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Abstract Microorganisms mediate the decomposition of
leaf-litter through the release of extracellular enzymes. The
surfaces of decomposing leaves are both chemically and
physically heterogeneous, and spatial patterns in microbial
enzyme activity on the litter surface should provide insights
into fine-scale patterns of leaf-litter decomposition. Plata-
nus occidentalis leaves were collected from the floodplain
of a third-order stream in northern Mississippi, enclosed in
individual litter bags, and placed in the stream channel and
in the floodplain. Replicate leaves were collected approx-
imately monthly over a 9-month period and assayed for
spatial variation in microbial extracellular enzyme activity
and rates of organic matter (OM) decomposition. Spatial
variation in enzyme activity was measured by sampling 96
small discs (5-mm diameter) cut from each leaf. Discs were
assayed for the activity of enzymes involved in lignin
(oxidative enzymes) and cellulose (β-glucosidase, cellobio-
hydrolase) degradation. Rates of OM loss were greater in
the stream than the floodplain. Activities of all enzymes
displayed high variability in both environments, with
severalfold differences across individual leaves, and repli-
cate leaves varied greatly in their distribution of activities.
Geostatistical analysis revealed no clear patterns in spatial
distribution of activity over time or among replicates, and
replicate leaves were highly variable. These results show
that fine-scale spatial heterogeneity occurs on decomposing
leaves, but the level of spatial variability varies among

individual leaves at the measured spatial scales. This study
is the first to use geostatistical analyses to analyze
landscape patterns of microbial activity on decomposing
leaf litter and in conjunction with studies of the microbial
community composition and/or substrate characteristics,
should provide key insights into the function of these
processes.

Introduction

Leaf litter is the main source of carbon and energy in most
forested, low-order streams as light availability is often
restricted by the canopy and primary productivity is low
[36, 50]. Litter decomposition has been extensively studied
in stream ecosystems, with research focusing on determin-
ing rates of litter processing as well as the invertebrate and
microbial assemblages responsible [2, 17, 49]. At the
microbial level, the decomposition of leaf litter is mediated
primarily by the activity of microbial extracellular enzymes
such as lignin and cellulose-degrading enzymes [46]. These
extracellular enzymes are required for the remineralization
of leaf nutrients and the breakdown of structural macro-
molecules into molecules more readily transported across
the microbial cell membrane [9, 51]. The release of
extracellular enzymes occurs in response to fine-scale
interactions between microorganisms and their immediate
environment [1, 18], and interactions among microbial
populations or between microorganisms and their environ-
ment are an integral component of biogeochemical pro-
cesses [7, 41, 43].

The surface of living leaves, or phyllosphere, is a highly
heterogeneous surface and supports diverse and spatially
variable assemblages of bacteria and fungi [32]. Diverse
microbial communities are also found colonizing the
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surfaces of decaying leaves, and fungal species have been
observed to have variable spatial distributions across the
surface of decaying leaves [8, 45]. Attachment of fungal
spores has also been shown to be spatially variable on
decomposing leaves [10, 24], and successional patterns of
fungal and bacterial communities have been described on
decaying leaves, suggesting that the spatial distribution of
microorganisms may change over time [11, 40]. However,
studies of spatial or temporal variation in the activity of
microbial communities on decomposing leaf litter at fine
scales are lacking. The majority of studies that have looked
at spatial variation in leaf litter decomposition have focused
on large-scale patterns, such as differences in decomposi-
tion rates between streams [3, 34] or between different
locations within the same system [25–27]. Other studies
have compared decomposition rates of different plant
species [16, 37, 44] or how combinations of different leaf
species affect decomposition rates [15, 28, 31]. Little is
known about the variability in leaf litter decomposition at
scales less than an individual leaf.

While litter decomposition rates would be difficult to
determine for different parts of an individual leaf, microbial
activity could be measured at these scales. Rates of leaf litter
and particulate organic matter (POM) decomposition have
been linked to microbial extracellular enzyme activity in a
number of studies [20, 21, 48], and measuring fine scale
patterns in microbial extracellular enzyme activity may allow
us to detect fine-scale patterns in leaf litter decomposition. In
this study, we measured lignocellulase activity of microbial
communities associated with the surface of individual leaves
as they decomposed in a stream and its floodplain. Geo-
statistical analyses were used to assess patterns in the
variability and spatial distribution of microbial activity across
the leaf surface. We hypothesized that the spatial distribution
of enzyme activity would become more homogeneous over
the course of decomposition, as greater areas of the leaves
became colonized and that this homogenization would occur
faster in the stream channel (where leaves were submerged)
than the floodplain.

Methods

Study Site and Sample Collection

American Sycamore (Platanus occidentalis) leaves were
collected in January 2007 from the floor of a hardwood
forest in the floodplain of Cypress Creek, an oligotrophic,
temperate, third-order stream in Holly Springs National
Forest, northern Mississippi. P. occidentalis is a native
species to the region [6]. Leaves were air dried for 5 days at
22°C and weighed. Ten air-dried leaves were oven dried
(65°C, 24 h), reweighed, and used as a reference to

calculate the actual initial dry mass of each leaf (i.e., to
convert air-dried mass to oven-dried mass). This step
circumvented the need to oven dry the leaves used in the
decomposition study [5]. These same ten leaves were ashed
(500°C, 2 h), reweighed, and used as a reference for
calculating the initial organic content (as ash free dry mass;
AFDM) of other leaves. Remaining air-dried leaves were
placed individually in litter bags constructed from 0.5 mm
fiberglass mesh. Litter bags were spread out so as not to
overlap each other (naturally occurring leaf litter at the study
site is thinly dispersed) and anchored in the stream channel
and floodplain. Litterbags were sampled after 2 days in both
the stream and floodplain to provide an initial sample point to
correct for losses associated with handling and leaching. Bags
were then sampled after 16 days, and then monthly for a
period of 9 months. Four replicate litterbag samples were
collected from both the floodplain and the stream on each
sampling date and assayed for enzymatic activity and the
amount of AFDM (i.e., organic matter) remaining. HOBO
Water Temp Pro [H20-001] data loggers were attached in both
the creek and floodplain to get a continuous measure of the
temperature over the study period.

Enzyme Assays

Thirty-two small circular discs (5 mm diameter) were cut at
random from across the surface of the leaf for measurement of
one of the three extracellular enzymes (β-glucosidase,
cellobiohydrolase (CBH), and oxidative enzymes—a combi-
nation of phenol oxidase and peroxidase). Two discs within
1 cm of each of those 32 discs were then taken for measuring
the activity of the other two enzymes, for a total of 96 discs per
leaf. Digital images of the remaining leaf (minus discs) were
taken to identify the location of sample points for subsequent
geostatistical analysis. Leaf discs were incubated with 300 μl
of artificial substrate. The substrates used for measurements of
β-glucosidase and CBH activity were 5 mM p-nitrophenyl
(pNP)-β-D-glucopyranoside and 2 mM pNP-cellobioside,
respectively. The substrate for oxidative enzyme activity was
5 mM L-3,4-dihydroxyphenylalanine (L-DOPA), with the
addition of 15 μl 0.3% hydrogen peroxide. All substrates
were dissolved in pH 5.0 acetate buffer [22]. Duplicate
sample controls for each leaf consisted of a leaf disc
amended with acetate buffer. Duplicate substrate controls
for each enzyme consisted of the appropriate substrate
without the leaf disc.

Leaf discs were incubated for 1–3 h, and 150 μl of the
reaction mixture was transferred to a microplate well.
Transferred volumes from β-glucosidase and cellobiohy-
drolase assays received 150 μl of 0.066 M NaOH, and
absorbance was measured at 405 nm [4]. Transferred
volumes from the oxidative enzyme reactions were mixed
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with 150 μl of water and absorbance determined at 450 nm
[30]. Activity was calculated by dividing the adjusted
absorbance (measured absorbance − sample control −
substrate control + empty well absorbance) by 22.98 for
β-glucosidase and CBH (the absorbance of 1 μmol p-
nitrophenol under these specific assay conditions) or 4.28
for oxidative enzymes (the absorbance of 1 μmol com-
pletely oxidized L-DOPA under these conditions). Final
activity for all enzymes was expressed as μmol substrate
consumed h−1 cm−2 of leaf surface.

Decomposition Rates

After enzyme assays were complete, leaf discs were
recombined with their respective leaf, oven dried (65°C,
24 h), and weighed to determine dry weight remaining. Dry
leaves were ashed (500°C, 2 h) and weighed to measure the
amount of AFDM remaining. This value was compared to
the estimated initial AFDM in the original air-dried leaf in
order to determine the rate of organic matter decomposi-
tion. Decomposition rates were determined following a
linear decay model (regression of percent AFDM remaining
over time).

Spatial Analysis of Microbial Activity

Semivariograms were created for each enzyme on each
individual leaf using a linear-sill model with VESPER
software [35]. To assess differences in spatial variability,
the range and sill were calculated from each semivariogram
[14]. The range is the distance beyond which variance is no
longer a function of spatial separation, and the sill is the
semivariance at which the variogram levels off [19]. Both
are useful measures in determining the spatial dependence
of a system, and an example of how the two measures are
calculated is shown in Fig. 1a. More advanced geostatistical
approaches (interpolation) were used to map microbial
enzyme activity over the leaf surface using SADA software
(Spatial Analysis and Decision Assistance, Version 4.1.50,
The University of Tennessee). An example of the kriging
analyses is displayed in Fig. 1b.

Results

Leaf litter generally followed a linear decay model for
both the stream and the floodplain (Fig. 2). The
decomposition rate was almost three times faster in the
stream (0.11% day−1, R2=0.91) than in the floodplain
(0.04% day−1, R2=0.76), (analysis of covariance, p<
0.001). After 9 months, there was a mean of 68.1%
original AFDM remaining for leaves in the stream
compared with 87.8% for leaves in the floodplain (Fig. 2).

Mean activities of β-glucosidase and CBH showed
similar temporal patterns in each environment, until the
final sampling date when activities of CBH and
oxidative enzymes on litter in the stream were reduced
(Fig. 3). Oxidative enzyme activity, however, was near the
lower limit of detection for the first several months on
litter in the floodplain and was an order of magnitude
greater on litter in the stream than the floodplain over the
remainder of the study period. Correlations between mean
daily temperature and activity on litter ranged from weak
(oxidative enzymes, R=0.38) to moderate (β-glucosidase,
R=0.43, and CBH, R=0.57) in the floodplain and from no
correlation (β-glucosidase, R=−0.05) to weak (CBH, R=
0.39) to moderately strong (oxidative enzymes, R=0.70)
on leaf litter in the stream channel. Temperatures ranged
from 1.9°C to 36.3°C in the stream compared to −9.5°C to
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Figure 1 Example of analyses used to assess spatial patterns and
structure in microbial activity on the surface of decomposing leaves. a
Kriging map displaying the spatial distribution of β-glucosidase
activity across the surface of a single leaf with activity interpolated
between sample points. b Semivariogram measuring the spatial
autocorrelation of β-glucosidase activity across the surface of the
same leaf, showing the range and the sill
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58.0°C in the floodplain, and correlations among daily
low and high temperatures were no greater than daily
mean temperature.

At whole leaf scales, mean activities of β-glucosidase
and CBH were correlated in both the stream and
floodplain on individual leaves collected over the entire
study period (Table 1). Correlations between mean CBH
activity and oxidative enzyme activity were less strong,
ranging from weak (R=0.37, n=36) on litter in the stream
to moderate (R=0.63, n=36) in the floodplain. β-
glucosidase activity did not correlate with oxidative
enzyme activity at this scale on litter in the stream

(R=−0.06, n=36), but the two were moderately correlated
(R=0.53, n=36) on leaf litter in the floodplain. To
investigate correlations between enzymes at finer scales,
we measured the correlation between enzyme activities at
sample points located within 1 cm of each other over all of
the leaves collected throughout the entire study period. At
finer scales, correlations between β-glucosidase and CBH
activities still existed (Table 1). Correlations between
CBH and oxidative enzyme activities at fine scales were
weaker than those observed at larger scales, with correla-
tion coefficients of 0.24 (n=1152) and 0.44 (n=1152) in
the stream and floodplain, respectively. As with the larger
scale patterns, β-glucosidase and oxidative enzyme activ-
ity were not correlated at fine scales on leaf litter in the
stream, and were only weakly correlated on litter in the
floodplain (R=0.34, n=1152).

Spatial autocorrelation was measured for each enzyme
on each leaf by measuring the range and sill from the
constructed semivariograms (e.g., Fig. 1a). Spatial autocor-
relation was highly variable among replicate leaves in both
the stream and floodplain over the entire study period, with
some replicates showing patterns of spatial autocorrelation
at the measured scale and others showing no spatial patterns
(Table 2). This variability among replicate leaves obscured
the ability to distinguish any patterns over time and
between the two sites.

Differences among replicate leaves were also apparent
from kriging maps (an example is shown in Fig. 1b), which
display microbial activity across the surface of individual
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Figure 2 Sycamore leaf litter decomposition in a stream (filled
squares) and its floodplain (filled triangles) as represented by initial
ash-free dry mass (AFDM) remaining over time. Points represent the
mean (±SE) of four leaves on each date. Dates are 2007
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Figure 3 Temporal patterns in
microbial extracellular enzyme
activity on decomposing syca-
more leaves in a stream (a, c, e)
and its floodplain (b, d, f).
Values represent the mean (±SE)
of activity of four leaves at each
point. Activity for each leaf was
determined from the mean ac-
tivity measured at 32 separate
points on each leaf. Enzymes
measured were β-glucosidase
(a, b), cellobiohydrolase (c, d),
and oxidative enzymes (a com-
bination of phenol oxidase and
peroxidase; e, f). Dates are 2007
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leaves with values interpolated between sampled points to
estimate activity at unmeasured locations. While activity
was highly variable across the leaf surface, from these data,
there were no clear spatial patterns over time for any of the
three enzymes tested in either location or even among
replicate leaves. The distribution of activity across the
surface of replicate leaves were quite different, with some
leaves characterized by a few spots of high activity and a
replicate leaf characterized by a more homogeneous
distribution.

Discussion

Our results showed that measurement of microbial extra-
cellular enzyme activity can be used to assess the activity of
microbial communities at fine spatial scales. However, the
spatial structure in microbial extracellular enzyme activity
at the centimeter scale was not as we expected in both the
stream and floodplain. We expected to see a patchy
distribution of activity initially (i.e., high values of range
and sill as neighboring points begin to influence each
other), as microorganisms capable of degrading the leaf
became associated with the leaf surface. Activity was then
expected to homogenize over time (i.e., lower values of
range and sill as more efficient decomposers spread across
the surface and sample points near each other become
dependent upon each other). We predicted that this
homogenization would occur more rapidly in the stream
as substrata introduced to aquatic systems become colo-
nized quite rapidly [24, 29]. Also, water availability may
limit microbial growth over much of the surface of dead
leaves in terrestrial environments (the leaf bags in the
floodplain were never submerged during the study period),
which should lead to a decrease in the area of leaf surface
available for bacteria and fungi to colonize and increase
patchiness [12]. Instead, we found a lack of spatial structure
in both environments.

Microbial community structure has been found to be
spatially structured at the centimeter scale in a homoge-
neous agricultural field [14] and at the centimeter scale in
unvegetated salt marsh sediments [13]. However, no spatial
structure for fungal and bacterial biomass was found in
hardwood forest soils at the 1- to 10-cm scale [38],

suggesting that spatial structure may only be evident in
more homogeneous environments. The surface of decom-
posing leaves may be a highly heterogeneous environment
at the centimeter scale. The phyllosphere of living leaves
supports a wide array of microenvironments, varying
greatly in water, O2, light availability, and nutrient content
[32]. It is likely that similar microenvironments exist on
decomposing leaf litter, though no studies have attempted
to measure them. In the case of P. occidentalis leaves,
pubescent areas and cuticular deposits on the leaf surface
are also likely to create a range of microenvironments that
alter the structure of colonizing microbial communities.

There are also larger structures on the leaf surface (e.g.,
veins) which likely influence the spatial distribution of
microbial species and affect microenvironmental condi-
tions, though no evidence for differences in activity at these
sites were clear from comparisons of kriging maps (such as
Fig. 1b), which display the spatial distribution of enzymatic
activity across the surface of individual leaves, and digital
images of the leaves, which show the location of such leaf
surface structures (data not shown).

At the scale of the individual leaf, overall enzyme
activities on replicate leaves were fairly similar. Mean β-
glucosidase and CBH activity were correlated in both the
stream and floodplain. These two enzymes are involved in
cellulose degradation and are typically correlated in
environmental samples [20]. Mean oxidative enzyme
activity varied in its correlation to both cellulases depend-
ing on the environment, and oxidative activity may be a
better indicator of decomposition than the other two
enzymes measured. Decomposition was more rapid in the
stream where oxidative enzyme activity was usually an
order of magnitude greater than in the floodplain, whereas
mean activity of both β-glucosidase and CBH were
generally similar at the two sites, although activity for both
was initially higher on leaves in the stream channel. This
initial lag in activity on leaves in the floodplain may be
because of more rapid colonization of the leaf surface in the
channel [23, 29] or to increased activity with the availabil-
ity of water as the floodplain was never inundated with
water [22, 33]. It may also be due in part to temperature
effects, which typically correlate with extracellular enzyme
activity [47], though correlations between activity and
temperature varied by enzyme.

Oxidative enzymes CBH β-glucosidase

Stream Floodplain Stream Floodplain Stream Floodplain

Oxidative enzymes 1

CBH 0.37 (0.24) 0.63 (0.44) 1

β-glucosidase −0.06 (-0.02) 0.53 (0.34) 0.72 (0.51) 0.63 (0.69) 1

Table 1 Large- and fine-scale
correlations between enzyme
activities and temperature
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Based on previous decomposition studies of P. occiden-
talis [42] and the decomposition rates determined in this
study, P. occidentalis appears to be a rather recalcitrant leaf.
Invertebrate decomposers may break down the leaf struc-
ture and allow fungi and bacteria to gain access, although
even with the addition of invertebrates, P. occidentalis is
often one of the slower leaves to decompose [39]. The
inherent resistance of the leaf type to microbial degradation
may have prevented a homogenization of enzymatic
activity or may have just slowed the spread of activity.
Fungal species have been shown to follow successional
patterns in species composition from the leaf still being
attached to the plant through different stages of decompo-
sition [40]. If the leaf surface is more resistant to
degradation, this may slow the successional process. The
lack of detectable spatial structure or homogenization over
time may be the result of simply failing to follow the
process for a long enough period of time. The leaves
studied here may still be in the early stages of decompo-
sition, with more capable decomposer populations still
attempting to colonize or spread across the leaf surface.
However, given that the leaves used were collected from
the forest floor, it is also quite likely that these leaves had
undergone some leaching and initial decomposition prior to
the study. Leaves were air dried initially to limit the
disturbance of the existing microbial populations and allow
observations of more naturally occurring processes, and
linear models of decomposition fit the mass loss data well,
suggesting that leaching and any initial loss of rapidly
utilizable material had already occurred.

The study presented here is the first to measure spatial
patterns in microbial activity on decomposing leaf litter at
scales less than that of an individual leaf. The results show
that although there was no spatial dependence of microbial
enzyme activity at these scales, there was a tremendous
amount of variability in activity across the leaf surface.
Microbial activity may be even more heterogeneous at even
finer scales and studies focused at these scales may provide
greater insight into the functioning of these microbial
communities. A diameter of 5 mm was chosen for the leaf
discs, as we were unsure of the level of microbial activity at
these scales over the study period and wanted to be certain
we were able to measure activity on the discs. From our
findings, these methods appear to be capable of measuring
activity at scales finer than those studied here, allowing
smaller areas to be assayed and thus allowing for more
samples to be taken from across an individual leaf.
Landscape studies of microbial activity by themselves
may show some interesting findings, but it is likely that
these analyses in combination with studies of the commu-
nity diversity or biomass, or the structure and composition
of the underlying substrate, should provide some very
important insights into microbial interactions in these

systems. By connecting interactions among and between
microbial communities with their landscape level activity, a
clearer picture of the processes involved in leaf litter
decomposition should begin to emerge.
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