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Abstract

Background Differentiation of benign from malignant lymphadenopathy remains challenging in pediatric radiology. Textural
analysis (TA) quantitates heterogeneity of tissue signal intensities and has been applied to analysis of CT images.

Objective The purpose of this study was to establish whether CT textural analysis of enlarged lymph nodes visualized on
pediatric CT can distinguish benign from malignant lymphadenopathy.

Materials and methods We retrospectively identified enlarged lymph nodes measuring 10-20 mm on contrast-enhanced CTs of
patients age 18 years and younger that had been categorized as benign or malignant based on the known diagnoses. We placed
regions of interest (ROIs) over lymph nodes of interest and performed textural analysis with and without feature size filtration.
We then calculated test performance characteristics for TA features, along with multivariate logistic regression modeling using
Akaike Information Criterion (AIC) minimization, to determine the optimal thresholds for distinguishing benign from malignant
lymphadenopathy.

Results We identified 34 enlarged malignant nodes and 29 benign nodes from 63 patients within the 10- to 20-mm size range.
Filtered image TA exhibited 82.4% sensitivity, 86.2% specificity and 84.1% accuracy for detecting malignant lymph nodes using
mean and entropy parameters, whereas unfiltered TA exhibited 88.2% sensitivity, 72.4% specificity and 81.0% accuracy using
mean and mean value of positive pixels parameters.

Conclusion This preliminary study demonstrates that the use of TA features improves the utility of pediatric CT to distinguish
benign from malignant lymphadenopathy. The addition of TA to pediatric CT protocols has great potential to aid the characterization
of indeterminate lymph nodes. If definitive differentiation between benign and malignant lymphadenopathy is possible by TA, it has
the potential to reduce the need for follow-up imaging and tissue sampling, with reduced associated radiation exposure. However
future studies are needed to confirm the clinical applicability of TA in distinguishing benign from malignant lymphadenopathy.
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Introduction especially challenging problem in children, who are suscepti-

ble to a wide range of infections associated with lymphade-

Noninvasive differentiation of benign and malignant lymph-
adenopathy remains a challenge. Given the significant overlap
in size and morphology between benign and malignant lymph
nodes [1, 2], standard anatomical imaging modalities such as
CT, MRI and ultrasound (US) have demonstrated limited ac-
curacy in lymph node characterization [1, 3, 4]. This is an
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nopathy that can persist over weeks and months. While sev-
eral algorithms for the evaluation of children with lymphade-
nopathy have been published [5-7], the definitive manage-
ment of children with unexplained lymphadenopathy has not
been established. Serial imaging with ultrasound and CT is
often performed, but the frequency of imaging and duration
of persistent lymphadenopathy necessitating further workup
can vary significantly. Biopsy provides definitive diagnosis
but is invasive and often requires surgical excision under se-
dation or general anesthesia for adequate sampling in the
pediatric population. Molecular imaging techniques such as
¥F_2-fluoro-2-deoxyglucose positron emission tomography
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("®F-FDG PET) can be used to identify malignant lymphade-
nopathy and sites of primary malignancy [8—10]. However,
concerns regarding ionizing radiation exposure, financial cost
and need for sedation associated with '*F-FDG PET imaging
in children all preclude its routine use in pediatric patients with
lymphadenopathy [1, 11].

In this population, an important goal is to identify imaging
features beyond size that can discriminate benign from malig-
nant lymph nodes on routine CT images. Textural analysis
(TA) is a post-processing technique that can be applied to
diagnostic images to quantify heterogeneity of individual vox-
el signal intensities within tissues or organs of interest [12].
The distribution of these signal intensity values can be asso-
ciated with specific microscopic disease processes and identi-
fy features beyond radiologist visual inspection [12, 13]. TA
has been applied to CT and MR images of a variety of tissues
to help differentiate benign from malignant processes and pre-
dict lesion treatment response, but these applications have
been limited to adult cohorts [14—18].

The purpose of this study was to establish whether
TA of enlarged lymph nodes on contrast-enhanced CT
images in pediatric patients can distinguish benign from
malignant lymphadenopathy.

Materials and methods
Patients and imaging

Our institutional review board approved this single-institution
retrospective query of a radiology report database to identify
pediatric patients 18 years of age and younger who had un-
dergone CT imaging of the neck, chest, abdomen or pelvis
between 2006 and 2016. Only studies performed with intra-
venous contrast agent were included. We reviewed CT reports
to identify studies in which at least one enlarged lymph node
measuring 10-20 mm (mm) in maximum short-axis diameter
was present. We then reviewed the electronic medical records
of all patients and determined the underlying cause of lymph-
adenopathy based on provider notes and clinical data.
Malignant diagnoses were based on histology from pre-
vious biopsy or surgical resection. Lymphadenopathy was
considered malignant in cases where lymph node biopsy
or resection demonstrated the presence of tumor cells by
pathology report. In patients with histology-proven malig-
nancy, enlarged lymph nodes without histological diagno-
sis were also considered malignant if they (1) demonstrat-
ed high avidity by '®F-FDG PET or iodine-123
metaiodobenzylguanidine (MIBG) scintigraphy that was
similar in intensity to the primary malignancy, and (2)
decreased in size following systemic cancer therapy. All
malignant lymph nodes were selected and measured on
CT scans performed prior to therapy initiation. Lymph
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nodes were classified as benign if the lymphadenopathy
was present in the context of confirmed inflammatory
bowel disease (IBD) or acute appendicitis based on endo-
scopic mucosal bowel biopsy or surgical appendectomy,
respectively. To exclude malignancy in these patients, we
obtained clinical follow-up for at least 12 months (mean
duration 30.8 months) after imaging to ensure that malig-
nancy was not subsequently diagnosed and did not ac-
count for the lymphadenopathy.

All CT images were acquired on a 16- or 64-slice
multidetector CT scanner (LightSpeed; GE Healthcare,
Waukesha, WI) following administration of intravenous
contrast agent. Five-millimeter slice thickness was used
for all studies. CT dose parameters were based on a pre-
viously published standard institutional pediatric low-dose
algorithm based on patient size and indication [19], with
statistical iterative reconstruction applied (adaptive statisti-
cal iterative reconstruction, GE Healthcare).

Lymph node selection and textural analysis

Fellowship-trained body radiologists (A.M.C., abdominal
imaging fellow; A.K., 2 years of post-fellowship expe-
rience; S.M., 5 years of post-fellowship experience;
A.T., 4 years of post-qualification experience) reviewed
CT images and identified lymph nodes measuring 10—
20 mm in maximum short-axis dimensions based on the
original radiology report and confirmed by the axial
image containing the widest lymph node diameter. We
then manually placed a single region of interest (ROI)
contouring the periphery of the lymph node. We per-
formed lymph node selection and ROI placement in a
blinded fashion with respect to lymph node final
diagnosis.

TA was performed on the identified lymph nodes on
12-bit images (4,096 gray levels) using TexRAD
(Feedback Medical, Cambridge, UK), a commercially
available software program utilized in previous TA stud-
ies [18, 20-22]. TA was performed for each lymph node
both with and without image filtration by a spatial
band-pass filter that extracts and enhances characteristics
of varying sizes and intensity differences (spatial scale
filter; SSF) [18, 21, 23-25]. Histograms of intensity
values for each node were then quantitatively analyzed
for various TA features including mean (average value
of the pixels within the ROI), standard deviation (SD: a
measure of how much variation or dispersion exists
from the mean), entropy (a measure of irregularity),
mean value of positive pixels (MPP: average value of
all pixels with positive values), skewness (a measure of
the symmetry of the histogram) and kurtosis (a measure
of the peakedness of the histogram) [24-26].
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Statistical analysis

We performed the Student’s #-test to determine significance of
differences between continuous variables. We also performed
bivariate logistic regression modeling to identify texture fea-
tures associated with malignancy, with chi-square evaluation
of the Wald Z-statistic used to assess statistical significance of
predictors. Stepwise logistic regression analysis was also per-
formed with optimal model selection based on Akaike
Information Criterion (AIC) minimization. The AIC is an
established estimator of the relative quality of statistical
models for a given set of data, with AIC minimization
reflecting minimal loss of information associated with a given
model and thus higher model quality [27].

Receiver operator characteristic (ROC) analysis of log like-
lihood ratios for the variables in the optimal regression model
was then used to determine the optimum threshold values for
distinguishing benign and malignant lymph nodes, with test
performance characteristics calculated for different threshold
values. We then applied the McNemar test to allow for

Table 1

comparison of the sensitivity, specificity and accuracy of TA
in distinguishing benign from malignant lymphadenopathy
when compared to the use of lymph node attenuation as the
determinant. For all statistical tests, P<0.05 was considered
significant. All statistical analysis was performed using Stata
version 13 (StataCorp, College Station, TX).

Results

We identified a total of 63 CTs demonstrating lymphadenop-
athy and sufficient clinical data for categorization during
the study period, including 34 patients with malignant
lymph nodes and 29 patients with benign lymph nodes
(secondary to appendicitis or inflammatory bowel dis-
ease). Mediastinum and retroperitoneum were the most
common sites for malignant lymphadenopathy in this
study cohort (7 cases each), while mesenteric lymphade-
nopathy constituted a significant majority of the cases
of benign lymphadenopathy (19 cases). The overall

Demographics of study patients, including gender, age at CT acquisition, location of lymphadenopathy and underlying primary diagnosis

Malignant Benign

Number of patients (1)

Mean age at diagnosis (years+SD)
Gender Male:female (%)
Lymph node location Mediastinal
Retroperitoneal
Portocaval

Pelvic

Gastrohepatic

Cervical

Supraclavicular

Iliac

Mesenteric

Retrocrural

Inguinal

Hodgkin lymphoma
Non-Hodgkin lymphoma

Diagnosis

Malignant melanoma
Fibrolamellar HCC
Neuroblastoma
Hepatoblastoma
Adenocarcinoma NOS
Osteosarcoma

Embryonal carcinoma
Alveolar rhabdomyosarcoma
Ewing sarcoma
ALL/lymphoma

34 29
12.445.6 12.144.1
20:14 (59:41) 20:9 (69:31)

LW O O O O O N O
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[
]
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Acute appendicitis 18
Crohn disease 9
Indeterminate colitis 1

Indeterminate enteritis 1

—_ N —m k= = Oy N —

ALL acute lymphoblastic leukemia, HCC hepatocellular carcinoma, NOS not otherwise specified, SD standard deviation
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Fig. 1 Axial contrast-enhanced a
CT images show examples of
benign (a, right inguinal
lymphadenopathy in a 9-year-old
boy with Crohn disease) and
malignant (b, left cervical
lymphadenopathy in a 10-year-
old boy with Hodgkin
lymphoma) lymphadenopathy
with regions of interest (ROI)
applied using TexRAD to allow
calculation of texture
quantification parameters with
and without the use of a 2-mm

filter. MPP mean value of positive
pixels, SD standard deviation
Unfiltered
2 mm Filtration

b

IMAGE FILTRATION

TEXTURE QUANTIFICATION PARAMETERS

Mean SD Entropy MPP Skewness Kurtosis
106.33 16.02 3.94 106.33  0.07 -0.12
-3.38 48.2 4.22 44.13 0.37 -0.57

IMAGE FILTRATION

Unfiltered
2 mm Filtration

study cohort comprised 40 males and 23 females, with
average ages of 12.4 years and 12.1 years at the time of
CT acquisition in the malignant and benign groups, re-
spectively. Patient demographics and underlying diagno-
ses are summarized in Table 1. Mean follow-up of the
patients in the benign group was 30.8 months.

Each lymph node had TA performed on the primary
unfiltered image as well as the image after 2-mm spatial
scaling filtering (SSF2) to highlight clustered features
(Fig. 1). The SSF2 filter performed best among the dif-
ferent filter settings in distinguishing benign from ma-
lignant lymphadenopathy (SSF1-6; other data not
shown). Malignant and benign lymph nodes demonstrat-
ed significantly different TA parameters of mean, SD,
MPP and skewness on the unfiltered image data and
significantly different TA parameters of mean, entropy,
MPP and skewness on the filtered image data (Table 2).

We then performed bivariate regression analysis on
these TA variables individually as predictors of lymph
node malignancy. Several TA variables (mean, SD, MPP
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TEXTURE QUANTIFICATION PARAMETERS

Mean SD Entropy. MPP Skewness  Kurtosis
71.86 6.91 3.32 71.86 -0.31 0.18
0.36 17.96 4.2 13.63 -0.45 0.09

and skewness) individually are significant predictors of
lymph node malignancy based on unfiltered image data,
while mean, entropy and skewness are significant pre-
dictors based on filtered image data (Table 3). Stepwise
logistic regression was then performed on TA features
in aggregate (Table 3) to identify the best predictive
model of lymph node malignancy based on AIC mini-
mization. A model including mean and MPP values per-
formed best for the unfiltered image data (Goodness of
Fit C-statistic AUC of 0.875), while a model including
the TA features of mean and entropy performed best
based on the filtered image data (C-statistic AUC of
0.907).

We then calculated optimum threshold values for defining
malignancy from the logistic regression models using receiver
operating characteristic analysis of log likelihood ratios
(LLRs) for the TA variables in each model (Table 4). With
these threshold values (LLR>—0.03 for unfiltered image data;
LLR>0.73 for filtered image data), the unfiltered image data
analysis exhibited 88.2% sensitivity, 72.4% specificity and
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Table4  Optimum threshold values for defining malignancy derived from the logistic regression models using receiver operating characteristic analysis
of log likelihood ratios (LLRs) for the textural analysis variables in each model

Image filtration

LLR variable 1 LLR variable 2

Constant Threshold

Sensitivity Specificity Correctly classified McNemar test

With textural analysis

Unfiltered 0.35 x mean (—=0.44) x MPP
2-mm filtration (—0.11) x mean 2.23 x entropy

Without textural analysis®
Unfiltered (Mean HU)
Positive predictive value

With textural analysis

Unfiltered 78.9%

2-mm filtration 87.5%

Without textural analysis®

Unfiltered (mean HU) 55.7%

7.38 >—0.03
—8.59 >0.73
>29.8

Negative predictive value

84.0%
80.6%

0.0%

88.2% 72.4%
82.4% 86.2%

100%

6.9%

81.0% 0.022
84.1% 0.016
57.1%

HU Hounsfield units

# The optimum Hounsfield unit (HU) attenuation value threshold, without textural analysis, for determining lymph node malignancy was established to
allow comparison with textural analysis performance, with textural analysis demonstrating superior specificity and accuracy

® Positive and negative predictive values for analyses with and without textural analysis are included

Fig. 2 Sample application of
textural analysis in cases of
benign and malignant
lymphadenopathy on axial
contrast-enhanced CT images.
Right paratracheal
lymphadenopathy in a 10-year-
old boy (a) and portocaval
lymphadenopathy in a 14-year-
old girl (b), both with Hodgkin
lymphoma. Mesenteric
lymphadenopathy in a 7-year-old
boy (c¢) and a 6-year-old girl (d),
both with acute appendicitis. A
Hounsfield unit (HU) value of
79.2 was the threshold used when
textural analysis (TA) was applied
to distinguish benign from
malignant lymphadenopathy. FN
false negative, FP false positive,
TN true negative, TP true positive
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Mean HU

64.43

Mean HU Test Performance

Unfiltered TA

Filtered TA

Mean HU Test Performance

Unfiltered TA

Mean HU

93.22

Mean HU Test Performance

Unfiltered TA

Filtered TA

Mean HU Test Performance

Unfiltered TA
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81.0% accuracy (percentage correctly classified) for detecting
malignant lymph nodes. Filtered image data analysis exhibit-
ed 82.4% sensitivity, 86.2% specificity and 84.1% accuracy
for detecting malignant lymph nodes.

Finally, we compared the performance of CT textural anal-
ysis to the performance of mean lymph node Hounsfield unit
(HU) attenuation value without TA for determining lymph
node malignancy. Based on ROC analysis of the unfiltered
lymph node data, the optimum CT attenuation threshold for
detecting malignancy was a mean HU threshold greater than
29.8, which yielded 100% sensitivity, 6.9% specificity and
57.1% accuracy (Table 4). The specificity and accuracy per-
formance of the TA-derived threshold values, both based on
the unfiltered and filtered image data, were both statistically
superior to the non-TA-based attenuation threshold (P<0.05,
McNemar test, Table 4). To illustrate the varying outcomes,
individual cases assessed using mean lymph node HU alone,
which demonstrate true-positive, true-negative, false-positive
and false-negative results compared to tissue diagnosis, are
shown in Fig. 2.

Discussion

Accurate characterization and management of lymphadenop-
athy in children is challenging because distinguishing benign
from malignant lymph nodes cannot be reliably achieved
using size criteria [28-30]. Other non-size-based imaging
techniques have been applied to lymph node characterization,
with '"*F-FDG PET being the most widely used imaging tech-
nique [31, 32]. However, '®F-FDG PET cost and ionizing
radiation limit its routine use in children and in clinical prac-
tice, and it is therefore typically reserved for children with
established malignancy. This study evaluates CT textural anal-
ysis as a novel tool to differentiate benign from malignant
lymph nodes in pediatric patients, a tool that has not been
explored previously in the published literature. Advantages
of this technique include the fact that CT is routinely used in
pediatric patients to assess distribution of lymphadenopathy
initially detected by US or physical exam. Recent technology
advances have made CT imaging fast enough to be performed
in almost all children awake without the need for sedation. We
restricted our analysis to lymph nodes between 10 mm and
20 mm in short-axis diameter, which is a size range that rep-
resents lymphadenopathy that is indeterminate for malignancy
based on size alone. Also, recent hardware and image recon-
struction innovations have led to substantial reduction in CT
ionizing radiation doses in children [33]. Part of this dose
reduction involves the use of iterative reconstruction algo-
rithms to restore diagnostic image quality in low-dose image
datasets. It is known that the iterative reconstruction algorithm
used can impact textural analysis [33, 34]. In our study, we
limited CT studies to images reconstructed with statistical-

based reconstruction algorithms, to minimize this variation.
TA was also performed on images of a uniform thickness
(5 mm).

Our results indicate that TA can achieve a sensitivity and
specificity of 88.2% and 72.4%, respectively, in the absence of
a filter, and 82.4% and 86.2%, respectively, with additional
image filtration, for lymph node categorization in a pediatric
population, significantly improving the performance of CT.
Because CT textural analysis examines patterns of signal inten-
sity on a per-voxel basis, it can extract imaging features regard-
ing the distribution of voxel signal intensities within a lymph
node that are beyond radiologist visual image interpretation.
Similarly, CT textural analysis can also highlight clustering of
voxel signal intensities through spatial scaling filtration. The
use of both CT textural analysis filtering and heterogeneity
analysis resulted in improved performance of lymph node char-
acterization compared with mean attenuation values alone.
Stepwise logistic regression demonstrated that decreased
MPP and increased entropy are TA features that combine with
lower mean HU attenuation to best model lymph node malig-
nancy. Our results suggest that tumor cell replacement of lymph
nodes leads to both reduced and more heterogeneous enhance-
ment compared with benign reactive lymph nodes.

This improved ability to exclude malignancy in children
with lymphadenopathy could reduce the need for additional
imaging tests and biopsies to follow enlarged lymph nodes if
further clinical application of TA is shown to be practical. This
is particularly relevant in young children who could be spared
the ionizing radiation dose associated with '"*F-FDG PET as
well as potential complications associated with percutaneous
or surgical biopsy. One potential implication for our study is a
new role for artificial intelligence in the evaluation of lymph
nodes seen on CT. We believe that our results provide valida-
tion for the use of artificial intelligence in lymph node char-
acterization that would augment radiologist interpretation of
CT examinations.

Our study has limitations, including its retrospective nature
as well as the relatively small numbers of lymph nodes includ-
ed. We specifically only included lymph nodes within a size
range that was indeterminate for malignancy (10-20 mm max-
imum short-axis diameter) and had a clearly defined diagnosis
of benignity or malignancy, which led us to exclude many
lymph nodes from consideration. Lymph nodes of this size
were selected because they were thought to represent the
greatest diagnostic challenge given the significant overlap be-
tween malignant and benign etiologies in this range. We note
that the anatomical distribution of benign lymph nodes (all
within the abdomen) was more limited compared with the
malignant lymph node cohort (7/34 mediastinal). This was a
result of our selection of two abdominal diseases (acute ap-
pendicitis and IBD) associated with lymphadenopathy as the
source of benign lymph nodes. Given that no significant dif-
ference in TA features was observed between the mediastinal
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and retroperitoneal nodes in the malignant group, we do not
believe that anatomical location significantly impacts TA re-
sults. We also acknowledge that not all lymph nodes had his-
tological confirmation of diagnosis, particularly in the benign
lymph node group. We intentionally chose appendicitis and
IBD cases because of their high incidence of benign lymph-
adenopathy. There is a small risk of bowel adenocarcinoma in
people with IBD, primarily in adults [34], but none of the
children with IBD in our cohort demonstrated bowel malig-
nancy on follow-up. In more challenging scenarios, such as
children with known malignancy and concomitant infectious/
inflammatory conditions, we believe TA would be beneficial
but this would require future investigation. Finally, we per-
formed textural analysis of lymph nodes based on a single
manually segmented ROI without blinding of the study par-
ticipants. Future studies with volumetric analysis tools are
needed to perform TA of lymph nodes in their entirety. In
addition, the financial costs and added time associated with
routine implementation of CT textural analysis have not been
considered.

Conclusion

This study demonstrates the ability of textural analysis to dis-
tinguish benign from malignant lymphadenopathy on CT im-
aging in children. If shown to be clinically applicable, this has
the potential to reduce the need for serial follow-up imaging
and tissue sampling. The addition of textural analysis to pedi-
atric CT protocols could ultimately aid in the characterization
of indeterminate lymph nodes incidentally detected on imag-
ing. However future studies are needed to confirm the clinical
applicability of TA in distinguishing benign from malignant
lymphadenopathy.
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