
ORIGINAL ARTICLE

A Novel NKX2.6 Mutation Associated with Congenital Ventricular
Septal Defect

Juan Wang • Jian-Hui Mao • Ke-Ke Ding • Wei-Jun Xu • Xing-Yuan Liu •

Xing-Biao Qiu • Ruo-Gu Li • Xin-Kai Qu • Ying-Jia Xu • Ri-Tai Huang •

Song Xue • Yi-Qing Yang

Received: 9 August 2014 / Accepted: 31 October 2014 / Published online: 8 November 2014

� Springer Science+Business Media New York 2014

Abstract Congenital heart disease (CHD) is the most

common birth defect and is the most prevalent non-infec-

tious cause of infant death. Aggregating evidence demon-

strates that genetic defects are involved in the pathogenesis

of CHD. However, CHD is genetically heterogeneous and

the genetic determinants for CHD in an overwhelming

majority of patients remain unknown. In this study, the

coding regions and splice junctions of the NKX2.6 gene,

which encodes a homeodomain transcription factor crucial

for cardiovascular development, were sequenced in 210

unrelated CHD patients. As a result, a novel heterozygous

NKX2.6 mutation, p.K152Q, was identified in an index

patient with ventricular septal defect (VSD). Genetic ana-

lysis of the proband’s available family members showed

that the mutation cosegregated with VSD transmitted as an

autosomal dominant trait with complete penetrance. The

missense mutation was absent in 400 control chromosomes

and the altered amino acid was completely conserved

evolutionarily across species. Due to unknown transcrip-

tional targets of NKX2.6, the functional characteristics of

the identified mutation at transcriptional activity were

analyzed by using NKX2.5 as a surrogate. Alignment

between human NKX2.6 and NKX2.5 proteins displayed

that K152Q-mutant NKX2.6 was equivalent to K158Q-

mutant NKX2.5, and introduction of K158Q into NKX2.5

significantly reduced its transcriptional activating function

when compared with its wild-type counterpart. This study

firstly links NKX2.6 loss-of-function mutation with

increased susceptibility to isolated VSD, providing novel

insight into the molecular mechanism underpinning VSD

and contributing to the development of new preventive and

therapeutic strategies for this common form of CHD.

Keywords Congenital heart disease � Ventricular septal

defect � Genetics � Transcription factor � NKX2.6

Introduction

Congenital heart disease (CHD) represents the most com-

mon form of human birth defect, affecting nearly 1 % of all

live births worldwide, and remains a leading cause of mor-

bidity and mortality in childhood, accounting for approxi-

mately 10 % of all infant deaths [15, 17]. Congenital
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cardiovascular abnormalities are clinically classified into at

least 21 different categories with specific anatomic lesions,

including ventricular septal defect (VSD), atrial septal

defect, tetralogy of Fallot, patent ductus arteriosus, aortic

stenosis, pulmonary atresia, endocardial cushion defect,

double outlet right ventricle, anomalous coronary arteries,

abnormal pulmonary venous return, aorticopulmonary win-

dow, truncus arteriosus, transposition of great arteries, cor-

onary artery anomaly, and hypoplastic left heart syndrome,

of which VSD is the most prevalent type of CHD in children

while in adults atrial septal defect is the most frequently seen

developmental malformation [17, 63]. Various kinds of

CHDs may occur singly or in combination with each other,

resulting in degraded quality of life, limited exercise

capacity, delayed brain development, pulmonary hyperten-

sion, anomalous lung function, impaired muscle function,

autonomic dysfunction, aortic aneurysm or dissection, heart

failure, infective endocarditis, thromboembolism, arrhyth-

mias, and even cardiac death [1, 3, 5, 12–14, 16, 21, 27, 32–

35, 37, 39–41, 43, 49, 65]. Although great advances made in

surgical and medical treatment of children born with CHD

have led to a growing number of adult survivors, unfortu-

nately, the incidence of late complications and mortality rate

are significantly increased in the survivals [19, 35, 48, 50,

51]. Hence, CHD has imposed a vast economic burden on

patients and health care systems, and the socioeconomic

burden is projected to increase in the future with increasing

CHD adults [52]. Despite the high prevalence and pro-

nounced clinical significance, the molecular mechanism

underlying CHD remains poorly understood.

In vertebrates, the heart is the first functional organ that

develops during embryogenesis. Cardiac morphogenesis is

a complex dynamic biological process that requires the

accurate spatial and temporal cooperation of cardiac cell

commitment, differentiation, proliferation, and migration,

and both environmental and genetic risk factors may dis-

turb this process of cardiogenesis, leading to a large

spectrum of CHDs [4, 11, 15, 18, 29, 38]. Recently, a

growing body of evidence highlights the genetic basis for

CHD, and a great number of mutations in more than 60

genes have been implicated in the pathogenesis of CHD [2,

4, 8, 10, 15, 24, 25, 28, 42, 44, 53–56, 62, 64]. Among

these well-established CHD-associated genes, most encode

cardiac transcription factors and show autosomal dominant

inheritance with incomplete disease penetrance, and the

cardiac transcription factor genes NKX2.5 and GATA4 are

most frequently associated with non-syndromic CHD [9,

23, 31, 57, 59, 60]. Nevertheless, mutations in these genes

only explain the CHDs in a minority of cases and in an

overwhelming majority of patients, the genetic components

responsible for CHDs are still to be identified.

As a member of the cardiac NK-2 family of transcription

factors, which are the vertebrate orthologs of the Drosophila

tinman gene, NKX2.5 is crucial to normal cardiac develop-

ment across vertebrate species, and mutations or altered

expression of NKX2.5 may lead to abnormal heart formation

in vertebrates [6]. In humans, a long list of mutations in

NKX2.5 have been causally linked to a great variety of

congenital cardiovascular deformities, including atrial septal

defect, ventricular septal defect, and tetralogy of Fallot, as

well as atrial fibrillation [9, 22, 23, 31, 58, 61]. NKX2.6 is

another member of the NK-2 family of transcription factors

and its temporal and spatial expression patterns and func-

tional roles are similar to those of NKX2.5 during cardio-

vascular development [6]. In mice with targeted deletion of

Nkx2.6, it has been revealed that the redundant activity of

Nkx2.5 is required for proper cardiac morphogenesis [20].

Therefore, it is warranted to screen NKX2.6 as a preferred

candidate gene for human CHD.

Materials and Methods

Ethics

This study was conducted in accordance with the ethical

principles of the revised Declaration of Helsinki (Somerset

West, Republic of South Africa, 1996). The research pro-

tocol was reviewed and approved by the local institutional

ethics committee of Tongji Hospital, Tongji University (the

ethical approval number for cases and controls: LL(H)-09-

07; the date for the approval: July 27, 2009) and written

informed consent was obtained from all participants or

their guardians prior to commencement of investigation.

Study Subjects

A total of 210 unrelated patients affected with non-syn-

dromic CHD were recruited. The available relatives of the

index patient harboring an identified Nkx2.6 mutation were

also included. All patients underwent a comprehensive

clinical evaluation, including individual and familial his-

tories, medical records, complete physical examination,

12-lead electrocardiogram, and two-dimensional transtho-

racic echocardiography with color flow Doppler. Cardiac

catheterization, angiography, chest X-ray, and cardiac

magnetic resonance imaging were performed only if there

was a strong clinical indication. Medical records were also

reviewed in the case of deceased or unavailable relatives.

CHD was confirmed by imaging and/or direct view during

cardiac surgery. The patients with known chromosomal

abnormalities or syndromic cardiovascular defects, such as

Down syndrome, Turner syndrome, Marfan syndrome, Di

George syndrome, and Holt–Oram syndrome, were exclu-

ded from the study. The controls comprised 200 non-CHD

individuals from the same geographic area, who were
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matched to the CHD patients in race and gender. All the

study subjects were of Chinese Han ethnicity. The ethnic

origin of the participants was ascertained by a combination

of self-reported ethnicity and a personal questionnaire

about the birthplace, language, religion, and ancestry.

Approximately 0.5–2 ml of peripheral venous blood sam-

ple was collected from each study participant. The clinical

studies were performed with investigators blinded to the

results of genotypes.

Genetic Screening of NKX2.6

Genomic DNA was extracted from each participant’s

peripheral blood leukocytes with Wizard Genomic DNA

Purification Kit (Promega, Madison, WI, USA). The cod-

ing exons and flanking exon–intron boundaries of the

NKX2.6 gene were sequenced in 210 unrelated patients

with CHD. The available relatives of the index patient

carrying an identified NKX2.6 mutation and 200 unrelated

control individuals were subsequently genotyped for

NKX2.6. The referential genomic DNA sequence of

NKX2.6 was derived from GenBank (accession no.

NG_030636), a gene sequence database at the National

Center for Biotechnical Information (NCBI; http://www.

ncbi.nlm.nih.gov/). With the aid of the online Primer 3

program (http://frodo.wi.mit.edu/), the primer pairs used to

amplify the coding regions and splice junction sites of

NKX2.6 by polymerase chain reaction (PCR) are designed

as shown in Table 1. The PCR was carried out using

HotStar Taq DNA Polymerase (Qiagen GmbH, Hilden,

Germany) on a Veriti Thermal Cycler (Applied Biosys-

tems, Foster, CA, USA), with standard conditions and

concentrations of reagents. Both strands of each PCR

product were sequenced with a BigDye� Terminator v3.1

Cycle Sequencing Kit (Applied Biosystems) under an ABI

PRISM 3130 XL DNA Analyzer (Applied Biosystems).

The sequencing primers were the same as those designed

for specific region amplifications. The DNA sequences

were analyzed with the DNA Sequencing Analysis Soft-

ware v5.1 (Applied Biosystems). The identified NKX2.6

variant was confirmed by resequencing an independent

PCR-generated amplicon from the same case. Additionally,

an identified sequence variation was queried in the single

nucleotide polymorphism (SNP) database at NCBI (http://

www.ncbi.nlm.nih.gov/), the human gene mutation (HGM)

database (http://www.hgmd.org/), and the 1000 Genome

Project (1000 GP) database (http://www.1000genomes.org/)

to confirm its novelty.

Alignment of NKX2.6 Amino Acid Sequences Among

Various Species

Conservation of the amino acid altered by missense

mutation was estimated by aligning human NKX2.6 to

chimpanzee, monkey, dog, cattle, mouse, rat, fowl, zebra-

fish, and frog NKX2.6 using the HomoloGene and Show

Multiple Alignment links on the NCBI’s website (http://

www.ncbi.nlm.nih.gov/homologene).

Prediction of the Causative Potential of a Novel

NKX2.6 Sequence Variation

The disease-causing potential of a novel NKX2.6 sequence

variation was predicted by MutationTaster (an online pro-

gram at http://www.mutationtaster.org), which automati-

cally gave a probability for the variation to be either a

deleterious mutation or a benign polymorphism. Notably,

the p value used here is the probability of the correct

prediction rather than the probability of error as used in t

test statistics (i.e., a value close to 1 indicates high accu-

racy of the prediction). Additionally, another online pro-

gram PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)

was also used to evaluate the possible pathogenic effect of

an amino acid substitution on the structure and function of

NKX2.6 protein.

Plasmids and Site-Directed Mutagenesis

The recombinant expression plasmid NKX2.5-pEFSA and

the ANF–luciferase (ANF–Luc) reporter vector, which

contains the 2600-bp 50-flanking region of the ANF gene,

were kindly provided by Dr. Ichiro Shiojima from Chiba

University School of Medicine, Japan. Owing to unknown

downstream genes of NKX2.6, NKX2.5 was used as a

surrogate in transcriptional analysis to assess functional

consequences of the NKX2.6 homeodomain substitution as

previously described [20]. Alignment between human

NKX2.6 and NKX2.5 proteins displayed that K152Q-

Table 1 The intronic primers to amplify the coding exons and exon–intron boundaries of NKX2.6

Exon Forward primer (50–30) Reverse primer (50–30) Amplicon (bp)

1 gac,aag,acg,gga,agt,tca,gg tcg,aac,cca,gga,gat,agg,ag 447

2-a cca,ggg,aga,gga,aag,tct,tg cag,gac,ggg,cac,agc,tac,tc 454

2-b aga,acc,gac,gct,aca,aat,gc gag,atc,cct,ccg,gaa,aga,ag 500

bp base pairs
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mutant NKX2.6 was equivalent to K158Q-mutant NKX2.5

(as shown in Fig. 1). The c.472A[C transition, which was

predicted to generate the p.K158Q mutation, was intro-

duced into the wild-type NKX2.5 using a QuickChange II

XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla,

CA, USA) with a complementary pair of primers. The

mutant was sequenced to confirm the desired mutation and

to exclude any other sequence variations.

Reporter Gene Analysis of Mutant NKX2.5

COS-7 cells were routinely maintained in Dulbecco’s

modified Eagle’s medium supplemented with 10 % fetal

calf serum and seeded in 12-well plates (1 9 105) before

transfection. The ANF(-2600)–Luc reporter construct and

an internal control reporter plasmid pGL4.75 (hRluc/CMV,

Promega) were used in transient transfection assay to

assess the transcriptional activity of the NKX2.5 mutant.

Twenty-four hours after plating, the COS-7 cells at about

70 % confluence were transfected with 0.4 lg of wild-type

or mutant NKX2.5-pEFSA, 1.0 lg of ANF(-2600)–Luc

reporter construct, and 0.04 lg of pGL4.75 using PolyFect

Transfection Reagent (Qiagen). For co-transfection exper-

iments, 0.2 lg of wild-type NKX2.5-pEFSA together with

0.2 lg of mutant NKX2.5-pEFSA or 0.2 lg of empty

vector were used in the presence of 0.4 lg of ANF(-2600)–

Luc and 0.04 lg of pGL4.75. Firefly luciferase and Renilla

luciferase activities were measured with the Dual-Glo

luciferase assay system (Promega) 48 h after transfection.

The activity of the ANF promoter was presented as fold

activation of Firefly luciferase relative to Renilla lucifer-

ase. At least three independent experiments were con-

ducted in triplicate for wild-type and mutant NKX2.5.

Statistical Analysis

Data are expressed as means ± standard deviations. Con-

tinuous variables were tested for normal distribution and

Student’s unpaired t test was used to compare the numeric

variables between two groups. Comparison of the

Fig. 1 Alignment of human NKX2.6 protein sequence with that of NKX2.5. Alignment between human NKX2.6 and NKX2.5 protein sequences

indicates that K152Q-mutant NKX2.6 is equivalent to K158Q-mutant NKX2.5. The arrow points to the altered amino acid, lysine
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categorical variables between two groups was completed

using Pearson’s v2 test or Fisher’s exact test when appro-

priate. A two-tailed p value less than 0.05 was considered

to indicate statistical difference.

Results

Clinical Characteristics of the Study Subjects

A cohort of 210 unrelated patients with CHD was clinically

evaluated in contrast to a total of 200 unrelated non-CHD

control individuals. All the study subjects had no estab-

lished environmental risk factors for CHD, such as

maternal illness and drug use in the first trimester of

pregnancy, parental smoking, and long-term exposure to

toxicants and ionizing radiation. The baseline clinical

characteristics of the 210 unrelated CHD patients are

summarized in Table 2.

Identification of a Novel Nkx2.6 Mutation

By sequence analysis of the coding exons and flanking

introns of NKX2.6, a heterozygous sequence variation was

identified in 1 of 210 unrelated CHD patients, with a

mutational prevalence of about 0.48 %. Specifically, a

substitution of cytosine for adenine in the first nucleotide of

codon 152 (c.454A[C), predicting the transition of lysine

into glutamine at amino acid position 152 (p.K152Q), was

identified in an index patient with VSD. The sequence

electropherograms showing the identified heterozygous

NKX2.6 variation in contrast to its corresponding control

sequence are shown in Fig. 2. The schematic diagrams of

NKX2.6 and NKX2.5 proteins showing the structural

domains and location of the mutation identified in this

study are presented in Fig. 3. The variation was neither

observed in 400 control chromosomes nor found in the

SNP, HGM, and 1000 GP databases, which were consulted

again on August 9, 2014, indicating a novel mutation.

Genetic screening of the proband’s relatives showed that

the mutation was present in all the affected living family

members, but absent in unaffected family members who

were examined. Analysis of the pedigree demonstrated that

the mutation cosegregated with VSD transmitted in an

autosomal dominant pattern and with complete penetrance.

The pedigree structure of the family is shown in Fig. 4. The

phenotypic characteristics and status of NKX2.6 mutation

of the affected family members are listed in Table 3.

Multiple Alignments of NKX2.6 Protein Sequences

Among Various Species

As shown in Fig. 5, a cross-species alignment of multiple

NKX2.6 protein sequences displayed that the affected

amino acid of p.K152 was completely conserved evolu-

tionarily, suggesting that the amino acid is functionally

important.

Disease-Causing Potential of the Identified NKX2.6

Sequence Variation

The NKX2.6 sequence variation of c.454A[C was pre-

dicted to be pathogenic, with a p value of 0.956766. The

amino acid substitution of p.K152Q was also predicted to

be probably damaging by another software PolyPhen-2,

with a score of 0.964 (sensitivity: 0.62; specificity: 0.92),

Table 2 Baseline clinical characteristics of the 210 unrelated

patients with CHD

Variable Statistic

Male gender (%) 115 (54.8)

Age (years) 12.7 ± 6.8

Positive family history (%) 25 (11.9)

Prevalence of different types of CHD

Isolated CHD (%) 162 (77.1)

VSD (%) 66 (31.4)

ASD (%) 51 (24.3)

PDA (%) 20 (9.5)

PA (%) 8 (3.8)

CoA (%) 7 (3.3)

PS (%) 6 (2.9)

TAPVC (%) 3 (1.4)

SV (%) 1 (0.5)

Complex CHD (%) 48 (22.9)

TOF (%) 18 (8.6)

DORV ? VSD (%) 7 (3.3)

ASD ? VSD (%) 7 (3.3)

TA ? VSD (%) 6 (2.9)

TGA ?VSD (%) 1 (0.5)

Others (%) 9 (4.3)

Incidence of arrhythmia

Atrial fibrillation (%) 13 (6.2)

Atrioventricular block (%) 9 (4.3)

Treatment

Surgical repair (%) 109 (51.9)

Catheter-based closure (%) 85 (40.5)

Follow-up (%) 16 (7.6)

CHD congenital heart disease, VSD ventricular septal defect, ASD

atrial septal defect, PDA patent ductus arteriosus, PA pulmonary

atresia, CoA coarctation of the aorta, PS pulmonary stenosis, TAPVC

total abnormal pulmonary venous connection, SV single ventricle,

TOF tetralogy of Fallot, DORV double outlet of right ventricle, TA

truncus arteriosus, TGA transposition of great arteries
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implying that mutated NKX2.6 contributes to the devel-

opment of VSD in these mutation carriers.

Diminished Transcriptional Activity of the Mutant

NKX2.5

As shown in Fig. 6, the wild-type NKX2.5 and the K158Q-

mutant NKX2.5 activated the ANF promoter by *11- and

*3-fold, respectively. When wild-type NKX2.5 was co-

expressed with the same amount of K158Q-mutant

NKX2.5, the induced activation of the ANF promoter was

*fivefold. These results reveal that the K158Q-mutant

NKX2.5 is associated with significantly diminished trans-

activational activity compared with its wild-type

counterpart.

Discussion

In the present study, a novel heterozygous mutation in

NKX2.6, p.K152Q, was detected in a family with VSD.

The mutant allele was present in all affected family

members available but absent in unaffected relatives

examined and 400 referral chromosomes from an ethni-

cally matched control population. A cross-species align-

ment of multiple NKX2.6 protein sequences showed that

the altered amino acid was completely conserved evolu-

tionarily. The p.K152Q variation was predicted to be

pathogenic by both MutationTaster and PolyPhen-2, and

the functional analysis indicated that the homeobox sub-

stitution resulted in functional impairment. Therefore, it is

very likely that mutant NKX2.6 predisposes these mutation

Fig. 2 Sequence electropherograms showing the NKX2.6 mutation in

contrast to its corresponding control. The arrow indicates the

heterozygous nucleotides of A/C in the proband from family 1

(mutant); or the homozygous nucleotides of A/A in the corresponding

control individual (wild-type). The rectangle means the nucleotides

constituting a codon of NKX2.6

Fig. 3 Schematic diagrams of

human NKX2.6 and NKX2.5

protein structures with the

mutation responsible for

congenital ventricular defect

shown. The mutation associated

with congenital ventricular

defect is shown above the

structural domains. NH2 amino-

terminus, TN tinman domain,

HD homeodomain, NK

nucleotide kinase domain, and

COOH carboxyl-terminus
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carriers to VSD. To our knowledge, this is the first to

associate NKX2.6 loss-of-function mutation with enhanced

susceptibility to isolated VSD in humans.

The official name of NKX2.6 is NK-2 transcription

factor-related locus 6. This term refers to the grouping of

homeodomain-containing proteins into 20 different classes,

one of which is the NK-2 class. The abbreviation NK refers

to Nirenberg and Kim, who completed a search for Dro-

sophila genes containing homeodomain-encoding motifs.

The ‘‘X’’ in NKX was added to designate vertebrate

members of the family. Among the NK-2 genes expressed

in vertebrates, a subset, referred to as the ‘‘cardiac group’’,

includes Nkx2.3, Nkx2.5, Nkx2.6, Nkx2.7, Nkx2.8, and

Nkx2.10 [6]. The human NKX2.6 gene maps to chromo-

some 8p21.2 and consists of two exons encoding a protein

of 301 amino acids, which is expressed in early embryonic

heart progenitor cells, playing an important role in proper

cardiovascular development [7, 46]. The NKX2.6 protein

contains an evolutionarily conserved homeodomain that

recognizes and binds to a consensus DNA motif, AAGTG.

The homeodomain is centrally located at amino acid

positions 132–191 and is predominantly involved in target

DNA binding, nuclear translocation as well as interaction

with other transcription factors [20, 36]. The NKX2.6

mutation of p.K152Q identified in this study is located in

homeodomain, and thus may be anticipated to exert influ-

ence on the transcriptional activity of NKX2.6 by inter-

fering with its nuclear distribution or DNA-binding ability.

In order to determine the functional consequence of the

K152Q homeodomain substitution in NKX2.6, NKX2.5

was chosen as a surrogate mainly based on the following

reasons. Firstly, neither a target gene nor a binding site

recognition sequence for NKX2.6 has been verified. Sec-

ondly, both NKX2.5 and NKX2.6 belong to members of

the NK family, and they share highly conserved structural

motifs, especially in the homeodomain. Thirdly, bio-

chemical analyses of NKX2.5 have been well performed

repeatedly. Finally, there are in vivo studies substantiating

that NKX2.5 may compensate for the lack of NKX2.6

during embryogenesis, and therefore implying that some

DNA binding and transcriptional regulatory activities are

shared [7, 20, 46]. Consequently, functional assays of

K158Q-mutant NKX2.5 instead of K152Q-mutant NKX2.6

revealed that the homeodomain substitution significantly

reduced transcriptional activity on a target gene, ANF.

These findings suggest that haploinsufficiency or domi-

nant-negative effect caused by NKX2.6 mutation is poten-

tially an alternative pathological mechanism of VSD.

Nevertheless, the direct molecular mechanism by which

mutant NKX2.6 predisposes to VSD needs to be explored

in order to overcome the limitation to the current indirect

functional analysis.

Previously NKX2.6 mutations were associated with

truncus arteriosus, another type of CHD. Heathcote et al.

made a genetic analysis of a large consanguineous family

with truncus arteriosus, and identified an F151L mutation

in the homeodomain of NKX2.6. Due to unknown tran-

scriptional targets of NKX2.6, the functional character-

istics of the F151L-mutant NKX2.6 were investigated by

using F157L-mutant NKX2.5 as a surrogate, and intro-

duction of F157L into human NKX2.5 substantially

reduced its transcription activating function, its synergism

with partners at the ANF promoter and its specific DNA-

binding affinity [20]. Ta-Shma et al. performed a whole

exome analysis of a three-patient family with complex

CHD, including the proband with VSD and aortic arch

hypoplasia, his dead brother with truncus arteriosus, ste-

nosis of right pulmonary artery and right aortic arc, and

his sister with truncus arteriosus and right aortic arc, and

discovered a homozygous insertion mutation of

Fig. 4 Pedigree structure of the family with congenital ventricular

defect. Family is designated as family 1. Family members are

identified by generations and numbers. Square indicates male family

member, circle female member, closed symbol affected member, open

symbol unaffected member, symbol with a slash the deceased

member, arrow proband, ‘‘?’’ carrier of the heterozygous mutation,

and ‘‘-’’ non-carrier

Table 3 Phenotypic characteristics and status of NKX2.6 mutation

of the affected pedigree members

Subject information Phenotype Genotype

Identity Gender Age at

time of

study

(years)

Age at

diagnosis

of VSD

(years)

Cardiac

structural

defects

NKX2.6

mutation

Family 1 K152Q

I-1 M 62a 46 VSD NA

II-3 M 50 22 VSD ±

II-6 F 46 16 VSD ±

III-4 F 25 2 VSD ±

M male, F female, VSD ventricular septal defect, NA not available or

not applicable, ± presence of heterozygous mutation
a Age at death
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c.453_454insT in NKX2.6, which was predicted to gen-

erate a truncated protein with only N-terminal 152 amino

acids, namely p.K152X mutation. However, functional

analysis of this truncation mutation was not made [47].

Khetyar et al. screened the coding regions and splice

signal sequences of the NKX2.6 gene in 12 unrelated CHD

patients, but found no non-synonymous mutation [26].

The discrepancy in the mutational prevalence of these

reports including the present study may be partially

explained by different sample size and ethnicity as well as

great genetic heterogeneity. Taken together, these find-

ings support that NKX2.6 plays a key role in human heart

development.

Association of genetically defective Nkx2.6 with

enhanced susceptibility to CHD has been revealed in

experimental animals. In mice, targeted deletion of Nkx2.5

led to abnormal heart morphogenesis and embryonic

lethality; although a linear heart tube formed normally in

mutant embryos, the looping morphogenesis was not ini-

tiated [30]. In contrast, Nkx2.6-null mice were viable with

no obvious abnormalities in the heart [45]. Nevertheless, in

mutant embryos homozygous for Nkx2.6, Nkx2.5 mRNA

expression expanded to the pharyngeal pouch endoderm,

suggesting functional compensation for loss of Nkx2.6 in

the pharyngeal pouches of these embryos [45]. Further-

more, overlapping functions for Nkx2.5 and Nkx2.6 have

been demonstrated in the Nkx2.5 and Nkx2.6 double-

knockout mouse embryos, which lacked pharyngeal pou-

ches and had less advanced atrium, mainly due to enhanced

apoptosis and reduced proliferation of pharyngeal endo-

dermal cells [46]. Given the high degree of homology

between Nkx2.5 and Nkx2.6 proteins over the homeodo-

main and their overlapping expression patterns, these data

indicate that Nkx2.5 acts at a subset of Nkx2.6 target genes

[20].

In conclusion, this study firstly associates functionally

compromised NKX2.6 with increased vulnerability to iso-

lated VSD, highlighting the essential role of NKX2.6 in

human cardiovascular development, and implying the

potential implications for genetic counseling and clinical

care of the patients with VSD.

Fig. 5 Alignment of multiple NKX2.6 protein sequences among species. The altered amino acid of p.K152 in NKX2.6 is completely conserved

evolutionarily across various species

Fig. 6 Functional impairment of K158Q-mutant NKX2.5. Activation

of the ANF–Luc reporter in cultured COS-7 cells by wild-type

NKX2.5 (WT) or mutant (K158Q), alone or in combination, showed

significantly decreased transcriptional activity by mutant protein.

Experiments were performed in triplicate and mean and standard

deviations are given. **p \ 0.001 and *p \ 0.005, respectively, when

compared with wild-type NKX2.5
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