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Automated semantic labeling of pediatric musculoskeletal
radiographs using deep learning

Paul H. Yi1,2 & Tae Kyung Kim1,2
& Jinchi Wei2 & Jiwon Shin2

& Ferdinand K. Hui1,2 & Haris I. Sair1,2 & Gregory D. Hager2 &

Jan Fritz1,2

Received: 10 January 2019 /Revised: 24 March 2019 /Accepted: 11 April 2019 /Published online: 30 April 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Background An automated method for identifying the anatomical region of an image independent of metadata labels could
improve radiologist workflow (e.g., automated hanging protocols) and help facilitate the automated curation of large medical
imaging data sets for machine learning purposes. Deep learning is a potential tool for this purpose.
Objective To develop and test the performance of deep convolutional neural networks (DCNN) for the automated classification
of pediatric musculoskeletal radiographs by anatomical area.
Materials and methods We utilized a database of 250 pediatric bone radiographs (50 each of the shoulder, elbow, hand, pelvis
and knee) to train 5 DCNNs, one to detect each anatomical region amongst the others, based on ResNet-18 pretrained on
ImageNet (transfer learning). For each DCNN, the radiographs were randomly split into training (64%), validation (12%) and
test (24%) data sets. The training and validation data sets were augmented 30 times using standard preprocessing methods. We
also tested our DCNNs on a separate test set of 100 radiographs from a single institution. Receiver operating characteristics
(ROC) with area under the curve (AUC) were used to evaluate DCNN performances.
Results All five DCNN trained for classification of the radiographs into anatomical region achieved ROCAUC of 1, respectively,
for both test sets. Classification of the test radiographs occurred at a rate of 33 radiographs per s.
Conclusion DCNNs trained on a small set of images with 30 times augmentation through standard processing techniques are able
to automatically classify pediatric musculoskeletal radiographs into anatomical region with near-perfect to perfect accuracy at
superhuman speeds. This concept may apply to other body parts and radiographic views with the potential to create an all-
encompassing semantic-labeling DCNN.
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Introduction

Radiologist workflow in the picture archiving and communica-
tion system (PACS) depends heavily on accurate identification

of image modalities and anatomical areas for various tasks,
including hanging protocols and identifying relevant compari-
son exams. Although the Digital Imaging and Communications
inMedicine (DICOM) format stores metadata, including image
modality and anatomical area, the inclusion of this metadata is
inconsistent, can vary between equipment manufacturers and
can be inaccurate [1]. Inaccurate or variable metadata, such as
from studies from an outside facility, could result in omission of
relevant comparison studies from being automatically recog-
nized, with downstream technical issues; for example, if an
outside facility hand radiograph was not recognized as such
due to inaccurate metadata, the interpreting radiologist’s hang-
ing protocol may erroneously omit this radiograph as a perti-
nent prior examination, and impair the radiologist’s ability to
appropriately compare studies. An automated method for
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identifying the anatomical area of an image independent of
metadata labels could thus improve radiologist workflow, as
well as help facilitate the automated curation of large medical
imaging data sets for machine learning purposes [1].

Deep learning is a machine learning technique that utilizes a
deep convolutional neural network (DCNN) to recognize image
features, and has emerged as a promisingmethod for automated
medical image classification [2, 3]. By loosely modeling the
structure of the brain, DCNNs can effectively teach themselves
the features needed to classify images, given an appropriately
large data set with accurate labels [2–4]. One particular use of
interest for deep learning is for the automated semantic labeling
of images by modality view [1], and anatomical area [2, 5],
thereby obviating the need for often-unreliable metadata labels.
Prior work has demonstrated the ability of DCNNs to automat-
ically distinguish between chest and abdominal radiographs [2],
as well as chest radiograph views (frontal vs. lateral) [1] with
100% accuracy. However, the ability of DCNNs to automati-
cally label pediatric musculoskeletal radiographs by anatomical
region has not been evaluated.

The purposes of our study were to develop and define the
diagnostic performance of DCNNs for the automated classifi-
cation of pediatric musculoskeletal radiographs by anatomical
area. We hypothesized that different DCNNs would have high
diagnostic accuracy to distinguish between five different ana-
tomical regions.

Materials and methods

All images used to develop our DCNNs were part of the pub-
lic domain and obtained through internet search engines, in-
cluding Google (http://www.google.com) and Bing (http://
www.bing.com). We utilized a second data set to test
generalizability of our DCNNs comprised of previously de-
identified radiographs obtained at our institution. All images

were de-identified and compliant with the Health Insurance
Portability and Accountability Act (HIPAA). In accordance
with 45 CFR 46.102(f), our institutional review board ap-
proved this study and did not require informed consent Our
study was compliant with HIPAA. All images were de-
identified.

Data sets

To develop our DCNNs, we used 250 radiographs, which
were separated into 5 data sets, each consisting of 50 radio-
graphs of the anteroposterior (AP) shoulder, lateral elbow,
posteroanterior (PA) hand, AP pelvis and AP knee, respective-
ly, performed in pediatric patients. These radiographs were of
patients of varying ages, ranging from newborn to 17 years
old. The image quality was considered diagnostic or near-di-
agnostic, although there were some projectional differences;
two representative elbow radiographs are presented in Fig. 1,
where the first radiograph shows a well-positioned lateral el-
bow radiograph and the second shows one with a large
amount of internal rotation.

We also curated a second data set comprised of 20 radio-
graphs each of the above 5 anatomical areas obtained from our
institution as a clinical test set for our DCNNs spanning ages
newborn to 17 years old (100 total test images).

Ground truth was established by two observers, including a
board-certified musculoskeletal radiologist (J.F., with 6 years
of experience) and a second-year radiology resident with
2 years of orthopedic surgery residency training (P.H.Y.).

Computer hardware and software specifications

All images were saved in the Portable Network Graphics
(PNG) format, resized to a 256×256 matrix, and loaded onto
a personal computer with a Linux operating system. The com-
puter was equipped with a Core i5 central processing unit

Fig. 1 Representative lateral
elbow radiographs demonstrate
the elbow well-positioned (a) and
with a large degree of internal
rotation (b)
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(CPU) (Intel Corporation, Santa Clara, CA), 8 GB RAM and a
GeForce GTX 1050 graphics processing unit (GPU) (Nvidia
Corporation, Santa Clara, CA). This computer was connected
remotely to a computing facility with CPU and GPU nodes
utilizing a dual-socket 14-core 2.6 GHz CPU (Intel), 128 GB
RAM, and 2-T K80 GPUs (Nvidia Corporation), respectively.
All computing work was performed using 6 CPU nodes and 1
GPU node. All computer programming activity was per-
formed using the PyTorch deep learning framework (Version
0.3.1, https://pytorch.org).

Deep learning system development

A DCNN is a complex computational model that uses multiple
algorithm layers to create high-level interpretations of data (e.g.,
classifying images), as opposed to performing single, specific
tasks (e.g., detecting a line or an edge on an image) [1, 2]. In
developing our deep learning system, we utilized the ResNet-
18 DCNN pretrained on 1.2 million color images of everyday
objects (1,000 categories) from ImageNet (http://www.image-
net.org/) before training on the images. The last linear layer of
the pretrained ResNet-18 DCNN was redefined to have 2 out-
puts instead of the default 1,000. During the training and vali-
dation parts of our study, all model parameters were fine-tuned
using our data set. This “transfer learning” technique [1, 2]
allowed for modification of established (“pretrained”) neural
network architectures to be optimized for classification of novel
data sets not used in training of the original network, which can
result in superior performance in medical image classification
compared to those without pretraining [2]. The solver parame-
ters used for our DCNN training were 49 epochs, stochastic
gradient descent with a learning rate of 0.001, momentum of
0.9 and weight decay of 1×105.

Five separate DCNNs were developed, one to detect each
anatomical region. For each DCNN, the 250-image data set
was divided into training (64% of total data set; 160 images
[20 for region of interest, 140 others]), validation (12% of total
data set; 30 images [10 for region of interest, 20 others]), and
testing (24% of total data set; 60 images [20 for region of
interest, 40 others]) sets. The training and validation data sets
were augmented by standard techniques, including random
cropping, randomly flipping and random rotations (between
30 and 330 degrees) and affine transformations [2], ultimately
resulting in a 30 times image augmentation, which has been
shown to improve DCNN performance, especially when using
small data sets [2]. No augmentation was performed for the
testing data sets. We subsequently tested each DCNN on a
clinical test set of radiographs obtained at our institution as
part of clinical practice to evaluate external generalizability.

To identify the distinguishing features of each radiograph
that the DCNN used to classify each image, we created heat
maps through class activation mapping [6], a technique that
visually highlights the importance of various parts of an image

in the classification decision through different colors. Red
signifies the increasing importance of an image feature in
the decision rendered by a DCNN.

Statistical analysis

Statistical analyses were performed using VassarStats
(http://vassarstats.net). For each DCNN testing data set,
receiver operating characteristics (ROC) with area under
the curve (AUC) were generated to define test accuracy
(0.9–1=excellent, 0.8–0.9=good, 0.7–0.8=fair, 0.6–0.7=
poor, 0.5–0.6=fail). Optimal diagnostic thresholds deter-
mined with the aid of Youden J-statistics were used to
calculate test sensitivity and specificity. The DeLong
non-parametric method was used to statistically compare
performance parameters of the DCNN. P-values of 0.05
and less were considered statistically significant.

Results

All 5 DCNNs trained to classify the radiographs into anatom-
ical region achieved AUC ROCs of 1, with sensitivity of
100% and specificity of 100% for all. There was no significant
difference in AUC ROC between any of the DCNNs (P=1 for
all pair-wise comparisons of different DCNNS). At optimal
diagnostic thresholds, sensitivity and specificity were 100%
for all DCNNs. Classification of the test radiographs occurred
at a rate of 33 radiographs per s.

On the clinical test set of 100 radiographs obtained at our
institution, all 5 DCNNs once again achieved AUC ROCs of
1, with sensitivity and specificity of 100% for all, and un-
changed radiograph classification rate of 33 images per s.

Heat maps of the radiographs of both test sets demonstrated
that the DCNNs emphasized unique anatomical features of each
osseous anatomical region. For example, the flaring of the distal
femur metadiaphysis was emphasized to identify the knee, the
sacrum was emphasized to identify the pelvis and the
antecubital fossa was emphasized to identify the elbow (Fig. 2).

Discussion

We demonstrate that DCNN trained on a small set of images
with 30 times augmentation through standard computer pro-
cessing techniques are able to automatically classify pediatric
musculoskeletal radiographs into the anatomical region with
perfect accuracy at superhuman speeds. As current methods
for semantic labeling through metadata are often unreliable,
this technique could contribute to reliable automatic semantic
labeling of medical images, radiologist workflow optimiza-
tion in the PACS, and curating large data sets for machine
learning purposes.
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Our DCNNs demonstrated AUCs of 1 for all five muscu-
loskeletal anatomical regions, despite using small data sets,
and were externally valid on data from our institution. By
applying standard image augmentation techniques and in-
creasing our testing and validation data set size by 30-fold,
as well as by utilizing transfer learning, we have confirmed the
efficacy of this approach to develop high-performing DCNN
for semantic labeling, previously used to develop DCNNwith
100% accuracy for labeling radiographs of the chest and ab-
domen [2], as well as frontal and lateral chest radiographs [1].
Interestingly, Lakhani et al. [2] previously demonstrated that
45 chest and 45 abdominal radiographs with similar augmen-
tation technique were sufficient to train a DCNN to distin-
guish the two anatomical regions. Our results are in accor-
dance with those prior results in that 50 images per anatomical
region with augmentation were sufficient for training.

In addition to excellent-to-perfect accuracy of our DCNN
for semantic labeling of pediatric musculoskeletal radiographs
by anatomical region, the DCNN demonstrated image classi-
fication at superhuman speeds with 33 radiographs per s,
which is similar to 38 radiographs per s for chest radiograph

view classification [1]. Although classification speed would
likely vary based on particular computer hardware specifica-
tions, our computer hardware specifications are similar to
those utilized in prior studies [2, 5]. We note that comparison
of our results with Rajkomar et al. [1] is limited due to the lack
of reporting of their computer hardware specifications.
Nevertheless, the rapid rate of image classification demon-
strated in our study and others suggest that DCNN not only
can provide accurate semantic labeling of medical imaging,
but can do so at rates that exceed human capabilities, and
which may facilitate rapid curation of large medical image
databases for machine learning purposes, as well as for
PACS workflow optimization.

Interestingly, the heat maps in our study reliably demon-
strated appropriate identification of unique anatomical fea-
tures of each bony region. For example, flaring of the distal
femur metadiaphysis was consistently focused on to identify
the knee, which is consistent with intuition and common ap-
proaches utilized by human radiologists. It is also interesting
to note that the heat maps focused on the central portions of
the images, e.g., the sacrum in the pelvis, which may suggest

Fig. 2 Deep convolutional neural
networks (DCNNs) correctly
identify an anteroposterior knee
(a), AP pelvis (b) and lateral
elbow (c) in radiographs with heat
maps demonstrating the
algorithm that utilizes the imaging
features (arrows) of the distal
femoral metadiaphyseal flaring,
sacrum, and antecubital fossa,
respectively, to make the correct
classification. Red signifies the
increasing importance of an
image feature in the decision
rendered by a DCNN
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that larger, more central features of a specific anatomical re-
gion are easier for a DCNN to detect than smaller, more pe-
ripheral ones.

Our study has limitations. First, our sample sizes were
small, theoretically limiting DCNN performance and intro-
ducing the possibility of overfitting. However, because the
images in our database came from a heterogeneous group of
sources, this increased the diversity of images available for
DCNN training. Our DCNNs demonstrated no loss in perfor-
mance when tested on data from our own institution, and our
heat map analysis demonstrated appropriate and consistent
focus on unique anatomical features for a given joint.
Additionally, we attempted to account for these small sample
sizes through standard data augmentation methods to increase
the total number of images and diversity of imaging presenta-
tions. Furthermore, as these images were obtained from the
internet, which is in accordance with the technique that the
ImageNet database used to pretrain DCNN [2, 3, 5, 7, 8], they
were of lower resolution than would be expected for images
obtained from an institutional PACS in DICOM format, and
differences in technique and modality utilized to acquire im-
ages is unknown, which could potentially have an impact on
model performance. Accordingly, training a DCNN to classify
images using these lower-resolution images would be expect-
ed to be a more difficult task than using higher-resolution
images, which suggests that better results could be obtained
using PACS-derived DICOM images, perhaps with even few-
er images than we used. Nevertheless, the approach of using
internet-derived images is, in fact, the same approach used to
create the ImageNet database, which is the current standard of
reference for image classification DCNNs and the dominant
database currently used for DCNN pretraining. Second, we
only included five osseous anatomical regions with five radio-
graphic views because we sought to develop a proof-of-
concept of deep learning networks toward musculoskeletal
anatomical classification spanning the upper and lower ex-
tremities. Subsequent studies will be required to test the ability
of the DCNN to identify other bony regions and radiographic
views, especially anatomical regions that are different, but
similar, such as the femur and tibia. Third, we utilized a single
DCNN only, as opposed to multiple DCNNs used in prior
studies [2]. Other DCNN architectures may have higher per-
formance, which is a topic for future study. Fourth, we are
unable to determine precisely how a deep learning system
makes a diagnosis, raising concerns that a deep learning sys-
tem may function as a “black box.” Nevertheless, visualiza-
tion techniques such as class activation mapping [6], which
creates visual heat maps for distinguishing features of images
used by DCNN for classification decisions, may facilitate fur-
ther understanding of the mathematical modeling of classifi-
cation performed by DCNNs. Finally, despite the high

performance of our DCNNs, our study represents a mere
proof-of-concept, which requires further fine-tuning and pro-
spective clinical validation, as well as expansion to other an-
atomical regions and radiographic views.

Conclusion

In conclusion, DCNN have good-to-perfect accuracy for au-
tomatically classifying pediatric musculoskeletal radiographs
into the anatomical region at superhuman speeds, which may
enhance radiologist workflow, as well as facilitate rapid
curation of large medical imaging databases for machine
learning purposes. The proof-of-concept from our work may
apply to other body parts and radiographic views to create an
all-encompassing semantic labeling DCNN, although further
fine-tuning and clinical validation are required.
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