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The Importance of Wnt Signaling in Cardiovascular Development
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Abstract Cardiac development is comprised of a series

of morphological events tightly controlled both spatially

and temporally. The molecular pathways controlling early

cardiac differentiation are poorly understood, but Wnt

signaling is emerging as a critical pathway for multiple

aspects of early cardiovascular development. The Wnt

pathway plays multiple roles in regulating cellular behavior

including proliferation, differentiation, cell migration, and

cell polarity. Recent data have demonstrated that Wnt

activity is important for early precardiac mesoderm dif-

ferentiation but must be inhibited in subsequent steps for

cardiomyocyte differentiation to proceed. Given the

important role that Wnt signaling plays in both the differ-

entiation of cardiomyocytes from pluripotential stem cells

and tissue regeneration in general, an increased under-

standing of this pathway is likely to enhance our knowl-

edge about both cardiovascular development and reparative

mechanisms.
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Wnt Signaling Overview

Wnt proteins are homologs of the Drosophila wingless gene

and have been show to play important roles in regulating

cell differentiation, proliferation, and polarity (reviewed in

[7, 53, 64]). Wnt proteins are cysteine-rich secreted gly-

coproteins that signal through several possible pathways.

The best understood of these, commonly called the canon-

ical pathway, involves binding of Wnt proteins to Frizzled

cell surface receptors, which inhibits GSK-3b phosphory-

lation of b-catenin. Hypophosphorylated b-catenin is

translocated to the nucleus, where it binds to members of

the lymphoid enhancement factor/T-cell factor (LEF/TCF)

family of transcription factors. Binding of b-catenin con-

verts LEF/TCF factors from repressors to activators,

thereby switching on cell-specific gene transcription.

Wnt proteins also can signal through a poorly under-

stood network of noncanonical effectors to control subtle

aspects of cell behavior such as cell polarization, adhesion,

and motility [22, 35, 67, 68, 71, 87]. Activation of these

effectors can inhibit canonical Wnt signaling. Moreover, it

has been shown that a single Wnt ligand, such as Wnt5a,

can signal through both canonical and noncanonical path-

ways in a cell type-dependent context [47, 77]. These

issues have led some to promote the idea that Wnt sig-

naling is more a network of interacting factors that regulate

many aspects of cell biology than a simple linear signaling

pathway [78]. This notion has much merit and likely will

garner increased support as the diversity of cellular

responses due to Wnt signaling increases (Table 1)
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Noncanonical Wnt effectors are loosely organized into

two pathways, the Wnt/RhoA and Wnt/Ca2? pathways. In

Wnt/RhoA signaling, Wnt proteins bind to Frizzled

receptors, which mediate both canonical and noncanonical

Wnt signaling, to activate Rho-family small GTPases and

their downstream effectors such as Rho-associated kinase

[22, 35, 67, 68]. This pathway is similar to the Drosophila

planar cell polarity pathway, which is required for proper

fly wing hair orientation, cell polarization during conver-

gence and extension movements in gastrulation, and ori-

entation of steriocilia in the cochlea [16, 19, 25, 28, 43, 55,

80, 81, 83, 92]. In Wnt/Ca2? signaling, Wnt proteins

induce intracellular Ca2? release and activate the Ca2?-

dependent protein kinases PKC and CamKII via the

G-protein-dependent activity of Frizzled receptors [32–34,

42, 58, 61, 63].

Wnt signaling has been shown to play an essential role

in brain, limb, mammary, skin, and, more recently, car-

diovascular development [3, 4, 12, 30, 37, 39, 44, 52, 56,

57, 65, 76]. There are 19 Wnt proteins, 10 Fzd receptors,

and 2 LRP co-receptors in mammals. Such complexity

suggests multifarious possibilities of Wnt-signaling out-

puts. Recent studies indicate that individual Wnt ligands

can activate canonical or noncanonical Wnt signaling in a

cell context-dependent manner [47, 74]. Therefore, the

pathway likely is regulated in a spatial and temporal con-

text related to the expression patterns of specific Wnt

ligands and receptors.

Early Cardiovascular Development and Wnt Signaling

The heart arises from two different but overlapping sources

of mesoderm called the first heart field (FHF) and the

second heart field (SHF). The SHF lies peripherally in

relation to the FHF in the early cardiac crescent, and both

migrate to the midline to form the simple cardiac tube. SHF

progenitors continue to contribute to the growing and

septating heart, playing a critical role in the formation of

the right ventricle, and atria, as well as the outflow and

inflow tracts [26, 27]. At the molecular level, the distinc-

tions between FHF and SHF progenitors are poorly

understood, and both fields likely overlap extensively.

However, recent data point to a unique sensitivity of SHF

progenitor differentiation and proliferation to Wnt/b-cate-

nin signaling [31, 76].

Table 1 Components of the Wnt pathway and their role in cardiovascular development

Gene Species Pathway Phenotype References

Wnt ligands

Wnt2 Mouse Canonical Placental vascular failure, inflow tract

development (E. Morrisey, unpublished observations)

[49]

Wnt5a Mouse Noncanonical Outflow tract septation [45, 59]

Wnt7a Mouse Canonical Cerebral vascular development (with Wnt7b) [14, 66]

Wnt7b Mouse Canonical Pulmonary vascular smooth muscle development,

cerebral vascular development (with Wnt7a)

[13, 14, 62, 66, 86]

Wnt9a Mouse Unknown Epicardial development [46]

Wnt11 Mouse, zebra fish,

Xenopus
Noncanonical Outflow tract development, cardiac

myocyte differentiation

[15, 17, 60, 69, 91]

Wnt receptors

Fzd4 Mouse Unknown Retinal vascular development (with norrin) [70, 88]

Fzd5 Mouse Unknown Placental vascular development [21]

Norrin Mouse, human Canonical Retinal vascular development (with Fzd4) [88]

Lrp5 Mouse, human Canonical Retinal vascular development [24, 70, 86]

Lrp6 Mouse Canonical Vascular smooth muscle proliferation and survival [85]

Signaling components

Beta-catenin Mouse, zebra fish Canonical SHF progenitor proliferation, cardiac valve

development, adult hypertrophic growth

[2, 10, 12, 20, 29, 37–39,

50, 51, 76, 79, 84]

Dvl1 Mouse Unknown Myofibroblast proliferation [9]

Dvl2 Mouse Unknown Outflow tract development [18]

Gsk3b Mouse Canonical Adult cardiac hypertrophic growth [10, 72, 73]

Vangl2 Mouse Noncanonical Outflow tract development [54]

Apc Zebra fish Canonical Cardiac valve development [20]

SHF second heart field
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The FHF and SHF and their derivatives are marked by

expression of specific transcription factors. Myocyte

enhancer 2c (Mef2c), GATA-binding protein 4 (Gata4),

and NK2 transcription factor related 5 (Nkx2.5) mark both

the FHF and SHF [36, 40, 41, 48]. Tbx5 expression is

observed in a graded pattern, with the highest levels in the

left ventricle and the formation of the left ventricle is

preferentially affected in loss of function mutants, sup-

porting the notion that Tbx5 is a reasonable marker of the

FHF [5, 6]. The LIM-homeodomain gene islet 1 (Isl1) is

expressed primarily in the SHF and marks this group of

cardiac progenitors as a distinct cell population [8].

All these factors are critical determinants of cardiomy-

ocyte specification and development. In mice, Gata4 and

Gata6 are required for specification of FHF progenitors but

not SHF progenitors [90]. Loss of both Gata4 and Gata6

leads to heart agenesis, with a loss in Tbx5 expression

(FHF marker) but continued Isl1 expression (SHF marker).

Despite this important finding, specification of FHF and

SHF cardiac progenitors is likely to rely on a complex

network of interactions between multiple families of tran-

scription factors. Moreover, the activity of several signal-

ing networks including BMP, TGFb, and Wnt are

important in the regulation of these transcription factor

interactions at the earliest stages of cardiac specification

and differentiation.

The activity of the Wnt/b-catenin pathway has been

explored during cardiac development using several LEF/

TCF transgenic reporter lines. Although activity is

observed in the pericardium, the endocardial cushions, the

adjacent cardiac mesoderm, and the early outflow tract,

little to no activity is observed in the developing ventric-

ular myocardium [12, 39]. This is surprising given the high

expression level of several Wnt ligands in the early heart

including Wnt2, Wnt2b, Wnt11, and Wnt8a [15, 23, 49,

89]. These data could indicate that these ligands act pri-

marily through the noncanonical portion of the Wnt net-

work or that the LEF/TCF transgenic lines are limited in

their ability to report Wnt/b-catenin signaling accurately in

the developing heart.

Wnt signaling has been shown to regulate the develop-

ment of the heart’s anterior portion including the outflow

tract and the right ventricle. Loss of b-catenin in the SHF

leads to decreased numbers of anterior Isl1? progenitors,

whereas stabilization of b-catenin expands the numbers of

Isl1? cells [2, 12, 37, 39]. The deletion of b-catenin in the

SHF causes a dramatic reduction in both the levels of Isl1

expression and the numbers of cells that express Isl1 [12,

39]. Moreover, chromatin immunoprecipitation and in vitro

reporter assays indicate that b-catenin directly binds to and

regulates the Isl1 promoter [39].

These data strongly suggest that canonical Wnt/b-cate-

nin signaling plays a role in the initiation of Isl1 expression

and in the specification of Isl1? cardiac progenitors. Isl1?

progenitors also are found in the posterior region of the

developing cardiac mesoderm. Our recent studies have

shown that Wnt2, a ligand expressed specifically in the

posterior pole of the developing heart, is essential for the

development and differentiation of posterior structures

including the atria, pulmonary veins and atrioventricular

canal (Y. Tian and E. Morrisey, manuscript submitted).

Wnt2 regulates the proliferation and differentiation of

Isl1 ? progenitors and early cardiomyocytes within the

posterior pole of the heart and does so through the

b-catenin-dependent canonical Wnt pathway. Thus, Wnt/

b-catenin signaling is important for both outflow and inflow

tract development via its regulation of Isl1? SHF progenitor

cell expansion and subsequent myocyte differentiation.

Wnt Signaling During Cardiac Early Differentiation:

More Than One Way of Looking at It

Studies on chick and frog embryos suggest that the initial

specification of cardiac tissue is governed by the balanced

expression of canonical Wnt activators and repressors both

within and outside the early mesoderm. Canonical Wnt

signaling, through Wnt1 and Wnt3a expression in the

anterior mesoderm, inhibits the expression of early cardiac

genes in the cardiac crescent, including Nkx2.5 and GATA4

[44, 60]. Secreted Wnt antagonists, including crescent and

Dikkopf (Dkk), are expressed in the endoderm underlying

the cardiac mesoderm [60]. Moreover, Wnt expression in

the dorsal neural tube blocks cardiogenesis in the adjacent

paraxial mesoderm [75]. Supporting this balance in Wnt

activity are data showing that forced expression of crescent

or Dkk in the noncardiac posterior mesoderm induces

cardiac gene expression and the appearance of beating

cardiomyoctes [44, 60].

Additional data from experiments with Xenopus suggest

that Wnt signaling inhibits cardiogenesis in some contexts.

In Xenopus, findings have shown that Wnt11 expression is

required for heart specification [15, 17]. Wnt11 is thought

to promote cardiogenesis through its ability to inhibit

b-catenin-dependent canonical signaling [11, 15, 17, 52].

Blocking Wnt11 signaling in the anterior mesoderm of

Xenopus embryos blocks the expression of early cardiac

genes including Nkx2.5, GATA4, and Tbx5, whereas

expressing Wnt11 in the posterior mesoderm of frog and

chick embryos induces ectopic expression of these markers

as well as the appearance of beating cardiomyocytes

[15, 60].

In Xenopus animal pole explants, which normally take

on a neuro-ectodermal fate, Wnt11 induces cardiac tissues

without inducing the expression of pan-mesodermal

markers, suggesting that the effect of Wnt11 on cardiac
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specification is direct and not the result of increased

mesoderm induction [52]. Wnt11 expression similarly

coincides with the onset of cardiac gene expression in

differentiating embryonic stem cells, and treating these

cells with recombinant Wnt11 increases the specification of

cardiac progenitors, indicating that Wnt11 also plays an

essential role in murine heart induction [76].

Recent data have demonstrated a link between the

important cardiac transcription factors Gata4, Gata6, and

the Wnt-signaling pathway. These data show that Gata4

and Gata6 are required for specification of FHF progenitors

in mice [90]. Studies in Xenopus have shown that the

cardiac-promoting abilities of Wnt11 require Gata4 and

Gata6 function, whereas b-catenin simultaneously inhibits

Gata4 and Gata6 expression in early frog development [1].

Recently, our lab found that Wnt2 works collaboratively

with Gata6 in a positive feed-forward loop to promote the

proper differentiation and proliferation of posterior pole

Isl1 ? cardiac progenitors and early cardiac development

(Y. Tian and E. Morrisey, manuscript submitted). The

discrepant results highlight the differences in Wnt-signal-

ing activity in FHF versus SHF progenitors and their

derivatives. Moreover, these data highlight the differences

in Wnt-signaling activity during cardiovascular develop-

ment obtained with different model organisms, which is a

critical point to consider in the interpretation of such data.

Together, these data suggest that Wnt/b-catenin signaling

plays an important role in the expansion and early differ-

entiation of SHF Isl1 ? progenitors but inhibits further

differentiation of either SHF or FHF progenitors.

As described earlier, much of the discrepant roles for

Wnt signaling in cardiogenesis could be reconciled by

imposing a biphasic role for the pathway in which Wnt is

procardiogenic in early precardiac mesoderm and inhibitory

to cardiogenesis during the later stages of cardiac differ-

entiation. This model is supported by data from multiple

systems including embryonic stem cells and the developing

zebra fish. The expression of canonical Wnt ligands and the

activity of Wnt reporters are transiently increased in dif-

ferentiating embryonic stem cells just before the expression

of cardiac genes such as Nkx2.5 and GATA4 [50, 76].

Blocking canonical Wnt signaling during this early period

of differentiation inhibits the expression of early cardiac

markers and the appearance of beating cardiomyocytes

[50]. In contrast, slightly later activation of Wnt/b-catenin

leads to inhibition of cardiac differentiation [50].

In zebra fish, heat- and shock-inducible expression of both

activators (wnt8) and inhibitors (dkk1) show that the tem-

poral difference between Wnt activity promoting cardio-

genesis and inhibiting it is as little as 1 h [76]. The possibility

that canonical Wnt signaling plays an early positive role in

cardiac induction is especially interesting in light of recent

data that Wnt2 is required for cardiac differentiation in

embryonic stem cells. Wnt2 has been shown to activate

canonical Wnt signaling in several contexts and is expressed

in the early cardiac crescent [49]. Wnt2-deficient embryonic

stem cells exhibit enhanced hematopoietic differentiation

but decreased cardiac and endothelial cell differentiation

[82]. Thus, Wnt2 and possibly its homolog Wnt2b may play

an important role in the specification of cardiac cell types

from the early mesoderm [23, 49, 89].

These data suggest that canonical Wnt signaling plays a

biphasic role in mouse cardiac induction, positively regu-

lating cardiac gene expression early and inhibiting cardiac

differentiation later. Such temporal specificity also helps to

explain the discrepant activities of Wnt in cardiogenesis in

different model systems. Thus, the precise temporal

activity of Wnt/b-catenin activity would have to be con-

trolled carefully if this pathway is ever to be harnessed for

cardiovascular regenerative therapies.

Noncanonical Wnt Signaling in Cardiac Development

Growing evidence shows that noncanonical or b-catenin-

independent Wnt signaling plays a role in SHF develop-

ment. Two noncanonical Wnt ligands, Wnt5a and Wnt11,

are expressed at the anterior pole of the heart as SHF cells

migrate through on their way to the right ventricle, and

mice homozygous for mutations in Wnt5a or Wnt11 have

outflow tract defects consistent with those caused by dis-

ruption of the SHF. Both Wnt5a and Wnt11 promote car-

diac differentiation in embryonic and adult stem cells

through noncanonical pathways and may be necessary to

balance b-catenin-dependent SHF proliferation in the out-

flow tract. However, our current understanding of the

molecular and cellular mechanisms behind the effects of

Wnt5a and Wnt11 on cardiac development is far from

complete. The Wnt5a and Wnt11 alleles result in global

loss of function, making it difficult to conclude that the

effects of these mutations on the SHF are direct and not

caused by the loss of paracrine signaling to adjacent cell

types. This is especially important to consider in the

interpretation of Wnt5a and Wnt11 mutants as the outflow

tract defects observed are similar to those observed upon

disruption of proper SHF development.

Furthermore, evidence suggesting that Wnt5a and

Wnt11 act noncanonically in the SHF is largely composed

of data from in vitro experiments, and this model remains

to be tested genetically. Experiments using conditional

alleles of noncanonical Wnt pathway components includ-

ing Wnt5a and Wnt11 in the context of Wnt transgenic

reporters are required to advance our understanding of

noncanonical Wnt signaling in SHF development.

Other pathways including jun N-terminal kinase (JNK)

and protein kinase C (PKC) are known to act downstream
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of some b-catenin-independent Wnt signaling. Inhibiting

either JNK or PKC signaling blocks the ability of Wnt11 to

induce cardiac specification, whereas coactivating JNK and

PKC induces cardiac specification, suggesting that both the

RhoA/JNK and Ca2?/PKC pathways mediate Wnt11 sig-

naling [52]. These data indicate that the activation of

noncanonical Wnt signaling by Wnt11 is required for the

induction of cardiac tissues through JNK and PKC

signaling.

Summary

A plethora of recent data has shown that Wnt/b-catenin

signaling plays an important role in many stages of car-

diovascular development including progenitor proliferation

and myocyte differentiation. The use of multiple model

systems has resulted in contradictory data in some cases,

but recent studies in the pluripotential stem cell field and

with zebra fish have helped to resolve these discrepancies

and have highlighted a model in which Wnt/b-catenin is

procardiogenic in the early precardiac mesoderm and

inhibitory later in cardiac differentiation. Given the

importance of Wnt/b-catenin signaling in promoting stem/

progenitor cells from various sources, it will be important

to determine whether regulation of this pathway can help to

generate sufficient cardiac and vascular progenitors and

their derivatives for therapeutic use in the future.
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