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Abstract Bacterial surface structures called pili have been
studied extensively for their role as possible colonization
factors. Most sequenced Vibrio genomes predict a variety of
pili genes in these organisms, including several types of type
IV pili. In particular, the mannose-sensitive hemagglutinin
(MSHA) and the PilA pili, also known as the chitin-regulated
pilus (ChiRP), are type IVa pili commonly found in Vibrio
genomes and have been shown to play a role in the coloniza-
tion of Vibrio species in the environment and/or host tissue.
Here, we report sequence comparisons of two type I'Va pilin
subunit genes, mshA and pil4, and their corresponding amino
acid sequences, for several strains from the three main human
pathogenic Vibrio species, V. cholerae, V. parahaemolyticus,
and V. vulnificus. We identified specific groupings of these two
genes in V. cholerae, whereas V. parahaemolyticus and V.
vulnificus strains had no apparent allelic clusters, and these
genes were strikingly divergent. These results were compared
with other genes from the MSHA and PilA operons as well as
another Vibrio pili from the type IVb group, the toxin
co-regulated pilus (TCP) from V. cholerae. Our data suggest
that a selective pressure exists to cause these strains to vary
their MSHA and PilA pilin subunits. Interestingly, V. cholerae
strains possessing TCP have the same allele for both mshA and
pilA. In contrast, V. cholerae isolates without TCP have poly-
morphisms in their mshA and pil4 sequences similar to what
was observed for both V. parahaemolyticus and V. vulnificus.
This data suggests a possible linkage between host interactions
and maintaining a highly conserved type IV pili sequence in ¥/
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cholerae. Although the mechanism underlying this intriguing
diversity has yet to be elucidated, our analyses are an important
first step towards gaining insights into the various aspects of
Vibrio ecology.

Introduction

Vibrio species are marine bacteria that naturally inhabit aquatic
environments worldwide and are commonly associated with
marine organisms. Some Vibrio species are pathogenic bacteria
capable of producing life-threatening infections in humans
typically following consumption of contaminated food, includ-
ing seafood. Although the specific factors that contribute to the
pathogenicity of vibrios in humans are well studied, little is
known about the bacterial factors involved in the association of
the bacteria with environmental organisms.

Bacteria display a variety of mechanisms that enable them
to specifically interact with target cells. Many bacteria pro-
duce hair-like surface structures, called pili or fimbriae, which
are often important for survival [1-3]. These adhesins have
been clustered into groups based on amino acid sequence
similarities among their pilin subunits [4]. One type of pili,
the type IV group, are known to be involved in adhesion,
immune escape, microcolony formation, transformation, and
phage transduction [4] and are commonly found in Gram-
negative bacteria, including numerous pathogens [4, 5]. Type
IV pili are known to assist many bacterial species in survival
in various environments, ranging from attachment to a variety
of surfaces for biofilm formation [6-9] to colonizing the host
[10—-17]. These pili begin as prepilins possessing a hydrophilic
leader peptide and are processed by a unique peptidase that
cleaves the leader sequence to form a mature pilin protein [18].
After processing, mature pilin subunits assemble together to
form pili through interactions between the conserved N-termini
in the pilin cores, leaving the variable C-terminal regions to
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interact with the environment [4]. Type IV pili are divided into
two subclasses based on differences in amino acid sequence
and length. Type IVa pili have both a shorter leader peptide and
mature protein sequence, while type IVb pili have considerably
longer leader sequences and overall length [4, 5, 18]. In addi-
tion to similarities in their amino acid composition, all type IV
pili appear to have analogous architecture [4].

When examining the genomes of Gram-negative bacteria
possessing type IV pili, type IVa pili biogenesis genes are
scattered throughout the genome, but the genes or gene clus-
ters are almost always flanked by the same genes, typically
housekeeping genes. In addition, homologous gene sets for
type IVa pili are found in virtually identical locations through-
out more than 150 sequenced genomes. Considering these
genes have not been found on any identifiable pathogenicity
island, it suggests that these pili are ancient to many of the
bacterial phyla possessing these genes [18]. In contrast, type
IVb pili genes are fewer in number than type [Va genes and are
typically found clustered within the genome. Moreover, the
gene sequence order does not appear to be conserved amongst
different organisms possessing the type IVb pili except for the
universally conserved core proteins. In addition, when com-
paring N-terminal sequence homology, type ['Va pilin subunits
are more similar among themselves than to type IVb pilins or
within the type IVb pili group. Furthermore, type I'Va pili
occur in bacteria with a broad host range, while type IVD pili
have only been identified in colonizers of the human intestinal
tract[4].  Vibrio species possess many type IV pili from both
type IVa and b groups, but only a select few have been studied
for their role in environmental and/or host survival. One thor-
oughly studied pili from the type IVb group is the toxin co-
regulated pilus (TCP) from Vibrio cholerae, and it is known for
its key role in virulence [19-21]. It is expressed by V. cholerae
classical and El Tor biotypes from the Ol and O139
serogroups [22]. TCP is composed of TcpA subunits and
appears as thick bundles on the electron microscope [4]. TcpA
is processed by a TCP-specific signal peptidase, TcpJ, to form
mature pilin subunits for assembly [22, 23]. The structure of
TCP consists of the conserved N-terminal «-helices of TcpA
buried in the core of the pilus, maximizing contact between
subunits to provide overall strength. The structurally variable
regions of the pilins interact to hold the core units together and
coat the surface where interactions take place with the envi-
ronment, i.e., the intestines [4]. In addition to colonization,
TCP is the receptor for the CTX® phage [24, 25].

An additional well-studied V. cholerae type IV pilus is the
mannose-sensitive hemagglutinin (MSHA), which belongs to
the type IVa group. When examining operon composition,
MSHA in V. cholerae consists of two operons where one
operon encodes five prepilin subunits, including the major
pilus subunit MshA, and the other contains genes involved
in assembly and secretion [26]. In V. cholerae, the PilD
peptidase has been shown to process the MshA subunits for

@ Springer

assembly of the mature pilus structure [27, 28]. The MSHA
pilus hemagglutinates red blood cells [29, 30] and is a receptor
for filamentous phage [31-33]. It has been studied extensively
in V. cholerae to identify any involvement in host colonization
[19, 21, 34]. In V. cholerae, only the El Tor biotypes produce
functional MSHA pili [29, 30], and during human coloniza-
tion studies, the protein was repressed [35]. Expression of the
MSHA pilus was tightly regulated so that when TCP was
expressed, the MSHA protein was repressed; therefore, the
MSHA pilus is considered an anticolonization factor in human
disease [36]. When the MSHA pilus was constitutively
expressed during colonization, it resulted in immune system
recognition [35]. Thus, the MSHA pilus does not appear to be
a virulence factor for V. cholerae, suggesting that expression
of the gene product is for utilization in the environment.
Studies have shown that the MSHA pilus is used to adhere
to zooplankton exoskeletons as a survival strategy in the
aquatic environment [37, 38], presumably by forming bio-
films. V. cholerae and Vibrio parahaemolyticus are known to
use the MSHA pilus to form biofilms on various surfaces [6,
8, 38], including chitin [39], which provides some supporting
evidence for the role of the MSHA pilus in environmental
survival.

Another pilus found in Vibrio spp. is the type IVa PilA
pilus, also known as the chitin-regulated pilus (ChiRP). The
PilA operon is composed of five open reading frames that
constitute a single operon, consistent with other type I'Va pili
[28]. A mature PilA pilus is composed of PilA subunits that
were processed by the PilD peptidase [28], the same peptidase
that processes the MshA pilin subunits [27, 28]. The PilD
peptidase is the fourth open reading frame in the PilA operon
[28]. The PilA type IVa pilus is an integral player in the V.
cholerae chitin utilization program [39]. Expression of the
PilA protein has been shown to be induced by chitin in both
V. cholerae [39] and V. parahaemolyticus [6]. PilA is involved
in biofilm formation [6, 10], adherence to human epithelial
cells [10], and colonization of oysters [11]. It has been impli-
cated as a virulence factor for V. vulnificus [10], although
direct evidence of its role in virulence has not been clearly
described in other human pathogenic vibrios.

Taken together, the studies of the type IVa pili MSHA and
PilA in various Vibrio spp. suggest that these proteins might
be utilized by vibrios for environmental survival by attaching
to chitinous substrates such as zooplankton. In contrast, the
type IVb pilus, TCP, from V. cholerae, is critical for host
colonization and has not be implicated in environmental sur-
vival, pointing out the possibility of two very distinct roles for
the different subclasses of type IV pili.

During our efforts to investigate the roles of MSHA and
PilA in V. parahaemolyticus colonization of the Pacific oyster,
Crassostrea gigas, we noted sequence heterogeneities in these
genes. This led us to examine these genes in other human
pathogenic Vibrio species, such as V. cholerae and V. vulnificus.
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Here, we present a comparative sequence analysis of the mshA
and pilA pilin genes from several strains of V. cholerae, V.
parahaemolyticus, and V. vulnificus. These sequence analyses
suggest that a selective environmental pressure has been
applied to these genes, resulting in the observed sequence
heterogeneities for all three Vibrio species examined.

Materials and Methods
Bacterial Strains

Thirteen of the V. parahaemolyticus bacterial strains sequenced
were kindly provided by Dr. Yi-Cheng Su, Oregon State
University Seafood Laboratory, Astoria, OR, USA. Genomic
DNA for five tdh/trh negative strains of V. parahaemolyticus
was obtained from Dr. Narjol-Gonzalez-Escalona, FDA,
College Park, MD, USA. Genomic DNA for ten of the V.
vulnificus strains sequenced were provided by Dr. Paul Gulig,
University of Florida, Gainesville, FL, USA. Five of the V.
vulnificus strains sequenced were provided by Dr. Kathy
O’Reilly, Oregon State University, Corvallis, OR, USA.
Bacterial strains were grown on Luria—Bertani agar supple-
mented with sodium chloride to a final concentration of 2%.
All strains used in this study are listed in Table 1.

Sequencing

Genomic DNA from V. parahaemolyticus and V. vulnificus
strains were isolated using the Qiagen DNeasy blood and
tissue kit, following the protocol for DNA isolation included
in the kit. Primers for sequencing each gene were designed for
the region approximately 100 base pairs upstream from the
start codon and 100 bp downstream of the stop codon for the
gene of interest (Table 2). Polymerase chain reaction (PCR)
was conducted using Invitrogen Platinum HiFi Supermix,
following their standard protocol for PCR. PCR samples were
quantified using the NanoDrop Spectrophotometer ND-1000.
Sanger sequencing reactions for V. parahaemolyticus and V.
vulnificus PCR products were performed at the Center for
Genomic Research and Bioinformatics (CGRB), Oregon State
University, Corvallis, OR, USA.

In Silico Analyses

The in silico sequence data for all the V. cholerae strains and
additional V. parahaemolyticus and V. vulnificus strains were
obtained from the Department of Energy Joint Genome
Institute website: http://img.jgi.doe.gov/cgi-bin/pub/main.
cgi. The V. parahaemolyticus and V. vulnificus sequenced
DNA was translated into their predicted amino acid sequen-
ces using SeqTool and sequence alignments were created in
ClustalW at the bioinformatics website for the CGRB: http://

bioinfo.cgrb.oregonstate.edu/. Maximum likelihood phylo-
genetic trees were constructed using the MEGA 5 program:
http://www.megasoftware.net/ using the Tamura—Nei model
with nucleotide substitutions. Bootstrap values were calcu-
lated with 500 replicates. For the analysis of synonymous
and nonsynonymous substitutions, calculations were made
using the Synonymous Non-synonymous Analysis Program
(SNAP): www.hiv.lanl.gov [40]. The program is based on
the Nei and Gojobori [41] method for calculating synony-
mous and nonsynonymous rates of substitution with the
incorporation of Ota and Nei [42] statistics. The package
is described by Ganeshan et al. [43].

Results
Sequence Alignments

Overall, the sequence alignments for the DNA encoding the
mshA and pil4 genes from different strains of V. cholerae, V.
parahaemolyticus, and V. vulnificus showed considerable
sequence heterogeneity (Supplemental Figs. 1 and 2). Although
the immediate 5’ regions are highly conserved in both genes,
most of the gene sequences varied depending on the strain.
Interestingly, V. cholerae exhibited distinct groupings for both
genes, separating most clinical isolates from environmental
isolates. In contrast, V. parahaemolyticus and V. vulnificus
strains did not appear to group based on isolate origin or any
other phenotype. Sequence alignments of the predicted amino
acid sequences of MSHA and PilA from V. cholerae, V. para-
haemolyticus, and V. vulnificus are shown in Figs. 1 and 2. For
V. parahaemolyticus and V. vulnificus, the predicted amino
acids sequences for MSHA and PilA from both environmental
and clinical isolates displayed notable sequence heterogeneity.
With V. cholerae strains, most clinical isolates had conserved
sequences for both MSHA and PilA. Most environmental
isolates exhibited marked sequence heterogeneity, comparable
to what was observed for the V. parahaemolyticus and V.
vulnificus isolates.

Phylogenetic Trees

Maximum likelihood (ML) phylogenetic trees were con-
structed from the mshA (Fig. 3) and pild (Fig. 4) sequences
for the V. cholerae, V. parahaemolyticus, and V. vulnificus
isolates. Similar to the DNA and amino acid alignments, the
mshA (Fig. 3a) and pilA (Fig. 4a) ML phylogenetic trees for V.
cholerae clustered most clinical isolates into one branch,
while environmental isolates exhibited various branching pat-
terns. When ML phylogenetic trees were constructed for these
two gene sequences from V. parahaemolyticus (Figs. 3b and
4b) and V. vulnificus (Figs. 3¢ and 4c), no discernable
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Table 1 Strains used in this study

Vibrio cholerae
Strain
MAK757

NCTC 8457

B33

0395

2470-80

N16961
V51

V52

MO10

MZO-2

1587

RC385

623-39

AM-19226

MI-1236

VL426

T™M 11079-80

RC9
TMA21

BX 330286

CIRS 101

M66-2

CT 5369-93
RC27
INDRE 91/1

Serogroup
01, Ogawa
01, Inaba
01, Ogawa

01, Ogawa

01, Inaba

Ol, Inaba
0141

037

0139

014

012

0135

non-01/-0139
039

Ol, Inaba

non-O1/-0139
01, Ogawa

01, Ogawa
non-01/-0139

Ol, Inaba
01, Inaba

o1

01
Ol, Inaba

Vibrio parahaemolyticus

Strain
RIMD 2210633

Peru-466
K5030

AN-5034
SFL1009
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Serotype

03:K6

04:K68
O1:K2

Biotype

El Tor

El Tor

Hybrid Classical/

El Tor
Classical

El Tor

El Tor

El Tor “Matlab
variant”

Albensis
El Tor

El Tor

El Tor

El Tor,
classical ctxB

Classical
El Tor

Relevant
genotype
tdh+/trh-
tdh+/trh+
tdh+/trh+
tdh+/trh+
tdh+/trh+

Relevant genotype
TCP+, CTxA+

TCP+, CT—
TCP+, CTxA+

TCP+, CT+

TCP+, CT—

TCP+, CT+
TCP+, CT—

TCP+, CT+

TCP+, CT+

TCP-, CT-

TCP-, CT—

TCP-, CT-

TCP-, CT-
TCP-, CT—

TCP+, CT+

TCP-, CT-
TCP-, CT-

TCP+, CT+
TCP-, CT—

TCP+, CT+
TCP+, CTxA+
TCP+, CT—

TCP-, CT-
TCP+, CT-
TCP+, CTxA+

Strain information

Clinical strain from
Osaka, Japan 1996

Bangladesh 1998

Isolated from sediment
at Goose Point oyster farm,
Willapa Bay, Washington,
October 2002

Strain information

Pre-7th pandemic patient
isolate, mildly toxigenic,
from Celebes Islands in 1937
Saudi Arabia patient 1910,
non-pandemic
Clinical isolates Beira,
Mozambique 2004
Clinical isolate, strain of the 6th
pandemic in South Asia,
isolated in 1965 from India
Nontoxigenic environmental water
isolate from the Gulf Coast, 1980,
clonal with TCP+ CT+ isolates
Clinical isolate from Bangladesh, 1971

Clinical Isolate from the
United States, 1987

Clinical isolate from Sudan,
limited epidemic, not endemic

Clinical isolate from India and
Bangladesh outbreak 1992,
early isolate of O139 emergence

Clinical isolate from Bangladesh
patients with diarrhea in 2001

Clinical isolate from Lima, Peru,
1994, limited epidemic, not
endemic, invasive

Persistent and luminescent
environmental plankton isolate,
Chesapeake Bay, 1998

Environmental water isolate
from Bangladesh, 2002

Clinical isolate from
Bangladesh, 2001

Clinical isolate from patients
with acute diarrhea, Matlab,
Bangladesh 1994

Diseased fish from Elbe River,
Germany

Environmental sewage isolate
from Brazil, 1980

Clinical isolate from Kenya 1985

Environmental seawater isolate
from Brazil, 1982

Water isolate from
Australia, 1986

Clinical isolate from Dhaka,
Bangladesh 2002

1937 outbreak Indonesia,
pre-7th pandemic isolate

Sewage, Brazil 1993

Indonesia 1991

Mexico 1991, first
case of 7th pandemic
in Mexico

GenBank (PilA,MshA)
NP_798902, NP_799077

ZP_05904882, ZP_05905780
ZP_05776528, ZP_05778018
ZP_05891366, ZP_05889900
JF923890, JF923914

GenBank (PilA,MshA)
ZP 01954444, ZP 01953747

ZP_01971084, ZP_01970913

ZP_04401766, ZP_01974939

YP_001217923, YP_001218677

ZP 01677376, ZP_01677345

NP_232053, NP_230063
ZP_00748678, ZP_00749816

ZP_00746513, ZP_00747249

ZP_00758906, ZP_00758992

ZP 01979911, ZP_01978309

ZP 01949212, ZP_01949969

ZP_00751854, ZP_00753463

ZP_01983325, ZP_01981981

ZP_04962566, ZP_04962108

YP_002877671, YP_002876957

ZP 04413813, ZP_04414508
ZP_04410672, ZP_04409450

ZP 04408866, ZP_04409227
ZP 04403511, ZP_04402128

ZP_04397022, ZP_04396555

ZP_05420851, ZP_05417751

YP_002811095, YP_002809171

ZP 06048448, ZP 06049688
ZP_06036099, ZP_06035331
ZP 06030661, ZP_06028721
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Table 1 (continued)

SFL1027 05
SFL1050 01:K7
SFL1079 O1:K4
SFL1080 0O5:K1
10290 04:K12
10292 06:K18
BE98-2029 03:K6
027-1C1 05:K15
M25-0B 04
UCM-V586 08:K22
UCM-V441 04
049-2A3 04:K29
357-99 03
ATCC 17802

Vibrio vulnificus

Strain Capsule
98-783 DP-Al
99-520 DP-B8
99-581 DP-C7
99-584 DP-B12
99-736 DP-C7
99-738 DP-B5
S1-13

ATL-9580
CMCP6

YJ016

CP Mussel 10 PT
95-10-15 PT
960926 -1/4c PT
ATCC 27562
OLOL-1

R = = = NN NN =

tdh+/trh+

tdh+/trh+

tdh+/trh+

tdh+/trh—

tdh+/trh+

tdh+/trh+

tdh+/trh—
tdh+/trh+
tdh—/trh—

tdh—/trh—

tdh—/trh—

tdh—/trh—

tdh—/trh—

trh+

<
(o]
o

OO0 Q00 moMH . mm

Isolated from sediment at
Oregon Oyster farm
Yaquina Bay, Oregon,
December 2002

Isolated from sediment
at Goose Point oyster farm,
Willapa Bay, Washington,
July 2003

Isolated from seawater
at Goose Point oyster farm,
Willapa Bay, Washington,
July 2003

Isolated from sediment
at Goose Point oyster
farm, Willapa Bay,
Washington, July 2003

1997 Washington
outbreak strain

1997 Washington
outbreak strain

1998 Texas outbreak strain

1997 Oregon outbreak strain

Environmental isolate from
Washington, 1993

Environmental isolate from
Spain, 2003

Environmental isolate from
Spain, 2002

Environmental isolate from
Oregon, 1997

Clinical isolate from Peru,
1999

Shirasu food poisoning,
Japan 1965

Virulence group

w»m A R NN W W N

JF923885, JF923903

JF923892, JF923904

JF923894, JF923905

JF923891, JF923906

JF923888, JF923916
JF923893, JF923915

JF923886, JF923901
JF923887, JF923908
JF923900, JF923913

JF923899, JF923912
JF923898, JF923911
JF923896, JF923909
JF923897, JF923910

JF923889, JF923907

Strain information
Environmental isolate
Environmental isolate
Environmental isolate
Environmental isolate
Environmental isolate
Environmental isolate
Environmental isolate
Clinical isolate
Clinical isolate

Clinical isolate, Taiwan

isolated 10/18/05
isolated 10/19/05

clinical isolate, Florida
Katrina, isolated 10/18/05

GenBank (PilA,MshA)
JF923941, JF923921
JF923932, JF923920
JF923930, JF923917
JF923931, JF923922
JF923934, JF923924
JF923942, JF923923
JF923933, JF923919
JF923935, JF923918
NP_760518,NP_760356
NP_935571, NP_935733
JF923939, JF923929
JF923938, JF923928
JF923937, JF923927
JF923936, JF923926
JF923940, JF923925

grouping patterns appeared for either species, unlike the ¥

cholerae phylogenetic trees.

Substitution Analyses

We analyzed mshA and pilA for the rate of synonymous
(silent) (ds) and nonsynonymous (structural) (dy) changes

for the V. cholerae, V. parahaemolyticus, and V. vulnificus
isolates. For mshA from V. cholerae, the rate of synonymous
(ds) was 0.759, while the rate of nonsynonymous (dy) was
0.471, with a d\/ds ratio of 0.621 (Table 3). The rate of
synonymous changes for V. parahaemolyticus was 0.746
and that for V. vulnificus was 0.662. The rate of nonsynon-
ymous changes for V. parahaemolyticus and V. vulnificus
was 0.431 and 0.384, respectively. This resulted in a dy/ds
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Table 2 Primers used in this study

Locus Gene Primer name Primer sequence
pild VP2523 Shorter5’ VP2523 Spel P1 5'-GATAATTGGGGGCATATCAACCTCTATAGTTTG-3’
New3'VP2523 Notl P4 5'-ACCATGGGTGCATTCGTTGCAACCATCTGGATT-3'
VP2523 sequence 5-GCAACTTTCTACCAAAGAGTTTTACCTCACTCG-3’
VV2278 VV pilA seq primer 5'-GTAAGTAACCAGATGTAAATAAAG-3'
3'VV pilA seq P2 5'-GCCAAAAATCGCGCTTAGCTG-3'
mshA VP2698 New5'VP2698 Spel P1 5'-CGTAAACGCATTAAAGCCGCGATGCGCTATCCG-3’
New3'VP2698 Notl P4 5'-CCATTAAGGTGAAACCACGAGTTTTCATTCAGT-3'
5'VP2698 seq2 5-TCGTCATTCTGCTCAAGCGGTAGA-3’
VV2940 VV mshA seq primer 5'-CAAATGCTAAATGTACTTATATTC-3'

VV 3" mshA seq P2

5'-CTGCCAGTGCCAATATAGCGACTG-3'

of 0.577 for V. parahaemolyticus and 0.580 for V. vulnificus
(Table 3). For pild, the rate of synonymous changes was
1.109 for V. cholerae, 1.691 for V. parahaemolyticus, and
1.186 for V. vulnificus. The rate of nonsynonymous changes
was 0.629 for V. cholerae, 0.642 for V. parahaemolyticus
and 0.503 for V. vulnificus. This resulted in a dn/ds of 0.567,
0.380, and 0.424 for V. cholerae, V. parahaemolyticus, and
V. vulnificus, respectively (Table 3).

Region Analyses

To compare the diversity of mshA and pild, we examined
neighboring genes from their respective operons, mshC and
pilB, as well as the type IV pilin peptidase, pilD. The rate of
synonymous and nonsynonymous changes for mshC was
0.135 and 0.039 for V. cholerae, 0.229 and .017 for V.
parahaemolyticus, and 0.042 and 0.015 for V. vulnificus.
This resulted in a dn/dg ratio of 0.290 for V. cholerae,
0.072 for V. parahaemolyticus, and 0.356 and V. vulnificus
(Table 3). For pilB, the rates of synonymous and nonsynon-
ymous for V. cholerae, V. parahaemolyticus, and V. vulnifi-
cus was 0.176 and 0.008, 0.288 and 0.037, and 0.208 and
0.016 respectively. The dn/ds ratio for pilB was 0.047 for V.
cholerae, 0.127 for V. parahaemolyticus, and 0.074 for V.
vulnificus. For pilD, the synonymous and nonsynonymous
rates calculated for V. cholerae were 0.122 and 0.005 with a
dn/ds of 0.039. The V. parahaemolyticus strains used to
calculate the synonymous and nonsynonymous rates of sub-
stitution for pilD had identical sequences; thus, the synony-
mous and nonsynonymous rates of substitution were zero,
and the dy/dg ratio cannot be calculated. These rates are
comparable with data from Chattopadhyay et al. [46], which
calculated the rates of synonymous and nonsynonymous
substitutions for pilD from V. vulnificus as 0.092 and
0.007 with a dy/ds ratio of 0.076.
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TepA and Tepl

To compare the findings for msh4 and pil4 with another
type IV pilin and its corresponding peptidase, we calculated
the rates of synonymous and nonsynonymous substitutions
for the toxin co-regulated pilus pilin subunit tcp4 from V.
cholerae and its processing leader peptidase tcpJ (Table 3).
Only 13 V. cholerae strains out of the available 25 possess
tepA and tepJ. The dg and dy for tcpA was 0.486 and 0.052
with a dy/ds ratio of 0.106. For fcpJ, the dg and dy was
0.003 and 0.000 with a dx/ds ratio of 0.000.

Discussion

The results from our sequence analyses of the mshA and
pilA genes from several strains of three human pathogenic
Vibrio species, V. cholerae, V. parahaemolyticus, and V.
vulnificus, suggested that the various alleles observed were
the result of selective pressure. When examining the V.
cholerae predicted amino acid alignment (Fig. 1a) and phy-
logenetic tree (Fig. 3a) for the mshA gene, one distinct
grouping emerged with highly conserved sequences for the
MSHA pilin subunit. In fact, the isolates in this group,
identifiable as one branch of the phylogenetic tree
(Fig. 3a), were primarily from the O1 serogroup (13 out of
15) and clinical isolates (11 out of 15). This differs consid-
erably from the remaining V. cholerae isolates examined,
which were predominately environmental, non-O1/0139
strains (9 out of 10) with no apparent grouping pattern in
the phylogenetic tree (Fig. 3a). When comparing the pre-
dicted amino acid alignments and phylogenetic trees for the
V. parahaemolyticus (Figs. 1b and 3b) and V. vulnificus
(Fig. lc and 3c) strains sequenced, no grouping could be
established based on either isolation source or phenotype, in
contrast to what was observed for V. cholerae.
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Figure 1 Amino acid sequence alignment of MshA from Vibrio chol-
erae (a), Vibrio parahaemolyticus (b), and Vibrio vulnificus (c). The
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Figure 1 (continued)

Reviewing the sequence data for the PilA pilin subunit
from V. cholerae, V. parahaemolyticus, and V. vulnificus, the
pilA sequences exhibited a trend similar to what was observed
for the MSHA pilin subunit. For V. cholerae strains, a group of
highly conserved PilA sequences emerged and were primarily
from the O1 serogroup (13 out of 14) and of clinical origin (11
out of 14). The remaining isolates were predominately non-
01/0139 (10 out of 11) and from an environmental source (6
out of 11). They did not have any clear pattern to their
alignment (Fig. 2a) or tree branching (Fig. 4a). Consistent
with the mshA findings, no apparent grouping pattern was
observed for either the amino acid alignment or branching

@ Springer

on the phylogenetic tree for any of the V. parahaemolyticus
(Figs. 2b and 4b) and V. vulnificus (Figs. 2c and 4c) pilAd
genes sequenced. Taken together, our hypothesis is that a
selective pressure has caused the differences observed in these
two type IVa pili in V. cholerae, V. parahemolyticus, and V.
vulnificus.

To test for selective pressure, the synonymous and non-
synonymous nucleotide substitution rates were calculated to
determine a dy/ds ratio [41]. In protein-coding sequences,
synonymous substitutions (ds) are structurally silent, while
nonsynonymous substitutions (dy) result in a change to the
amino acid sequence. When a dy/ds ratio is calculated,
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Figure 1 (continued)

typically the value suggests whether the substitutions are
largely neutral (dn/ds=1), under a negative selection (dn/ds<1),
or a positive selection (dn/ds>1) [44]. Table 3 shows the calcu-
lations for ds, dy, and dy/ds for the mshA and pil4 genes from
the different Vibrio strains analyzed, and the data suggest that a
selective pressure has been applied to these two genes for all
three Vibrio species. To further analyze the selective pressure
applied to the type IV pili examined, we compared mshA and
pilA with another gene in their corresponding operon, the neigh-
boring genes mshC gene and pilB, respectively, to determine if a
selective pressure has been applied strictly to the gene encoding
the pilin subunit or to the entire operon. When comparing the
dn/ds value for mshA with mshC and pil4 with pilB for all three
vibrios, the dy/ds values for the pilin subunits (mshA and pil4)
are considerably larger than the neighboring gene in the operon
(mshC and pilB) (Table 3). These results suggest that the neigh-
boring genes (mshC and pilB) in both the MSHA and PilA

operons are more conserved than their corresponding pilin sub-
units (mshA and pil4). Thus, it is possible that the pilin subunits
are not under the same selective pressure as their neighboring
genes.

Both mshA and pil4 encoded pilins are processed by the
same type IV prepilin peptidase, pilD [27, 28, 45]. When
examining the dy/ds value for pilD, it was evident that the
pilD gene maintained a highly conserved sequence. We
calculated the pilD dn/ds for V. cholerae (0.039) but were
unable to calculate it for V. parahaemolyticus because the
sequences were identical for dg (0.000) and dy (0.000) so
the dn/ds was 0:0 (Table 3). Despite the inability to calculate
the dn/ds for V. parahaemolyticus, the results for V. cholerae
pilD (0.039) were congruent with what was found for V.
vulnificus (0.076) by Chattopadhyay et al. [46]. This sug-
gests that a strong purifying selection has maintained the highly
conserved pilD sequence in contrast to the general observation
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Figure 2 Amino acid sequence alignment of PilA from Vibrio cholerae
(a), Vibrio parahaemolyticus (b), and Vibrio vulnificus (c). The predicted
amino acid sequences of PilA for V. cholerae (a), V. parahaemolyticus

(b), and V. vulnificus (c¢) were aligned using the ClustalW program. White
indicates normal residues. Green are similar residues. Pink are iden-
tical residues. Black indicates globally conserved residues
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for the mshA and pilA sequences. When examining the pre-
dicted amino acid sequences for both mshA4 (Fig. 1) and
pilA (Fig. 2) for all three vibrios, it was clear that the N-termini
remain highly conserved while the C-termini varied consider-
ably. The N-termini region is recognized by the PilD peptidase
for processing the protein into a mature pilin subunit [4]. If the
N-terminal region of the type IVa pili proteins MSHA and
PilA varied, it is possible that PilD would no longer process
these proteins into mature subunits, while variations in the C-
termini should still result in a mature pilin subunit. Thus, it

appears that PilD has maintained a highly conserved sequence
unlike the MSHA and PilA proteins it processes.

To further understand the variations observed in the
MSHA and PilA pilins, the V. cholerae mshA and pilA
sequences were compared to the type IVb pilin TCP from
V. cholerae. The tcpA gene encodes the major pilin subunit
of TCP and is processed by its own type IV pili peptidase
Tepl, encoded by fcpJ [23]. Contrary to fcpA that exhibit
some variability in its sequences with mostly synonymous
substitutions (ds of 0.486) and few nonsynonymous
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Figure 2 (continued)

substitutions (dy of 0.052), tcpJ has relatively few substa-
tions overall (ds of 0.003 and dy of 0.000). The dy/ds for
tepA is 0.106 and that for tepJ is 0.000, suggesting that these
genes are under strong negative selection to maintain their
sequences and structures. When examining the V. cholerae
phylogenetic trees constructed for the mshA4 and pilAd genes,
the strains that possess TCP are all from the Ol serogroup
and on a single branch (Figs. 3a and 4a). Looking at the
amino acid alignment data, it was evident that the V. chol-
erae isolates containing all three type IV pili were highly
conserved (Figs. la and 2a). To break it down further, the
dn/ds ratio for mshA and pilA from the V. cholerae strains
possessing TCP were also calculated, and the dg and dy for
both genes were 0.000, resulting in an undefined dy/ds ratio
(Table 3). Therefore, V. cholerae strains possessing all three
type IV pili appear to be under a strong purifying selection.
Even though some O1 V. cholerae isolates in this conserved

@ Springer

branch were from environmental or unknown sources (3 out
of 13), the fact that they possess TCP implies they could cause
cholera. Taken together, the evidence suggests a connection
between host interactions and highly conserved type IV pili in
V. cholerae.

A previous study by Chattopadhyay et al. [46] analyzed pil4
from 55 V. vulnificus strains of various origins and also deter-
mined that pil4 is highly divergent. A total of 25 unique alleles
were identified from the 55 analyzed strains, and the authors
did not determine any relationship between the various alleles
and pathogenicity of ¥ vulnificus [46]. They concluded that the
genetic diversity of pil4 in V. vulnificus was higher than neigh-
boring genes (pilBCD) and thus was under strong positive,
diversifying selection [46]. This conclusion was made despite
the fact that the d\/ds ratio calculated for pil4 was <l. The
usefulness of the dy/ds ratio to detect positive selection is
reduced when comparing gene polymorphisms within a single
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Figure 3 Bootstrap maximum likelihood phylogenetic trees for mshA
from Vibrio cholerae (a), Vibrio parahaemolyticus (b), and Vibrio
vulnificus (¢). The bootstrap maximum likelihood phylogenetic trees
for mshA from V. cholerae (a), V. parahaemolyticus (b), and V.

population compared to divergent populations [47]. Our results
are consistent with their findings and also demonstrate that
MSHA and PilA from V. cholerae, V. parhaemolyticus, and
V. vulnificus exhibit higher genetic diversity than other genes in
their corresponding operon (mshC and pilB and pilD).
Chattopadhyay et al. [46] suggested various ideas to ex-
plain their observation, including that the allelic variability in
PilA for V. vulnificus could be the result of oyster innate
immune system [46]. It was noted that since V. vulnificus
commonly associate with shellfish in the environment and
infections in humans are typically opportunistic, the selective
pressure applied to this gene was probably not in response to
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vulnificus (c¢) were constructed using the gene sequences for mshA4 in
the Molecular Evolutionary Genetics Analysis (MEGA) 5 software.
All bootstrap values are listed

an adaptive immune system [46]. Shellfish have an innate
immune system that recognizes highly conserved motifs while
lacking a well-developed adaptive immunity [48, 49]. Thus,
the driving force behind the variations observed in the PilA
protein could be the result of the innate immunity of shellfish,
such as oysters, in part based on a previous study showing that
PilA was involved in oyster colonization by V. vulnificus [11,
46]. Data from our laboratory also indicated that PilA and
MSHA play a role in V. parahaemolyticus colonization of the
Pacific oyster, C. gigas (Aagesen, A.M., and C.C. Haise,
unpublished results), further supporting the idea that the shell-
fish immune system might be involved in applying pressure to
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Figure 4 Bootstrap maximum likelihood phylogenetic trees for pil4
from Vibrio cholerae (a), Vibrio parahaemolyticus (b), and Vibrio
vulnificus (¢). The bootstrap maximum likelihood trees for pil4 from
V. cholerae (a), V. parahaemolyticus (b), and V. vulnificus (c) were

these pili proteins, thus causing variability. Studies using
different strains expressing the various alleles for MSHA
and PilA from V. cholerae, V. parahaemolyticus, and V. vulni-
ficus in shellfish interaction experiments are required to fully
address this issue.

In addition to the shellfish immune system, other selective
pressures in the environment could exist to cause the observed
allelic diversity in MSHA and PilA, such as protozoan graz-
ing, bacteriophages and DNA uptake [46]. Ideally, various
alleles for MSHA and PilA from V. cholerae, V. parahaemo-
Iyticus, and V. vulnificus would need to be examined to better
understand the role of bacteriophages as a selective pressure
causing the variations observed for these proteins. However,
future studies using various alleles for MSHA and PilA are
required to support these hypotheses.

In summary, this study illustrates significant diversity of
the MSHA and PilA pilin subunits from V. cholerae, V. para-
haemolyticus, and V. vulnificus. For all three vibrios examined
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in this study, mshA and pilA had considerably higher dy/dg
ratios than any of the other genes examined, suggesting these
genes are under a possible positive selection while the other
genes examined are not. Another interesting finding was that
V. cholerae strains that possess TCP also maintain highly
conserved MSHA and PilA sequences, suggesting a connec-
tion with the host. Even though a selective pressure appears to
exist causing the allelic variations observed for mshA and pilA,
the mechanism(s) driving this diversification have yet to be
determined. Several suggestions can be made, yet evidence to
support these ideas awaits further experimental analyses. In
addition, our observations raise an important point about the
use of these genes in detection methods for these important
human pathogens. In particular, some PCR-based detection
methods utilize certain pathogen-associated genes as targets,
including type IV pili genes [50, 51]. Realizing that the Vibrio
mshA and pilA genes can be extremely variable at the 3’ ends
of the genes is important to consider when designing primers
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Table 3 Analysis of synony-
mous and nonsynonymous Gene locus  Organism Sequence length (bp) ~ Number ds dn dn/ds
nucleotide substitutions for of strains
genes involved in type IV Pili
function from V. cholerae, V. mshA V. cholerae 438-537 25 0.759 0.471 0.621
parahaemolyticus, and V. V. parahaemolyticus 456-504 19 0.746  0.431 0577
vulnificus V. vulnificus 447-510 15 0.662 0384  0.580
mshC V. cholerae 489-513 25 0.135  0.039  0.290
V. parahaemolyticus 131 (1-131 S’end) 15 0.229  0.017 0.072
V. vulnificus 94 (1-94 5'end) 12 0.042  0.015 0356
pild V. cholerae 420-504 25 1.109  0.629  0.567
V. parahaemolyticus 405-486 19 1.691  0.642  0.380
V. vulnificus 402-453 15 1.186  0.503  0.424
pilB V. cholerae 1,689 24 0.176  0.008  0.047
V. parahaemolyticus 248 (1-248 5'end) 19 0.288  0.037  0.127
V. vulnificus 122 (1-122 5’ end) 14 0.208 0.016 0.074
pilD V. cholerae 876 24 0.122  0.005  0.039
V. parahaemolyticus 870 3 0.000  0.000 -
tepA V. cholerae 675 13 0486  0.052  0.106
tepJ V. cholerae 762 13 0.003  0.000  0.000
mshA V. cholerae with TCP 13 0.000  0.000 -
V. cholerae without TCP 12 0.663 0377 0.568
pild V. cholerae with TCP 13 0.000  0.000 -
V. cholerae without TCP 12 1.270  0.615  0.484

to target these genes. Therefore, it is possible that a PCR
protocol designed to amplify mshA and pilA from various V.
cholerae, V. parahaemolyticus, and V. vulnificus strains may
not detect these genes simply due to the variations ob-
served in this study. This is certainly something to con-
sider when utilizing these genes in a PCR protocol.
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