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Abstract
Ejection fraction (EF) and fractional shortening (FS) are standard methods of quantifying left ventricular (LV) systolic func-
tion. 2D global longitudinal strain (2D GLS) is a well-established, but underutilized method for LV function quantification. 
The aim of this study was to assess precision of GLS compared to EF & FS in pediatrics. Echocardiograms were prospectively 
analyzed by 2 blinded observers. FS, EF, and GLS were calculated following standard methods. Bland–Altman was applied 
to assess agreement. Intraclass correlation coefficient (ICC) was used to measure reliability. Coefficient of variation was used 
to demonstrate relative variability between methods. 103 pediatric echos were evaluated for inter-observer reproducibility, 
and 15 patients for intra-observer reproducibility. GLS had higher inter-observer agreement and reliability (bias 7%, 95% 
LOA − 3.4 to + 3.5, ICC 0.86 CI 0.80–0.90) compared to EF (bias 27%, 95% LOA − 18.9 to + 19.5; ICC 0.25 CI 0.07–0.43) 
and FS (bias 12%, 95% LOA − 11.9 to + 12.2; ICC 0.53 CI 0.38–0.66). GLS also had higher intra-observer agreement (bias 
4%, 95% LOA − 3.6 to + 3.7; ICC 0.87 CI 0.66–0.96) compared to EF (bias 11%, 95% LOA − 14.9 to + 15.1; ICC 0.26 CI 
−  0.28–0.67) and FS (bias 12%, 95% LOA − 12.2 to + 12.5; ICC 0.38 CI − 0.15–0.74). GLS is a more precise method for 
quantifying LV function in pediatrics, with lower variability compared to EF and FS. GLS provides a more reliable evalua-
tion of LV systolic function and should be utilized more widely in pediatrics.
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Abbreviations
GLS	� Global longitudinal Lagrangian strain
ICC	� Intraclass correlation coefficient
CV	� Coefficient of variation
2D STE	� Two-dimensional speckle tracking 

echocardiography
LV	� Left ventricular
Obs	� Observer

Introduction

The assessment of left ventricular (LV) function is one of the 
most frequent indications for obtaining echocardiograms in 
the pediatric population. Measurement of fractional shorten-
ing (FS) and ejection fraction (EF) are long-standing conven-
tional methods of assessing LV systolic function, however, 
both have important limitations [1–3]. Cardiac magnetic 
resonance imaging (MRI) is the clinical non-invasive gold 
standard for measuring ventricular function; however, due to 
availability, cost, and time requirements, echocardiography 
is more routinely used for screening and monitoring cardiac 
dysfunction in the clinical setting. Two-dimensional speckle-
tracking strain echocardiography (2D STE) is a method of 
quantifying ventricular systolic function by tracking acous-
tic backscatter within the ventricular myocardium. 2D STE 
has been prevalent in the cardiac literature for the past two 
decades, and no longer considered a “novel” functional tech-
nique. The technique has been validated against in vitro and 
in vivo gold standards, with sonomicrometry and cardiac 
MRI. The normal values for LV strain have been defined 
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in large populations in adults [4, 5] and pediatrics [6, 7]. 
Additionally, clinical advantages of GLS over EF and FS 
has been reported, including greater sensitivity for detect-
ing pre-clinical cardiac dysfunction [8–11]. Recent studies 
in adult patients have reported lower variability in LV GLS 
measurements compared to EF, with GLS having superior 
prognostic value over LV EF for predicting major adverse 
cardiac events [12]. Despite these apparent advantages over 
EF and FS, strain continues to be an underutilized measure-
ment in clinical echocardiography, especially in pediatrics. 
To our knowledge the precision of GLS compared to FS and 
EF has not been investigated in pediatrics. Thus, we aimed 
to assess the precision of LV GLS compared to LV EF and 
FS, with the hypothesis that LV GLS is a more precise LV 
functional parameter than EF or FS in pediatrics.

Methods

Study Design and Patient Population

Echocardiograms were obtained prospectively using stand-
ardized protocols between October 2013 and December 
2015 at the St. Louis Children’s Hospital Heart Center at 
Washington University School of Medicine. All echocar-
diograms had been ordered for routine clinical evaluations. 
The study protocol was approved by the Institutional Review 
Board at Washington University School of Medicine. A total 
of 103 pediatric patients (< 22 years of age) echocardio-
grams meeting the following criteria were analyzed.

Inclusion and Exclusion Criteria

All patients above 1 month of age with a four-chambered 
heart and echocardiograms suitable for 2D strain, EF and FS 
analysis were included. Patients with poor echocardiographic 
windows, poor ECG tracings, or inadequate LV endomyo-
cardial border visualization were excluded. Neonatal sub-
jects (< 30 days old) were excluded due to the known ven-
tricular remodeling that occurs during the neonatal period. 
Echos with significant wall motion abnormalities (dyskinesis 
or paradoxical motion), a known pitfall of M-mode analysis, 
were also excluded. Finally, patients with hemodynamically 
significant structural congenital heart disease, history of car-
diac surgery, or arrhythmias were excluded.

Sample Size Determination

Post-hoc power analysis was performed based on results of 
the intraclass correlation coefficient (ICC) below. A sample 
size consisting of 52 subjects with two observations per sub-
ject was able to achieve 99% power to detect an ICC of 0.925 
under the alternative hypothesis when the ICC under the null 

hypothesis is 0.692 using an F test with a significance level 
or α of 0.001. Based on this analysis, a study population of 
103 patients was found to be more than adequate.

Data Acquisition

All echocardiograms were obtained prospectively by expe-
rienced pediatric cardiac sonographers following pediatric 
guidelines from the American Society of Echocardiography 
[13]. Conventional two-dimensional images were acquired 
on commercially available ultrasound machines (Vivid 7 or 
E9; GE Medical Systems, Milwaukee, WI) according to the 
standardized American Society of Echocardiography (ASE) 
protocol [13, 14]. The images were obtained using a phased-
array transducer with central frequency ranging between 5 
and 12 MHz. Cine image data were digitally stored for at 
least 3 cardiac cycles in native (uncompressed) frame rates 
for offline analysis on analysis software (EchoPAC version 
110.1.2; or Digisonics version 3.8.4.2).

Two observers (M.D.P, C.M) were simultaneously trained 
in functional analysis by an expert pediatric echocardiogra-
pher (S.A). After a training period, the two observers ana-
lyzed 10 randomly selected echocardiograms and an analysis 
of variance was performed. Results were disclosed to the 
observers and techniques compared to narrow variations in 
analysis. These 10 initial echocardiograms were excluded 
from the final dataset. Following the training period, 2D 
global longitudinal strain, ejection fraction and fractional 
shortening were calculated for each study by the 2 observ-
ers blinded to each other’s analysis. The same echocardio-
graphic cardiac cycle was utilized by both observers for each 
measurement. 15% of the studies had repeat assessments by 
each observer to evaluate intra-observer variability.

2D Strain Analysis

2D Lagrangian longitudinal strain (GLS) was obtained for 
each patient utilizing a standardized LV 2D strain proto-
col [15–17]. Offline 2D strain analysis of each study was 
performed for the entire cardiac cycle. Automated tracking 
of myocardial deformation was performed using EchoPAC 
v110.1.2 (GE Medical Systems, Milwaukee WI) for deter-
mination of six segment LV longitudinal strain for each of 
the 3 following echocardiographic views: Apical 4 chamber, 
Apical 2 chamber, and Apical 3 chamber views. Peak GLS 
from each of the views (determined by the nadir of the strain 
curve) was averaged to produce GLS. Tracking was visu-
ally inspected throughout the cardiac cycle and minimally 
manually adjusted as needed. Strain analysis on 15 randomly 
selected subjects was repeated by both observers (M.D.P, 
C.M) at least 4 weeks after the initial measurement to obtain 
data regarding inter-observer variability.
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Ejection Fraction

Echocardiographic 2D images were obtained in the apical 
4 chamber LV focused view, and the apical 2 chamber LV 
view for each study. Only studies showing the entirety of 
the endocardial border of the left ventricle were included. 
Biplane method of disks (also known as biplane Simpson 
method) was utilized for absolute LV volume measurements 
for each study using Digisonics Digiview v3.8.4.2 (Digison-
ics Inc., Houston, TX). The same cardiac cycles and clips 
were measured by each observer in the both views, per ASE 
guidelines [14]. The observers manually traced the endo-
cardial border at end-diastole and end-systole in each view. 
End-diastole was defined as the peak of the electrocardio-
graphic R-wave or just prior to onset of mitral valve closure 
in 2-D imaging. End systole was defined as the frame prior 
to opening of the mitral valve. Volume measurements were 
then used to calculate ejection fraction with the following 
formula: [(EDV − ESV)/EDV] × 100 = EF (%).

Fractional Shortening

M-mode echocardiography was performed in the paraster-
nal short axis view through center of the LV at the level of 
the papillary muscles, per standard ASE protocol [13]. Both 
observers calculated FS for each study and measurements 
were performed offline using Digisonics Digiview v3.8.4.2. 
Again, the same cardiac cycles and clips were analyzed by 
each observer. FS was calculated using the following for-
mula: [(LVEDD − LVESD)/LVEDD] × 100 = FS (%).

Statistical Analysis

Agreement between the blinded measurements was evalu-
ated with inter-observer and intra-observer variability analy-
sis. The two observers (M.D.P and C.M) performed offline 
analysis using the same measurement protocol. Variability 
was evaluated via Bland–Altman analysis [percentage bias 
and 95% limits of agreement (LOA)]. Coefficients of varia-
tion (CV) were calculated to demonstrate relative variability 
between methods of measure, and the CVs for each method 
were compared using the Friedman test with the Bonferroni 
adjustment [18].

Intraclass correlation coefficient (ICC) was used to meas-
ure intra-observer and inter-observer reliability within meas-
urements. ICC is a commonly used statistic to assess rater 
reliability of measurements and incorporates the magnitude 
of disagreement rather an all or nothing agreement. Higher 
ICC values indicate greater reliability between measure-
ments, with an ICC of 1 indicating perfect agreement and 0 
indicating only random agreement. Post-hoc power analysis 

was performed as above utilizing ICC results for each clini-
cal method. The above statistical analysis was performed 
using SPSS version 22.0 (SPSS, Inc., Armonk, NY).

Results

Functional analysis was performed on 103 individual studies 
determined to have adequate imaging. Patient characteristics 
are listed in Table 1. Median age was 13.2 years with 58% 
males. The most common indication for echocardiogram in 
this population was for surveillance after receiving chemo-
therapy. The second most common was routine outpatient 
screening; more specifically this included screenings for 
chest pain, palpitations, murmur, syncope or a family his-
tory (cardiomyopathy, bicuspid aortic valve, predisposing 
genetic condition, etc.) requiring evaluation by echocardio-
gram. Another common indication was surveillance after 
orthotopic heart transplantation. Three patients with history 
of cardiomyopathy related to coronary abnormalities (n = 2) 
or myocarditis (n = 1) were also included. Mean heart rate 
(72 bpm, range 41–104) approximated the mean frame rate 
(70 f/s, range 53–94) for source images.

Agreement, Bland–Altman Analysis

Mean values for each functional analysis method are 
shown in Table 2. No significant differences were found 
between means for GLS and FS, however the means 
between individual users were significantly different for 
EF (p < 0.001). The mean differences for inter-observer 
and intra-observer measurements are shown in Table 3. 
GLS had higher precision, i.e. higher inter-observer agree-
ment and lower variability compared to EF and FS (Fig. 1; 
Table 4). Inter-observer variability was significant for EF, 
with high bias, wide limits of agreement. FS showed lower 

Table 1   Patient demographics

IQR interquartile range

All n = 103

Male:female 60:43
Median age at echo, years (IQR) 13.2 (8.5–16.2)
Median weight, kg (IQR) 45 (25.5–62.5)
Median height, cm (IQR) 153 (127.5–168)
Mean heart rate (bpm) 72.3 (41–104)
Mean frame rate (1/s) 69.7 (53–94)
Indication for echo
 Chemotherapy surveillance 48 (47%)
 Screening 37 (36%)
 Orthotopic heart transplant surveillance 15 (14%)
 Cardiomyopathy 3 (3%)
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bias but wide limits of agreement. GLS had the strongest 
agreement and lowest variability.

Intra-observer analysis of 15 cases (15% of subjects) 
showed similar results, with low bias, and narrow limits 

Table 2   Measurement means and 95% confidence intervals for LV global longitudinal strain, ejection fraction, and fractional shortening

n = 103 Mean Obs 1 + Obs 2 Obs 1 Obs 2 Difference (Obs 1 – Obs 2)

GLS, mean % (95% CI) − 19.5 (− 21.4 to − 17.7) − 19.6 (− 20.6 to − 18.6) − 19.9 (− 21.2 to − 18.7) 0.3, p = 0.2
EF, mean % (95% CI) 54.1 (33.9 to 74.3) 61.1 (59.7 to 62.5) 47.1 (45.5 to 48.8) 14, p < 0.01
FS, mean % (95% CI) 36.5 (30.3 to 42.6) 36.1 (34.9 to 39.1) 36.9 (34.7 to 39.1) − 3.5, p = 0.15

Table 3   Inter- and intra-observer mean difference between measurements or LV global longitudinal strain, ejection fraction, and fractional short-
ening

Mean difference GLS EF FS

Inter-observer (n = 103)
 Obs 1 versus Obs 2 (95% CI) 0.11 (− 3.4 to + 3.5) 13.9 (− 18.9 to + 19.5) 0.86 (− 11.9 to + 12.2)

Intra-observer (n = 15)
 Obs 1: measurement 1 versus 2 (95% CI) 0.69 (− 3.9 to + 4.0) 2.7 (− 14.9 to + 15.1) 1.4 (−  12.2 to + 12.4)
 Obs 2: measurement 1 versus 2 (95% CI) 0.72 (− 3.2 to + 3.9) 3.6 (− 15.3 to + 16.2) 1.1 (−  12.1 to + 11.8)

Fig. 1   Inter-observer Bland Altman plots: comparing measurements obtained by two different users for each of three methods. This shows that 
there is less variability between user measurements when measuring GLS compared to EF and FS

Table 4   Reproducibility 
analysis for echocardiographic 
measures of left ventricle 
function in pediatric patients

LOA limits of agreement, ICC intra-class correlation coefficient, CV coefficient of variation

Bland Altman ICC CV

Bias (%) LOA Coefficient (95% CI) Median (IQR)

Inter-observer reproducibility, n = 103
 Ejection fraction 27 − 18.9–19.5 0.25 (0.07–0.43) 18.95 (8.97–27.82)
 Fractional shortening 12 − 11.9–12.2 0.53 (0.38–0.66) 5.88 (2.66–11.39)
 Global longitudinal strain 7 − 3.4–3.5 0.86 (0.80–0.90) 3.61 (1.95–6.75)

Intra-observer reproducibility, n = 15
 Ejection fraction 11 − 14.9–15.1 0.26 (− 0.28–0.67) 8.23 (2.79–11.31)
 Fractional shortening 12 − 12.2–12.5 0.38 (− 0.15–0.74) 7.93 (2.80–9.10)
 Global longitudinal strain 4 − 3.6–3.7 0.87 (0.66–0.96) 1.10 (0.49–2.66)
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of agreement for GLS. FS again showed low bias, but wide 
limits of agreement. EF had highest variability (Fig. 2).

Reliability, Intra‑class Correlation Analysis

A high degree of reliability was found between the two 
observers’ measurements for GLS, with an ICC of 0.86 
(Table 4). A moderate degree of reliability was found 
between the two individual observer measurements for 
FS, with an ICC of 0.53. Poor reliability was found for 
inter-observer EF with an ICC of 0.25.

Similar results were found for intra-observer measure-
ments of GLS, with an ICC of 0.87. Intra-observer reli-
ability for FS was poor with an ICC of 0.38. Again, poor 
reliability was found for intra-observer measurements of 
EF, with an ICC of 0.26 (Table 4).

For the inter-observer measurements, the coefficient 
of variation was lowest for GLS, with a CV of 3.61. It 
was slightly higher for FS with a CV of 5.88, and highest 
for EF with a CV of 18.95, showing the highest variation 
between measurements in EF. Using the Friedman test 
with Bonferroni adjustment, the CV for GLS was found to 
be significantly different from the CVs for EF (p < 0.0001), 
and FS (p = 0.0006). The CVs for EF and FS were also 
found to be significantly different (p < 0.0001).

Similar results were found for intra-observer measure-
ments with a CV of 0.55 for GLS, compared to 3.97 for 
FS, and 4.11 for EF. Variability was lowest for observer 1 
repeated measurements of GLS, and highest for observer 
1 repeated measurements of EF. Using the Friedman test 
with Bonferroni adjustment, the CV for GLS was signifi-
cantly different from the CV for EF (p < 0.02), but not 
significantly different from the CV for FS (p = 0.071). The 
CVs for EF and FS were not found to be significantly dif-
ferent (p = 0.071).

Discussion

The results of this study support our hypothesis that GLS 
is a more precise LV functional parameter than EF or 
FS. For the more routinely used analysis methods, FS by 
M-mode was more reproducible than EF calculated by the 
biplane method of disks. This finding is noteworthy and 
may be partly explained by our exclusion criteria. Con-
sistent with the clinical practice in many echocardiog-
raphy labs, we excluded subjects with considerable wall 
motion abnormalities (significant dyskinesis or paradoxi-
cal motion), a known pitfall of M-mode-based measure-
ments. This may have resulted in a selection bias result-
ing in lower variability in FS measurements. In addition, 
the manual calculation of biplane EF from two separate 
images (versus one image for FS) may create opportunity 
for greater variability in EF compared to FS.

Limitations in EF and FS have been well established 
in the literature, though to-date they remain the most 
commonly used LV function quantification methods. Lee 
et al. showed inter-acquisition variability led to the near 
doubling of intra-reader variability when measuring LV 
dimensions and FS [19]. EF and FS are subject to limita-
tions in acquisition, reader variability and differences in 
measurement techniques. Some examples include apical 
dropout, single beat versus 3 beat averaging, and operator 
variability. Margossian et al. compared multiple EF anal-
ysis methods and found significant differences between 
the various algorithms in pediatric subjects [20]. In this 
study, reproducibility of EF increased by using an aver-
age of three heart beats, though this may not be feasi-
ble in routine clinical practice due to time constraints. In 
potential pediatric cardiac transplant donors, Chen et al. 
found significant variability between local donor hospital 
measurements of FS and a central laboratory FS analysis 

Fig. 2   Intra-observer Bland Altman plots: comparing measurements 
obtained by the same user two separate times for each of three meth-
ods. This shows that there is less variability between measurements 

obtained by the same user at different times when measuring GLS 
compared to EF and FS
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of the same study, enough so to alter donor candidacy [21]. 
This raises considerable concern regarding the reliance 
on FS and EF for functional assessment in pediatrics. On 
the other hand, 2D LV GLS has been validated against 
in vitro and in vivo gold standards [22, 23], and normal 
values have been established from multiple large studies 
in adult [4, 5, 17] and pediatric populations [6, 7]. While 
2D strain analysis is subject to some of the same limita-
tions as EF (endocardial border visualization, apical drop-
out, etc.), strain analysis has key differentiators that may 
contribute to higher precision. These include the inherent 
algorithm of tracking acoustic backscatter that is relatively 
stable through the cardiac cycle, integration of key land-
marks (mitral annulus, apex, endocardial border) into the 
analysis, and angle independence. This “semi-automated” 
method of functional analysis may reduce reader varia-
bility [24–26]. Strain also provides regional myocardial 
deformation patterns and is less dependent on ventricular 
loading conditions, both of which are well known limita-
tions of EF and FS.

Clinical Implications

Clinical decisions are regularly based on the echocardio-
graphic assessment of LV systolic function. The ability to 
follow changes over time and maintaining reliable measure-
ments between readers is paramount. In addition to higher 
precision, strain offers several clinical advantages over EF 
and FS. Superiority of GLS over LVEF in predicting out-
comes has been reported in adults [27], including a recent 
large meta-analysis by Kalam et al. showing superior prog-
nostic value of GLS over LV EF for predicting major adverse 
cardiac events [12]. Several studies have shown the capabil-
ity of 2D GLS in early detection of cardiac dysfunction. 
This has been shown extensively in adult patients following 
cardiotoxic chemotherapy [9], as well as in pediatrics [9, 28, 
29], allowing earlier treatment of heart disease and altera-
tions in treatment plans [30, 31] Similarly, strain has shown 
promise in recipients of cardiac transplants for detection of 
rejection [10, 32]. The potential clinical applications for 
pediatric patients continue to expand [33–35]. Given higher 
reproducibility and prognostic ability, the data from our 
study and the studies referenced argue for the inclusion of 
LV GLS as a routinely reported measurement of LV systolic 
function in clinical pediatric echo reports.

Historically, a major limitation in 2D strain analysis 
has been variability in measurements across different echo 
platforms and strain analysis software, limiting widespread 
clinical utilization. Prior literature has shown these differ-
ences, while significant, are similar across vendors [36]. To 
address this important limitation there has been a coordi-
nated effort among the medical and scientific communities 

and commercial imaging vendors to standardize deforma-
tion imaging, resulting in recommendations summarized in 
a consensus document in 2015 [37]. Follow-up studies have 
subsequently shown reduction in inter-vendor variability 
for GLS [18, 38]. Of note, important variability in regional 
(segmental) longitudinal strain measurements remains an 
active issue [39, 40]. At this time, experience over the past 
two decades has proven LV GLS to be a robust and reliable 
measure of LV systolic function, with distinct advantages 
over EF and FS. Findings from this paper suggest the same 
may be said of LV GLS in pediatrics, albeit from a single-
center experience with limitations as below.

Limitations

We note that there are limitations in this study. We utilized 
Simpson’s biplane method of disks for measurement of EF, 
though in pediatrics the 5/6 area length method with a 3-beat 
average has shown greater reproducibility [20]. The ASE 
currently recommends Simpson’s biplane method of disks 
for EF calculation [13], and this continues to be the method 
of EF calculation for most clinical echocardiography labs. 
Thus, to produce the most generalizable results, our group 
chose the biplane method of disks methods for EF calcula-
tion. The population we investigated was largely healthy. As 
a follow-up, the same analysis needs to be conducted in a 
larger cohort, preferably multi-center, and include patients 
with LV pathology. Also, we did not assess test–retest vari-
ability. Additionally, we compared the precision (reproduc-
ibility) of LV functional parameters though accuracy (com-
parison against a gold standard) was not addressed in this 
study. Prospective study comparing the above methods with 
cardiac MRI measurements would be of benefit in order to 
access accuracy. Lastly, our variability analysis was limited 
to a single vendor software and version. As discussed in the 
preceding section, inter-vendor variability in strain meas-
urements has historically been a significant issue. Though 
standardization initiatives [37] have led to decrease in vari-
ability in GLS [18, 38], validation of this study’s findings 
with other ultrasound platforms and strain analysis software 
is warranted.

Conclusion

LV GLS is a more precise measure of LV systolic func-
tion compared to LV EF and LV FS in pediatric subjects 
with four-chambered hearts. FS in this cohort was more 
reproducible than LV EF. Given these findings and recent 
data showing improvements in inter-vendor variability, we 
propose LV GLS be included as a routinely reported func-
tional parameter in pediatric (> 1 month old) echo reports, 
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in addition to LV FS and EF. Follow-up of our study’s find-
ings could include a multi-center trial in a heterogeneous 
pediatric population with a spectrum of LV disease using 
multi-vendor systems, and assessment of accuracy against 
cardiac MRI.
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