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Abstract Next-generation sequencing has increased the cov-
erage of microbial diversity surveys by orders of magnitude,
but differentiating artifacts from rare environmental sequences
remains a challenge. Clustering 16S rRNA sequences into
operational taxonomic units (OTUs) organizes sequence data
into groups of 97 % identity, helping to reduce data volumes
and avoid analyzing sequencing artifacts by grouping them
with real sequences. Here, we analyze sequence abundance
distributions across environmental samples and show that 16S
rRNA sequences of >99 % identity can represent functionally
distinct microorganisms, rendering OTU clustering problem-
atic when the goal is an accurate analysis of organism distri-
bution. Strict postsequencing quality control (QC) filters
eliminated the most prevalent artifacts without clustering. Fur-
ther experiments proved that DNA polymerase errors in poly-
merase chain reaction (PCR) generate a significant number of
substitution errors, most of which pass QC filters. Based on our
findings, we recommend minimizing the number of PCR
cycles in DNA library preparation and applying strict postse-
quencing QC filters to reduce themost prevalent artifacts while

maintaining a high level of accuracy in diversity estimates. We
further recommend correlating rare and abundant sequences
across environmental samples, rather than clustering into
OTUs, to identify remaining sequence artifacts without losing
the resolution afforded by high-throughput sequencing.

Introduction

Microbes represent the overwhelming majority of life on
Earth, but the inability to culture most taxa in the laboratory
means they remain understudied and difficult to quantify [1].
The use of DNA sequencing to investigate 16S rRNA gene
diversity has produced continuous discoveries of new micro-
bial taxa in environments as diverse as the deep sea and the
human microbiome [1–3]. New high-throughput sequencing
technologies have vastly expanded the amount of taxonomic
data that can be acquired from a single environmental sample
[3–5], and this has facilitated studies showing that microbial
diversity has previously been underestimated by orders of
magnitude [3, 6]. However, the production of massive
amounts of sequence data accentuates the need to accurately
distinguish sequences containing errors (artifacts) from
sequences making up true diversity [3, 7–9]. Two crucial
components of sequence data analysis are discussed in this
study: using environmental distribution patterns rather than
sequence similarity to group sequences into taxonomic enti-
ties and minimizing sources of potential error.

Errors can arise at different stages of the DNA library
preparation and sequencing process. The polymerase chain
reaction (PCR) used to prepare DNA for pyrosequencing can
be a source of both point substitutions as well as chimeras,
which are formed when partially extended sequences act as
primers in the next round of amplification [10, 11]. Chimeric
sequences can be effectively identified in 454 amplicon data
sets using existing programs [10, 12, 13]. Experimental
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conditions like primer choice, number of cycles, and the
specific region of amplification can also affect sequencing
results and subsequent ecological analyses [11, 14, 15]. One
of the most important sources of error is misincorporation of
bases by the DNA polymerase enzymes used to synthesize
new molecules. Although the fidelity of these enzymes is
extremely high, PCR by its nature occurs on a massive scale
and mistakes early in the amplification cycle can multiply
exponentially [16, 17]. Further, the high-throughput sequenc-
ing process itself is an important source of artifacts. Pyrose-
quencing acts by flowing each base sequentially through a
plate of microscopic wells, each of which contains a bead
attached tomillions of single-stranded DNAmolecules encod-
ing the sequence of interest. The incorporation of a base into
the complementary strand produces an enzyme cascade lead-
ing to a light reaction, which is registered and recorded [4].
Errors have been found to occur most frequently in homopol-
ymers (single-base repeats) because light intensities do not
necessarily increase linearly with the number of consecutive
bases [7, 9]. Several studies have focused on improving post-
sequencing bioinformatic analysis methods to minimize the
danger of including artifacts in environmental data sets
[18–22]. Regardless of the source, sequencing errors produce
artifacts in the data that lead to uncertainty about microbial
community richness and composition.

The prevalence of artifacts in large sequence data sets has
led to concerns that microbial diversity and richness estimates
have been greatly overestimated [8, 23]. The standard method
of analyzing community sequence information is to cluster
16S rRNA gene sequences with 97 % or higher identity into
operational taxonomic units (OTUs) [3, 8, 18, 24], which also
serves to minimize such overestimation. In the absence of a
universally accepted species concept for Bacteria, this method
of taxonomic classification is considered sufficient to generate
estimates of community richness and evenness by using high-
ly similar gene sequences as proxies for phylogenetic dis-
tance. While this approach does eliminate many potential
sequencing errors, it is done at the expense of sample resolu-
tion and may combine organisms with distinct biological
properties and capabilities into a single OTU. Since clustering
can amalgamate several species and obscure true abundance
levels, it may subsequently affect community evenness along
with richness estimates. Despite the recent improvements in
bioinformatic filtering and clustering algorithms [10, 20, 22,
25], the use of OTUs as a basis for ecological interpretation
remains inherently flawed.

While the 16S rRNA gene is a useful marker for taxonomic
divisions among Bacteria and Archaea, it is not a definitive
proxy for biological identity. Horizontal gene transfer can
confer important cellular functions faster than the evolution-
ary rate of the 16S rRNA gene by transferring entire gene
clusters in a single recombination event [26]. For example, the
K-12 and O157:H7 strains ofE. coli share two identical copies

of the V5–V6 region of the 16S rRNA gene, but O157:H7
exhibits an extreme pathogenicity that has made it a world-
wide public health threat, absent in K-12 and thought to have
originated from horizontal gene transfer [27]. Considering this
important difference between strains with identical 16S rRNA
genes, even slight variations in the variable regions potentially
represent significant genetic deviation. Grouping sequences
that differ by up to 3 % into single taxonomic units, therefore,
creates a risk of overlooking important microbial diversity.
However, next-generation sequencing errors remain prob-
lematic, with the inverse risk of treating artifacts as true
strains [7, 8]. One way of overcoming this risk is to use
individual sequence distributions in a set of environmental
samples. A correlation between distribution patterns of two
similar sequences is likely to indicate either a sequencing
error or a different 16S operon from the same genome.
While the latter possibility must be considered, it does not
detract from the inverse risk, namely, that two sequences
with variant distributions have a high probability of being
unique phylotypes. Such an analysis can be further supported
by an understanding of how artifacts arise and a method of
minimizing them during the sequencing process.

We investigated the hypothesis that OTU clustering can
merge distinct organisms into the same taxonomic group,
thereby presenting an underestimate of true microbial diver-
sity. We further hypothesized that organisms have unique
distribution patterns across environmental samples, and
these patterns can be used to distinguish sequencing errors
from phylogenetic diversity. In order to perform this study,
we used sequence data from natural assemblages because
synthetic communities would lack the element of natural
distribution. In addition, we examined sources of errors in
16S rRNA gene sequence data sets using Roche 454 GS-
FLX Titanium technology. We used a single-template se-
quence to focus specifically on point substitutions, inser-
tions, and deletions, and thus, did not examine the
occurrence of PCR chimeras. Based on our findings, we
propose ways to minimize such errors through careful sam-
ple preparation and stringent sequence quality filtering.

Methods

OTU Clustering Experiment

Sample Information and DNA Library Preparation

The test samples were comprised of 18 piston cores taken
from marine sediments just below the sea floor in the Green
Canyon Block 607/608 area of the Gulf of Mexico in
August 2006 [28, 29]. DNA was isolated from each sample
using a bead beating protocol with phenol:chloroform:iso-
amyl alcohol (Supplementary Online Material), from which
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the V5–V8 region of the 16S rRNA gene was amplified and
sequenced using multiplex 454 Titanium technology and
sample-specific barcodes [25], as follows:

PCR cycle titration was used in a diagnostic step to deter-
mine the lowest number of cycles needed to amplify sufficient
template material, followed by two rounds of amplification to
minimize any bias in adaptor modification. All reagents were
obtained from Invitrogen (Carlsbad, CA, USA) except for the
primers and milliQ water. The universal primers TX9 (GGAT
TAGAWACCCBGGT AGTC) [ 30 ] a nd 1391R
(CCTATCCCCTGTGTGCCTTGGCAGTCTCAG) [31]
were used to amplify the V5–V8 variable region (Fig. 1).
Microfuge tubes, PCR tubes, 10× HiFi Buffer, bovine serum
albumin (BSA), MgSO4, and milliQ water were UV-sterilized
on the day of each experiment. Thermocycling in all reactions
proceeded with 94 °C for 1 min, followed by varying numbers
of cycles of 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 1 min,
and final extension at 68 °C for 1 min. For the cycle titration,
each 20-μl reaction consisted of the following components:
2 μl 10× HiFi Buffer, 1 μl forward primer TX9 (8 μM), 1 μl
reverse primer 1391R (8 μM), 1 μl dNTPs (4 mM), 0.8 μl
MgSO4 (50 mM), 0.8 μl BSA (10 mg/ml), 0.08 μl Platinum
Taq HiFi, 9.32 μl sterile milliQ water, 4 μl template DNA
(1 ng/μl). Four reactions were run for each sample, each for a
different number of cycles to encompass 12, 18, 24, and 30
rounds of amplification. According to the titration results,
evaluated on a diagnostic 0.9 % agarose gel, the minimum
number of PCR cycles necessary to generate sufficient prod-
uct for the subsequent step was performed for the first stage of
amplification. Each sample was evaluated on an individual
basis because the minimum cycle number can vary based on
quality of the DNA, presence of PCR inhibitors, and so forth.
This groundtruthing step, therefore, served to relativize the
quality and quantity of the PCR products. Amplification reac-
tions were run in four replicates of 50 μl for each sample, with
the following components: 5 μl 10× HiFi Buffer, 2.5 μl
forward primer TX9 (8 μM), 2.5 μl reverse primer 1391R
(8 μM), 2.5 μl dNTPs (4 mM), 2 μl MgSO4 (50 mM), 2 μl
BSA (10 mg/ml), 0.2 μl Platinum Taq HiFi, 23.3 μl sterile
milliQ water, and 10 μl template DNA (1 ng/μl). This was
followed by 0.9 % agarose gel purification and recovery with
a gel extraction kit according to the manufacturer's instruc-
tions (Qiagen, Valencia, CA, USA). A second, 7-cycle PCR
was employed to add the 454 GS-FLX Titanium A- and B-

Adaptors and sample-specific barcodes onto the PCR prod-
ucts using fusion primers. Each reaction was run in four
replicates of 100 μl each, with the following components:
10 μl 10× HiFi Buffer, 5 μl dNTPs (4 mM), 4 μl MgSO4

(50 mM), 4 μl BSA (10 mg/ml), 0.8 μl reverse primer 1391R
(with B-adaptor; 100 μM), 0.8 μl forward primer TX9 (with
A-adaptor and sample-specific barcode; 100 μM), 0.4 μl Plat-
inum Taq HiFi, 55 μl sterile milliQ water, and 20 μl template
DNA (0.35 ng/μl). The second PCR product was purified on a
8 % polyacrylamide gel electrophoresis–Tris–borate–
ethylenediaminetetraacetic acid (EDTA) (PAGE-TBE) gel
and isolated by the following steps: excision of the roughly
700-bp amplicon (including the barcode and adaptors), frag-
mentation of the excised gel, diffusion of the DNA from the
gel, and recovery of DNAwith a PCR purification kit according
to the manufacturer's instructions (Qiagen, Valencia, CA,
USA). Barcoded PAGE-purified amplicons were merged into
a sequencing library and processed according to the Roche 454
Titanium chemistry protocol using the 454 Life Sciences Lib-L
kit and shotgun processing pipeline [4].

Custom Quality Filtering

After passing the 454 signal processing filters (GS-FLX Soft-
ware v. 2.0.01.12), all sequences were trimmed to remove the
TX9 primer sequence at the 5′ end and at an assigned point
corresponding to a location within the conserved region follow-
ing the V6 region at the 3′ end. Thus, the reads that comprised
the final data set spanned the V5–V6 region of the 16S rRNA
gene and were approximately 250 bp long. Post-trimming, all
sequences were subjected to in-house quality control (QC)
filters that relied on 454 quality scores, or Q scores. The Q
scores are based on a log scale, so that any nucleotide with a Q
score of 20 (i.e., Q20) has a 1 % chance of error, Q30 has a
0.1 % chance, and so on [4]. The in-house QC filters required
every base to have a Q score of 20 or higher. In addition to the
individual base minimum score, 90 % of the bases in the
trimmed sequence were required to be Q25 or higher.

Statistical Analysis

No clustering was performed so that each unique sequence
was treated as a distinct organism. From this data set, 20
sequences that differed by at most two base pairs, the

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

TX9 1391R

Fig. 1 The 16S rRNA gene. The variable V5 and V6 regions were
flanked by primers TX9 and 1391R in all PCRs performed during
library preparation, amplifying a region of approximately 600 bp. All

sequences were trimmed, postsequencing, at the end of TX9 and a set
trim point within the conserved region following V6, producing reads
with an approximate length of 250 bp
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equivalent of >99 % identity, were chosen for analysis of
abundance distribution patterns. The abundance data for each
sequence were relativized across samples to correspond to the
number of times each sequence was observed per 10,000
sequences examined (Table 1). The most abundant sequence
over all 18 sampling locations was used as a reference for all
subsequent sequences, and the resulting R2 values are shown
in the final column of Table 1. Three of these sequences were
chosen for further statistical analysis (SOM).

Error Rate Experiment

Sequence Choice

The V5–V6 region of the 16S rRNA gene from Actino-
allomurus GMKU370 (Streptosporanginiae spp.) was
used as the sequence template (SOM). This sequence
contains 15 homopolymers, where a homopolymer is
defined as three or more consecutive identical bases.
Seven of these elements consist of three bases, seven
have four, and one has five bases. Thus, this sequence
is considered less prone to errors than those with more
and longer homopolymers.

Plasmid Preparation, 454 Library Preparation,
and Sequencing

The source plasmids were prepared from a natural popula-
tion, potentially containing variant operons of the 16S
rRNA gene within one genome. Cloning was, therefore,
performed as the first step in order to isolate a single-
template sequence (SOM).

Plasmid DNA was divided into six aliquots, and thereaf-
ter, each aliquot was treated as a separate sample to replicate
the results in one sequencing run. The V5–V8 region of the
16S rRNA gene was amplified and purified as described for
the OTU clustering experiment (SOM). All samples under-
went 16 PCR cycles in the first amplification, and 7 cycles
in the second amplification. The DNA library was prepared
for sequencing in accordance with the Roche 454 protocol.
Barcoded sequences were mixed in different concentrations
to produce varying amounts of sequence data from each
sample (Table 2), and the library went through four 454
Titanium runs.

Data Analysis

All sequence data were filtered as previously described in
“Custom Quality Filtering”, and the sequences from all six
plasmid samples were compiled into two separate data sets.
One set consisted of sequences rejected by the in-house
quality filters and one set contained all sequences that
passed the filters.

Each data set was manually analyzed to identify contam-
inations using the alignment program Seaview [32]. Sequen-
ces that appeared to differ significantly from the parent
sequence were checked using Basic Local Alignment
Search Tool (BLAST) [33] and removed if they were iden-
tified as contaminants. The number and type of errors for
each data set were then manually counted, with errors clas-
sified either as miscalls, insertions, or deletions. Whether or
not the error occurred in a homopolymer was also noted.

PCR Cycle Experiment

Sequence Choice

Two 16S rRNA gene fragments were chosen to test the
effect of varying numbers of PCR cycles on sequencing
errors. Both sequences originated from an environmental
soil sample and were prepared as plasmid inserts as de-
scribed for the preceding “Error Rate Experiment”. The
plasmids were designated pPT143 and pPT42C, respectively
(SOM).

DNA Preparation: PCR Cycle Variation

As with pPT343, chemically competent E. coli cells were
transformed with two different plasmids containing AmpR,
pPT42C, and pPT143 and plated on LB-Amp. Three single
colonies were picked from each plasmid sample and each
colony was grown overnight in a separate tube of 1-ml LB-
Amp. One culture was chosen for each plasmid and DNA
was isolated using a DNA miniprep kit according to the
manufacturer's instructions (Qiagen, Valencia, CA, USA).
The DNA underwent the same library preparation as previ-
ously described. However, to test the effect of PCR cycle
number on miscalls, the number of cycles in the first round
of amplification was varied so that each plasmid sample was
divided into subsamples, each undergoing a different num-
ber of cycles (Table 3). All samples received 7 cycles in the
second amplification. The volumes and DNA concentra-
tions used in the PCR reactions were calculated so that the
post-PCR concentrations of the amplicon products were
equivalent for all subsamples in each plasmid sample. The
remainder of the library preparation protocol was identical
for all subsamples.

DNA Preparation: Zero PCR Cycle Experiment

In order to obtain enough amplicon DNAwithout generating
PCR errors, samples for this experiment were prepared
separately. Plasmid DNAwas linearized using the restriction
enzyme Xba1 according to the manufacturer's protocol
(New England BioLabs, Ipswich, MA, USA). The linear-
ized plasmid DNA was gel purified on a 0.9 % agarose gel
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following the Qiagen gel purification protocol. The purified
product was used as the template for a PCR, in which 454
A- and B-adaptors were attached to the plasmid insert using
fusion primers. The primers were designed such that the
PCR product could subsequently be ligated into pUC19
previously double-digested with the restriction enzymes
EcoRI and SmaI (Eurofins MWG Operon, Huntsville, AL,
USA) (SOM).

Following gel purification on a 0.9 % agarose gel, the PCR
product was incubated with Klenow fragment, dGTP, dCTP,
and BSA at 25 °C for 30 min, followed by heat inactivation at
75 °C for 20 min (NEB, Ipswich, MA, USA). This reaction
used the 3′→5′ exonuclease activity of the Klenow fragment
to create an overhang suitable for ligation with EcoRI, while
the presence of dGTP and dCTP prevented indiscriminate
chewback. The DNA was ethanol precipitated and resus-
pended in T(8) buffer before ligation into the double-
digested pUC19 using a Quick Ligation Kit according to the
manufacturer's specifications (NEB, Ipswich, MA, USA).

Newly ligated plasmids were immediately transformed into
chemically competent E. coli DH10B cells. After recovery in
SOC media at 37 °C for 1 h, cells were spread onto LB-Amp
plates containing X-gal. White colonies that appeared after
incubation at 37 °C were picked, resuspended in 3 ml 2XYT
media, and grown up overnight. Plasmid DNA was isolated
from the overnight cultures using a Qiagen miniprep kit
according to the manufacturer's instructions.

A standard double-digest with EcoRI and HindIII was
performed on pPT42C to isolate the modified insert. How-
ever, because the pPT143 sequence contained an EcoRI
restriction site (GAATTC), a partial restriction digest was
used to isolate the insert. Plasmid DNA was cut first with
HindIII, ethanol precipitated, and subsequently digested
with EcoRI for 45 min at 37 °C at a ratio of 1 μg DNA to
1 U EcoRI enzyme (NEB, Ipswich, MA, USA). The
digested products from both plasmids were ethanol precip-
itated and gel purified, and the bands corresponding to the
insert size were excised and purified. The final DNA prod-
uct went directly into 454 sequencing preparation, begin-
ning with emulsion PCR, without further modification.

Data Analysis

ABLAST database was used to tally the number of indels and
substitutions per 100,000 bases in each data set (SOM). Sub-
stitution values were plotted against PCR cycle number and
compared with the expected values based on the reported error
rate of Platinum Taq HiFi (Invitrogen, Carlsbad, CA, USA;
personal correspondence) (Fig. 5).

Results and Discussion

Testing OTU Clustering Effects on Sample Resolution

Highly similar 16S rRNA gene sequences may represent
closely related strains or variant operons within the same
genome. Similar abundance distributions (high correlation)
can be derived from 16S rRNA gene sequence variants
within the same genome, related strains with similar ecolog-
ical distributions, or sequencing error. In contrast, highly
divergent distributions (as signified by low correlation) can
only be derived from related strains with distinct ecological
distributions.

To test if clustering can merge distinct organisms, we
investigated abundance distributions of highly similar
(>99 % identity) sequences across 18 marine sediment sam-
ples (Table 1). Notably, 14 of the 19 sequences have corre-
lation coefficient values less than or equal to 0.15 when
plotted against a reference sequence (Sequence 1). This
supports the hypothesis that many sequences within an
OTU represent distinct organisms. This is particularly clear

Table 2 The amount of DNA for each sample library. The number of
sequences that passed both 454 and in-house QC filters is shown in the
third column, including contaminant sequences that were removed
before the subsequent analysis

Sample DNA (ng) Sequences

pPT343-1 9 15,544

pPT343-2 3 4,747

pPT343-3 3 5,136

pPT343-4 1 966

pPT343-5 1 1,633

pPT343-6 9 11,499

Table 3 PCR cycle experiment. Each plasmid sample was divided into
subsamples that underwent different numbers of PCR cycles. Some
cycle experiments were repeated, and in these cases, the average
number of miscalls per base from all repetitions was used in the
analysis

Plasmid PCR cycles Replications

pPT42C 0 1

pPT42C 18 1

pPT42C 24 1

pPT42C 30 1

pPT42C 36 1

pPT143 0 1

pPT143 16 2

pPT143 18 1

pPT143 20 2

pPT143 24 3

pPT143 30 3

pPT143 36 1
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when abundance distribution patterns are plotted graphically
(Fig. 2). Sequences that would normally be clustered into

one OTU show highly variable abundance levels among
samples (Fig. 2a, c). A Spearman's Rank Correlation test
confirmed the absence of any correlation between these two
abundance profiles (Spearman's rho00.229, P00.362),
while the “parent” sequence and its presumed artifact
(Fig. 2a, b) had a highly significant linear correlation
(Spearman's rho00.995, P<0.05). The variability between
nearly identical sequences highlights the danger of cluster-
ing similar sequences with potentially important biological
differences.

Environmental distribution patterns of similar strains can
provide empirical evidence for biochemical differences that
would be overlooked if they were clustered together based on
sequence identity. Such pairwise comparisons provide a depth
of analysis unattainable by sequence comparison alone. Even
at the strictest OTU level of 1 % divergence, diversity can be
artificially reduced as distinct sequences are grouped together.
The standard clustering level of 3 % divergence has the
potential to massively amplify this problem. Avoiding OTU
clustering, therefore, provides a depth of resolution that would
be hidden had these sequences been grouped into one taxo-
nomic unit. However, it also increases the likelihood that
sequence artifacts will be classified as distinct organisms.
Strict quality filters were, therefore, designed to reduce this
probability and their efficacy was tested on a known sequence
template.

a

b

c

Fig. 2 Abundance distributions of three unique 16S rRNA gene
sequences with >99 % sequence identity across 18 environmental
samples. Each bar represents the abundance in a distinct sample,
relativized to number of sequences per 10,000

Table 4 A breakdown of the noncontaminant sequences that passed
the 454 filters and the subsets that either passed the in-house QCs
(described in “Custom Quality Filtering”) or were rejected. “Artifacts”
refers to all sequences that differed from the template as a result of
sequencing errors, including miscalls, insertions, and deletions. “Tem-
plate” refers to sequences with 100 % identity to the 16S rRNA gene
sequence used in the experiment. The total number of reads in each
data set is the combination of artifact sequences and template
sequences

Artifacts Template Total reads

Passed 454 filters 14,991 96,015 111,006

Rejected by QCs 10,996 62,531 73,527

Passed QCs 3,995 33,484 37,479

Table 5 Total errors in the sequence data before and after quality
control filters were applied. Note that miscalls were not filtered out
to the same extent as insertions or deletions

Pre-QC filters Post-QC filters

Miscalls 3,806 3,187

Insertions 21,199 172

Deletions 9,376 300

Total errors 33,870 4,289
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454 Error Rate Analysis

To assess how stringent quality filters affect 16S rRNA gene
sequence data, a known template was sequenced using 454
GS-FLX Titanium technology. A total of 133,396 reads
without Ns that passed the instrument's filters were analyzed
from four pyrosequencing runs. Contaminant sequences
were removed from the data set and excluded from all
subsequent analyses. Of the noncontaminant reads, 70 %
did not pass postinstrument, custom-designed QC filters
(Table 4). The 73,527 rejected sequences included 62,531
correct template sequences as well as 6,623 artifacts con-
taining homopolymer errors. The remaining artifacts
contained other errors, including miscalls, insertions, and

deletions. The level of rejection ultimately compromised the
number of correct template sequences in the post-QC data
set, suggesting that the filtering process may be too strict in
its exclusion of valid data. However, out of the reads that
passed the quality filters, 85 % were identical to the parent
sequence, while 15 % of the reads contained errors and
consisted of 850 unique artifact sequences seen at very
low levels. Furthermore, all artifacts were at least 98 %
identical to the template, corresponding to a single OTU.

The vast majority of artifacts occurred once or twice, a level
of abundance that would be ignored in most environmental
data sets. The most abundant artifact was seen only 63 times, at
a ratio of less than 1:500 relative to the parent sequence. The
tendencies for environmental sequences to produce low 454 Q

Fig. 3 Distribution of errors
along the sequence. Each graph
presents a different error type
and includes both data sets: the
sequences that passed the QC
filters (solid line) and those that
did not (dashed line). The
biggest spike in total errors
occurs at a 5 G homopolymer
and consists mostly of
insertions
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scores are highly variable due to sequence composition, in-
cluding number and length of homopolymers [7], so this ratio
cannot be broadly applied to all samples. Nevertheless, it is a
useful basis for comparison with other sequences of similar
nucleotide composition. Moreover, the number of individual
errors decreased by an order of magnitude, from a total of
33,870 in the rejected sequence set to 4,289 in the sequences
that passed the QCs (Table 5). These results show that the in-
house QC filtering process significantly improved the quality
of the sequence data and prevented an overwhelming majority
of artifacts.

While the quality filters substantially reduced the propor-
tion of reads containing errors, the effect varied by error
type. The drastic reduction of insertion and deletion errors,
or indels, was not matched in the miscall numbers (Table 5).
Most errors in the rejected data set were indels occurring at
homopolymers within the sequence. The single most com-
mon error was an extension of a five-base homopolymer
(Fig. 3). This single-base overcall accounted for 23 % of all
insertions and 13 % of all errors in this set. Post-QCs, this
insertion was seen only four times out of 172 total insertion
errors in the data set. In contrast, miscalls did not decrease to
the same extent as the indels (Fig. 3a, Table 5). As a result,
errors in this category made up a much higher proportion of
the errors after the filters were applied. Miscalls in the
rejected sequences, with many more reads and nearly ten-
fold the number of total errors, comprised fewer than 10 %
of total errors. By contrast, in the sequences that passed the
QCs, miscalls made up almost 90 % of all errors (Fig. 4).

Miscalls are much less common than insertions or dele-
tions, a natural result of the sequencing biochemistry [34].
Their predominance in the post-QC data set suggests that
miscalls do not produce low 454 Q scores and are more
likely to pass through filters that rely on those scores. One
possible explanation for the high Q scores is that

substitution errors exist in the amplicon library before se-
quencing has begun.

PCR Error Rate Analysis

The relatively high Q scores of miscall errors that precluded
their removal with QC filters suggested that they had originated
during PCR amplification of genomic DNA through Taq poly-
merase errors andwere, in fact, substitution errors, not miscalls.
If this notion was correct, then the substitution error rate would
be dependent on the number of cycles used during PCR am-
plification. To test the effect of PCR cycles on substitution
errors, two samples of a known template sequence were pre-
pared for sequencing in parallel. Each template sample was
subdivided into subsamples, and each subsample underwent a
different number of PCR cycles during the library preparation.
Substitution errors, measured per 100,000 base pairs per cycle,
increased linearly with an increase in PCR cycles (Fig. 5).
Experimental rates of increase approached the reported error
rate for the DNA polymerase enzyme mixture used in the
experiments (Table 6). The two sequences demonstrated

Fig. 4 The percentage of indels and miscalls in the sequences that did
not pass the QC filters (Rejected by QCs) and those that did (Passed
QCs). Indels compose over 90 % of the errors in the rejected data set,
with miscalls making up the remainder. The inverse is true for the
sequences that passed the QCs, with 88 % of all errors composed of
miscalls

Fig. 5 The number of substitutions per 100,000 bases in post-QC
sequences as a function of increasing PCR cycles. Experimental data
series are labeled by their respective plasmid names (42C and 143) and
represented by solid lines, while the reported error rate for Platinum
Taq HiFi polymerase enzyme (Expected) is represented by a dashed
line. Error bars denote the standard deviation of substitutions seen in
1,000 iterations of subsampling 1,000 sequences in the data set

Table 6 Substitution error rates for the DNA polymerase used in the
experiment, as reported by Invitrogen (Carlsbad, CA, USA) and ex-
perimental rates for each sequence sample. Experimental R-squared
values are shown in the third column

Substitutions/bp/cycle R2

Taq 1.8E-06 n/a

42C 2.5E-06 0.94

143 1.2E-06 0.84

OTU Clustering and PCR Artifacts Affect Diversity Estimates 717



slightly different slopes, suggesting that the precise rate of
substitution is potentially dependent on nucleotide composi-
tion, subtle differences in PCR conditions, or other factors
independent of 454 sequencing protocol. Nevertheless, the
extremely high correlation between the reported Taq error rate
and the experimental error values supports the hypothesis that
substitution errors seen in 454 sequencing data are highly
dependent on PCR and only minimally affected by the se-
quencing process. Experimental rates did have an initial value
slightly above zero, potentially due to additional miscalls pro-
duced by the 454 sequencing process. This idea is supported by
the fact that some sequences containing miscall errors were
filtered out by QC filters dependent on 454 Q scores (Table 5).
These data indicate that most of the miscall errors in 454
sequencing data can be attributed to the PCR performed during
the amplicon library preparation, and lower numbers of PCR
cycles can significantly improve data quality. Filtering out
artifacts containing substitution errors will be more challenging
than for those with indels resulting from 454 pyrosequencing
andmay not be possible with filters that rely exclusively on 454
Q scores. Environmental data and metadata should be used
whenever possible to distinguish closely related strains from
artifacts.

Next-generation sequencing technology continues to in-
crease in output and decrease in cost. The increasingly
popular Illumina platform can produce several million reads
at 1/100th the cost of 454 technology. Although it is limited
by read length, this, too, can be improved with paired-end
protocols [35, 36]. The low cost makes it possible to rese-
quence environmental samples with relative ease, providing
another potential way to confirm the presence of artifacts,
although rare sequences may not appear in all data sets.
Furthermore, metagenomic shotgun sequencing can avoid
the amplification biases and errors associated with PCR
altogether. Nevertheless, microbial community surveys will
likely continue to rely on PCR in the near future, and
methodologies for improving data quality and avoiding
artifacts will continue to play an important role in the field
of microbial ecology.

Conclusions

While the vast majority of single-base differences are hid-
den when sequences are grouped into OTUs, resolution
between different sequences is lost as a consequence of
clustering. Evidence given here demonstrates the high
chance of obscuring true diversity when similar sequences
are consolidated. In this study, an attempt was made to strike
a balance between minimizing the number of sequencing
errors and maintaining the deep resolution afforded by high-
throughput technology. Clearly, a critical component of
producing high-quality data is in the library preparation.

Minimizing the number of PCR cycles can prevent substi-
tution errors that will pass through QC filters screening for
low Q scores. Furthermore, using sequence data from across
environmental samples can aid in identifying artifacts by
their high correlation to abundant sequences. Thoughtful
preparation of the amplicon library and strict quality filter-
ing can help retain accurate estimates of community com-
position and diversity without consolidating reads based
solely on identity.
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