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Abstract. We study the Lagrange Problem of Optimal Control with a functional
f; L (t, x(t), u(t)) dt and control-affine dynamics = f (t, X) + g (t, x) u and

(a priori) unconstrained contral € R™. We obtain conditions under which the
minimizing controls of the problem are bounded—a fact which is crucial for the
applicability of many necessary optimality conditions, like, for example, the Pon-
tryagin Maximum Principle. As a corollary we obtain conditions for the Lipschitzian
regularity of minimizers of the Basic Problem of the Calculus of Variations and of
the Problem of the Calculus of Variations with higher-order derivatives.
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1. Introduction

Under standard hypotheses of the Tonelli existence theory in the Calculus of Variations,
the existence of minimizers is guaranteed in the class of absolutely continuous func-
tions possibly with unbounded derivative. As is known, in such cases the optimality

* This research was partially presented at the International Conference dedicated to the 90th Anniversary
of L. S. Pontryagin, Moscow, September 1998.
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conditions—like the Euler-Lagrange equation—may fail. Therefore it is important to
try to obtain Lipschitzian regularity conditions under which the minimizers are Lips-
chitzian. The main part of the results obtained (starting with those of Tonelli) refer to the
Basic Problem of the Calculus of Variations (see [1], [2], [6], [8]-[10], [14], and [17]).
Less is known for problems with high-order derivatives [11]. For the Lagrange problem
and for problems of optimal control, regularity results are a rarity. We are only aware of
progress due to Clarke and Vinter [12] for problems associated with linear, autonomous
(i.e., time-invariant) dynamics (see also [4]). For this particular class of problems, regu-
larity results are obtained via transformation of the initial problem into a problem of the
Calculus of Variations with higher-order derivatives. In this paper we develop a different
approach to establishing Lipschitzian regularity (boundedness of minimizing controls)
for the Lagrange problems with a functior}fgq L (t, x (t), u(t)) dt and control-affine
nonautonomous dynamics:= f (t, X) + g (t, X) u. This class of systems appears in

a wide range of problems relevant to mechanics, sub-Riemannian geometry, etc. We
make use of an approach developed by Gamkrelidze [13, Chapter 8]: a reduction of the
Lagrange problem to an autonomous time-optimal control problem, with a subsequent
compactification of the set of control values. If the Pontryagin Maximum Principle is
applicable to the compactified problem, one can use its formulation to derive conditions
for boundedness of minimizers of the original Lagrange problem and to determine the
bounds for the magnitudes of minimizing controls. The main result is Theorem 1 (Sec-
tion 3). As its corollaries we obtain (Section 4) results on the Lipschitzian regularity of
minimizers in the Calculus of Variations (see [18]).

2. Preliminaries

2.1. Optimal Control Problems with Control-Affine Dynamics and
Unconstrained Controls

We study minima of the problem
b

Py J[xX(),u®)] =/ L (t, x (t), u(t)) dt — min,

Xt)y=f@, x®)+g, x@)u) a.e.on[a, b],
X (@) = Xa, X (b) = Xp,
X (-) € AC([a, b]; R"), u() € Li(fa b]; R™).

Herea,b e R,a < bjL: RxR"xR™ - R, f: Rx R" - R", andg: R x
R" — R™™ are given functionsi < n; X, Xp € R" are givenu = (Ug, ..., Uy) €
R™, g(t, x) = (gi(t, x), ..., g"(t, x)). The controlau(-) are integrable. The absolute
continuous solutiox(-) of the differential equation is state trajectorycorresponding
to the controlu (-). We assume that (-, -) andg(., -) areC'—functions inR*",

2.2. The Pontryagin Maximum Principle f¢P)

The following first-order necessary optimality condition for the probi{&his provided
by the Pontryagin Maximum Principle. We uée-) to denote the usual inner product
in R".



Lipschitzian Regularity of Minimizers for Optimal Control Problems 239

Theorem 2.2.1. If (X(-), G(-)) is a minimizer of thg problertP) a}nd the controli(-) €
L% ([a, b)), then there exists a nonzero pdifo, ¥ (-)), whereyo < 0'is a constant
andy (-) is an absolutely continuous vector-function with domfainb], such that the
quadruple(X(-), ¥o, ¥(-), G(-)) satisfies
(i) the Hamiltonian system
L L
=3 = ,

with the Hamiltonian H= vy L (t, X, u) + (¢, f (t, X)) + (¥, g(t, X) u);
(ii) the maximality condition

H(LR®, o ¥ . 80) =M (L RO, Fo, ¥ ©)
supH (t, X ()., Yo, ¥ (©), u)

ueRm

for almost all te [a, b].

Definition 1. A quadruple(i( (), Yo, ¥ (), 0 (~)) in which v, ¥ (-) are as in The-
orem 2.2.1(i () is integrable and satisfies conditions (i) and (ii) of Theorem 2.2.1, is
called extremal for the probleigP). The controld () is called an extremal control. An
extremaI(Y( (), Yo, ¥ (), O (')) is called normal ifiyo # 0 and abnormal iffy = 0.

We call (i () an abnormal extremal control if it corresponds to an abnormal extremal

(x0. 070 a0).

2.3. The Pontryagin Maximum Principle for Autonomous Time Optimal
Control Problems and Constrained Controls

An autonomous time optimal problem is

T — min
subject to
X)) =FX(@®), u®) ae tela T], (2.1)
x(-)eAC([a, T];R“), u()els(a, T]; U),
X (@) = Xa, X (T) = X7.

Here F (., -) is a continuous function oR™™ and has continuous partial derivatives
with respect to. The control (-), defined orfja, T], takesits valuesibd ¢ R™, andis

a measurable arffibundedunction. The following first-order necessary condition—the
Pontryagin Maximum Principle—holds for any minimizer of the problem (details can
be found, for example, in [13]). There are plenty of generalizations and modifications
of the Pontryagin Maximum Principle. For example, a Pontryagin Maximum Principle
under less restrictive assumptions for smoothness of data can be found in [5] or [16].
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Theorem 2.3.1. Let(X(-), G(-)) be asolution of thg time-optimal problggh1). Then
there exists a nonzero absolutely continuous funcfigr) satisfying

e the Hamiltonian system

XZBH(X, v, u)’ ¢:—8H(X’ v, u)’
oy X

with corresponding Hamiltonian Kix, v, u) = (¥, F (x, u));
o the maximality condition

H(x®. 70, 00) =M (X0, ¥ ©)
=sup[H ()”((t), 7, u)}

ueU

foralmostallte [a, T];
e the equality M()"( ), ¥ (t)) = const> 0.

3. Main Result

Theorem 1. Let L(.,-,-) € C1([a, b] x R" x R™ R), f (-,-) € CL(R x R"; R"),
g(,) € Ct(R xR"; R™™M), and

e, x,wy="~f x)+g, x)u.

Under the hypotheses

(H1) full rank condition: g (t, x) has rank m for all te [a, b] and x e R";
(H2) coercivity: there exists a functiof: R — R such that

Lt x, w =0l > ¢,
forall (t, x, u) € [a, b] x R" x R™, and

im —— —o
r—+o00 g (r)
(H3) growth condition: there exist constants, 8, n, andu, withy > 0, 8 < 2,
andu > max{B8 — 2, —2}, such thatforallt € [a, b],x € R",andue R™,
it holds that

’

(ILel + L+ IL gt = Leoll + IL g — Ly @lD) ul* < y LP 41,
ief{l, ..., n};

then all minimizerdi () of the Lagrange problercP) which are not abnormal extremal
controls are essentially bounded da, b].

Remark 1. Recall that if the dynamics is controllable (which is true for problems of
the Calculus of Variations treated in Section 4), then all extremals are normal. A priori
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minimizer G () which is not essentially bounded, may fail to satisfy the Pontryagin
Maximum Principle and therefore may cease to be an extremal. As far as essentially
bounded minimizers are concerned the Pontryagin Maximum Principle is valid, and
unbounded minimizera (-) (if there are any) are, according to Theorem 1, abnormal
extremal controls, then we obtain the following:

Corollary 1. Under the conditions of Theoreth all minimizers of the Lagrange
problem(P) satisfy the Pontryagin Maximum Principle

Remark 2. We may impose stronger but technically simpler forms of assumption (H3)

in Theorem 1. Under these conditions Theorem 1 loses some generality, but sometimes,
for a given problem, these conditions are easier to verify. For example, they can be (in
increasing order of simplicity and in decreasing order of generality):

[L dleell + llgx D + el (Ll + 1L D] Ul < v LP + 15
L (leell + llex 1D + el (Lel + L D ull® <y LP 43
lleel + llgwi | + ILel + ILxi| < ¥ L7+, B <1

It is easy to see why (H3) follows from any of these conditions. It is enough to notice
that

ILg — Legll + 1L oxi — Lxi @ll = L (el + lloxi D + el (el + [Lxi);

and that 0> max{g — 2, —2}.

Remark 3. The result of Theorem 1 admits a generalization for Lagrange problems
with dynamics which are nonlinear in control. This will be addressed in a forthcoming
paper.

3.1. Proof of the Theorem

We begin with an elementary observation.

Remark 4. It suffices to prove Theorem 1 in the special case in (H2) where we put
¢ = 0. Indeed, minimization of

b
/ L (t, x(t), u(t)) dt
a
under the conditions ifP) is equivalent to
b
/ (L, x@), u)) —¢) dt — min,
a

since the difference of the integrands is constant.
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Remember that everywhere below, the notatiof, x, u) stands forf (t, x) +
g(t, x)u.

3.1.1. Reduction to a Time-Optimal ProblemThe following idea of transforming the
variational problem into a time-optimal control problem and subsequent compactification
ofthe control setwas used earlier by Gamkrelidze [13, Chapter 8] to prove some existence
results. We introduce a new time variable

t
T (1) :/ L 6, x(0), u®) dd  tela b,

whichis a strictly monotonous absolutely continuous functidnfofr any pairx(t), u (t))
satisfyingx (t) = ¢ (t, x (t), u(t)). Obviouslyz (b) = T coincides with the value of
the functional of the original problem. As far as
dz(t)
dt
holds therr (-) admits a monotonous inverse functigi) defined on [0 T], such that
ﬂ(r) = :
dr " L(t(r), X (t(r), ut(r))’
Notice that the inverse functidn(-) is also absolutely continuous. Obviously
dx(t(r)) dx(t(r)) dt(r) ¢ (t(r), X (t(r)), U(t(r)))
dr =~ dt dr L (t(r), Xx(t(r)),u(t(r)))’
Taking t as a new time variable, consideribg) andz(t) = x (t(r)) as components

of state trajectory, and(t) = u(t(z)) as the control, we can transform the problem)
into the following form:

=L (t, X(t), u(t)) > 0

(3.1)

T — min, (3.2)
t® = o z%r).vm)’
; (t(), 2(1), v(r) (3-3)
2(7) = L) 20000

v: R - R™M

t0) =a, t(T) = Db, (3.4)

2(0) = Xa, Z(T) = Xp.

3.1.2. Compactification of the Space of Admissible ControlSo far the new control
variable takes its values iR™ and the controb(z) can be unbounded. This unbound-
edness is kind of fictitious as the set

1 §0(t, Z, U) . m
{(L(t, zv) Lt 2, v))' Vet }

is bounded under the hypotheses (H1) and (H2). This set (for fixer) € R x R")
is not closed, but becomes compact if we add to it the p@nD) € R x R" which
corresponds to the “infinite value” of the contriok R™. The set

_ 1 e,z v))\. m
E(t. 2 = {(. O)}U{<L(t, P U)). v eR }
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can be represented as a homeomorphic image ahtdanensional spher&™ ~ R
This homeomorphism is defined in a standard way: we fix a pbirt S, called the
north pole, and consider the stereographic projection

m: S"\ {w} - R™ (3.5)
Obviouslyn|sn\{ﬁ,} is continuous and ligL, ; || (w)|| = 4+o00. Functions

1 and w — pt, z, m1(w))

W ——————— e (3.6)
L, z 7(w)) L, z 7(w))

are continuous o8™\ {12)} sincelL (t, z, 7 (w)) > 0. Due to hypotheses (H1) and (H2)
le ¢, 2 o)l _
lvl=+oco 6O (JJv]])
and therefore

lot, z vl

3.7
lvll>+0c L (t, Z,v) (3.7)

Hence, one can extend the functions defined by (3.6) up to the fun@ifoﬁi)mand
ht-2(.), which are continuous on the entire sph&fe(on the compactified spade ):

1 . ~

Pw) = B(t, 2,w) = {5“’ ZO B

if w=w,

otz 7 (w)) i ~
htZ(w) = h(t, z w) = | Lezxwy T WD,
0 if w=w.
Given (H1), the map
w— (¢ *(w), h"*(w)),
of S"ontoE(t, 2), is continuous and one-to-one and therefore a homeomorphism since
S" is compact. Thus, we have come to the autonomous optimal control problem:
T — min, (3.8)
t(r) = ¢ (t(v), 2(r), w(r)),
2(r) = h(t(r), (1), w(r)),
w: R— ",
t0) =a, t(T) = Db, (3.10)
z(0) = X,, Z(T) = Xp,

(3.9)

with a compact se8™ of values of control parameters.

We claim that every paitx (-), u(-)) satisfyingx = f (t, X) + g(t, x) u cor-
responds to a trajector (), z(z), w (r)) of the system (3.9) withw(z) # w for
almost allt € [0, T] and the transfer tim@ for this latter solution equal to the value
J[XC), U]

b

T =J[x(), u()] :/ L (t, x(t), u(t)) dt.

a
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Indeed we may definé (t), z(t), w (r)) setting

t
t (r) is the inverse function to 7 (t) =/ L (8, x(), u(®)) do,
2(t) =x(t(r)), w()=7"tUt),
0<t=<T=J[x(),ul)],

wherer ~1(-) is the mapping inverse to (3.5). Functinp) is absolutely continuous since
itis a composition of an absolutely continuous function with another strictly monotonous
absolutely continuous functian(r). Functionw(-) is measurable because’(.) is a
continuous functionu(-) is measurable, ant{-) is a strictly monotonous absolutely
continuous function. We already know that

dt(v) 1
dr — L(t(), z(0),  (w()))’
dz(r) ¢ (t(r), 2(r), w (w(1)))
dr L (t(z), z(z), m (w(1)))’

andw(r) # w foralmostall € [0, T], sinceu (-) has finite values almost everywhere
andt (-) is strictly monotonous.

We shall show now that every solution of (3.9), witkit) # w a.e., results from this
correspondence. Taking the absolutely continuous funatibnp a < t < b, which is
the inverse of the strictly monotonous, absolutely continuous funttion0 <t < T,
we set

{X(t) =z(t(1)),
u) =m (w(r())),
The curvex () defined in this way is absolutely continuous (becamésg and z(-)

are absolutely continuous and-) is strictly monotonous) and satisfies the boundary
conditions

a<t<bh.

X(@) = Xq and x(b) = Xp.

The functionu () is measurable because(-) is continuousw (-) is measurable, and
7 (+) is continuous and monotonous. Also

b b
f u dt:/ llr (w (r D) dt

B /T m (w (1))
o LG, 2(r), 7 (w(z)))

As the latter integrand is bounded due to the coercivity condition, we conclude that
is integrable ond, b]. Differentiatingx (t) with respect td, we conclude that

dx(t) dz(z(t)  dz(z(t) dr(t)

=, X (1), u®)

dt dt dr dt
for almost allt € [a, b]. Integrating
dz(t)

T L, z(x (), 7 (w(r(t)) =L x@®, u()
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one obtains

b
dt

b
Lﬂ,xﬁLlKU)dt:t/ dr )

X0 ue) = [ o

a

=t -1@=T.

3.1.3. Continuous Differentiability of the Right-Hand Side (8f9). The functions
¢(, -, -) andh(, -, -) are continuous in

{t,z wy:tela b, ze R, we S"}.

To apply the Pontryagin Maximum Principle (Theorem 2.3.1) to the problem (3.8)—
(3.10), we need to assure that the right-hand side of (3.9) is continuously differentiable
with respect ta andz. Sincel (-, -,-), f (-,-), g, -) areCl, L (t, x, u) > 0 for all

(t, X, u), andx () is continuous, we conclude at once tigat(t, z, w), ¢ (t, z, w),

hs (t, z, w), andh (t, z, w) are continuous forw # w. The only problem is the
continuous differentiability atb. Since (-,-,w) = 0 andh(-,-,%) = 0, we have
(from now on, when not indicated, andy are evaluated at, z, 7 (w)))

L,z m(w))

¢z (t, 2, w) = LEzaw) I.f w;éuj’ i=1....n,
0 if w=w,
Loi—L,iop . ~
hy (t, Z, w) = 2 it w#d, 5 _q
0 if w=w,
Lit, 2 m(w)) i o
itz w) = | Ctanwy WD,
T 0 if w=uw,
Loi—Lig ; ~
—fa—@ if w#uw
he (, z = L2 . .
e 2 w) {0 if w=uw.

To verify the continuity of the derivatives dt, we have to prove that, for al, zp) €
[a, b] x R",

La (t, Z, m(w))

i T2 2 o = O 3.11
p(t,zw), (to, 20, ))—0 L2 (t, Z, w(w)) ( )
L t? 9
im Ltz mw) g (3.12)
p(t 2w, (to, 20, ) )—0 L2 (t, Z, w(w))
L gy — Lyi
Lo =Laol o, (3.13)
o((t, 2, w), (to, 20, ) ) >0 L
Lot —L
lim ”%72”0” =0, (3.14)
p((t. 2, w), (to, 2o, ) )—0 L

wherep (-, -) is a distance defined da, b] x R" x S™. We shall see that (3.11)—(3.14)
are true under our hypotheses.

LetN (t, z, = (w)) denote any of the numerators in (3.11)—(3.14). From the growth
condition (H3), we obtain that, for alle [a, b], x € R", andu € R™,

IN(t, %, Wl <y L, x, w lull ™ +p llul =
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As long as 2- 8 > 0, one concludes
IN(t, z, 7 (w))l <y ll7z (w)I ™" n ll7w (w)|| ™" _
L2(t, z, m(w)) — ' LZA(t, z, m(w)) L2(t, z, w(w))
Since by (H2)
1 - 1
L(t, z m(w)) = 6 (lm@)l)’
then
IN(t, z, Z)Il _ y [l (w)|~* . [l (w) ]I ‘
L2(t, z, w(w)) — ° 027 (lm(w)ll) 62 (llr (w)l)
If we recall that

Imw)l
Ir)l—+00 6 (|l (w)l]) —

El

—u=<2—BA—-u=<2n2-pB>0,thenwe obtain
INt, 2 7@l _
p(tzw), (o 20,0))—~0 L2 (L, Z, (w)) ’

which proves equalities (3.11)—(3.14).

3.1.4. Pontryagin Maximum Principle and Lipschitzian Regularityet (X (-), G (-))

be a minimizer of the original problergP) and Iet(f(-), Z(), w (-)) be the corre-
spondent minimizer for the time-optimal problem (3.8)—(3.10) witlr) # w almost
everywhere. Applying Pontryagin’s Maximum Principle to the time-minimal problem
(3.8)—(3.10), we conclude that there exist absolutely continuous functions dH:[0

A R— R, p: R — R",
where T denotes the minimal time for the problem (3.8)—(3.10) dn@) is a row
covector, not vanishing simultaneously, satisfying:

(i) the Hamiltonian system

{?'»(T) —H (). z(r), A (1), P(D), w(r)),
P(1)=—H:(t(v),z(1), A (1), P(1), w(r)),

with the Hamiltonian
Ht, z, A, p, w) =10 ({, z, w)+(p, h(t, Z, w));
(ii) the maximality condition

O<c= suspn){i(r)qa(f(z),z(r),w)+(fn(r),h(f(r),z(r),w))} (3.15)

Ei@eo (@, 2(0), @) Hp@, h({@),2(), (1)), (3.16)

wherec is a constantz(r) = X (f(r)), andw(r) = 71 (G({(1))).
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We shall prove now that, under the hypotheses of the thearenust be positive.

Recall that

1 o (t, z, 1(w))
t5 il = - h t5 il = T T -, <

o 2w = T ) 2w = 7 7w

almost everywhere. In fact, & = 0, then (3.15) implies (after a substitution= 7 (w))

that

sup{i(w +(p@. F{@.20))+(p® g({®.2().v)
veRM

L(E),z(0),v)
vanishes for almost all € [O, 'f]. This obviously implies

P g@.z() =0 (3.17)

At the same time, sinck is positive, A () + (p(x), f(f(x), (1)) must be nonpos-
itive. Then, since a finite value farimplies a finite value foiL (f(r), Z(7), v), one
concludes

A@+(p@. F(f@,2(0))=0 ae. (3.18)

The following proposition tell us that (3.17) and (3.18) imply th&t) is anabnormal
extremal control for(P).

Proposition 1. If the equalitieg3.17)and (3.18) hold, then the quadrupléX(.), Vo,
¥ (-), U(-)) defined as

(Z2(()),0, pE(),v(T()),
wheret (-) is the inverse function df(.), is an abnormal extremal for the probleR).

Proof. The respective Hamiltonian for the problem (3.8)—(3.10) equals

A , T, t, 2),
Ht z A, p,v)= +(p (L?t»;ri;og( 2) U>'

We have to verify conditions (i) and (ii) of Theorem 2.2.1 for the quadrgple) , O,
v (), 0 (~)) defined in the formulation of the proposition. We introduce the abnormal
Hamiltonian

H=(y, (& x)+ (¥, g(t, x)u).
Direct computation shows

. d .

X()= S (ZE M) =T O 2F W),
s FERM) + gt X®)aM)
2@ ) = L(t.X(D).00) ’
Tt =LtXW,aM),
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and hence (t) = f (t, X (t)) + g (t, X (t)) G (t). Also
- d - .=
Y () = ap' T®)=t®p ).

Obviously/ (-) is absolutely continuous as a composition of the absolutely continuous
function p(-) with the absolutely continuous monotonous functigr). For alli =
1,...,n,

oH
97
(P, i ([{@®,2@)+ (P, g (((1), 2(1) 7 (1))
L (E(), (), (1))
n (@ +(p@). (@), 2(D)) L), 2(x). B(x))
L2(f(D), z(v), 9 (1))
+ (B0, g(f(@), 2(m) v (1) Ly (f(x), 2(x), V(1))
L2(f(x), 2(1), v (1))
The second addend vanishes by virtue of (3.17)—(3.18) and therefore
PO =—(0 0, fet, X))~ (J O, g ¢, xO) T 0)
oH
~ 3
so that (i) is fulfilled. On the other hand,

P (1) =

(F®. gt x®) u®) = (PE M), 9t 2E 1) u®) =0,
and therefore
(P, fa x)+9d %) u®)= (T ®, ¢ 20)

does not depend on, so the maximality condition (ii) is fulfilled trivially (or ab-
normally). O

This proves that vanishing corresponds to an abnormal extremal control of the
problem(P). Thus, for minimizers which are not abnormal extremal controls, it holds
thatc > 0. From (3.15) we obtain

ae (D) +(P(0). ¢ (). 20). (1))
L (f(0), z(), ()

= L({D), 2(0), i(n) = ¢ (X(r) +(B(), ¢ (E(), 2(), D (r)))) .

O<c

Let
‘X(r)‘fM and (@) <M on[o, 'f].
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Then, for any fixed < [0, T],
L (f(r), 2(v), 3(0)) <M (14 |¢ (f(x), 2(v), 3(D))]|)
and hence
o (o ()l - L (f(0), 2(x), 9())
le (). zm), 3()| ~ |le (f(). (), 5(D)||

v 1+ ||<{ (f<r>: 2(f>: (o)
le (E@). 2(x), 3(D)|

(3.19)

for almost allz € [0, T]. The last term of this inequality can be majorized ly oM

if | (£(x), 2(v), 3(1))| = 1. From the growth condition (H2), and from the fact that
g (t, x) has full column rank; it follows that lifa;— 1 ll¢ (t, X, W)|| = +o00 and, from
the linearity ofyp (t, X, u) with respect tau,

o (Ilv(@)l) _
OIS 400 le (), 2(), 3| e

Hence one can findy such thatyr > ry,

0.(r)
e (E@). 2. 1)

Therefore for (3.19) to be satisfied there must be

le (f(), z(x). r)[| =1 and > 2c'M.

19(o)Il < ro.

The proof is now completei (-) = 7 (w (-)) must be essentially bounded (by) on
[0, T], thatis,l () = 0 (T ()) is essentially bounded oa] b]. O

4. Applications to the Calculus of Variations

4.1. Basic Problem of the Calculus of Variations

The following result is an immediate corollary of Theorem 1.

Theorem 2. Let L(,-,-) be continuously differentiable oR x R" x R", a, b €
R (a < b), and », X, € R". Consider the Basic Problem of the Calculus of Variations

b
J[xX()] :/ L (t, x(t), x(t)) dt —> min,
X(@) = Xa, X(b) = Xp. (4.1)
Under the hypotheses

(H1) coercivity: there is a functio: R — R such that

L (t, x, u) =0 (ul) > ¢, ¢ eR,
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forall (t, x, u) € R™™" and

r
im — =0
r—-+o00 @ (r)

(H2) growth condition: there are constantg, 8, n, andu, withy > 0,8 < 2,
andu > max{B — 1, —1}, such thatforallt € [a, b],and x, u € R",

(ILe (t, X, W]+ Ly (t, X, W lull* <y LA, x, u) + 1,
ie{l ..., n};

any minimizer of the problem in the class of absolutely continuous functions is
Lipschitzian orfa, b].

Remark 5. There are no abnormal extremals in the Basic Problem.

Below we provide an example, which shows that this result of Lipschitzian regularity, is
not covered by the previously obtained conditions, we are aware of. First we formulate

Tonelli’'s Existence Theorem. If the Lagrangian L(-, -, -) is C? and the following
conditions hold

(T1) L (, -, ) is coercivei.e, there exist constants & > 0 and ce R such that
L, x,v)>al*®+c  forall (t, x, v);
(T2) L,, (t, x, v) > Oforall (t, x, v);

then a solution tq4.1) exists in the class of absolutely continuous functions

The following regularity results are due to Clarke and Vinter (see [9] and [7]) and
are proven under weaker hypotheses than those we are considering here. Namely, they
are valid wherL is nonsmooth. Since nonsmoothness is not a phenomenon we study,
we restrict ourselves to the differentiable case.

Regularity Results. LetL (-, -, -), in addition to the hypotheses of Tonelli's existence
theorem, satisfy any of the conditions (C1)—(C5):

(C1) Lagrangian is autonomous (i.e., does not depertg;on
(C2) there aréy € Randk; (-) integrable such tha¥,(t, x, v) € [a, b] x R" xR",

|Lt (tv X, U)| =< k0||—(t1 X, U)l +kl(t)7

(C3) there ardy € R andk; (-), ka (-) integrable such tha¥, (t, x, v) € [a, b] x
R" x RN,

ILx (t, X, vl = koL (t, X, V)| + ke (V) 1Ly (t, X, V)| + k2 (1)

(C4) for each fixed, the function(x, v) — L (t, X, v) is convex;
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(C5) Ly (1, X, v) > 0 and there exists a constaqt such thatV (t, x, v) €
[a, b] x R" x R",

ILoE (X, v) (L (t, X, v) = Lyt (6, X, v) — Lx (8, X, 0)0)
<ko (1% +1),

whereb is the positive constant that appears in the coercivity condition (T1)
of Tonelli's existence theorem;

then every minimizer of the Basic Problem of the Calculus of Variations (4.1) is
Lipschitzian.

Notice that (C1) is a particular case of condition (C2). The growth conditions (C3)
and (C5) are generalizations of classical conditions obtained respectively by Tonelli—
Morrey and Bernstein (loc. cit.).

Now we provide an example of a functional which possesses a minimizer, for which
not one of conditions (C1)—(C5) is applicable, while Theorem 2 is.

Example. We consider the following problenm (= 1):
1
J[x()] = / I:()-(A + 1)Se(x4+1) (t+n/2—arctar|x):| dt — min,
0
X (0) = Xo, X (1) = X3. 4.2)

DenotingL (t, X, v) = (v* + 1)3 g(v*+1) (t+r/2-arctan) \ya conclude that

13208 + 3602 ( 96v°

Lo (t. X, v) = |: (v4+1)2 vi+1

+ 12v2> (t + % — arctanx)

2
+ 1608 (t + % - arctanx) ] L (t, X, v).

Tonelli's theorem guarantees the existence of a minimizer € AC for the problem
(4.2) as long as:

o L ('1 s ') € CZ;

o forall (t,x,v) € [0, 1] x R x R we have

L (t, X, v) > (v4+1)32 v*+1>0;

L4 LUU (ts Xs U) Z 0'

The assumptions of Theorem 2 are also verifiable With) = r* + 1, 8 = g
= %, y = 2, andn = 0. Indeed,
vi4+1
1+ x2

Le(t, %, v) = (v* + 1) L (t, X, v), Ly (t, X, v) = — L (t, X, v),
(ILx (t, X, V)| + L (t, X, v)]) |v]¥?

<2 (|v|4)l/8 (v4 + 1) L, Xx,v)<2 (v4 + 1)9/8 L (t, X, v)
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) (v4 + 1)33/8 e(u4+l) (t+7/2—arctarx)
36/8
<2 (v4 + l) / e3/2 (v*+1) (t+7/2—arctanx) _ 21.3/2 (t, X, v).

Theorem 2 guarantees, then, that all the minimizers of this functional are Lipschitzian.
As we shall see now, none of conditions (C1)—(C5) is applicable to this example.
Indeed:

1. The Lagrangian depends explicitly band so condition (C1) fails.

2. If(C2) were true, one might conclude (t, x, v) /L (t, X, v) < ko+kq (t) /L (t,
X, v), which in our case implies
kg (1)

L (t,x,v)’
an inequality which fails fop sufficiently large.

3. For (C3) to hold, we should have, for> 0, x = 0, and somé,

|LX (t’ Os U)| < ﬁ |Lv (tv Os U)l k2 (t)

vi+1l<ko+

—_— ky (t ;
vI/2L(t, 0, v) ~ v/? tha® v/2L(t, 0, v) v2L(t, 0O, v)
as far as
123 3 T
L, & X, v) = [U4+1 + 4 (t +3 —arctanx)} L (t, X, v)
holds one obtains the inequality
‘441 1203/ (v* + 1) + 403 (t 2 ko (t
v;/r2 S%Jrkl(t) v/(v+);;2v(+n/) - 2 (1) ,
v v v v/2L (1, 0, v)

which fails forv sufficiently large.
4. Condition (C4) is not true either. If we fixandv we come to the function
x —> CB3ebB-arctan) which is not convex: its second derivative equals

2x+C 4 ko
" Cc4é ( arctanx)’
(1+x?)
which is not sign-definite.
5. Finally, (C5) fails, since we have,, (t, X, v) = 0, for example, fow = 0.
4.2. Variational Problems with Higher-Order Derivatives

We now consider the problem of the Calculus of Variations with higher-order derivatives:

b
/ L (t, x(t), x(®), ..., x™(t)) dt — min, (4.3)
a
x(@@) = x, x(b) = xg,
: : (4.4)
XM D@ =x"1  x™M V() =x"1
We use the notatiow , (K =1, ...; 1 < p < oo) for the class of functions which are

absolutely continuous with their derivatives up to ortter 1 and havekth deriva-
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tive belonging toL,. The existence of minimizers for problem (4.3)-( 4.4) in the
classWin1 ([a, b], R™) will follow from classical existence results, if we impose that
L (t, Xo, ..., Xm) IS convex with respect ta,, (see [3]). One can put a question of
whether every minimizex (-) € W 1 has an essentially boundeth derivative, i.e.,
belongs toWi . A study of higher-order regularity was done in 1990 by Clarke and
Vinter in [11], where they deduced a condition of the Tonelli-Morrey type:

ILx (t X0, - Xm) | <% (IL (t, X0, o, Xe) |+ [ XD +1 (D T (Xo, - - -, Xm)

withi =0, ..., m— 1, y being a constan; an integrable function, anda locally
bounded function. Once again, we are able to derive from our main result a condition of
a new type for this case also.

Theorem 3. Provided that for all t € [a, b] and X%, ..., Xm € R" the function
(t, Xo, ..., Xm) = L (t, Xo, ..., Xm) is continuously differentiable and the following
conditions hold

(H1) coercivity: there is a functio®: R — R and a constant such that
L, Xo, -y Xm) = 0 ([IXml)) > ¢,

andlim; _, 1 (r/0 (r)) =0;
(H2) growth condition: for some constantg, 8, n,andu withy > 0,8 < 2,and
(L + |Lx ) Ixml* < y LP 40, T €{0, ..., m=1}; (4.5)

then all minimizerst () € W1 ([a, b], R™) of the variational problen(4.3)—(4.4)
belong to the class W ([a, b], R").

Remark 6. There are no abnormal extremals for problem (4.3)—(4.4).

Some corollaries can be easily derived.

Corollary 2. Any minimizeiX (-) of the functional

b
TIXO] = / L (x™ (1)) dt - min,
X (-) € Wiy ([, b] . R")

under the condition§4.4),is contained in the space W\ ([a, b] , R"), provided L(-)
is continuously differentiabjeand, for all x,, € R" and some constants € R and
a €]1, +oof, L (Xm) > lIXmll* +&.

Form = 1 there exists a much stronger result than this latter corollam: # 1
and L is autonomousL = L (X, X), coercive and convex i, then all the mini-
mizers of the problem belong t@/; », (condition (C1) of the Regularity Results).
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The question of whether it can be generalized onto the case of higher-order function-
alsL (x, X, ..., x'™) remained open till recent time. It has been shown in [15] that
autonomous higher-order functionals not only may possess minimizers belonging to
Win.1\Wi . but also exhibit the Lavrentiev phenomenon: their infimurii 1, can be
strictly less than the one Wi .
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