Eugenio Mercuri Julian He Walter L. Curati Lilly M. S. Dubowitz Frances M. Cowan Graeme M. Bydder

# **Cerebellar infarction and atrophy** in infants and children with a history of premature birth

Received: 24 November 1995 Accepted: 9 September 1996

E. Mercuri · L. M. S. Dubowitz · F. M. Cowan Department of Paediatrics, Hammersmith Hospital, London, UK

J. He · W. L. Curati · G. M. Bydder (💌) The Robert Steiner Magnetic Resonance Unit, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK Abstract Background and objective. We wished to determine the pattern of cerebellar disease in children with a history of premature birth and early ultrasound evidence of intraventricular haemorrhage and/or parenchymal lesions of the cerebral hemispheres. Materials and methods. MRI findings for all premature infants examined in a 3-year period (73 patients) were reviewed to determine the nature and frequency of lesions of the cerebellum and the results were correlated with clinical data. Results. Six cases of unilateral cerebellar infarction were identified. These involved the posterior inferior cerebellar territory in each case (as well as other territories in two cases). A case of generalised cerebellar atrophy and three cases of unilateral cerebellar hemisphere atrophy were identified as well. In nine of these ten cases abnormalities were also seen elsewhere in the brain.

*Conclusion.* The literature describes cerebellar infarction in infants and children as rare, but this study shows that it is not unusual following perinatal haemorrhagic/ischaemic anoxic injury. It is suggested that cerebellar atrophy may also occur as a result of vascular disease.

## Introduction

Cerebellar infarction is regarded as a rare condition in infants and children. The total number of cases described in the English-language literature in 1992 was only 33 [1]. The two largest published series both describe three cases [2, 3]. The aetiology was unknown in about half of the cases. In the other cases, trauma and physical exertion (six cases), congenital vascular and cervical spine anomalies (two cases), sepsis (two cases), dehydration (one case) and migraine (two cases) were implicated. We have retrospectively reviewed all MRI studies performed in infants and children with a history of premature birth at this institution (Hammersmith Hospital) over a 3-year period and identified all those with lesions involving the cerebellum.

## **Materials and methods**

The MRI scans of all infants and children with a history of premature birth between September 1991 and August 1993 (73 patients) were examined and all those with cerebellar abnormalities were reviewed in detail. A detailed neurological assessment including evaluation of posture, tone, power and reflexes, with special attention to cerebellar function, was performed at the time of the MRI scan. All MRI examinations were performed on a 1.0-T HPQ scanner (Picker Ohio, USA). Sequences were: T1-weighted spin echo (SE; TR 620–920/TE 20), T1-weighted inversion recovery (IR; 2500–3500/30/TI 600–950) and T2-weighted SE (2500/20, 80, 120).

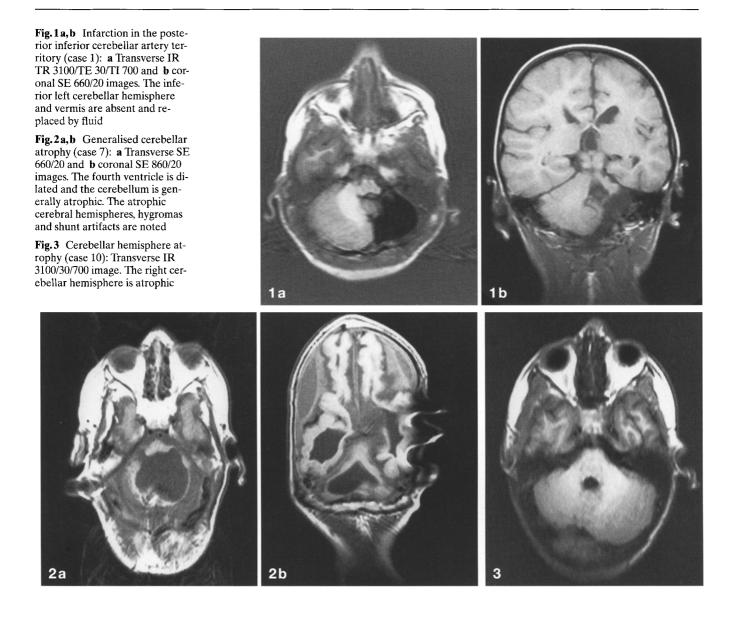
The MRI scans were reviewed by three observers. Infarction was diagnosed when a lesion with a well-defined boundary was present in the distribution of one of the cerebellar arteries while the remainder of the cerebellum was normal. Reference to published studies in adults was used to assign the lesion(s) to a specific cerebellar artery territory [4, 5]. Cerebellar atrophy or hypoplasia was diagnosed when one or both hemispheres or the vermis was decreased in size but the basic configuration of the cerebellum was preserved.

| Case | Gestational age<br>(weeks) | Birth weight (g) | Pregnancy/delivery                                     | Ultrasound                                           | Development                           | Neurological out-<br>come                           |
|------|----------------------------|------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------------------|
| 1    | 24                         | 670              | SVD                                                    | Bilateral IVH, R<br>porencephalic cyst               | Motor delay                           | Ataxia (upper limb<br>> lower), R hemi-<br>plegia   |
| 2    | 33                         | 1190             | ELCS                                                   | LIVH + ? porence-<br>phalic cyst, bilateral<br>PHVD  | Motor and visuo-<br>perceptual delay  | R hemiplegia,<br>epilepsy                           |
| 3    | 25                         | 724              | SVD                                                    | IVH, PHVD (shunt)                                    | Mild global delay                     | Mild hypotonia,<br>ataxia<br>(upper > lower limb)   |
| 4    | 24                         | 602              | Infection, β-haemo-<br>lytic streptococcus/<br>forceps | IVH                                                  | Mild global delay                     | Ataxia                                              |
| 5    | 30                         | 1110             | Hypertension,<br>thrombocytopenia/<br>ELCS             | Bilateral GLH, IVH                                   | Mild delay                            | Mild hypotonia                                      |
| 6    | 28                         | 650              | Oligohydramnios/<br>ELCS                               | Thalamic lesions                                     | Moderate global<br>delay              | Ataxia gait, ocular<br>apraxia, Epilepsy            |
| 7    | 27                         | 1230             | ELCS                                                   | IVH and parenchy-<br>mal PHVD (shunt)<br>involvement | Severe global delay                   | Quadriplegia, optic<br>nerve atrophy, epi-<br>lepsy |
| 8    | 23                         | 630              | Breech                                                 | Bilateral IVH                                        | Moderate global<br>delay              | Increased tone in the legs, brisk reflexes          |
| 9    | 27                         | 1180             | SVD                                                    | IVH + porencepha-<br>lic cyst, PHVD<br>(shunt)       | Motor and visual-<br>perceptual delay | L hemiplegia,<br>epilepsy                           |
| 10   | 26                         | 1028             | SVD                                                    | IVH with parenchy-<br>mal involvement                | Mild motor delay                      | Clumsy child, motor difficulties                    |

 Table 1
 Clinical and US results (ELCS elective low segment caesarian section, GLH germinal layer haemorrhage, IVH intraventricular haemorrhage, L left, PHVD posthaemorrhagic ventricular dilatation, R right, SVD spontaneous vaginal delivery)

#### Results

Discussion


Ten children showing involvement of the cerebellum were identified. The age of the patients at the time of MRI ranged from 7 months to 8 years 10 months. All ten were born at between 23 and 33 weeks, gestational age. Details of clinical history, neonatal ultrasound studies and follow-up are summarised in Tables 1 and 2. Six of the ten patients showed signs of cerebellar infarction. This was identified in the posterior inferior cerebellar artery (PICA) distribution with vermis involvement (medial and lateral) in four cases (Fig. 1) and without vermis involvement (lateral) in another one. One of these patients also had anterior CA involvement. The remaining patient only had evidence of inferior vermis infarction (medial PICA).

Four children showed cerebellar atrophy which was generalised in one case (Fig.2) and unilateral in three (e.g., Fig.3).

Six cases of cerebellar infarction and four cases of cerebellar atrophy were diagnosed on MRI scans from a group of 73 children with a history of premature birth (incidence 8.2%), several of whom had had evidence of parenchymal abnormality suggestive of a haemorrhagic and ischaemic aetiology. One of these patients showed isolated cerebellar involvement, but in all the others imaging abnormalities were found elsewhere in the brain. These predominantly involved the cerebral hemispheres and took the form of ventricular dilatation, porencephalic cysts or periventricular changes. In all but one case intraventricular haemorrhage had been present on neonatal ultrasound. None of the patients in our cohort showed acute onset of cerebellar signs. Clinical signs of cerebellar involvement were found in only four of the six patients with cerebellar infarction and in none of the four patients with cerebellar atrophy. They all showed developmental delay and abnormal neurological outcome.

Previously reported cases of cerebellar infarction generally describe acute presentation in patients without a

| Table 2 | <b>2</b> MRI resu                    | lts (I lateral, m                           | median, PICA                                       | posterior infer                               | MRI results (1 lateral, <i>m</i> median, <i>PICA</i> posterior inferior cerebellar artery) | rtery)                                |                                                                                      |                                                               |                                                                                                                                                                                                               |
|---------|--------------------------------------|---------------------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Case    | Duration<br>of clinical<br>follow-up | Age (cor-<br>rected) at<br>time of MRI      | Cerebellar<br>hemisphere<br>(and side<br>L/R)      | Vermis                                        | Fourth<br>ventricle                                                                        | Brain stem                            | Cerebral<br>hemisphere                                                               | Lateral<br>ventricles                                         | Imaging diagnoses                                                                                                                                                                                             |
| 1       | 5 years                              | 3 years<br>6 months                         | Infarction<br>hemisphere<br>L                      | Infarction<br>inferior                        | Normal                                                                                     | Rotated                               | Porencephalic<br>cyst (L); poren-<br>cephalic cyst,<br>small (R),<br>periventricular | Dilated (L),<br>slightly dilated<br>(R)                       | <ul> <li>Unilateral hemisphere infarct and<br/>vermis (PICA m, l)</li> <li>Bilateral porencephalic cysts</li> <li>Periventricular change (Fig. 1)</li> </ul>                                                  |
| 2       | 2 years                              | 8 years<br>2 months<br>10 years<br>2 months | Infarction<br>hemisphere<br>R                      | Infarction<br>inferior                        | Dilated L,<br>open R                                                                       | Mild walle-<br>rian degene-<br>ration | L fronto-parie-<br>tal porenceph-<br>alic cyst, large                                | Very dilated L,<br>dilated R                                  | <ul> <li>i) Unilateral hemisphere infarct and<br/>vermis</li> <li>ii) Wallerian degeneration on left</li> <li>iii) Large R fronto-parietal infarct</li> <li>iv) Ventricular dilatation PICA (m, l)</li> </ul> |
| σ       | 3 years<br>10 months                 | 2 years<br>8 months                         | Infarction<br>and hemi-<br>sphere me-<br>dial R    | Infarct<br>inferior                           | Dilated on<br>infarct side                                                                 | Normal                                | Cyst, R frontal                                                                      | Dilated, irregu-<br>lar, periventri-<br>cular change,<br>cyst | <ul> <li>i) Unilateral hemisphere and vermis<br/>(PICA m, l)</li> <li>ii) R frontal cyst</li> <li>iii) Periventricular change</li> <li>iv) Ventricular dilatation</li> </ul>                                  |
| 4       | 2 years<br>6 months                  | 9 months                                    | Infarction<br>hemisphere<br>small L                | Infarct<br>inferior                           | Small                                                                                      | Rotated                               | Mild periven-<br>tricular change                                                     | R ventricular,<br>dilated, L slight                           | i) Small left infarct (PICA m, l)<br>ii) R ventricular, dilated                                                                                                                                               |
| Ś       | 1 year<br>6 months                   | 7 months                                    | Infarction<br>R, cerebel-<br>lar hemi-<br>sphere R | Normal                                        | Normal                                                                                     | Normal                                | Small infarction<br>L, parieto-fron-<br>tal                                          | L ventricular,<br>dilated                                     | <ul> <li>i) Unilateral hemisphere infarction<br/>(PICA m)</li> <li>ii) Fronto-parietal infarct</li> <li>iii) Mild ventricular dilatation</li> </ul>                                                           |
| 9       | 6 years                              | 5 years<br>8 months                         | Inferior<br>vermis in-<br>farction                 | Normal                                        | Normal                                                                                     | Normal                                | Normal                                                                               | Normal                                                        | i) vermis infarction (m)                                                                                                                                                                                      |
| 7       | 3 years                              | 3 years                                     | Severe<br>atrophy L<br>and R                       | Severe<br>atrophy<br>superior<br>and inferior | Grossly<br>dilated                                                                         | Moderate<br>atrophy                   | Gross atrophy<br>L and R, hygro-<br>mas                                              | Irregular, en-<br>larged, L and<br>R shunt                    | <ul> <li>i) General atrophy, enlarged fourth<br/>ventricle</li> <li>ii) Brain stem atrophy</li> <li>iii) Hemisphere atrophy, wallerian de-<br/>generation</li> <li>iv) Bilateral hygroma (Fig. 2)</li> </ul>  |
| ×       | 3 years                              | 1 year<br>11 months                         | Moderate<br>atrophy L                              | Normal                                        | Normal                                                                                     | Normal                                | Normal                                                                               | Moderate en-<br>largement L<br>and R                          | <ul> <li>i) Unilateral cerebellar hemiatrophy</li> <li>ii) Moderate lateral ventricular en-<br/>largement</li> </ul>                                                                                          |
| 6       | 10 years                             | 8 years<br>10 months                        | Moderate<br>atrophy L                              | Normal                                        | Small on<br>left                                                                           | Rotated<br>atrophic                   | R severe atro-<br>phy, L slight<br>atrophy                                           | R distorted, L<br>mild distor-<br>tion, shunt                 | <ul> <li>i) Unilateral cerebellar hemiatrophy</li> <li>ii) Severe atrophy R cerebral hemiplegia</li> <li>iii) Wallerian degeneration</li> <li>iv) Shunt</li> </ul>                                            |
| 10      | 8 years<br>3 months                  | 7 years<br>5 months                         | Moderate<br>atrophy R                              | Normal                                        | Normal                                                                                     | Normal                                | Periventricu-<br>lar change                                                          | R moderately<br>dilated, L mild-<br>ly dilated                | i) Unilateral cerebellar hemiatrophy<br>ii) Periventricular change<br>iii) Dilated lateral ventricles (Fig. 3)                                                                                                |



previous history of ischaemic or haemorrhagic disease. A wide range of possible causes are described in these patients, including congenital heart disease, vascular malformations, trauma, infection, migraine, atherosclerosis, hypertension, collagen vascular disorders, metabolic disorders, haemorrhagic disorders, aminoacidurias, hyperlipidaemias, vasculitis, fibromuscular dysplasia and neurocutaneous syndromes [6]. The difference between our findings and those of previous authors reflects the facts that the study group reported here is a relatively new population in the historical sense, that the cerebellar lesions were frequently associated with disease elsewhere in the brain (and therefore may not have been specifically recognised) and that new and more accurate imaging techniques make diagnosis easier.

Cerebellar atrophy also has a wide variety of causes and associations [7], but the very similar histories of the two groups of infants in this series (i.e. those with cerebellar infarction and those with cerebellar atrophy) suggest that vascular events may account for the atrophic change. The unilateral occurrence in three cases and the occurrence of vascular changes elsewhere in the brain also support this hypothesis. It is possible that the atrophic pattern may have resulted from hypoxic ischaemic injury occurring in a form of the circulation more immature than in older infants, with a more general effect on the cerebellum or cerebellar hemisphere. There is one report of the pathological features of cerebellar atrophy in which perinatal vascular disease is emphasized [8]. The authors of this study drew attention to cerebellar sclerosis, in which atrophy and scarring of the cerebellum are combined. The sclerosis typically occurred either in the distribution of cerebellar arteries (or a border zone territory), indicating an ischaemic cause, or, when diffuse, in the gyral depths, suggesting a hypoxic cause. They suggested that perinatal hypoxic is-

chaemic injury is the most important cause of non-progressive sclerotic atrophy of the cerebellum of this type.

#### References

- 1. Rosman NP, Wu JK, Caplan LR (1992) Cerebellar infarction in the young. Stroke 23: 763–766
- Chatkupt S, Epstein LG, Rappaport R, Koenigsberger MR (1987) Cerebellar infarction in children. Pediatr Neurol 3: 363–368
- 3. Ouvrier RA, Hopkins IJ (1970) Occlusive disease of the vertebro-basilar arterial system in childhood. Dev Med Child Neurol 12: 186–192
- 4. Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41: 973– 979
- 5. Barth A, Bogousslavsky J, Regli F (1993) The clinical and topographic spectrum of cerebellar infarcts: a clinical magnetic resonance imaging correlation study. Ann Neurol 33: 451–456
- Riela AR, Roach ES (1993) Etiology of stroke in children. J Child Neurol 8: 201– 220
- Sarnat HB, Alcala H (1980) Human cerebellar hypoplasia. A syndrome of diverse causes. Arch Neurol 37: 300–305
- Rosman NP, Schapiro MB, Wolf PA (1978) Sclerotic atrophy of the cerebellum: a clinicopathological survey. J Neuropathol Exp Neurol 37: 174–191