Microb Ecol (2002) 43:408–415 DOI: 10.1007/s00248-001-1049-x © 2002 Springer-Verlag New York Inc. # Endogenous Methanogenesis Stimulates Oxidation of Atmospheric CH₄ in Alpine Tundra Soil A.E. West, S.K. Schmidt E.P.O. Biology, CB 334, University of Colorado, Boulder CO 80309-0334, USA Received: 2 August 2001; Accepted: 29 November 2001; Online publication: 8 April 2002 ## **A** B S T R A C T Experiments were done to test the hypothesis that atmospheric CH₄ oxidizers in a well-drained alpine tundra soil are supported by CH₄ production from anaerobic microsites in the soil. Soil was subjected to 22 days of anaerobic conditions with elevated H2 and CO2 in order to stimulate methanogenesis. This treatment stimulated subsequent atmospheric CH4 consumption, probably by increasing soil methanogenesis. After removal from anaerobic conditions, soils emitted CH₄ for up to 6 h, then oxidized atmospheric CH_4 at 111 (±5.7) pmol (g dry weight)⁻¹ h⁻¹, which was more than 3 times the rate of control soils. Further supporting our hypothesis, additions of lumazine, a highly specific inhibitor of methanogenesis, prevented the stimulation of atmospheric CH₄ oxidation by the anaerobic treatment. The method used to create anaerobic conditions with elevated H2 and CO2 also elevated headspace CH4 concentrations. However, elevated CH₄ concentrations under aerobic conditions did not stimulate CH₄ oxidation as much as preexposure to H₂ and CO₂ under anaerobic conditions. Anaerobic conditions created by N₂ flushing did not stimulate atmospheric CH₄ oxidation, probably because N₂ flushing inhibited methanogenesis by removing necessary precursors for methane production. We conclude that anaerobic conditions with elevated H2 and CO2 stimulate atmospheric CH4 oxidation in this dry alpine tundra soil by increasing endogenous CH₄ production. This effect was prevented by inhibiting methanogenesis, indicating the importance of endogenous CH₄ production in a CH₄consuming soil. #### Introduction Microorganisms in well-drained soils consume the greenhouse gas CH₄ from the atmosphere, and are the second largest sink in the global CH₄ budget [21, 22]. Correspondence to: S.K. Schmidt; Telephone: 303 492-6248; Fax: 303 492-8699; E-mail: schmidts@spot.colorado.edu These microbes appear to utilize atmospheric CH₄ for biomass production [23] and to be related, but not identical, to type II methanotrophs which have been studied in pure culture [2, 8, 10, 13, 15, 24]. The continuous activity of atmospheric CH₄ oxidizers in soils implies that they survive on atmospheric CH₄ concentrations of 2 ppmv, but they do not appear able to grow on such low CH₄ concentrations [2,25]. It has been suggested that they utilize other carbon substrates such as methanol, formate, and acetate in addition to atmospheric CH₄ for their growth [5, 12, 16, 23, 27]. It has also been suggested that atmospheric CH₄ oxidizers may utilize endogenous CH₄ production from anaerobic microsites of otherwise aerobic soils [1, 9, 14, 26, 27, 30]. West and Schmidt [26] found that wetting stimulated atmospheric CH₄ oxidation in a well-drained alpine tundra soil, possibly by stimulating methanogenesis inside anaerobic soil microsites, which, in turn, resulted in greater populations or activity of atmospheric CH₄ oxidizers. Supporting this explanation, atmospheric CH₄ oxidation in this soil was also stimulated by acetate [27], a substrate likely to be utilized by methanogens but not by methanotrophs. Despite this evidence for the importance of endogenous CH₄ production, CH₄ emission has not been observed in the field from this soil [28] or from similar dry alpine soils [17, 29]. To further explore the possibility that endogenous CH₄ production supports the atmospheric CH₄ oxidizers of this soil, we tested the effects of anaerobic conditions with elevated H2 and CO2 on subsequent atmospheric CH₄ oxidation. We also used the methanogenic inhibitor lumazine [19] to determine whether these effects ## **Materials and Methods** were mediated by methanogenesis. This study was conducted on soils from alpine tundra of Niwot Ridge, the Long Term Ecological Research (LTER) Site in the Colorado Front Range. This site, its soils, and its CH₄ fluxes are discussed elsewhere [11, 28]. Most experiments of this study were conducted on soil from a dry, CH₄-oxidizing plant community, dominated by the plant *Kobresia myosuroides* (Table 1). In addition, we conducted some tests on soil from a wet, CH₄-emitting plant community dominated by the plant Carex scopulorums from pieces of intact tundra (approximately $30 \times 30 \times 20$ cm) that were stored in an environmental chamber simulating spring conditions [26]. These pieces were watered regularly to prevent soils from drying excessively. They were not used for an experiment unless plants were green. The *Carex* meadow soil used in this study was collected in June 1997 and stored at 3°C until May 1998. Before each experiment, *Kobresia* meadow soil was sieved (2 mm) and *Carex* meadow soil was homogenized by hand. Soil moisture was determined by drying to constant weight at 100° C. *Kobresia* meadow soil moistures were 63, 64, and 48% H_2O , for the first, second, and third experiments, respectively. *Carex* meadow soil moistures ranged from 50 to 100%. Methane oxidation or production was measured with room- temperature incubations of soil subsamples (3 replicates each (Table 1). The Kobresia meadow soil used in this study was taken treatment). Soil (8, 10, 15, or 25 g dry weight) was placed in specimen cups inside 1 L mason jars fitted with Teflon-coated silicone septa. Before each measurement of net CH4 flux, mason jars were opened and allowed to equilibrate with atmospheric CH₄ concentrations (usually between 1.8 and 2.0 ppm). Gas samples were taken at regular intervals with 10 cc syringes, until steady linear increase or decrease of CH₄ concentrations could be confirmed. Preliminary experiments showed that CH4 consumption by these soils did not differ significantly from linear uptake. Syringes were disassembled to equilibrate with atmospheric air for a minimum of 14 h before each new use. Methane samples were analyzed on a Hewlett Packard 5890A gas chromatograph using a flame ionization detector (FID) at 150°C. Variability of repeated injections of a 1751.8 ppb CH₄ standard calibrated by the National Center for Atmospheric Research (NCAR) was ±10 ppb or less. Rates of CH₄ oxidation or production were calculated by linear regression of the changes in CH₄ concentrations over time, correcting for temperature and pressure. Methane oxidation is presented in figures as negative We conducted three experiments that tested the effect of anaerobic conditions with elevated H_2 and CO_2 on atmospheric CH_4 oxidation in *Kobresia* meadow soil. For the $-O_2+H_2+CO_2$ treatment, a palladium-catalyzed reaction was used to create a strictly anaerobic environment [7]. Each soil subsample was Table 1. Soils and treatments used in the experiments and tests of this study | Experiment | Soil type | Treatments | Figure | |---|--------------------|--|---------| | 1 | Kobresia | -O ₂ +H ₂ +CO ₂ +O ₂ control +CH ₄ +O ₂
N ₂ -flushed | 1 and 2 | | 2 | Kobresia | $-O_2+H_2+CO_2+O_2$ control | 3 | | 3 | Kobresia | -O ₂ +H ₂ +CO ₂ plus lumazine | 4 | | | | -O ₂ +H ₂ +CO ₂ plus water +O ₂ plus | | | | | water control | | | Test of | Soil type | Treatments | Table | | CH ₄ oxidation | Kobresia | +O ₂ control N ₂ -flushed | 2 | | CH ₄ production | Carex | +O ₂ control N ₂ -flushed | 3 | | Effects of lumazine on CH ₄ flux | Kobresia and Carex | +lumazine +water control | 4 | | Effects of lumazine on CO ₂ production | Kobresia and Carex | +lumaxine +water control | 4 | CH4 flux. 410 A.E. West, S.K. Schmidt Fig. 1. Headspace CH_4 concentrations during the $-O_2+H_2+CO_2$, $+CH_4+O_2$ control, and N_2 -flushing treatments (shaded area of Fig. 2). Methane accumulated in the headspace of the $-O_2+H_2+CO_2$ treatment. Methane was added to the headspace of the $+CH_4+O_2$ control treatment in order to keep headspace concentrations at least as high as those in the $-O_2+H_2+CO_2$ treatment. Methane had to be added repeatedly (small arrows) because $+CH_4+O_2$ soils consumed CH_4 at approximately 1 nmol CH_4 g⁻¹ h⁻¹ (Table 1). Methane was added to the headspace of N_2 -flushed (treatment near the end of the experiment (large arrow) in order to determine the quantity of CH_4 consumed under anaerobic headspace (Table 1). placed in a mason jar with a 30 ml glass scintillation vial containing 0.4 g $NaBH_4$ and 1.5 g $NaHCO_3$. As water was added to each scintillation vial, jars were promptly closed. This procedure removed O_2 from the jar headspace and elevated CH_4 , CO_2 , and H_2 concentrations to a minimum of 20 ppm, 10%, and 20%, respectively. Experimental soil samples remained under these anaerobic conditions for 6, 22, and 6 days for the first, second, and third experiment, respectively. For the $+O_2$ control treatment, the palladium catalyst procedure was performed, but 12 h later the headspace was replaced with lab air. In the first experiment, CH₄ was added to a +CH₄+O₂ control treatment to determine the effect of the CH₄ which accumulated in the headspace of the $-O_2+H_2+CO_2$ treatment. Methane had to be added repeatedly, because +CH₄+O₂ control soils consumed approximately 1 nmol CH₄ (g d.w.)⁻¹ h⁻¹. To determine the importance of increased H2 and CO2, jars containing soil subsamples were made anaerobic by evacuating and flushing the jars three times with industrial-grade N₂ gas instead of using the palladium catalyst method. Anaerobic conditions -O₂+H₂+CO₂ soils and N₂-flushed treatments were confirmed with methylene blue indicators that turned white to indicate less than 0.5% O2. To determine the rate of CH4 consumption occurring in N2-flushed soils, CH4 was added to the headspace, and headspace samples were taken at regular intervals. We also measured CH₄ consumption in +CH₄+O₂ control soils by tracking depletion of CH_4 over time. In the second experiment, $+CH_4+O_2$ and N_2 -flushed controls were not conducted. In the third experiment, we used the methanogenic inhibitor lumazine to confirm whether the effects of anaerobic treatments in *Kobresia* soils resulted from increased methanogenesis. Lumazine (0.1 g) (Sigma-Aldrich Corporation) was dissolved in 80 mL distilled $\rm H_2O$. Before undergoing the anaerobic treatment, this solution was added to one set of $\rm -O_2+H_2+CO_2$ soils so that the final concentration of lumazine in the soil solution was 1 mM. Lumazine was added to $\rm -O_2+H_2+CO_2+LZ$ soils and an equal amount of deionized water was added to $\rm -O_2+H_2+CO_2$ and $\rm +O_2$ control soils. Then $\rm -O_2+H_2+CO_2+LZ$ and $\rm -O_2+H_2+CO_2$ soils were subjected to a 6-day $\rm -O_2+H_2+CO_2$ treatment. Subsequent effects on atmospheric $\rm CH_4$ oxidation were measured as described above. We tested the effect of N₂-flushing on CH₄ production in *Carex* meadow soils, in which CH₄ production is easily measurable [28]. Soils (3 replicates of 10 g d.w.) were amended with 10 mM sodium acetate (final concentration in soil solution) to establish high rates of CH₄ production. Then jar headspace was either equilibrated with room air to make the headspace aerobic, or flushed with nitrogen gas to make the headspace anaerobic. Headspace samples were taken regularly to assess CH₄ production as described above. We tested the effect of the methanogenic inhibitor lumazine [19] on CO₂ production and CH₄ metabolism in both Carex and Kobresia meadow soils. Lumazine solution (0.1 g dissolved in 80 mL distilled H2O) was added to soils so that the final concentration of lumazine solution was 1 mM. Control soils were wetted with an equivalent amount of distilled water. The effect of lumazine on soil CO2 production in both Carex and Kobresia meadow soils was measured using an infrared gas analyzer (LI-COR 6400). For the CH₄ measurements, Kobresia soils were wetted to stimulate atmospheric CH₄ oxidation. As CH₄ oxidation returned to unstimulated rates, lumazine was added and CH₄ oxidation rates were measured. Carex meadow soils were amended with 30 μg g⁻¹ acetate in order to increase methanogenesis, and soil CH4 production was measured. Four days later, lumazine was added, and CH₄ production was measured again. To control for inter-subsample variation, these results are presented as the per cent of CH4 flux that remained after lumazine additions. ### Results In order to determine whether we could increase atmospheric CH_4 oxidation in a tundra soil by increasing the anaerobic microsites suitable for methanogenesis, we subjected soils to anaerobic treatments. In the first experiment, subsamples of dry alpine tundra soil (Kobresia soil) were subjected to differential treatments for 6 days. During this time, CH_4 accumulated in the headspace of $-O_2+H_2+CO_2$ jars (Fig. 1). To control for the effect of this Fig. 2. Atmospheric CH₄ oxidation before and after the differential treatments shown in Fig. 1. Soil subsamples were subject to differential treatments for 6 days (shaded area). After the treatments, atmospheric CH₄ oxidation in $-O_2+H_2+CO_2$ soils increased to 4 times that of $+O_2$ controls soils. In $+CH_4+O_2$ control soils, atmospheric CH₄ oxidation increased to nearly twice that of $+O_2$ control soils. Atmospheric CH₄ oxidation in N₂-flushed controls was not stimulated. Negative CH₄ flux is CH₄ consumption. extra CH₄, we added CH₄ to the headspace of +CH₄+O₂ control soils. Methane had to be added repeatedly (Fig. 1, small arrows) because +CH₄+O₂ soils consumed approximately 1 nmol CH₄ g⁻¹ h⁻¹. N₂-flushed soils did not emit any CH₄, despite being under anaerobic headspace. To test whether these soils could be consuming CH₄, we injected CH₄ into the N₂-flushed headspace (Fig. 1, large arrow) and measured the rate of consumption. Soils under N₂-flushed headspace consumed CH₄ at about half the rate of soils under +CH₄+O₂ headspace (Table 2). Using *Carex* meadow soil, we tested the effect of N₂-flushing on CH₄ production, and found that N₂-flushing inhibited CH₄ production (Table 3). The 6-day treatments had significant effects on atmospheric CH_4 consumption (Fig. 2). Before treatments, all soils oxidized atmospheric CH_4 at approximately 20 pmol g^{-1} h^{-1} . Afterwards, $-O_2+H_2+CO_2$ treatments had increased atmospheric CH_4 oxidation to nearly 70 pmol (g d.w.)⁻¹ h^{-1} , and $+CH_4+O_2$ treatments had increased at- **Table 2.** CH₄ oxidation rates in soils under aerobic or N_2 -flushed headspace (average of 3 replicates \pm standard error) | Headspace | CH_4 oxidation (pmol (g d.w.) ⁻¹ h ⁻¹) | Initial [CH ₄]
(ppm) | |------------------------------------|---|-------------------------------------| | Aerobic
N ₂ -flushed | 1026.0 (±6.1)
496.7 (±53.3) | 41.2 (±1.9)
37.9 (±1.5) | mospheric CH₄ oxidation to 35.3 (± 1.7) pmol (g d.w.)⁻¹ h⁻¹. Methane oxidation rates in +CH₄+O₂ control soils dropped steadily over the next 8 days, whereas atmospheric CH₄ oxidation in -O₂+H₂+CO₂ soils increased to 78.8 (± 7.1) pmol (g d.w.)⁻¹ h⁻¹ before declining. The +O₂ control treatment and N₂-flushing treatment did not change atmospheric CH₄ oxidation significantly. In a second experiment (Fig. 3), fresh subsamples of *Kobresia* soil were subjected to a longer anaerobic treatment (22 days). For 6 h after removal from the anaerobic environment, $-O_2+H_2+CO_2$ soils emitted CH_4 , averaging 11.9 (± 7.2) pmol (g d.w.)⁻¹ h⁻¹. Subsequently, soils began to consume CH_4 , oxidizing 111 (± 5.7) pmol CH_4 (g d.w.)⁻¹ h⁻¹ 5 days later. In contrast, CH_4 oxidation rates in $+O_2$ control soils decreased from 33.0 (± 0.6) to 25 (± 1.3) pmol (g d.w.)⁻¹ h⁻¹ over the course of the experiment. In the third experiment, we used the methanogenic inhibitor lumazine to determine whether $-O_2+H_2+CO_2$ **Table 3.** CH₄ production in *Carex* meadow soils under aerobic or N_2 -flushed headspace (average of 3 replicates \pm standard error) | | CH ₄ production | CH ₄ production [nmol (g d.w.) ⁻¹ h ⁻¹] | | |-------------------|----------------------------|---|--| | Day of incubation | Aerobic | N ₂ -flushed | | | 1 | 1.8 (±0.4) | 1.0 (±0.2) | | | 2 | $2.1 (\pm 0.6)$ | 1.5 (±0.2) | | | 3 | 3.0 (±0.5) | 1.7 (±0.2) | | 412 A.E. West, S.K. Schmidt Fig. 3. Oxidation of atmospheric levels of CH_4 before and after a 22-day $-O_2+H_2+CO_2$ treatment. Upon removal from anaerobic conditions, soils briefly emitted CH_4 . Then, atmospheric CH_4 oxidation increased to more than 3 times the rate of $+O_2$ control soils. Negative CH_4 flux is CH_4 consumption. treatments stimulated atmospheric CH_4 oxidation by increasing acetogenesis or methanogenesis. Lumazine was added to $-O_2+H_2+CO_2+LZ$ soils and deionized water was added to $-O_2+H_2+CO_2$ and $+O_2$ control soils (Fig. 4, arrow). Then $-O_2+H_2+CO_2+LZ$ and $-O_2+H_2+CO_2$ soils were subjected to a 6-day $-O_2+H_2+CO_2$ treatment (Fig. 4, shaded area). Wetting alone stimulated atmospheric CH_4 oxidation in $+O_2$ control soils, but this stimulation was declining after 6 days. Atmospheric CH_4 oxidation in **Table 4.** The effect of lumazine on CO₂ and CH₄ metabolism of *Carex* and *Kobresia* meadow soils.^a | | CO ₂ production (ppm (15 g d.w.) ⁻¹ min ⁻¹) | | | |-------------------|---|--------------------------|--| | Soil type | With 1 mM lumazine | Control | | | Carex
Kobresia | 4.1 (±0.6)
1.8 (±0.1) | 4.9 (±0.4)
1.8 (±0.1) | | | | CH ₄ production (% previous rate) | | | | | With 1 mM lumazine | Control | | | Carex | 38.2 (±4.0) | 86.6
(±19.5) | | | | CH ₄ consumption (% p | revious rate) | | | | With 1 mM lumazine | Control | | | Kobresia | 32.5 (±3.2) | 33.0 (±0.7) | | | | | | | $^{^{\}rm a}$ Fluxes of CO₂ were measured with a LICOR 6400 after soils were amended with 1 mM lumazine. Methane fluxes were measured before and after 1 mM lumazine was added. Rates are the average of 3 replicates (\pm standard error). $-O_2+H_2+CO_2$ soils was stimulated approximately 1 week after $-O_2+H_2+CO_2$ treatment, but this stimulation was prevented in soils that had received lumazine. We conducted tests to ensure that lumazine inhibits methanogenesis even in a complex soil environment, and that lumazine does not inhibit other soil microbes such as atmospheric CH_4 oxidizers (Table 4). We tested the effects of lumazine on methanogens and methanotrophs in alpine soils by adding lumazine to alpine soils that were producing or consuming CH_4 . Lumazine inhibited CH_4 production by *Carex* meadow soil (p < 0.05), but not CH_4 consumption in *Kobresia* meadow soil (Table 4). To test the effects of lumazine on general microbial activity in these soils, we measured the effects of lumazine on CO_2 production. Lumazine did not inhibit CO_2 production of either *Carex* or *Kobresia* meadow soil (Table 4). #### Discussion The results presented here show that atmospheric CH₄ oxidizers of *Kobresia* meadow soil rely on endogenous CH₄ production for growth and maintenance. Activity of atmospheric CH₄ oxidizers was stimulated by exposing this soil to conditions that were designed to stimulate growth of Fig. 4. The methanogenic inhibitor lumazine prevented stimulation of atmospheric CH_4 oxidation by $-O_2+H_2+CO_2$ treatment. Lumazine or deionized water was added to soils (arrow) before they were subjected to $-O_2+H_2+CO_2$ treatment (shaded area). Wetting stimulated atmospheric CH_4 oxidation in $+O_2$ control soils, but this stimulation began to decline after 6 days. Eight days after exposure to aerobic headspace, atmospheric CH_4 oxidation rates in $-O_2+H_2+CO_2$ soils became stimulated relative to $+O_2$ control soils, but this stimulation was prevented in $-O_2+H_2+CO_2$ soils treated with lumazine. methanogens (Figs. 2, 3, and 4). We reduced oxygen concentrations in the $-O_2+H_2+CO_2$ and in the N_2 -flushed treatments to less than 0.5%. The reduction in oxygen availability was expected to increase occurrence of the anaerobic microsites where we have hypothesized that methanogenesis occurs [26, 27]. Additions of H_2 and CO_2 were expected to supply carbon and energy to methanogens. Without stimulation by either $-O_2+H_2+CO_2$ treatments, wetting [26], or additions of CH_4 (Fig. 2), atmospheric CH_4 oxidation gradually declined (Figs. 2 and 3). The most likely mechanism by which $-O_2+H_2+CO_2$ treatments stimulated atmospheric CH_4 oxidation was by increasing the supply of CH_4 to soil methanotrophs. Apparent CH_4 production during the $-O_2+H_2+CO_2$ treatments (Fig. 1), plus the transient CH_4 emission upon removal from the 22-day $-O_2+H_2+CO_2$ treatment (Fig. 3), suggested that CH_4 was produced under $-O_2+H_2+CO_2$ treatments. This CH_4 , in turn, stimulated soil methanotrophy, resulting in increased rates of atmospheric CH_4 oxidation. Additions of CH_4 also increased atmospheric CH_4 oxidation, but to a lesser extent than $-O_2+H_2+CO_2$ treatments. Homoacetogenic bacteria have requirements similar to methanogens, namely excess H2 and CO2, and strictly anaerobic conditions. West and Schmidt [27] showed that acetate additions can stimulate atmospheric CH₄ oxidation in these soils. We therefore used lumazine, a highly selective inhibitor of methanogens [19], to determine whether methanogenesis or acetogenesis had provided carbon for stimulation of atmospheric CH₄ oxidizers. Nagar-Anthal et al. [19] found that lumazine suppressed growth of all methanogenic species tested, but not of Acetobacterium woodii, a homoacetogen [19]. In this study, lumazine did not reduce atmospheric CH₄ oxidation (Table 4), indicating that lumazine also has minimal effect on atmospheric CH₄ oxidizers. In contrast, lumazine reduced soil CH₄ production by more than one-half (Table 4), confirming the effectiveness of lumazine at inhibiting methanogenesis even in a complex soil environment. Additions of lumazine prevented stimulation of atmospheric CH₄ oxidation by $-O_2+H_2+CO_2$ treatments (Fig. 4), confirming that methanogenesis was the more likely mechanism for stimulation of atmospheric CH₄ oxidation by anaerobic conditions with excess H₂ and CO₂ than was acetogenesis. Anaerobic conditions created by N₂ flushing did not stimulate atmospheric CH₄ oxidation, probably because anaerobic conditions without excess H₂ and CO₂ did not stimulate CH₄ production in *Kobresia* soil. N₂-flushing actually suppressed CH₄ production in the *Carex* meadow soil (Table 3). Similarly, Moore and Dalva [18] found that CH₄ production under N₂-flushed headspace was inhibited relative to CH₄ production under aerobic headspace. N₂ flushing probably reduces CH₄ production by decreasing the amount of CO₂ normally available to soil methanogens, both by excluding the 350 ppm CO₂ normally present in the atmosphere and by excluding O₂ from the aerobic soil microbes that produce CO₂. Further studies would be necessary to confirm this explanation. Methane production in Kobresia meadow soil under -O₂+H₂+CO₂ headspace was probably obscured by CH₄ consumption. During the treatment of the first experiment (Fig. 1), CH₄ concentrations in -O₂+H₂+CO₂ headspace were lower than in +CH₄+O₂ headspace, yet atmospheric CH_4 oxidation was twice as stimulated by $-O_2+H_2+CO_2$ as by +CH₄+O₂ treatment (Fig. 2). Therefore, methanotrophs in -O2+H2+CO2 soils must have been exposed to more CH₄, which was consumed before entering the headspace of the microcosms. The feasibility of CH₄ consumption under anaerobic headspace is confirmed by the fact that N₂-flushed Kobresia soil consumed CH₄ at nearly 500 pmol g⁻¹ h⁻¹ (Table 2). Remnant oxygen in the palladiumscrubbed -O₂+H₂+CO₂ treatment is highly unlikely, but the methylene blue indicators that we used confirmed only that oxygen concentrations in both $-O_2+H_2+CO_2$ and N_2 flushed treatments were less than 0.5%. Enough oxygen may have remained for CH₄ oxidation to continue. Alternatively, anaerobic CH₄ oxidation may have been taking place, either by sulfate-reducing metabolism [6, 20] or by an unknown mechanism. Methane consumption probably obscures CH₄ production in Kobresia meadow soil under aerobic headspace as well. Andersen et al. [1] found evidence that endogenous CH₄ production can occur simultaneously in soils that are consuming atmospheric CH₄. Such CH₄ production is the most likely mechanism by which wetting [26] and acetate [27] stimulate atmospheric CH₄ oxidation in Kobresia meadow soil. Wetting and acetate additions suppress atmospheric CH₄ oxidation before stimulating it, most likely because increased endogenous CH₄ production reduces net CH₄ consumption. Analogously, in Fig. 3, stimulation of CH₄ oxidation by $-O_2+H_2+CO_2$ treatment did not occur until more than 1 week after removal from anaerobic conditions, but CH₄ production in this soil rarely exceeds consumption (Fig. 3). Nevertheless, the atmospheric CH₄ oxidizers of Kobresia meadow soil appear to be dependent on this undetected CH₄ production. In all 414 A.E. West, S.K. Schmidt experiments shown here (Figs. 2, 3, and 4) and in our previous studies [26, 27], atmospheric CH_4 oxidation in these soils slowly declined unless stimulated by wetting, methanogenic carbon additions, CH_4 additions, or $-O_2+H_2+CO_2$ treatments. In the field, atmospheric CH_4 oxidizers of these soils may be stimulated by temporary anaerobic conditions created by moisture additions such as after large summer rain events [28]. There is evidence for endogenous CH₄ production in other CH₄-consuming soils [1, 14, 30]. The concept of endogenous methane production in anaerobic soil microsites of CH₄-consuming soils has explanatory power. Endogenous CH₄ production would make superatmospheric concentrations of CH4 locally available so that headspace CH₄ concentrations do not reflect what is available to soil methanotrophs. This may be why CH₄consuming soils display higher-affinity uptake kinetics [2] than methanotrophic pure cultures [5] or enrichment cultures [10]. Endogenous CH4 production would further explain why atmospheric CH₄ has varying importance in preserving atmospheric CH₄ oxidation [12, 25, 4]. It can also explain why varying quantities of headspace CH₄ are required to stimulate growth of atmospheric CH₄ oxidizers in various soils. In this study, adding 20 to 60 ppm headspace CH₄ for 6 days stimulated atmospheric CH₄ oxidizers (Fig. 2), but in previous studies, atmospheric CH₄ oxidation has not been stimulated by such low CH₄ #### Conclusions concentrations [3, 25]. We demonstrated that anaerobic conditions with elevated H₂ and CO₂ stimulated atmospheric CH₄ oxidation in a dry alpine meadow soil. This effect was prevented by using lumazine to inhibit methanogenesis. These data demonstrate the importance of endogenous CH₄ production in a CH₄-consuming soil. Our current work is using molecular techniques to further elucidate the trophic relationship between methanogens and methanotrophs in these soils. ## Acknowledgments This research was supported by grants R81-9448 and R82-3442-01 from the Environmental Protection Agency. Support was also received from the Biosphere/Atmosphere Research Training Grant (NSF BIR 94 13218). Logistical support was provided by the Niwot Ridge Long-Term Ecological Research project (NSF DEB 92 11776) and the Mountain Research Station (BIR 91 15097). ## References - Andersen BL, Bidoglio G, Leip A, Rembges D (1998) A new method to study simultaneous methane oxidation and methane production in soils. Global Biogeochem Cycles 12:587–594 - . Bender M, Conrad R (1992) Kinetics of $\rm CH_4$ oxidation in oxic soils exposed to ambient air or high $\rm CH_4$ mixing ratios. FEMS Microbiol Ecol 101:261–270 - Bender M, Conrad R (1995) Effects of CH₄ concentrations and soil conditions on the induction of CH₄ oxidation activity. Soil Biol Biochem 12:1517-1527 - Benstead J, King GM (1997) Response of methanotrophic activity in forest soil to methane availability. FEMS Microbiol Ecol 23:333–340 Benstead J, King GM, Williams HG (1998) Methanol pro- - motes atmospheric methane oxidation by methanotrophic cultures and soil. Appl Environ Mcrobiol 64:1091–1098 6. Boetius A, Ravenschiag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Joergensen BB, Witte U, Pfannkuche O - Gieseke A, Amann R, Joergensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626 7. Brewer JH, Allgeier DL (1966) Safe self-contained carbon - Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxi- dioxide-hydrogen anaerobic system. Appl Microbiol 14:985- - dizing bacteria in soil. Nature 405:175–178 Conrad R (1995) Soil microbial processes involved in production and consumption of atmospheric trace gases. In: JG Jones (ed) Advances in Microbial Ecology, vol 14. Plenum - Press, New York, pp 207–250 10. Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ - culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014 11. Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra - communities. Soil Sci Soc Am J 59:1036–1043 12. Gulledge J, Steudler PA, Schimel JP (1998) Effect of CH₄ starvation on atmospheric CH₄ oxidizers in Taiga and - temperate forest soils. Soil Biol Biochem 30:1463–1467 13. Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane - uptake. Appl Environ Microbiol 65:3312–3318 14. Jensen S, Olsen RA (1998) Atmospheric methane consumption in adjacent arable and forest soil systems. Soil Biol Biochem 30:1187–1193 - Jensen S, Oevreaes L, Daae FL, Torsvik V (1998a) Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiol Ecol 26:7–26 - Jensen S, Priemé A, Bakken L (1998b) Methanol improves methane uptake in starved methanotrophic microorganisms. Appl Environ Microbiol 64:1143–1146 - Mast MA, Wickland KP, Striegl RT, Clow DW (1998) Winter fluxes of CO₂ and CH₄ from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem Cycles 12:607-620 - 18. Moore TR, Dalva M (1997) Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–1164 - 19. Nagar-Anthal KR, Worrell VE, Teal R, Nagle DP (1996) The pterin lumazine inhibits growth of methanogens and methane formation. Arch Microbiol 166:136–140 - 20. Pancost RD, Damste JSS, De Lint S, Van der Maarel MJEC, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126-1132 - 21. Potter CS, Davidson EA, Verchot LV (1996) Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32:2219–2246 - 22. Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X (1995) Other trace gases and atmospheric chemistry. In: JT Houghton, LG Meira Filho, J Bruce, H Lee, BA Callander, E Haites, N Harris, K Maskell (eds) Climate Change 1994, - Radiative Forcing of Climate Change and an Evaluation of the IPCCIS92 Emission Scenarios. Cambridge University Press, Cambridge, UK, pp 73–126 - 23. Roslev P, Iversen N, Henriksen K (1997) Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl Environ Microbiol 63:874–880 - 24. Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl Environ Microbiol 65:4064–4070 - 25. Schnell S, King GM (1995) Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiol Ecol 17:285–294 - West AE, Schmidt SK (1998) Wetting stimulates atmospheric CH₄ oxidation by alpine soil. FEMS Microbiol Ecol 25:349–353 - West AE, Schmidt SK (1999) Acetate stimulates atmospheric CH₄ oxidation by an alpine tundra soil. Soil Biol Biochem 31:1649–1655 - 28. West AE, Brooks PD, Fisk MC, Smith LK, Holland EA, Jaeger CH, Babcock S, Lai RS, Schmidt SK (1999) Landscape patterns of CH₄ fluxes in an alpine tundra ecosystem. Biogeochemistry 45:243–264 - 29. Wickland KP, Striegl RG, Schmidt SK, Mast MA (1999) Methane flux in subalpine wetland and unsaturated soils in the Southern Rocky Mountains. Global Biogeochem Cycles 13:101–113 - Yavitt JB, Fahey TJ, Simmons JA (1995) Methane and carbon dioxide dynamics in a northern hardwood ecosystem. Soil Biol Biochem 59:796–804