pattern defined by the microbial similarity–time rela-
tionships (STRs), has received far less attention. As a result, it
is unclear whether the spatial and temporal variations of
microbial communities share a similar power law. In this
study, we applied the 454 pyrosequencing technique to inves-
tigate temporal scaling in patterns of bacterioplankton com-
munity dynamics during the process of shrimp culture. Our
results showed that the similarities decreased significantly
(P =0.002) with time during the period over which the

bacterioplankton community was monitored, with a scaling
exponent of w =0.400. However, the diversities did not
change dramatically. The community dynamics followed a
gradual process of succession relative to the parent communi-
ties, with greater similarities between samples from consecu-
tive sampling points. In particular, the variations of the bacte-
rial communities from different ponds shared similar succes-
sional trajectories, suggesting that bacterial temporal dynam-
ics are predictable to a certain extent. Changes in bacterial
community structure were significantly correlated with the
combination of Chl a , TN, PO4

3-, and the C/N ratio. In this
study, we identified predictable patterns in the temporal dy-
namics of bacterioplankton community structure, demonstrat-
ing that the STR of the bacterial community mirrors the spatial
distance–similarity decay model.

Introduction

The paradigm that ‘Disease in aquaculture is the result of
complex interactions among the host, environmental vari-
ables, and the surrounding microflora’ [37] has been support-
ed by a range of studies [25, 27, 49]. These findings indicate
the critical role of suitable bacterioplankton for maintaining
shrimp health. Specifically, a balance between beneficial and
pathogenic bacteria is necessary for successful shrimp culti-
vation. Although there is evidence that aquatic microbial
communities are highly dynamic over time [15, 30, 35, 44],
it is still uncertain whether such temporal variations are
predictable.

To sustain high production, the feed supply generally ex-
ceeds the requirements of cultured shrimp, producing gradual
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eutrophication and resource variation in the water bodies
associated with the culture [13, 29]. This effect may, in turn,
trigger the dynamics of microbial communities during shrimp
cultivation because resource partitioning is known to be the
key contributor to microbial compositional [18, 39] and func-
tional [45, 46] patterns. Several recent studies have consis-
tently shown temporal changes in the microbial communities
of shrimp ponds [25, 27, 48]. However, these observational
studies focused on specific taxa, such as Vibrio [27, 38], or
were based on fingerprint techniques [4] and thus might
provide limited and potentially biased information on the
community-level response to increasing eutrophication on a
temporal scale. In particular, it is unclear whether these dy-
namics are random or predictable in such artificially manipu-
lated ponds (a constantly changing environment), although
discernible temporal patterns have been detected in natural
aquatic ecosystems [15, 44].

Spatial patterns in microbial communities have long been
regionally characterized in terms of a distance–similarity de-
cay relationship, i.e., communities in sites separated by a
greater geographical distance show more dissimilarity [17,
47]. In contrast, patterns in similarity–time relationships
(STRs) have received much less at tention [35].
Encouragingly, Jones and colleagues [22] have postulated
equivalent temporal and spatial scales for the variation found
in aquatic bacterial community composition. Thus, we
adapted a mathematical equation analogous to that used for
the spatial scale: S = cTw [16], where the scaling exponent w
is a reflection of the turnover rate of microbial communities.
The estimation of accumulative richness over time is very
important for understanding the maintenance of microbial
diversity in a given ecosystem [42]. Thus, existing temporal
scaling studies have generally focused on the taxa–time rela-
tionship, representing the accumulative richness over time
based on censuses of diverse ecosystems [23, 34, 40, 42,
43]. As a result, it is not clear whether the relationships
between time and the similarities among microbial communi-
ties mirror those detected for the spatial scale.

Presumably, shrimp ponds are renewed habitats that are
sterilized before the introduction of juveniles and identically
managed during the entire culture period. For these reasons,
they offer an ideal, full-scale setting in which to conduct
detailed studies to test microbial temporal dynamics.
Individual bacterial taxa differ substantially in their metabolic
capabilities, e.g., the difference between specialist and gener-
alist taxa. Thus, changes in the substrate have the potential to
shape bacterial community structure [19, 46, 49]. Therefore,
we hypothesize that the variations in the bacterial community
are correlated with a few environmental variables (driving
forces) and that the temporal dynamics of the community
may follow the spatial power law [16], as temporal variation
and spatial variation are highly comparable [22]. To verify
these hypotheses, we collected water samples from shrimp

(Litopenaeus vannamei) culture ponds, using amplicon pyro-
sequencing of 16S rDNA to characterize the temporal dynam-
ics of the planktonic bacterial community and the abiotic
factors that drive this pattern and to explore whether the
STRs followed the model found for the spatial scale.

Materials and Methods

Experimental Design and Water Sample Collection

The shrimp ponds investigated in this study are located in
Zhanqi, Ningbo, eastern China (29°32′N, 121°31′E) in an area
measuring 300 by 600 m. These 30 ponds are approximately
the same size (2,000 m2) and are identically managed in terms
of sea water inputs, daily water exchange rate (5 %) and depth
(1.5 m), shrimp stocking density (360,000 ind/pond), feed
type and schedule. The ponds are located in greenhouses to
maintain a relatively stable temperature during the cool sea-
son. Bottom aeration is applied to maintain a suitable level of
dissolved oxygen. Shrimp (Litopenaeus vannamei) juveniles
were introduced into the ponds on 25 March 2012. The water
samples were collected at various time points separated by 6 to
10 days (over a span of 42 days, from 29 April to 10 June) in
six different ponds at a depth of 50 cm below the water
surface, corresponding to 35, 45, 55, 63, 69 and 77 days after
shrimp inoculation. To minor the spatial variability within
ponds, samples were chosen from four representative points
(similar locations among the ponds) and combined to form a
composite biological replicate sample representing a given
pond and time point. In total, we collected 36 water samples
(six ponds × six time points). The samples were immediately
transported (within 4 h) to the laboratory in an icebox.

Water temperature and pH were recorded with appropriate
sensors at a depth of 50 cm. The concentrations of total
organic carbon (TOC), total nitrogen (TN), total phosphate
(TP), NO3

- and PO4
3+ and the chemical oxygen demand

(COD) were analyzed following standard methods [2]. For
the measurement of chlorophyll a (Chl a), a water sample was
filtered throughWhatman 25mmGF/F filters and extracted in
90% dimethylformamide (N ,N -dimethyl formamide) for 24 h
at 48 °C. The concentration of Chl a in the supernatant was
determined using a spectrophotometer (UV-1601, Shimadzu,
Japan).

DNA Extraction

On the sampling days, approximately 1 L of water for DNA
extraction was prefiltered through nylon mesh (100-μm pore
size). The samples were subsequently filtered onto a 0.2-μm
membrane (Millipore, Boston, MA, USA). Community DNA
was extracted using a Power Soil® DNA isolation kit (MO
BIO Laboratories, Carlsbad, CA, USA) according to the
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manufacturer’s protocol. The gDNA extracts were quantified
with a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, USA) and stored at -80 °C prior
to amplification.

Bacterial 16S rRNA Amplification and 454 Sequencing

An aliquot (50 ng) of DNA from each sample was used as
the template for amplification. The V1–V3 hypervariable
regions of bacterial 16S rRNAs (Escherichia coli positions
27 F–519R) were amplified using the primer set 27 F:
AGAGTTTGATCMTGGCTCAG with the Roche 454 ‘A’
pyrosequencing adapter and a unique 10 bp barcode se-
quence and the primer 519R: GWATTACCGCGGCKGC-
TG with the Roche 454 ‘B’ sequencing adapter at the 5′-end
of each primer. This region furnished nearly the same reso-
lution as that of the nearly full length sequence [23]. Each
sample was amplified in triplicate with a unique barcode
primer (in a 50 μl reaction system) under the following
conditions: 30 cycles of denaturation at 94 °C for 30 s,
annealing at 55 °C for 30 s and extension at 72 °C for
30 s, with a final extension at 72 °C for 10 min. Polymerase
chain reaction (PCR) products for each sample were com-
bined and purified with a PCR fragment purification kit
(TaKaRa Biotech, Japan).

An equimolar amount of PCR products (assuming that
amplicons of the same size had a similar molar mass) for each
sample were combined in a single tube to be run on a Roche
FLX 454 pyrosequencing machine (Roche Diagnostics,
Branford, CT, USA), producing reads from the forward direc-
tion 27 F with the barcode.

Processing of Pyrosequencing Data

Sequencing reads were demultiplexed, quality filtered and
denoised using the Quantitative Insights Into Microbial
Ecology (QIIME) workflow [3]. Specifically, the bacterial
reads whose length was outside the bounds of 200 and 450
bp and cases in which the homopolymer run exceeds 6 were
removed by PyroNoise [9], then sequences with the same
barcode were assigned into the same sample [3]. Bacterial
phylotypes were identified using uclust [12] and assigned to
operational taxonomic units (OTUs, 97 % cutoff). The most
abundant sequence from each phytotype was selected as the
representative sequence and was aligned using PyNAST [9].
Taxonomic identity of each phylotype was determined using
the Greengenes database [10]. To correct for varying sampling
efforts, we used a randomly selected subset of 4,500 se-
quences (corresponding to the smallest sequencing effort for
any of the samples) per sample to calculate diversities and
distances between samples.

Statistical Analysis

A one-way analysis of variance (ANOVA) was used to test for
significant differences in alpha diversity across the sampling
points using SPSS 13.0 software. Nonmetric multidimensional
scaling (NMDS) and principal coordinates analysis (PCoA)
were implemented to evaluate the overall differences in bacte-
rial community structure to determine changes in beta diversity
[26]. A nonparametric permutational multivariate analysis of
variance (perMANOVA) was conducted to test the effects of
various sampling times on microbial community variations,
and a similarity percentage analysis (SIMPER) was applied to
identify the taxa that were primarily responsible for observed
differences among the sampling points based on PAST [5, 20].
To reduce multicollinearity, a canonical correspondence analy-
sis (CCA)-based variance inflation factor (VIF) was calculated
to identify the common sets of environmental variables impor-
tant to bacterial community composition. These analyses were
performed in R v.2.11.0 with the ‘vegan’ package [33].

Temporal Turnover Rate Estimation and Taxa–Time
Relationship

STRs were determined using a contiguous sampling approach
with the power lawmodel S = cTw. Here, the scaling exponent
w was considered an index of the temporal turnover rate of the
bacterial community, following the idea of spatial turnover
[16]. The Sørensen index puts more weight on joint occur-
rences than on mismatches [36], and thus the contiguous
STRs estimate the cumulative decrease in the Sørensen sim-
ilarities among the microbial communities in a time series
framework. Due to the temporal sampling design, the data
points within each pond were not independent; we calculated
the bacterial community similarity between D35 (the first
sampling point) and other sampling points (D45, D55, D63,
D69 and D77), and we then averaged the similarity across the
sampling period. The power law exponent w was estimated
directly with a linear regression based on the function
expressed in log–log space: logS = logc + w logT. A similar
model was applied to evaluate the taxa–time relationship, as
described elsewhere [16, 40]; please see the detailed informa-
tion in the legend of Fig. 6.

Results

Physicochemical Characteristics of the Water Samples

The principal physicochemical characteristics of the water
samples are summarized in Table S1. The water temperature
and pH values were relatively stable, ranging from 27.3 to
30.9 °C due to culturing in the greenhouses and from 6.18 to
7.05, respectively. The environmental parameters, especially
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NO3
- and PO4

3+, were highly variable in the culture ponds,
whereas TOC consistently (r =0.730, P <0.001, Pearson cor-
relation) increased over the shrimp harvest cycle.
Furthermore, the increase in nutrient (TP and NO3

-) concen-
trations was paralleled (P <0.05 in both cases) by a gradual
increase in the Chl a concentration. This result is consistent
with the findings of previous reports on shrimp culture proce-
dures [27, 48].

Distribution of Taxa and Phylotypes

The sequencing efforts yielded eight samples with low-quality
reads, of which four were from D35 and four from D45.
Unfortunately, we did not have a sufficient amount of DNA
for repeated pyrosequencing. To ensure sufficient sequencing
depth, these eight samples were excluded from further analysis.
Following this procedure, we obtained a total of 195,640 qual-
ity sequences and 4,502–8,285 sequences per sample (mean=
6987) and were able to classify 95.3 % of those sequences
across the samples. The dominant phyla or classes across the
samples were Actinobacteria (averaged relative abundance,
11.9 %), Alphaproteobacteria (20.5 %), Gammaproteobacteria
(6.7 %), Flavobacteria (23.5 %) and Sphingobacteria (6.0 %),
representing more than 68 % of the bacterial reads (Fig. 1).
Although no consistent pattern (linear increase or decrease)
emerged for a dominant phylum or class, several general pat-
terns were observed, e.g., the relative abundance of
Alphaproteobacteria and Sphingobacteria decreased, whereas
that of Gammaproteobacteria and Betaproteobacteria increased
over time (Fig. 1). Strikingly, the taxa that contributed to the
overall differences in the bacterial community were primarily
affiliated with these dominant groups (Actinobacteria,
Alphaproteobacteria and Flavobacteria; Table S2). The alpha
diversity including the number of operational taxonomic unit
(OTUs; phylotypes) and the Shannon index was relatively

stable except for the D35 communities (Fig. S1). In addition,
there were no significant correlations between the estimated

Fig. 1 Relative abundances of
the dominant bacterial phyla
(relative abundance >1 %) in
water samples separated
according to sampling time and
the average across the samples.
Relative abundances are based on
the proportional frequencies of
those DNA sequences that could
be classified at the phylum level,
with the exception that the
predominant phyla of
Bacteroidetes and Proteobacteria
were grouped at the class level

Fig. 2 Nonmetric multidimensional scaling (NMDS) plot derived from
the Jaccard distances between water samples (a) with symbols coded by
sampling time, and the first component from NMDS of the Jaccard
distances regressed against sampling time using a linear function for the
bacterial community (b)
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diversities and either the time of sampling or the environmental
variables (r <0.4, P >0.5 in all cases).

Bacterial Community Structure

Based on the detected OTUs across the samples, an NMDS
ordination analysis clearly revealed the continuous succession
of bacterioplankton assemblages during our monitored shrimp-
farm culture, primarily separated by the first axis (Fig. 2a),
although the community richness and diversities did not vary
dramatically over time (Fig. S1). The linear function showed a
significant correlation (Pearson coefficient, ρ =0.961, P <
0.001) between NMDS axis 1 (as a proxy for the bacterial
community dissimilarity) and sampling time (Fig. 2b). The
patterns were further corroborated by a dissimilarity test
(perMANOVA), which demonstrated that sampling time was
an important factor in determining community composition
(global F =1.80, P=0.001). Note that the community compo-
sitions did not vary dramatically between consecutive sam-
pling points, e.g., D45 vs. D55 and D63 vs. D69. However,
they changed significantly (P <0.05) over longer sampling
intervals, e.g., D45 vs. D63 and D63 vs. D77 (Table 1).
Overall, the results clearly demonstrated the temporal dynam-
ics of the bacterioplankton composition over a short period.

Linking Bacterial Community Structure to Environmental
Conditions

To link the taxonomic structure of the microbial communities
with the water properties and Chl a (as a proxy of photosyn-
thetic potential), CCAs of the bacterial communities were
performed for each of the ten environmental variables
(Table S1). Six of these variables (TOC, TN, PO4

3-, COD,
C/N ratio and Chl a ) were selected based onP values less than
0.05. These six environmental variables and the bacterial
communities were then used in the CCA. The VIFs for TOC
and COD were greater than 20, indicating significant correla-
tions between the environmental variables (multicollinearity,
data not shown). For this reason, TOC and COD were

removed and the CCA repeated. The VIFs for the remaining
four variables including TN (P=0.001), PO4

3+ (P=0.030),
the C/N ratio (P=0.001) and Chl a (P=0.007) decreased to
less than 2. The corresponding CCA biplot revealed that the
variation was significantly (F =1.32, P=0.005) correlated
with the combination of the variables (Fig. 3). In particular,
the bacterial communities in the later periods (D63 to D77)
were distinct from those in the early periods (D35 and D45),
separated primarily by the first axis, which was positively
correlated with the C/N ratio and Chl a and negatively corre-
lated with TN and PO4

3+ (Fig. 3).

Similarity–Time and Taxa–Time Relationships

To evaluate the turnover rate of the bacterioplankton commu-
nity, an STR was applied to assess the temporal dynamics of
the overall bacterial assemblage in the artificial shrimp ponds.

Table 1 Community dissimilarity test (P values) based on a nonpara-
metric permutational multivariate analysis of variance (per MANOVA)

D35 D45 D55 D63 D69 D77

D35

D45 0.672

D55 0.034 0.069

D63 0.035 0.033 0.011

D69 0.033 0.034 0.004 0.451

D77 0.036 0.034 0.004 0.003 0.073

Bold values represent significant differences (P<0.05) in bacterial com-
munities between pairs of sampling dates

Fig. 3 Canonical correspondence analysis (CCA) of detected OTUs and
the selected water biogeochemistry parameters. The percentage of varia-
tion explained by each axis is shown

Fig. 4 Similarity–time relationships (STRs) for bacterial communities.
The power-law exponent w was estimated directly with a linear regres-
sion (log–log space approach) fit between the average Sørensen similarity
values and days between observation in the shrimp ponds
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The slope of the STR was estimated by a linear regression
involving the log-transformed similarities of the bacterial
communities and the sampling times. A significant (P =
0.002) STR was observed with the exponent w =0.400
(Fig. 4). Strikingly, the direction of change of the bacterial
community appeared to be predictable to a certain extent, i.e.,
the trajectories of bacterial variation were similar among the
ponds during the monitored period (Fig. 5). Consistently, if we
retained four time points (D55, D63, D69 and D77) for the six
ponds, the ponds appeared to share parallel trajectories
(Fig. S2). In particular, there was a significant correlation (P
<0.001) between the cumulative observed OTUs and the days
between observations, with a temporal turnover of bacterial
taxa of 0.393 (Fig. 6).

Discussion

The initial aim of this study was to characterize the correlation
between the bacterial community and the occurrence of shrimp
disease. For this reason, we only collected samples covering the
periods during which the risk of a disease outbreak was high
(58±8 days after the introduction of juvenile shrimp) [24].
Given the high temporal variability of the microbial composi-
tion [30], our study appears to have used a relatively coarse
sampling frequency. However, it has been shown that the effect
of sampling is most likely minor (Fig. 2b) in terms of the
estimation of the overall turnover rate [34].

Deterministic Role of Environmental Factors for the Bacterial
Community in Shrimp Ponds

Intensive shrimp farming generally produces gradual eutrophi-
cation [29], whereas bacterioplankton communities are ex-
tremely sensitive and reactive to subtle environmental changes
[30]. Consistently, we observed robust dynamics of bacterial
assemblages, namely, a decrease in the similarity of the bacte-
rial communities as the length of the census period increased
(Fig. 4), accompanied by an unchanging value of diversity
(Fig. S1). The temporal changes in the bacterial communities
were significantly correlated with the combination of Chl a,
TN, PO4

3- and the C/N ratio (Fig. 3), consistent with the finding
that substrate availability creates ecological niches in which
specialized populations bloom [39]. Likewise, chlorophyll a
(Chl a) has been widely applied as a proxy for phytoplankton
abundance and biomass [11], which affects the temporal suc-
cession of bacterial community composition [31].

Spatial and Temporal Variations of the Microbial Community
Share a Similar Power Law

Previous studies have shown that the total cell abundance of
bacterioplankton community tends to vary substantially less

Fig. 5 Principal coordinates analysis (PCoA) plots derived from the
Jaccard distances between water samples with symbols coded by ponds.
Tominimize unequal sampling effects (here due to sequencing problems),
ponds with six time points (a) and four time points (b ) are shown
separately. In a given pond, the arrows show the successional direction
over time

Fig. 6 The taxa–time relationship for bacterial communities. The power
law exponent w was estimated directly with a linear regression law (log–
log space approach) fit between the cumulative observed OTUs and days
between observations in the shrimp ponds. The first observation was at
day 35 for ponds 2 and 4 and at day 55 for ponds 1, 3, 5, and 6
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than the community composition over time [7, 8]. Two basic
mechanisms shape population dynamics and function over
time, the ‘adjustment scenario’ and the ‘replacement scenario’
[7]. Our results appear consistent with the latter case, in which
a continuous change in resources triggers shifts in the
bacterioplankton composition involving intrinsically different
taxa (Fig. 6). Multiple lines of evidence have indicated that
community structure determines the final metabolic response
to environmental change including a strong correlation be-
tween the rate of change in bacterial community structure and
functional capacities [6] and also including the rate of the
ecosystem processes affected by microbial composition [1,
46]. Thus, a better understanding of bacterial temporal dy-
namics is critical to predict ecosystem function, although
consistency is difficult to maintain.

The exponent (w =0.400) of the STRs for the bacterial
communities of the shrimp ponds is greater than the slopes
(0.02 to 0.03) of the linear relationships observed in bacterial
succession in several habitats [35]. One possible explanation
for this discrepancy is that we detected much diverse rare
species (resulting in a low pairwise similarity) with the pyro-
sequencing technique, whereas Shade et al. [35] collected data
with a much lower sequencing depth, ranging from 486–3526
reads per sample. Note that neither the sequencing depth
found by the Shade et al. study nor the sequencing depth
found by our study reached saturation (rarefaction curve not
shown). It has been proposed that trends in community struc-
ture among samples are not particularly sensitive to sequenc-
ing depth, e.g., 1,000 denoised sequences per sample ex-
plained ~90 % of the variation in beta diversities [28].
Alternatively, it is possible that our slope was overestimated
to a certain degree due to stochastic processes [41, 50] such as
daily water discharge and influent effects during shrimp cul-
ture. Despite this possible influence, the slope of the taxa–time
relationships found in our study (Fig. 6) is comparable to the
rate of accumulation of bacterial taxa in other habitats [34, 40,
42]. In addition, the taxa primarily contributing to the tempo-
ral dynamics of the bacterial community are numerically
abundant (Table S2). Furthermore, we found that the bacterial
temporal dynamics were significantly correlated with a few
environmental parameters (Fig. 3), suggesting that determin-
istic factors, rather than stochastic processes, were the drivers
of temporal variation in the bacterial communities examined
in this study.

Predictability of Bacterial Community Dynamics in Shrimp
Ponds

It has been shown that the phylogenetic compositions of
microbial communities are more similar at adjacent sampling
points [15, 34]. Similarly, we found a modest contribution of
strain–level variations over time, reflected by certain bacterial
communities that appeared to be more cohesive than others

(e.g., H45 vs. H55 and H63 vs. H69) between consecutive
sampling points (Fig. 2). Additionally, the different ponds
sampled on the same day appeared to harbor more similar
bacterial communities and followed parallel successional pat-
terns over time (Fig. 5), which clearly indicates that the
temporal variability in bacterial community structure in the
shrimp ponds was not random but, rather, predictable over the
period monitored by our study. Note that communities that
were more similar between samples were found at later stages
such as D63 vs. D69 and D69 vs. D77 (Table 1 and Fig. 2a).
Thus, the rate of change in similarity might decrease at longer
time scales. This pattern is consistent with the similarity–
distance relationships, i.e., the correlation between communi-
ty similarity and spatial distance disappeared with steady
increases in the geographic distance [17]. Thus, additional
studies are required to verify this hypothesis over the entire
duration of shrimp culture.

In particular, we presented tangible evidence that the STRs
follow the spatial scale model. As has been asserted recently,
the changes in environmental characteristics that occur over
time are equivalent to aquatic spatial heterogeneity [22],
resulting in similar ecological processes driving community
dynamics. In fact, there is a long history of substituting space
for time to evaluate chronosequences in macroecology [14,
21, 32]. However, this method has been criticized for its
assumption of stable biogeochemical factors [21]. We know
that such stability cannot be assumed in this case.
Accordingly, ecological studies need to shift away from the
pattern of cumulative species (with alpha diversity generally
unchanged over time) to the examination of community beta
diversity in real time as well as that of the underlying ecolog-
ical processes.

Conclusions

In this study, we provide direct evidence to demonstrate that
the temporal dynamics of the similarities (the beta diversity)
of the bacterial community, rather than the accumulative rich-
ness of taxa, mirrors the distance–similarity decay relationship
for microbes [16, 47]. In particular, the successional trajectory
is predictable to a certain extent, at least on this short-term (42-
day) scale. Overall, we demonstrate that the patterns of the
temporal dynamics of bacterial community structure are pre-
dictable and that bacterial spatio-temporal variations share a
similar power law model.
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