
DOI: 10.1007/s002459910013

Appl Math Optim 41:237–254 (2000)

© 2000 Springer-Verlag New York Inc.

Lipschitzian Regularity of Minimizers for Optimal Control Problems
with Control-Affine Dynamics ∗

A. V. Sarychev and D. F. M. Torres

Department of Mathematics, University of Aveiro,
3810 Aveiro, Portugal
{ansar,delfim}@mat.ua.pt

Communicated by J. Stoer

Abstract. We study the Lagrange Problem of Optimal Control with a functional∫ b
a L (t, x (t) , u (t)) dt and control-affine dynamicṡx = f (t, x)+ g (t, x)u and

(a priori) unconstrained controlu ∈ Rm. We obtain conditions under which the
minimizing controls of the problem are bounded—a fact which is crucial for the
applicability of many necessary optimality conditions, like, for example, the Pon-
tryagin Maximum Principle. As a corollary we obtain conditions for the Lipschitzian
regularity of minimizers of the Basic Problem of the Calculus of Variations and of
the Problem of the Calculus of Variations with higher-order derivatives.
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1. Introduction

Under standard hypotheses of the Tonelli existence theory in the Calculus of Variations,
the existence of minimizers is guaranteed in the class of absolutely continuous func-
tions possibly with unbounded derivative. As is known, in such cases the optimality

∗ This research was partially presented at the International Conference dedicated to the 90th Anniversary
of L. S. Pontryagin, Moscow, September 1998.
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conditions—like the Euler–Lagrange equation—may fail. Therefore it is important to
try to obtain Lipschitzian regularity conditions under which the minimizers are Lips-
chitzian. The main part of the results obtained (starting with those of Tonelli) refer to the
Basic Problem of the Calculus of Variations (see [1], [2], [6], [8]–[10], [14], and [17]).
Less is known for problems with high-order derivatives [11]. For the Lagrange problem
and for problems of optimal control, regularity results are a rarity. We are only aware of
progress due to Clarke and Vinter [12] for problems associated with linear, autonomous
(i.e., time-invariant) dynamics (see also [4]). For this particular class of problems, regu-
larity results are obtained via transformation of the initial problem into a problem of the
Calculus of Variations with higher-order derivatives. In this paper we develop a different
approach to establishing Lipschitzian regularity (boundedness of minimizing controls)
for the Lagrange problems with a functional

∫ b
a L (t, x (t) , u (t)) dt and control-affine

nonautonomous dynamics:ẋ = f (t, x) + g (t, x)u. This class of systems appears in
a wide range of problems relevant to mechanics, sub-Riemannian geometry, etc. We
make use of an approach developed by Gamkrelidze [13, Chapter 8]: a reduction of the
Lagrange problem to an autonomous time-optimal control problem, with a subsequent
compactification of the set of control values. If the Pontryagin Maximum Principle is
applicable to the compactified problem, one can use its formulation to derive conditions
for boundedness of minimizers of the original Lagrange problem and to determine the
bounds for the magnitudes of minimizing controls. The main result is Theorem 1 (Sec-
tion 3). As its corollaries we obtain (Section 4) results on the Lipschitzian regularity of
minimizers in the Calculus of Variations (see [18]).

2. Preliminaries

2.1. Optimal Control Problems with Control-Affine Dynamics and
Unconstrained Controls

We study minima of the problem

(P) J [x (·) , u (·)] =
∫ b

a
L (t, x (t) , u (t)) dt→ min,

ẋ (t) = f (t, x (t))+ g (t, x (t))u (t) a.e. on[a, b] ,

x (a) = xa, x (b) = xb,

x (·) ∈ AC
(
[a, b] ; Rn

)
, u (·) ∈ L1

(
[a, b] ; Rm

)
.

Here a, b ∈ R, a < b; L: R × Rn × Rm → R, f : R × Rn → Rn, andg: R ×
Rn → Rn×m are given functions;m ≤ n; xa, xb ∈ Rn are given;u = (u1, . . . ,um) ∈
Rm, g(t, x) = (g1(t, x), . . . , gm(t, x)). The controlsu(·) are integrable. The absolute
continuous solutionx(·) of the differential equation is astate trajectorycorresponding
to the controlu (·). We assume thatf (·, ·) andg(·, ·) areC1–functions inR1+n.

2.2. The Pontryagin Maximum Principle for(P)

The following first-order necessary optimality condition for the problem(P) is provided
by the Pontryagin Maximum Principle. We use〈·, ·〉 to denote the usual inner product
in Rn.
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Theorem 2.2.1. If (x̃(·), ũ(·)) is a minimizer of the problem(P) and the control̃u(·) ∈
Lm
∞([a, b]), then there exists a nonzero pair(ψ̃0, ψ̃(·)), whereψ̃0 ≤ 0 is a constant

andψ̃(·) is an absolutely continuous vector-function with domain[a, b], such that the
quadruple(x̃(·), ψ̃0, ψ̃(·), ũ(·)) satisfies:

(i) the Hamiltonian system

ẋ = ∂H

∂ψ
, ψ̇ = −∂H

∂x
,

with the Hamiltonian H= ψ0 L (t, x, u)+ 〈ψ, f (t, x)〉 + 〈ψ, g (t, x) u〉;
(ii) the maximality condition

H
(
t, x̃ (t) , ψ̃0, ψ̃ (t) , ũ (t)

)
= M

(
t, x̃ (t) , ψ̃0, ψ̃ (t)

)
= sup

u∈Rm
H
(
t, x̃ (t) , ψ̃0, ψ̃ (t) , u

)
for almost all t∈ [a, b].

Definition 1. A quadruple
(

x̃ (·) , ψ̃0, ψ̃ (·) , ũ (·)
)

in which ψ̃0, ψ̃ (·) are as in The-

orem 2.2.1,ũ (·) is integrable and satisfies conditions (i) and (ii) of Theorem 2.2.1, is
called extremal for the problem(P). The controlũ (·) is called an extremal control. An

extremal
(

x̃ (·) , ψ̃0, ψ̃ (·) , ũ (·)
)

is called normal ifψ̃0 6= 0 and abnormal ifψ̃0 = 0.

We call ũ (·) an abnormal extremal control if it corresponds to an abnormal extremal(
x̃ (·) , 0, ψ̃ (·) , ũ (·)

)
.

2.3. The Pontryagin Maximum Principle for Autonomous Time Optimal
Control Problems and Constrained Controls

An autonomous time optimal problem is

T → min

subject to

ẋ (t) = F (x (t) , u (t)) a.e. t ∈ [a, T ] , (2.1)

x (·) ∈ AC
(
[a, T ] ; Rn

)
, u (·) ∈ L∞ ([a, T ] ; U ) ,

x (a) = xa, x (T) = xT .

Here F (·, ·) is a continuous function onRn+m and has continuous partial derivatives
with respect tox. The controlu (·), defined on[a, T ], takes its values inU ⊂ Rm, and is
a measurable andboundedfunction. The following first-order necessary condition—the
Pontryagin Maximum Principle—holds for any minimizer of the problem (details can
be found, for example, in [13]). There are plenty of generalizations and modifications
of the Pontryagin Maximum Principle. For example, a Pontryagin Maximum Principle
under less restrictive assumptions for smoothness of data can be found in [5] or [16].
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Theorem 2.3.1. Let(x̃ (·) , ũ (·)) be a solution of the time-optimal problem(2.1).Then
there exists a nonzero absolutely continuous functionψ̃ (·) satisfying:

• the Hamiltonian system

ẋ = ∂H (x, ψ, u)

∂ψ
, ψ̇ = −∂H (x, ψ, u)

∂x
,

with corresponding Hamiltonian H(x, ψ, u) = 〈ψ, F (x, u)〉;
• the maximality condition

H
(

x̃ (t) , ψ̃ (t) , ũ (t)
)
= M

(
x̃ (t) , ψ̃ (t)

)
= sup

u∈U

{
H
(

x̃ (t) , ψ̃ (t) , u
)}

for almost all t∈ [a, T ];

• the equality M
(

x̃ (t) , ψ̃ (t)
)
≡ const≥ 0.

3. Main Result

Theorem 1. Let L(·, ·, ·) ∈ C1 ([a, b] × Rn × Rm; R), f (·, ·) ∈ C1 (R× Rn; Rn),
g (·, ·) ∈ C1

(
R× Rn; Rn×m

)
, and

ϕ (t, x, u) = f (t, x)+ g (t, x) u.

Under the hypotheses:

(H1) full rank condition: g (t, x) has rank m for all t∈ [a, b] and x∈ Rn;
(H2) coercivity: there exists a functionθ : R→ R such that

L (t, x, u) ≥ θ (‖u‖) > ζ,

for all (t, x, u) ∈ [a, b] × Rn × Rm, and

lim
r→+∞

r

θ (r )
= 0;

(H3) growth condition: there exist constantsγ , β, η, andµ, with γ > 0, β < 2,
andµ ≥ max{β − 2, −2}, such that, for all t ∈ [a, b], x ∈ Rn, and u∈ Rm,
it holds that

(|Lt | + |Lxi | + ‖L ϕt − Lt ϕ‖ + ‖L ϕxi − Lxi ϕ‖ ) ‖u‖µ ≤ γ Lβ + η,
i ∈ {1, . . . , n} ;

then all minimizers̃u (·) of the Lagrange problem(P) which are not abnormal extremal
controls, are essentially bounded on[a, b].

Remark 1. Recall that if the dynamics is controllable (which is true for problems of
the Calculus of Variations treated in Section 4), then all extremals are normal. A priori
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minimizer ũ (·) which is not essentially bounded, may fail to satisfy the Pontryagin
Maximum Principle and therefore may cease to be an extremal. As far as essentially
bounded minimizers are concerned the Pontryagin Maximum Principle is valid, and
unbounded minimizers̃u (·) (if there are any) are, according to Theorem 1, abnormal
extremal controls, then we obtain the following:

Corollary 1. Under the conditions of Theorem1 all minimizers of the Lagrange
problem(P) satisfy the Pontryagin Maximum Principle.

Remark 2. We may impose stronger but technically simpler forms of assumption (H3)
in Theorem 1. Under these conditions Theorem 1 loses some generality, but sometimes,
for a given problem, these conditions are easier to verify. For example, they can be (in
increasing order of simplicity and in decreasing order of generality):

[L (‖ϕt‖ + ‖ϕxi ‖)+ ‖ϕ‖ (|Lt | + |Lxi | )] ‖u‖µ ≤ γ Lβ + η;
L (‖ϕt‖ + ‖ϕxi ‖)+ ‖ϕ‖ (|Lt | + |Lxi |) ‖u‖µ ≤ γ Lβ + η;
‖ϕt‖ + ‖ϕxi ‖ + |Lt | + |Lxi | ≤ γ Lβ

′ + η, β ′ < 1.

It is easy to see why (H3) follows from any of these conditions. It is enough to notice
that

‖L ϕt − Lt ϕ‖ + ‖L ϕxi − Lxi ϕ‖ ≤ L (‖ϕt‖ + ‖ϕxi ‖)+ ‖ϕ‖ (|Lt | + |Lxi |) ;

and that 0≥ max{β − 2, −2}.

Remark 3. The result of Theorem 1 admits a generalization for Lagrange problems
with dynamics which are nonlinear in control. This will be addressed in a forthcoming
paper.

3.1. Proof of the Theorem

We begin with an elementary observation.

Remark 4. It suffices to prove Theorem 1 in the special case in (H2) where we put
ζ = 0. Indeed, minimization of∫ b

a
L (t, x (t) , u (t)) dt

under the conditions in(P) is equivalent to∫ b

a
(L (t, x (t) , u (t)) − ζ ) dt→ min,

since the difference of the integrands is constant.
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Remember that everywhere below, the notationϕ (t, x, u) stands for f (t, x) +
g (t, x)u.

3.1.1. Reduction to a Time-Optimal Problem. The following idea of transforming the
variational problem into a time-optimal control problem and subsequent compactification
of the control set was used earlier by Gamkrelidze [13, Chapter 8] to prove some existence
results. We introduce a new time variable

τ (t) =
∫ t

a
L (θ, x(θ), u(θ)) dθ t ∈ [a, b],

which is a strictly monotonous absolutely continuous function oft , for any pair(x(t), u (t))
satisfyingẋ (t) = ϕ (t, x (t) , u (t)). Obviouslyτ (b) = T coincides with the value of
the functional of the original problem. As far as

dτ(t)

dt
= L (t, x(t), u(t)) > 0

holds thenτ (·) admits a monotonous inverse functiont (·) defined on [0, T ], such that

dt

dτ
(τ ) = 1

L (t (τ ), x (t (τ )) ,u(t (τ )))
.

Notice that the inverse functiont (·) is also absolutely continuous. Obviously

dx (t (τ ))

dτ
= dx (t (τ ))

dt

dt(τ )

dτ
= ϕ (t (τ ), x (t (τ )) , u (t (τ )))

L (t (τ ), x (t (τ )) ,u(t (τ )))
. (3.1)

Takingτ as a new time variable, consideringt (τ ) andz(τ ) = x (t (τ )) as components
of state trajectory, andv(τ) = u(t (τ )) as the control, we can transform the problem(P)
into the following form:

T −→ min, (3.2){
ṫ(τ ) = 1

L(t (τ ), z(τ ), v(τ )) ,

ż(τ ) = ϕ(t (τ ), z(τ ), v(τ ))
L(t (τ ), z(τ ), v(τ )) ,

(3.3)

v: R→ Rm,

t (0) = a, t (T) = b,
z(0) = xa, z(T) = xb.

(3.4)

3.1.2. Compactification of the Space of Admissible Controls. So far the new control
variable takes its values inRm and the controlv(τ) can be unbounded. This unbound-
edness is kind of fictitious as the set{(

1

L (t, z, v)
,
ϕ (t, z, v)

L (t, z, v)

)
: v ∈ Rm

}
is bounded under the hypotheses (H1) and (H2). This set (for fixed(t, z) ∈ R × Rn)
is not closed, but becomes compact if we add to it the point(0, 0) ∈ R × Rn which
corresponds to the “infinite value” of the controlv ∈ Rm. The set

E(t, z) = {(0, 0)} ∪
{(

1

L (t, z, v)
,
ϕ (t, z, v)

L (t, z, v)

)
: v ∈ Rm

}
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can be represented as a homeomorphic image of them-dimensional sphereSm ≈ Rm
.

This homeomorphism is defined in a standard way: we fix a pointŵ ∈ Sm, called the
north pole, and consider the stereographic projection

π : Sm\ {ŵ}→ Rm. (3.5)

Obviouslyπ |Sm\{ŵ} is continuous and limw→ŵ ‖π (w)‖ = +∞. Functions

w→ 1

L (t, z, π(w))
and w→ ϕ (t, z, π(w))

L (t, z, π(w))
(3.6)

are continuous onSm\ {ŵ}, sinceL (t, z, π(w)) > 0. Due to hypotheses (H1) and (H2)

lim
‖v‖→+∞

‖ϕ (t, z, v)‖
θ (‖v‖) = 0

and therefore

lim
‖v‖→+∞

‖ϕ (t, z, v)‖
L (t, z, v)

= 0. (3.7)

Hence, one can extend the functions defined by (3.6) up to the functionsφt, z(·) and
ht, z(·), which are continuous on the entire sphereSm (on the compactified spaceRm

):

φt, z(w) = φ(t, z, w) =
{ 1

L(t, z, π(w)) if w 6= ŵ,
0 if w = ŵ,

ht, z(w) = h(t, z, w) =
{
ϕ(t, z, π(w))
L(t, z, π(w)) if w 6= ŵ,
0 if w = ŵ.

Given (H1), the map

w→ (
φt, z(w), ht, z(w)

)
,

of Sm ontoE(t, z), is continuous and one-to-one and therefore a homeomorphism since
Sm is compact. Thus, we have come to the autonomous optimal control problem:

T −→ min, (3.8){
ṫ(τ ) = φ (t (τ ), z(τ ), w(τ)) ,

ż(τ ) = h (t (τ ), z(τ ), w(τ)) ,
(3.9)

w: R→ Sm,

t (0) = a, t (T) = b,
z(0) = xa, z(T) = xb,

(3.10)

with a compact setSm of values of control parameters.
We claim that every pair(x (·) , u (·)) satisfying ẋ = f (t, x) + g (t, x)u cor-

responds to a trajectory(t (τ ) , z(τ ) , w (τ)) of the system (3.9) withw(τ) 6= ŵ for
almost allτ ∈ [ 0, T ] and the transfer timeT for this latter solution equal to the value
J [x(·), u (·)]:

T = J [x(·), u (·)] =
∫ b

a
L (t, x(t), u(t)) dt.
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Indeed we may define(t (τ ) , z(τ ) , w (τ)) setting

t (τ ) is the inverse function to τ (t) =
∫ t

a
L (θ, x(θ), u(θ)) dθ,

z(τ ) = x (t (τ )) , w(τ) = π−1 (u(t (τ ))) ,

0≤ τ ≤ T = J [x(·), u (·)] ,
whereπ−1(·) is the mapping inverse to (3.5). Functionz(·) is absolutely continuous since
it is a composition of an absolutely continuous function with another strictly monotonous
absolutely continuous functiont (τ ). Functionw(·) is measurable becauseπ−1(·) is a
continuous function,u(·) is measurable, andt (·) is a strictly monotonous absolutely
continuous function. We already know that

dt (τ )

dτ
= 1

L (t (τ ), z(τ ), π (w(τ)))
,

dz(τ )

dτ
= ϕ (t (τ ) , z(τ ), π (w(τ)))

L (t (τ ), z(τ ), π (w(τ)))
,

andw(τ) 6= ŵ for almost all τ ∈ [ 0, T ], sinceu (·) has finite values almost everywhere
andt (·) is strictly monotonous.

We shall show now that every solution of (3.9), withw(τ) 6= ŵ a.e., results from this
correspondence. Taking the absolutely continuous functionτ(t), a ≤ t ≤ b, which is
the inverse of the strictly monotonous, absolutely continuous functiont (τ ), 0≤ τ ≤ T ,
we set{

x(t) = z(τ (t)) ,
u (t) = π (w (τ (t))) , a ≤ t ≤ b.

The curvex (·) defined in this way is absolutely continuous (becausez(·) and τ(·)
are absolutely continuous andτ(·) is strictly monotonous) and satisfies the boundary
conditions

x(a) = xa and x(b) = xb.

The functionu (·) is measurable becauseπ (·) is continuous,w (·) is measurable, and
τ (·) is continuous and monotonous. Also∫ b

a
‖u (t)‖ dt =

∫ b

a
‖π (w (τ (t)))‖ dt

=
∫ T

0

∥∥∥∥ π (w (τ))

L (t (τ ), z(τ ), π (w(τ)))

∥∥∥∥ dτ.

As the latter integrand is bounded due to the coercivity condition, we conclude thatu (·)
is integrable on [a, b]. Differentiatingx (t) with respect tot , we conclude that

dx (t)

dt
= dz(τ (t))

dt
= dz(τ (t))

dτ

dτ(t)

dt
= ϕ (t, x (t) , u (t))

for almost allt ∈ [a, b]. Integrating

dτ(t)

dt
= L (t, z(τ (t)) , π (w (τ(t)))) = L (t, x (t) , u (t))
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one obtains

J [x(·), u (·)] =
∫ b

a
L (t, x(t), u(t)) dt =

∫ b

a

dτ (t)

dt
dt

= τ (b)− τ (a) = T.

3.1.3. Continuous Differentiability of the Right-Hand Side of(3.9). The functions
φ(·, ·, ·) andh(·, ·, ·) are continuous in{

(t, z, w) : t ∈ [a, b] , z ∈ Rn, w ∈ Sm
}
.

To apply the Pontryagin Maximum Principle (Theorem 2.3.1) to the problem (3.8)–
(3.10), we need to assure that the right-hand side of (3.9) is continuously differentiable
with respect tot andz. SinceL (·, ·, ·), f (·, ·), g (·, ·) areC1, L (t, x, u) > 0 for all
(t, x, u), andπ(·) is continuous, we conclude at once thatφzi (t, z, w), φt (t, z, w),
hzi (t, z, w), and ht (t, z, w) are continuous forw 6= ŵ. The only problem is the
continuous differentiability at̂w. Sinceφ

(·, ·, ŵ) ≡ 0 andh
(·, ·, ŵ) ≡ 0, we have

(from now on, when not indicated,L andϕ are evaluated at(t, z, π(w)))

φzi (t, z, w) =
{
− Lxi (t, z, π(w))

L2(t, z, π(w)) if w 6= ŵ,
0 if w = ŵ, i = 1, . . . , n,

hzi (t, z, w) =
{ L ϕxi −Lxi ϕ

L2 if w 6= ŵ,
0 if w = ŵ, i = 1, . . . , n,

φt (t, z, w) =
{− Lt (t, z, π(w))

L2(t, z, π(w)) if w 6= ŵ,
0 if w = ŵ,

ht (t, z, w) =
{ L ϕt−Lt ϕ

L2 if w 6= ŵ,
0 if w = ŵ.

To verify the continuity of the derivatives atŵ, we have to prove that, for all(t0, z0) ∈
[a, b] × Rn,

lim
ρ((t, z, w), (t0, z0, ŵ))→0

Lxi (t, z, π(w))

L2 (t, z, π(w))
= 0, (3.11)

lim
ρ((t, z, w), (t0, z0, ŵ))→0

Lt (t, z, π(w))

L2 (t, z, π(w))
= 0, (3.12)

lim
ρ((t, z, w), (t0, z0, ŵ))→0

‖L ϕxi − Lxi ϕ‖
L2

= 0, (3.13)

lim
ρ((t, z, w), (t0, z0, ŵ))→0

‖L ϕt − Lt ϕ‖
L2

= 0, (3.14)

whereρ (·, ·) is a distance defined on[a, b] ×Rn× Sm. We shall see that (3.11)–(3.14)
are true under our hypotheses.

Let N (t, z, π(w)) denote any of the numerators in (3.11)–(3.14). From the growth
condition (H3), we obtain that, for allt ∈ [a, b], x ∈ Rn, andu ∈ Rm,

‖N (t, x, u)‖ ≤ γ Lβ (t, x, u) ‖u‖−µ + η ‖u‖−µ .
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As long as 2− β > 0, one concludes

‖N (t, z, π(w))‖
L2 (t, z, π(w))

≤ γ ‖π(w)‖−µ
L2−β (t, z, π(w))

+ η ‖π(w)‖−µ
L2 (t, z, π(w))

.

Since by (H2)

1

L (t, z, π(w))
≤ 1

θ (‖π(w)‖) ,

then

‖N (t, z, π(w))‖
L2 (t, z, π(w))

≤ γ ‖π(w)‖−µ
θ2−β (‖π(w)‖) + η

‖π(w)‖−µ
θ2 (‖π(w)‖) .

If we recall that

lim
‖π(w)‖→+∞

‖π(w)‖
θ (‖π(w)‖) = 0,

−µ ≤ 2− β ∧ −µ ≤ 2 ∧ 2− β > 0, then we obtain

lim
ρ((t, z, w), (t0, z0, ŵ))→0

‖N (t, z, π(w))‖
L2 (t, z, π(w))

= 0,

which proves equalities (3.11)–(3.14).

3.1.4. Pontryagin Maximum Principle and Lipschitzian Regularity. Let (x̃ (·) , ũ (·))
be a minimizer of the original problem(P) and let

(
t̃ (·) , z̃(·) , w̃ (·)) be the corre-

spondent minimizer for the time-optimal problem (3.8)–(3.10) withw̃ (τ ) 6= ŵ almost
everywhere. Applying Pontryagin’s Maximum Principle to the time-minimal problem
(3.8)–(3.10), we conclude that there exist absolutely continuous functions on [0, T̃ ]:

λ̃: R→ R, p̃: R→ Rn,

where T̃ denotes the minimal time for the problem (3.8)–(3.10) andp̃ (τ ) is a row
covector, not vanishing simultaneously, satisfying:

(i) the Hamiltonian system{
λ̇ (τ ) = −Ht (t (τ ) , z(τ ) , λ (τ ) , p̃ (τ ) , w (τ)) ,
ṗ (τ ) = −Hz (t (τ ) , z(τ ) , λ (τ ) , p (τ ) , w (τ)) ,

with the Hamiltonian

H(t, z, λ, p, w) = λφ (t, z, w)+ 〈p, h (t, z, w)〉 ;
(ii) the maximality condition

0≤ c = sup
w∈Sm

{
λ̃ (τ ) φ

(
t̃ (τ ) , z̃(τ ) , w

)+〈 p̃ (τ ) , h (t̃ (τ ) , z̃(τ ) , w)〉} (3.15)

a.e.= λ̃ (τ ) φ
(
t̃ (τ ) , z̃(τ ) , w̃ (τ )

)+〈 p̃ (τ ) , h (t̃ (τ ) , z̃(τ ) , w̃ (τ ))〉 , (3.16)

wherec is a constant,̃z(τ ) = x̃
(
t̃(τ )

)
, andw̃(τ ) = π−1

(
ũ(t̃(τ ))

)
.
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We shall prove now that, under the hypotheses of the theorem,c must be positive.
Recall that

φ(t, z, w) = 1

L (t, z, π(w))
, h(t, z, w) = ϕ (t, z, π(w))

L (t, z, π(w))

almost everywhere. In fact, ifc = 0, then (3.15) implies (after a substitutionv = π (w))
that

sup
v∈Rm

{
λ̃ (τ )+ 〈 p̃ (τ ) , f

(
t̃ (τ ) , z̃(τ )

)〉+ 〈 p̃ (τ ) g
(
t̃ (τ ) , z̃(τ )

)
, v
〉

L
(
t̃ (τ ) , z̃(τ ) , v

) }

vanishes for almost allτ ∈
[
0, T̃

]
. This obviously implies

p̃ (τ ) g
(
t̃ (τ ) , z̃(τ )

) ≡ 0. (3.17)

At the same time, sinceL is positive,λ̃ (τ )+ 〈 p̃ (τ ) , f
(
t̃ (τ ) , z̃(τ )

)〉
must be nonpos-

itive. Then, since a finite value forv implies a finite value forL
(
t̃ (τ ) , z̃(τ ) , v

)
, one

concludes

λ̃ (τ )+ 〈 p̃ (τ ) , f
(
t̃ (τ ) , z̃(τ )

)〉 = 0 a.e. (3.18)

The following proposition tell us that (3.17) and (3.18) imply thatũ (·) is anabnormal
extremal control for(P).

Proposition 1. If the equalities(3.17)and (3.18)hold, then the quadruple(x̃(·), ψ̃0,

ψ̃(·), ũ(·)) defined as

(z̃(τ̃ (·)) ,0, p̃ (τ̃ (·)) , ṽ (τ̃ (·))) ,

whereτ̃ (·) is the inverse function of̃t (·), is an abnormal extremal for the problem(P).

Proof. The respective Hamiltonian for the problem (3.8)–(3.10) equals

H (t, z, λ, p, v) = λ+ 〈p, f (t, z)〉 + 〈p g(t, z) , v〉
L (t, z, v)

.

We have to verify conditions (i) and (ii) of Theorem 2.2.1 for the quadruple(x̃ (·) ,0,
ψ̃ (·) , ũ (·)

)
defined in the formulation of the proposition. We introduce the abnormal

Hamiltonian

H = 〈ψ, f (t, x)〉 + 〈ψ, g (t, x) u〉 .

Direct computation shows

˙̃x (t) = d

dt
{z̃(τ̃ (t))} = ˙̃τ (t) ˙̃z(τ̃ (t)) ,

˙̃z(τ̃ (t)) = f (t, x̃ (t))+ g (t, x̃ (t)) ũ (t)

L (t, x̃ (t) , ũ (t))
,

˙̃τ (t) = L (t, x̃ (t) , ũ (t)) ,
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and hencė̃x (t) = f (t, x̃ (t))+ g (t, x̃ (t)) ũ (t). Also

˙̃
ψ i (t) = d

dt
p̃i (τ̃ (t)) = ˙̃τ (t) ˙̃pi (τ̃ (t)) .

Obviouslyψ̃(·) is absolutely continuous as a composition of the absolutely continuous
function p̃(·) with the absolutely continuous monotonous functionτ̃ (·). For all i =
1, . . . ,n,

˙̃
pi (τ ) = −∂H

∂zi

= −
〈
p̃ (τ ) , fxi

(
t̃ (τ ) , z̃(τ )

)〉+ 〈 p̃ (τ ) , gxi

(
t̃ (τ ) , z̃(τ )

)
ṽ (τ )

〉
L
(
t̃ (τ ) , z̃(τ ) , ṽ (τ )

)
+
(
λ (τ)+ 〈 p̃ (τ ) , f

(
t̃ (τ ) , z̃(τ )

)〉)
Lxi (t̃(τ ), z̃(τ ), ṽ(τ ))

L2
(
t̃ (τ ) , z̃(τ ) , ṽ (τ )

)
+
〈
p̃ (τ ) , g

(
t̃ (τ ) , z̃(τ )

)
ṽ (τ )

〉
Lxi

(
t̃ (τ ) , z̃(τ ) , ṽ (τ )

)
L2
(
t̃ (τ ) , z̃(τ ) , ṽ (τ )

) .

The second addend vanishes by virtue of (3.17)–(3.18) and therefore

˙̃
ψ i (t) = −

〈
ψ̃ (t) , fxi (t, x̃ (t))

〉
−
〈
ψ̃ (t) , gxi (t, x̃ (t)) ũ (t)

〉
= −∂H

∂xi
,

so that (i) is fulfilled. On the other hand,〈
ψ̃ (t) , g (t, x̃ (t)) u (t)

〉
= 〈 p̃ (τ̃ (t)) , g (t, z̃(τ̃ (t))) u (t)〉 ≡ 0,

and therefore〈
ψ̃ (t) , f (t, x̃ (t))+ g (t, x̃ (t)) u (t)

〉
=
〈
ψ̃ (t) , f (t, x̃ (t))

〉
does not depend onu, so the maximality condition (ii) is fulfilled trivially (or ab-
normally).

This proves that vanishingc corresponds to an abnormal extremal control of the
problem(P). Thus, for minimizers which are not abnormal extremal controls, it holds
thatc > 0. From (3.15) we obtain

0< c
a.e.= λ̃(τ )+ 〈 p̃(τ ), ϕ (t̃(τ ), z̃(τ ), ṽ (τ )

)〉
L
(
t̃(τ ), z̃(τ ), ṽ (τ )

)
⇒ L

(
t̃(τ ), z̃(τ ), ṽ(τ )

) = c−1
(
λ̃(τ )+ 〈 p̃(τ ), ϕ (t̃(τ ), z̃(τ ), ṽ (τ ))〉) .

Let ∣∣∣λ̃ (τ )∣∣∣ ≤ M and ‖ p̃ (τ )‖ ≤ M on
[
0, T̃

]
.
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Then, for any fixedτ ∈ [0, T̃ ],

L
(
t̃(τ ), z̃(τ ), ṽ(τ )

) ≤ c−1M
(
1+ ∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )

)∥∥)
and hence

θ (‖ṽ(τ )‖)∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )
)∥∥ ≤ L

(
t̃(τ ), z̃(τ ), ṽ(τ )

)∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )
)∥∥

≤ c−1M
1+ ∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )

)∥∥∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )
)∥∥ (3.19)

for almost allτ ∈ [0, T̃ ]. The last term of this inequality can be majorized by 2c−1M
if
∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )

)∥∥ ≥ 1. From the growth condition (H2), and from the fact that
g (t, x) has full column rank, it follows that lim‖u‖→+∞ ‖ϕ (t, x, u)‖ = +∞ and, from
the linearity ofϕ (t, x, u) with respect tou,

lim
‖ṽ(τ )‖→+∞

θ (‖ṽ(τ )‖)∥∥ϕ (t̃(τ ), z̃(τ ), ṽ(τ )
)∥∥ = +∞.

Hence one can findr0 such that,∀ r ≥ r0,∥∥ϕ (t̃(τ ), z̃(τ ), r
)∥∥ ≥ 1 and

θ (r )∥∥ϕ (t̃(τ ), z̃(τ ), r
)∥∥ ≥ 2c−1M.

Therefore for (3.19) to be satisfied there must be

‖ṽ(τ )‖ ≤ r0.

The proof is now complete:̃v (·) = π (w̃ (·)) must be essentially bounded (byr0) on
[0, T̃ ], that is,ũ (·) = ṽ (τ̃ (·)) is essentially bounded on [a, b].

4. Applications to the Calculus of Variations

4.1. Basic Problem of the Calculus of Variations

The following result is an immediate corollary of Theorem 1.

Theorem 2. Let L(·, ·, ·) be continuously differentiable onR × Rn × Rn, a, b ∈
R (a < b), and xa, xb ∈ Rn. Consider the Basic Problem of the Calculus of Variations:

J [x(·)] =
∫ b

a
L (t, x(t), ẋ(t))dt −→ min,

x(a) = xa, x(b) = xb. (4.1)

Under the hypotheses:

(H1) coercivity: there is a functionθ : R→ R such that

L (t, x, u) ≥ θ (‖u‖) > ζ, ζ ∈ R,
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for all (t, x, u) ∈ R1+n+n, and

lim
r→+∞

r

θ (r )
= 0;

(H2) growth condition: there are constantsγ , β, η, andµ, with γ > 0, β < 2,
andµ ≥ max{β − 1, −1}, such that, for all t ∈ [a, b], and x, u ∈ Rn,

(|Lt (t, x, u)| + |Lxi (t, x, u)|) ‖u‖µ ≤ γ Lβ (t, x, u)+ η,
i ∈ {1, . . . , n} ;

any minimizer of the problem in the class of absolutely continuous functions is
Lipschitzian on[a, b].

Remark 5. There are no abnormal extremals in the Basic Problem.

Below we provide an example, which shows that this result of Lipschitzian regularity, is
not covered by the previously obtained conditions, we are aware of. First we formulate

Tonelli’s Existence Theorem. If the Lagrangian L(·, ·, ·) is C2 and the following
conditions hold:

(T1) L (·, ·, ·) is coercive, i.e., there exist constants a, b > 0 and c∈ R such that

L (t, x, v) ≥ a |v|1+b + c for all (t, x, v) ;
(T2) Lvv (t, x, v) ≥ 0 for all (t, x, v);

then a solution to(4.1)exists in the class of absolutely continuous functions.

The following regularity results are due to Clarke and Vinter (see [9] and [7]) and
are proven under weaker hypotheses than those we are considering here. Namely, they
are valid whenL is nonsmooth. Since nonsmoothness is not a phenomenon we study,
we restrict ourselves to the differentiable case.

Regularity Results. Let L (·, ·, ·), in addition to the hypotheses of Tonelli’s existence
theorem, satisfy any of the conditions (C1)–(C5):

(C1) Lagrangian is autonomous (i.e., does not depend ont);
(C2) there arek0 ∈ R andk1 (·) integrable such that,∀ (t, x, v) ∈ [a, b]×Rn×Rn,

|Lt (t, x, v)| ≤ k0 |L (t, x, v)| + k1 (t) ;
(C3) there arek0 ∈ R andk1 (·), k2 (·) integrable such that,∀ (t, x, v) ∈ [a, b] ×

Rn × Rn,

‖Lx (t, x, v)‖ ≤ k0 |L (t, x, v)| + k1 (t) ‖Lv (t, x, v)‖ + k2 (t) ;
(C4) for each fixedt , the function(x, v)→ L (t, x, v) is convex;
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(C5) Lvv (t, x, v) > 0 and there exists a constantk0 such that,∀ (t, x, v) ∈
[a, b] × Rn × Rn,∥∥L−1

vv (t, x, v) (Lx (t, x, v)− Lvt (t, x, v)− Lvx (t, x, v) v)
∥∥

≤ k0
(‖v‖2+b + 1

)
,

whereb is the positive constant that appears in the coercivity condition (T1)
of Tonelli’s existence theorem;

then every minimizer of the Basic Problem of the Calculus of Variations (4.1) is
Lipschitzian.

Notice that (C1) is a particular case of condition (C2). The growth conditions (C3)
and (C5) are generalizations of classical conditions obtained respectively by Tonelli–
Morrey and Bernstein (loc. cit.).

Now we provide an example of a functional which possesses a minimizer, for which
not one of conditions (C1)–(C5) is applicable, while Theorem 2 is.

Example. We consider the following problem (n = 1):

J [x (·)] =
∫ 1

0

[(
ẋ4+ 1

)3
e(ẋ

4+1) (t+π/2−arctanx)
]

dt→ min,

x (0) = x0, x (1) = x1. (4.2)

DenotingL (t, x, v) = (v4+ 1
)3

e(v
4+1) (t+π/2−arctanx), we conclude that

Lvv (t, x, v) =
[

132v6+ 36v2(
v4+ 1

)2 +
(

96v6

v4+ 1
+ 12v2

)(
t + π

2
− arctanx

)
+ 16v6

(
t + π

2
− arctanx

)2
]

L (t, x, v) .

Tonelli’s theorem guarantees the existence of a minimizerx̂ (·) ∈ AC for the problem
(4.2) as long as:

• L (·, ·, ·) ∈ C2;
• for all (t, x, v) ∈ [0, 1] × R× R we have

L (t, x, v) >
(
v4+ 1

)3 ≥ v4+ 1> 0;
• Lvv (t, x, v) ≥ 0.

The assumptions of Theorem 2 are also verifiable withθ (r ) = r 4 + 1, β = 3
2,

µ = 1
2, γ = 2, andη = 0. Indeed,

Lt (t, x, v) = (v4+ 1
)

L (t, x, v) , Lx (t, x, v) = −v
4+ 1

1+ x2
L (t, x, v) ,

(|Lx (t, x, v)| + |Lt (t, x, v)|) |v|1/2
≤ 2

(|v|4)1/8 (v4+ 1
)

L (t, x, v) < 2
(
v4+ 1

)9/8
L (t, x, v)
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= 2
(
v4+ 1

)33/8
e(v

4+1) (t+π/2−arctanx)

< 2
(
v4+ 1

)36/8
e3/2(v4+1) (t+π/2−arctanx) = 2 L3/2 (t, x, v) .

Theorem 2 guarantees, then, that all the minimizers of this functional are Lipschitzian.
As we shall see now, none of conditions (C1)–(C5) is applicable to this example.

Indeed:

1. The Lagrangian depends explicitly ont and so condition (C1) fails.
2. If (C2) were true, one might concludeLt (t, x, v) /L (t, x, v) ≤ k0+k1 (t) /L (t,

x, v), which in our case implies

v4+ 1≤ k0+ k1 (t)

L (t, x, v)
,

an inequality which fails forv sufficiently large.
3. For (C3) to hold, we should have, forv > 0, x = 0, and somet ,

|Lx (t, 0, v)|
v7/2 L (t, 0, v)

≤ k0

v7/2
+ k1 (t)

|Lv (t, 0, v)|
v7/2 L (t, 0, v)

+ k2 (t)

v7/2 L (t, 0, v)
;

as far as

Lv (t, x, v) =
[

12v3

v4+ 1
+ 4v3

(
t + π

2
− arctanx

)]
L (t, x, v)

holds one obtains the inequality

v4+ 1

v7/2
≤ k0

v7/2
+ k1 (t)

12v3/(v4+ 1)+ 4v3 (t + π/2)
v7/2

+ k2 (t)

v7/2 L (t, 0, v)
,

which fails forv sufficiently large.
4. Condition (C4) is not true either. If we fixt and v we come to the function

x −→ C3eC(B−arctanx) which is not convex: its second derivative equals

2x + C(
1+ x2

)2 C4 eC (B−arctanx),

which is not sign-definite.
5. Finally, (C5) fails, since we haveLvv (t, x, v) = 0, for example, forv = 0.

4.2. Variational Problems with Higher-Order Derivatives

We now consider the problem of the Calculus of Variations with higher-order derivatives:∫ b

a
L
(
t, x(t), ẋ(t), . . . , x(m)(t)

)
dt −→ min, (4.3)

x(a) = x0
a, x(b) = x0

b,
...

...

x(m−1)(a) = xm−1
a , x(m−1)(b) = xm−1

b .

(4.4)

We use the notationWk,p (k = 1, . . . ;1≤ p ≤ ∞) for the class of functions which are
absolutely continuous with their derivatives up to orderk − 1 and havekth deriva-
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tive belonging toL p. The existence of minimizers for problem (4.3)–( 4.4) in the
classWm,1 ([a, b] , Rn) will follow from classical existence results, if we impose that
L (t, x0, . . . , xm) is convex with respect toxm (see [3]). One can put a question of
whether every minimizerx (·) ∈ Wm,1 has an essentially boundedmth derivative, i.e.,
belongs toWm,∞. A study of higher-order regularity was done in 1990 by Clarke and
Vinter in [11], where they deduced a condition of the Tonelli–Morrey type:∥∥Lxi (t, x0, . . . , xm)

∥∥≤γ (|L (t, x0, . . . , xm)|+‖xm‖)+η (t) r (x0, . . . , xm) ,

with i = 0, . . . , m− 1, γ being a constant,η an integrable function, andr a locally
bounded function. Once again, we are able to derive from our main result a condition of
a new type for this case also.

Theorem 3. Provided that for all t ∈ [a, b] and x0, . . . , xm ∈ Rn the function
(t, x0, . . . , xm) → L (t, x0, . . . , xm) is continuously differentiable and the following
conditions hold:

(H1) coercivity: there is a functionθ : R→ R and a constantζ such that

L (t, x0, . . . , xm) ≥ θ (‖xm‖) > ζ,

and limr→+∞(r/θ (r )) = 0;
(H2) growth condition: for some constantsγ , β, η, andµwith γ > 0,β < 2,and

µ ≥ max{β − 1, −1},(|Lt | +
∥∥Lxi

∥∥) ‖xm‖µ ≤ γ Lβ + η, i ∈ {0, . . . , m− 1} ; (4.5)

then all minimizersx̃ (·) ∈ Wm,1 ([a, b], Rn) of the variational problem(4.3)–(4.4)
belong to the class Wm,∞ ([a, b], Rn).

Remark 6. There are no abnormal extremals for problem (4.3)–(4.4).

Some corollaries can be easily derived.

Corollary 2. Any minimizer̃x (·) of the functional

J [x (·)] =
∫ b

a
L
(
x(m) (t)

)
dt→ min,

x (·) ∈ Wm,1
(
[a, b] , Rn

)
,

under the conditions(4.4), is contained in the space Wm,∞ ([a, b] , Rn), provided L(·)
is continuously differentiable; and, for all xm ∈ Rn and some constantsξ ∈ R and
α ∈ ]1, +∞[, L (xm) ≥ ‖xm‖α + ξ .

For m = 1 there exists a much stronger result than this latter corollary: ifm = 1
and L is autonomous,L = L (x, ẋ), coercive and convex iṅx, then all the mini-
mizers of the problem belong toW1,∞ (condition (C1) of the Regularity Results).
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The question of whether it can be generalized onto the case of higher-order function-
als L

(
x, ẋ, . . . , x(m)

)
remained open till recent time. It has been shown in [15] that

autonomous higher-order functionals not only may possess minimizers belonging to
Wm,1\W1,∞ but also exhibit the Lavrentiev phenomenon: their infimum inWm,1 can be
strictly less than the one inWm,∞.
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