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Abstract Congenital heart disease (CHD) is the most

prevalent type of birth defect in humans and is the leading

non-infectious cause of infant death worldwide. There is a

growing body of evidence demonstrating that genetic de-

fects play an important role in the pathogenesis of CHD.

However, CHD is a genetically heterogeneous disease and

the genetic basis underpinning CHD in an overwhelming

majority of patients remains unclear. In this study, the

coding exons and splice junction sites of the TBX1 gene,

which encodes a T-box homeodomain transcription factor

essential for proper cardiovascular morphogenesis, were

sequenced in 230 unrelated children with CHD. The

available family members of the index patient carrying an

identified mutation and 200 unrelated ethnically matched

healthy individuals used as controls were subsequently

genotyped for TBX1. The functional effect of the TBX1

mutation was predicted by online program MutationTaster

and characterized by using a dual-luciferase reporter assay

system. As a result, a novel heterozygous TBX1 mutation,

p.Q277X, was identified in an index patient with double

outlet right ventricle (DORV) and ventricular septal defect

(VSD). Genetic analysis of the proband’s available rela-

tives showed that the mutation co-segregated with CHD

transmitted in an autosomal dominant pattern with com-

plete penetrance. The nonsense mutation, which was absent

in 400 control chromosomes, altered the amino acid that

was completely conserved evolutionarily across species

and was predicted to be disease-causing by MutationTaster.

Biochemical analysis revealed that Q277X-mutant TBX1

lost transcriptional activating function when compared

with its wild-type counterpart. This study firstly associates

TBX1 loss-of-function mutation with enhanced suscepti-

bility to DORV and VSD in humans, which provides novel

insight into the molecular mechanism underlying CHD and

suggests potential implications for the development of new

preventive and therapeutic strategies for CHD.

Keywords Congenital heart disease � Genetics �
Transcription factor � TBX1 � Reporter gene

Introduction

Congenital heart disease (CHD), a structural defect that

arises from abnormal development of the heart or major

cardiothoracic blood vessels, is the most prevalent of all

congenital malformations in humans, with an estimated

prevalence of 1 % in live neonates worldwide [17, 21]. It is

the most common cause of infant death caused by birth

defects, with approximately 27 % of infants who died of a

birth defect having a heart defect. [21]. Clinically, con-

genital cardiovascular deformities are usually categorized

into more than 20 different types with specific anatomic or

hemodynamic lesions, including ventricular septal defect

(VSD), atrial septal defect, patent ductus arteriosus,
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endocardial cushion defect, double outlet right ventricle

(DORV), tetralogy of Fallot, persistent truncus arteriosus,

aortic coarctation, coronary artery anomalies, valvular

pulmonary stenosis, pulmonary atresia, abnormal pul-

monary venous return, interrupted aortic arch, transposition

of the great arteries, and hypoplastic left heart syndrome, of

which VSD is the most common form of CHD in children

[5, 21, 36, 39, 69, 86]. Distinct kinds of CHDs may occur

separately or concomitantly with each other, leading to

degraded quality of life, poor exercise tolerance, brain in-

jury, pulmonary hypertension, reduced lung function, im-

paired muscle function, subclinical hypothyroidism,

autonomic nervous dysfunction, aortic aneurysm or dis-

section, infective endocarditis, thromboembolism, heart

failure, arrhythmias, and even cardiac death [1, 3, 6, 8, 14–

16, 19, 20, 29, 32–34, 40, 45–48, 51, 55, 57, 59, 60, 62, 66,

67, 87]. Although striking progress in medical treatment of

newborns with CHD has contributed to an increasing

number of adult survivors, unfortunately, the late morbidity

and mortality are still markedly increased in the survivors

[49, 68, 70, 71]. Therefore, CHD has conferred a vast

economic burden on patients’ families and healthcare

systems, and the socioeconomic burden is anticipated to

increase in the future as the CHD adults accrue [72]. De-

spite the high prevalence and important clinical sig-

nificance, in an overwhelming majority of cases, the

etiologies responsible for CHD remain unknown.

Cardiac morphogenesis from a straight tube to a four-

chambered heart experiences a complex dynamic biologi-

cal process that mandates a precise spatial and temporal

cooperation of cardiac cell commitment, differentiation,

proliferation, and migration, and both environmental and

genetic pathogenic factors may disarrange this process of

cardiogenesis, resulting in various CHDs [4, 13, 24, 37, 53,

54, 65, 74]. Recently, there is compelling evidence that

demonstrates the genetic origin of CHD, and a growing

number of mutations in more than 60 genes have been

shown to cause CHD [2, 4, 9, 12, 18, 22, 27, 28, 31, 35, 41,

42, 56, 58, 61, 63, 75–78, 82–85]. Nevertheless, these

causative genes can only explain the CHDs in a small

proportion of patients and in most patients the genetic basis

underpinning CHD is still to be revealed.

Chromosome 22q11.2 deletion syndrome (22q11DS),

which is caused by a heterozygous multi-gene deletion, is a

relatively common genetic disorder, affecting 1 in 4000

live births. CHDs are a prominent part of the 22q11DS

phenotype, with an incidence of about 80 % in infants with

22q11DS [44]. Additionally, 22q11DS is found in a small

percentage of patients with double outlet right ventricle.

The TBX1 gene, a member of the T-box gene family of

DNA-binding transcription factors, is mapped to the

22q11.2 and has been identified to be associated with the

cardiac phenotype of 22q11.2 DS, including tetralogy of

Fallot, truncus arteriosus, and interrupted aortic arch [30,

38, 43, 44]. Interestingly, mutations of the TBX1 gene have

been found in some patients featuring 22q11DS who are

otherwise devoid of the 22q11.2 deletion [81] and also

found in non-syndromic CHD patients [26, 80]. These data

strongly suggest TBX1 as an important candidate gene for

human CHD.

Materials and Methods

Ethics

This study was performed in conformity to the ethical

principles of the revised Declaration of Helsinki (Somerset

West, Republic of South Africa, 1996). The study protocol

was reviewed and approved by the local institutional ethics

committee of Tongji Hospital, Tongji University (the

ethical approval number for cases and controls: LL(H)-09-

07; the date for the approval: July 27, 2009), and written

informed consent was obtained from the parents of each

patient and control prior to study.

Study Participants

A cohort of 230 unrelated children suffered from CHD was

enrolled. The available family members of the proband

carrying an identified TBX1 mutation were also included.

All patients underwent a comprehensive clinical evalua-

tion, including individual and familial histories, medical

records, complete physical examination, 12-lead electro-

cardiogram, and two-dimensional transthoracic echocar-

diography with color flow Doppler. Cardiac

catheterization, angiography, chest X-ray, and cardiac

magnetic resonance imaging were performed only if there

was a strong clinical indication. Medical records were also

reviewed in the case of deceased or unavailable relatives.

CHD was confirmed by imaging and/or direct view during

cardiac surgery. A total of 200 non-CHD individuals from

the same geographic area, who were matched to the CHD

patients in ethnicity and gender, were recruited as the

controls. After obtaining informed written parental con-

sent, approximately 0.5–2 ml of peripheral venous blood

sample was taken from each study participant, and the

genomic DNA was extracted from peripheral venous blood

leukocytes using a Wizard Genomic DNA Purification Kit

(Promega, Madison, WI, USA) according to the manufac-

turer’s instructions.

Sequencing of TBX1

The coding exons and flanking introns of the TBX1 gene

(including isoforms A, B and C) were sequenced in 230

Pediatr Cardiol (2015) 36:1400–1410 1401

123



unrelated CHD patients. The available relatives of the in-

dex patient carrying an identified TBX1 mutation and 200

unrelated control individuals were subsequently genotyped

for TBX1. The referential genomic DNA sequence of TBX1

was derived from nucleotide (Accession No.

NC_000022.11), a gene sequence database at the National

Center for Biotechnology Information (NCBI; http://www.

ncbi.nlm.nih.gov/nucleotide/). With the aid of the online

Primer-BLAST program (http://www.ncbi.nlm.nih.gov/

tools/primer-blast/), the primer pairs used to amplify the

coding regions and splice junction sites of TBX1 by poly-

merase chain reaction (PCR) were designed as shown in

Table 1. The PCR was conducted using HotStar Taq DNA

polymerase (Qiagen GmbH, Hilden, Germany) on a Veriti

Thermal Cycler (Applied Biosystems, Foster, CA, USA),

with standard conditions and concentrations of reagents.

Both strands of each PCR product were sequenced with a

BigDye� Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems) under an ABI PRISM 3130 XL DNA

Analyzer (Applied Biosystems). The DNA sequences were

analyzed with the DNA Sequencing Analysis Software

v5.1 (Applied Biosystems). Additionally, an identified se-

quence variation was queried in the single-nucleotide

polymorphism (SNP) database at NCBI (http://www.ncbi.

nlm.nih.gov/), the human gene mutation (HGM) database

(http://www.hgmd.org/), and the 1000 Genome Project

(1000 GP) database (http://www.1000genomes.org/) to

confirm its novelty.

Multiple Alignments of TBX1 Amino Acid

Sequences Among Various Species

Conservation of the amino acid altered by the identified

mutation was estimated by aligning human TBX1 to

chimpanzee, monkey, dog, mouse, rat, zebrafish, and frog

TBX1 using the HomoloGene and Show Multiple Align-

ment links on the NCBI’s website (http://www.ncbi.nlm.

nih.gov/homologene).

Prediction of the Pathogenic Potential of a Novel

TBX1 Sequence Variation

The causative potential of a novel TBX1 sequence variation

was predicted by MutationTaster (an online program at

http://www.mutationtaster.org), which automatically gave

a probability for the variation to be either a disease-causing

mutation or a benign polymorphism. Of note, here the

p value is the probability of the correct prediction, i.e., a

p value close to one indicates high accuracy of the

prediction.

Plasmids and Site-Directed Mutagenesis

The recombinant expression plasmid TBX1-pcDNA3.1,

which contains the full-length cDNA of TBX1 isoform C,

was constructed as described previously [80]. For gen-

eration of the 4 9 T-pGL4.25 luciferase reporter vector

(4 9 T-luc), four conserved T-half sites ‘‘ATTTCA-

CACCT’’ were oriented head to tail, similar to those re-

ported by Sinha et al. [64], synthesised and subcloned into

the KpnI-HindIII sites in the pGL4.25 [luc2CP/minP]

plasmid (Promega). The mutant TBX1 expression vector

was generated by using a QuickChange II XL Site-Directed

Mutagenesis Kit (Stratagene, La Jolla, CA, USA) with a

complementary pair of primers and with the wild-type

TBX1-pcDNA3.1 used as the template. The mutant TBX1

was sequenced to confirm the desired mutation and to ex-

clude any other sequence variations.

Cell Transfection and Luciferase Assays

The transient cell transfection was performed with Lipo-

fectamine 2000 transfection reagent (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s protocol. COS-

7 cells were cultured in Dulbecco’s modified Eagle’s

medium (Invitrogen) supplemented with 10 % fetal calf

serum (Invitrogen) and seeded in 12-well plates (2 9 105)

before transfection. Twenty-four hours after plating, the

Table 1 The primers to

amplify the coding exons and

flanking introns of TBX1

Exon Forward primer (50–30) Reverse primer (50–30) Amplicon (bp)

1 GACGCCATAATCCTCTGGGC AAGAGCTGCCTCCACCTACT 428

2 GTCATGATCTCCGCCGTGTC GAACAGCGAAGGAGGCAGCG 598

3 AGGGCGAGGCCGAGTTTATG ACGACCCTTGGAGTTGGGTC 493

4 GGCACTTTTAGGGTTCGCCC TCTCCTCATCGGCACACCAG 462

5 GAGTCCAGGCCAGTGAGGTC CCGCTTTTCCAGAGGCGTTG 480

6–7 TGGTGCGCTTCTCCTAACACT CTCCGACGCCCCATGCGAGG 675

8A CCCTGATCCGACGTCTTTCC AACACGACAACTCCATGTGC 487

8B CTGAGTGGGTGCACACTGGA AGGGCTGGAGGATTCGCTTC 437

8C ACTTGGGGTCTCGGGCACGC CGAACTTCGGGGCTGTGCAG 676
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COS-7 cells at about 75 % confluence were co-transfected

with 0.4 lg of wild-type or mutant TBX1-pcDNA3.1,

1.0 lg of 4 9 T-luc, and 0.04 lg of pGL4.75 (hRluc/

CMV, Promega), a Renilla luciferase reporter plasmid used

as an internal control. For co-transfection experiments,

0.2 lg of wild-type TBX1-pcDNA3.1 together with 0.2 lg
of mutant TBX1-pcDNA3.1 or 0.2 lg of empty pcDNA3.1

vector was used in the presence of 1.0 lg of 4 9 T-luc and

0.04 lg of pGL4.75. The cells were harvested 48 h after

transfection. The Firefly and Renilla luciferase activities

were measured with the Dual-Glo luciferase assay system

(Promega). The activity of the Firefly luciferase was nor-

malized to that of the Renilla luciferase. At least three

independent experiments were performed in triplicate for

wild-type and mutant TBX1.

Statistical Analysis

Continuous variables are expressed as means ± standard

deviations (SD). Student’s unpaired t test was used to

compare the continuous variables between two groups.

Comparison of the categorical variables between two

groups was made by using Pearson’s v2 test or Fisher’s

exact test when appropriate. A two-tailed p\ 0.05 was

considered to indicate statistical difference.

Results

Baseline Clinical Characteristics of the Study

Population

A cohort of 230 unrelated patients with CHD was clinically

investigated in contrast to a total of 200 unrelated non-

CHD control individuals (102 males and 98 females, with

no family history of CHD in the control individuals). All

the patients had confirmed CHD, while the control indi-

viduals had no evidence of structural cardiac abnormalities.

None of the study participants had established environ-

mental risk factors for CHD, such as maternal illness and

drug use in the first trimester of pregnancy, parental

smoking, and long-term exposure to chemical toxicants and

ionizing radiation. There is no difference in either gender

or ethnicity between patient and control groups. The

baseline clinical characteristics of the study population are

summarized in Table 2.

Identification of a Novel TBX1 Mutation

By sequence analysis of the coding exons and exon–intron

boundaries of TBX1, a heterozygous sequence variation

was identified in 1 of 230 unrelated CHD patients, with a

mutational prevalence of roughly 0.43 %. Specifically, a

substitution of thymine for cytosine in the first nucleotide

of codon 277 (c.829C[T), predicting the transition of

glutamine into a premature stop codon at amino acid po-

sition 277 (p.Q277X), was identified in an index patient

with DORV and a large subpulmonary VSD, who under-

went surgical treatment 1 week after birth. The sequence

electropherograms showing the identified heterozygous

TBX1 variation in contrast to its corresponding control

sequence are shown in Fig. 1a. The schematic diagrams of

the wild-type TBX1C and mutant TBX1 proteins showing

the structural domains and location of the mutation de-

tected in this study are presented in Fig. 1b. The variation

was neither observed in 400 control chromosomes nor

found in the SNP, HGM, and 1000 GP databases, which

were consulted again on November 22, 2014, indicating a

novel mutation.

Genetic analysis of the proband’s families displayed that

the nonsense mutation was present in all affected family

Table 2 Baseline clinical characteristics of the studied patients with

congenital heart disease

Variable Statistic

Male gender (%) 131 (57)

Age (years) 3.4 ± 1.2

Positive family history (%) 36 (16)

Distribution of different types of CHD

Isolated CHD (%) 127 (55)

VSD (%) 39 (17)

ASD (%) 35 (15)

PDA (%) 23 (10)

DORV (%) 10 (4)

ECD (%) 6 (3)

Others (%) 14 (6)

Complex CHD (%) 103 (45)

TOF (%) 32 (14)

VSD ? ASD (%) 19 (8)

DORV ? VSD (%) 17 (7)

ECD ? TGA (%) 7 (3)

TA ? VSD (%) 6 (3)

Others (%) 22 (10)

Incidence of arrhythmia

Atrioventricular block (%) 12 (5)

Atrial fibrillation (%) 3 (1)

Treatment

Surgical repair (%) 119 (52)

Catheter-based closure (%) 65 (28)

Follow-up (%) 46 (20)

CHD congenital heart disease, VSD ventricular septal defect, ASD

atrial septal defect, PDA patent ductus arteriosus, DORV double outlet

of right ventricle, ECD endocardial cushion defect, TOF tetralogy of

Fallot, TGA transposition of great arteries, TA truncus arteriosus
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members alive, but absent in unaffected family members

examined. Analysis of the pedigree demonstrated that the

mutation co-segregated with subpulmonary VSD trans-

mitted in an autosomal dominant pattern and with complete

penetrance. There are no other anomalies consistent with

22q11 deletion syndrome, and there is no history of speech

delay or learning disability in the affected family members.

The pedigree structure of the family is shown in Fig. 1c.

The phenotypic characteristics and status of TBX1 muta-

tion of the affected family members are listed in Table 3.

Fig. 1 A novel TBX1 mutation associated with congenital heart

disease. a Sequence electropherograms showing the TBX1 mutation in

contrast to its corresponding control. The arrow indicates the

heterozygous nucleotides of C/T in the proband from family 1

(mutant) or the homozygous nucleotides of C/C in the corresponding

control individual (wild type). The rectangle means the nucleotides

constituting a codon of TBX1. b Schematic diagrams of the wild-type

human TBX1 isoform C and mutant human TBX1 protein structures.

The mutation associated with congenital heart disease is predicted to

produce a truncated protein with only 276 amino acids at the amino-

terminus left. NH2, amino-terminus; NLS, nuclear location signal;

TAD, transcriptional activation domain; and COOH, carboxyl-

terminus. c Pedigree structure of the family with congenital heart

disease. Family is designated as family 1. Family members are

identified by generations and numbers. Square indicates male family

member; circle, female member; closed symbol, affected member;

open symbol, unaffected member; symbol with a slash, the deceased

member; arrow, proband; ‘‘?’’, carrier of the heterozygous mutation;

and ‘‘-’’, non-carrier
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Multiple Alignments of TBX1 Protein Sequences

Among Various Species

As shown in Fig. 2, a cross-species alignment of multiple

TBX1 protein sequences showed that the altered glutamine

at amino acid position 277 of human TBX1 was completely

conserved evolutionarily, implying that the amino acid is

functionally important.

Causative Potential of the Identified TBX1 Sequence

Variation

The TBX1 sequence variation of c.829C[T was predicted

to be disease-causing, with a p value of 1.0000, supporting

that Q277X-mutant TBX1 contributes to the occurrence of

CHD in these mutation carriers.

Functional Assay of the Q277X-mutant TBX1

As shown in Fig. 3, the Q277X-mutant TBX1 had no

transcriptional activity compared with its wild-type

counterpart (t = 4.8028, p = 0.0086). When wild-type

TBX1 was co-expressed with the same amount of Q277X-

mutant TBX1, the induced transcriptional activation was

significantly reduced compared with the wild-type TBX1

(t = 4.2947, p = 0.0127).

Discussion

In the current study, a novel heterozygous mutation in

TBX1, p.Q277X, was identified in a family with CHD. The

mutant allele was present in all affected family members

available but absent in unaffected relatives examined and

400 referral chromosomes from an ethnically matched

control population. A cross-species alignment of multiple

TBX1 protein sequences showed that the altered amino

acid was completely conserved evolutionarily. The

p.Q277X variation was predicted to be a disease-causing

mutation by MutationTaster, and the functional analysis

revealed that the mutant TBX1 had no transcriptional ac-

tivity. Hence, it is very likely that mutated TBX1

Table 3 Phenotypic

characteristics and status of

TBX1 mutation of the affected

pedigree members

Subject information Phenotype Genotype

Identity Gender Age (years) Cardiac structural defects TBX1 mutation

Family 1 Q277X

I-1 M 52a VSD NA

II-1 M 31 VSD, PDA ±

II-4 F 28 VSD ±

III-1 F 3 DORV, VSD ±

M male, F female, VSD ventricular septal defect, PDA patent ductus arteriosus, DORV double outlet right

ventricle, NA not available, ± heterozygote
a Age at death

Fig. 2 Alignment of multiple TBX1 protein sequences across various species. The altered glutamine at amino acid position 227 of human TBX1

protein is completely conserved evolutionarily among species
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predisposes these mutation carriers to CHD. To the best of

our knowledge, this is the first report on the association of

TBX1 loss-of-function mutation with enhanced suscepti-

bility to DORV and VSD in humans.

In the developing mammalian heart, 6 of the 17 family

members, including TBX1, TBX18, and TBX20 of the TBX1

subfamily, and TBX2, TBX3, and TBX5 of the TBX2 sub-

family, are expressed and required in a combinatorial

fashion in different progenitor pools as well as in different

compartments [25]. The human TBX1 gene is located on

chromosome 22q11.21, the center of the 22q11DS chro-

mosomal region, which acts in the pharyngeal mesoderm to

maintain proliferation of mesenchymal precursor cells for

formation of a myocardialized and septated outflow tract,

playing a key role in the elongation of the cardiac tube at

the anterior pole [10, 25]. To date, three alternatively

spliced transcripts, TBX1A (NM_080646.1), TBX1B

(NM_005992.1), and TBX1C (NM_080647.1), have been

found in humans that differed in their terminal exons.

However, analysis of the gene expression levels in human

tissues and comparison of the human and mouse genomic

sequences showed that TBX1C is the major transcript with

the nuclear location signal and the transcriptional activa-

tion domain and is highly homologous to mouse Tbx1 [23].

Besides, the apparently pathologic TBX1 mutations iden-

tified to date reside on exons 3–8 shared by isoforms A, B,

and C or on exon 9C specific to isoform C, with no mu-

tation on exons 9A and 9B specific to isoforms A and B.

This is consistent with TBX1C having the primary biolo-

gical function [52]. Three isoforms of TBX1 proteins share

an evolutionarily conserved T-box homeodomain that

recognizes and binds to a consensus DNA motif, ATTT-

CACACCT. The homeodomain is located at amino acid

positions 109–302 and is predominantly involved in target

DNA binding as well as interaction with other transcription

factors [25]. The TBX1 mutation of p.Q277X identified in

this study is predicted to generate a truncated protein with

amino-terminus along with partial T-box homeodomain

left (Fig. 1b) and thus may be anticipated to disable TBX1

by interfering with its binding to target DNA, nuclear

distribution, and transcriptional activation.

In order to ascertain the functional consequence of the

p.Q277X mutation in TBX1, the major transcript TBX1C

was chosen as a representative of TBX1, and introduction

of p.Q277X mutation into TBX1C abolished the tran-

scriptional activation of TBX1C. These functional data

suggest that haploinsufficiency or dominant-negative effect

caused by TBX1 mutation is potentially an alternative

pathological mechanism of CHD. Additionally, as the

mutation is predicted to lead to a nonsense mutation, it is

likely that the mutant mRNA undergoes nonsense-medi-

ated decay, and in that case, it is likely that the mutation

results in haploinsufficiency and does not have a dominant-

negative effect [50]. However, at present, we cannot assay

the mutant protein expression in Q277X-mutant patients

due to the inaccessibility to cardiac tissue samples from

these patients.

Previous investigations have verified that TBX1 can

form complexes with such transcriptionally cooperative

partners as NKX2.5 and SRF to synergistically mediate

multiple important genes that are expressed in the heart

during embryogenesis, including PITX2, FOXA2, FGF8,

and FGF10 [25], and loss-of-function mutations in several

genes, such as PITX2 and NKX2.5, have been causally

linked to CHD including DORV and VSD [4, 11, 73, 76,

83, 84]. Therefore, genetically defective TBX1 may in-

crease the vulnerability to CHD by reducing the expression

of such genes essential for cardiovascular genesis.

Association of functionally compromised Tbx1 with

increased susceptibility to CHD has been established in

experimental animals. In mice, Tbx1 was highly expressed

in the mesoderm and endoderm of the pharyngeal arches,

and in the outflow tract. Genetic lineage analysis revealed

that Tbx1-positive cells of the pharyngeal mesoderm con-

tributed extensively to the outflow tract myocardium, en-

docardium, and mesenchymal cushions, indicating that

Tbx1 plays a key role in an anterior subdomain of the

second heart field [25]. Although mice heterozygous for

deletion of Tbx1 presented mild anomalies, homozygous

Tbx1-null mice died at birth with severe defects in the

derivatives of the pharyngeal apparatus, of which cardiac

Fig. 3 Transcriptional activation defect of TBX1 resulted from

Q277X mutation. Transcriptional activation of the 4 9 T-luciferase

reporter in cultured COS-7 cells by wild-type TBX1 (WT) or mutant

(Q277X), alone or together, showed significantly diminished tran-

scriptional activity by the mutant protein. The activity of the Firefly

luciferase was normalized for transfection efficiency to that of Renilla

luciferase. The results are shown as the mean and standard deviations

of three independent experiments performed in triplicate. ** and *

indicate p\ 0.01 and p\ 0.05, respectively, when compared with

wild-type TBX1 (0.4 lg)
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defects included persistent truncus arteriosus, VSD, and

mispatterning of the coronaries. Conditional knockout of

Tbx1 from the pharyngeal endoderm and mesoderm, re-

spectively, led to a spectrum of cardiovascular defects re-

sembling those of the Tbx1-null mutants. Furthermore,

mesodermal re-expression of Tbx1 in a null background

corrected most of these defects, highlighting the pivotal

role of Tbx1 for proper cardiovascular development [79].

In addition, Tbx1 function in the pharyngeal mesoderm

was also required for survival, differentiation, and migra-

tion of the neural crest, suggesting a vital role in the de-

velopment of pharyngeal arch artery [7]. Taken together,

these findings support that TBX1 plays a crucial role in

human cardiovascular development.

In conclusion, this study firstly associates TBX1 loss-of-

function mutation with DORV and VSD, which expands

the TBX1 mutation spectrum linked to CHD and provides

novel insight into the molecular pathogenesis of CHD,

implying the potential implications for genetic counseling

and development of new preventive strategies for CHD.
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34. Kröönström LA, Johansson L, Zetterström AK, Dellborg M,
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