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c+Alg],

wherec anda are positive constants. We caltheproportionalcost coefficient and
c theintervention costWe find the valugcost functionV, for this problem for each
¢ > 0 and we show that li;, o+ V. = W, whereW is the value function for the
corresponding singular stochastic control problem. Our main result is that

dV,
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dc
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1. Introduction

Many mathematical models make stylized assumptions which strictly speaking are not
satisfied in real applications. For example, in mathematical finance it is often assumed
that the transactions can be performed continuously (i.e., in continuous time) and that
there are no transaction costs. In recent years models where the transaction costs are
proportional to the sizg | of the transaction have also been studied (see, e.g., [DN] and
the references therein). An even more realistic model is obtained by assuming that the
interventions occur at discrete times and then with a cost given by

C+Algl,

wherec > 0,1 > 0 are constants. This leads to thipulse contromodel (see below). A
natural question is how the resilt; (the value function) depends on the parametgxs
In this paper we fix. > 0 and study how/; = V., depends ok nearc = 0 in a specific
case. It has been shown in [MR1] and [MR2] that (under some conditMys} Vg as
¢ — 0T. The purpose of this paper is to show tiaimay not be differentiable at= 0:
we give an example where

dV;
dc

] =00 (Theorem 2.6).
c=0

We now describe this in more detail.
Suppose that—if there are no interventions—the state R" at timet of the
system we consider, satisfies an Ito stochastic differential equation of the form

t t
Y; = y+/ b(Y;)dr +/ o(Y,)dB; t>0. (1.1)
0 0

Hereb: R" — R" ando: R" — R™M are given Lipschitz continuous functions,
B = Bi(w);t > 0,w € Q, is a Brownian motion ifR™ with filtration 7; and probability
law P when starting at & R™. The pointy € R" is the starting value of the system at
time 0. (See, e.g., [F] for background on stochastic differential equations.)

An impulse controfor this system is a (possibly finite) sequence

UZ(‘El,‘l,'z,...,tk,...;é'l,g'z,...,{k...)kSN (N < 00), (1.2)

where 0< 11 < 1o < --- are F;-stopping times ands, ¢, . .. belong to a given set
Z c R'. We interpretry, 1o, . .. as thantervention timegsi.e., the times when we decide
to intervene. The quantitigg, ¢, . .. are theimpulseswe give the system at the times
7, T2, . . ., FESpectively. If the system is in states R" when it gets the impulse € Z,
we assume that it jumps immediately to a new siate g(¢), whereg: Z — R"is a
given function.

If the impulse controb given by (1.2) is applied to the systgi }, it gets the form
{Y?}, which is given by

t t
Y = y+f b(Y,") dr +/ o(Y)dB +> g@): 0<t<T* (13
0 0

<t
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We still cally =Yg thestarting pointof Y; att = 0, although we need not havg = v,
becauseY; could possibly jump at = 0. HereT* = T*(w) is theexplosion timef the
processy’, defined by

T*@) = lim (inf{t > s: |Y(@)| = R} = oc. (1.4)

ITet Qy = Qy denote the law of the stochastic procg¥s}-o starting aty = Yo- at
timet = 0.

Suppose we are given a familyof impulse controls, called treedmissiblampulse
controls. We assume that all= (t1, 12, ...; ¢1, £2, .. .) € V satisfy

w— TF as.Qy foral yeR" (1.5)

Suppose that theost ratewhen the system is in stateis f (x), wheref: R" — Ris
a given function. Moreover, suppose that timpulse cost KX, ¢) of giving the system
the impulse; € Z is given by

K(X,¢) =c+ Al¢| (independent ox), (1.6)

wherec > 0,1 > 0 are constants. Thus the impulse cost consistéixéd minimum cost
¢ (theintervention costplus a cosk|¢| proportional to the sizg; | of the intervention
&. Then if we applyv = (11, 72, ..., €1, &2, .. .) € V, we get theperformanceor total
expected costJy) defined by

00 N
3(y) = Ey [ /O FY)dt+ > e+ kls“kl)e"”k} : (1.7)
k=1

where Ey denotes expectation with respect@y. The corresponding impulse control
problem is the following:

Problem 1.1 (General Impulse Control Problem). Findthe value functipe- V.(y)
defined by

Ve(y) = Jgf} J (), yeR", (1.8)
and find aroptimalv* € V such that
Vey) =X'(y),  yeR" (1.9)

We refer the reader to [BL] for more information about impulse control and its
relation to quasi-variational inequalities (see Theorem 2.1).

A study of impulse control problems for diffusions with jumps can be found in [M].

Note that Problem 1.1 also makes sense # 0. The infimum is still taken over
impulse controls with finitely many jumps in compact time intervals inf[©). However,
if c = Oitis conceivable that no optimal impulse contrble V exists: Since the number
of interventions do not matter, only the sizes of them, itis natural to guess that the infimum
is obtained by letting the number of interventions go to infinity and at the same time the
sizes of the interventions go to zero. This would in the limit bring us to a control outside
V. We will show that this is indeed the case in the problem we consider.
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From now on we assume that we only allow nonnegative impulses, i.e., that

Z =0, 00), (1.10)
and that the impulse acts linearly on just one of the component¥gfsay the last one:

g@&)=(@,...,br) ¢ R" for ¢eZ, (1.11)

whereb € R is a constant.

Then ifc = 0 it is also natural to model the problem above aingular stochastic
control problem, as follows:

Let our spacd” of admissible controls consist of at-adaptedt-right continuous
processes: (w) such that the functioh — y;(w) is nondecreasing for a.a. € Q. We
can associate tp (w) the measuréy; (w) with the property that

/Si dyi (0) = - dri (@) = n(w) —rs(w);  t>s. (1.12)
Note that with this notation we have

/s t Ay (@) = Ays(@) + n(w) — ys(w), (1.13)
where in general

Ay (@) = py (@) — - (@) (1.14)

is the jump ofy; (w) att = t;.
In analogy with (1.3) we now assume that if the admissible coptrel T is applied
to the systemY; }1=o, it gets the form{Y{ };=o given by the equation (using (1.11))

t t t
Y = y+/ b(Y?) dr +/ o(Y)dB + (O, b/ dyr>; t>0. (1.15)
0 0 0
Note that this coincides with’ given by (1.3) ify; only increases &t = 7 and then

performs jumps of size, k = 1, 2, . ... Furthermore, in analogy with (1.7) far= 0,
we assume that the cost of applying the conpra T is given by

J7(y) = Ey [/ f(Yﬁ’)dt+)~/ e—ptdyt] (1.16)
0 0
Hence the singular stochastic control problem corresponding® is the following:

Problem 1.2 (General Singular Stochastic Control Problem). Find the value function
W(y) defined by

W(y) = ;ren; J'(y), yeR", (1.17)

and find aroptimaly* € T" such that

W(y)=J"(y), yeR" (1.18)



Stochastic Control Problems where Small Intervention Costs Have Big Effects 359

Since we can regard the set of impulse contiols V as a subset of the set of
singular stochastic controls € T (by identifying an impulsg > 0 with the jump
Ay = ¢), we have

W(y) < Ve(y) forall c>0. (1.19)
It was proved in Theorems 2.1 and 2.5 of [MR1] and in [MR2J\(i&= 0) that

W(y) = Vo(y) = Can3+ Ve(Y). (1.20)

In particular, the functiom — V,(y) is continuous at = 0.

In this paper we study a specific impulse control problem of the form (1.8)—(1.9)
in detail (see Problem 2.2) and we investigate hawy) and other quantities of the
problem depends om Our main result is tha¥(y) is not differentiable at = 0. More
precisely, we show that

lim iVc(y) = [%] =0 forall y (1.22)
c—0+ dc =0

dc
(see Theorem 2.6).

This means that going fromm = 0 to a small positivee causes an increase in the
value function which is in no proportion to the increase.in

We also solve explicitly the corresponding singular stochastic control problem when
¢ = 0 (see Problem 3.1) and we show that the reflecting batiiethe solution of this
problem is the common limit of the impulse barrieggc) and x;(c) of the impulse
problem ax — 0. (See Theorem 3.3.)

This work was motivated by a discussion of a combined stochastic control and
impulse control of a problem in [Md@], where a property similar to (1.21) was deduced
under certain conditions. (See (4.47) and (4.48) in [MQ].)

This work is also related to [JS], where it is proved that the limit of the impulse
barriers ax — 0 (of a different impulse control problem) is equal to the reflecting
barrier of a corresponding singular control problem. However, the property (1.21) is not
studied there.

It is natural to conjecture that the statement (1.21) holds not just for the case we
consider, but more generally for a large class of impulse control problems where the cost
of interferring has the form given by (1.6). This will be discussed in a forthcoming paper
by Ubge, Zhang, and the author [FUZ].

2. The Impulse Control Problem

We begin by stating a verification theorem of quasi-variational type for impulse control
problems. The result is a special case of Theorem 3.1 in [B&2], which again is an
elaboration of results in [BL]. First we introduce some notation.

Define theintervention operato/\ on the space of functiorts R" — R by

Nh(x) = ;Qg{h(X+g(§)>+c+A|§|}. (2.1)
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Suppose thatfor eache R" there exists at least olﬁe: Z(x) € Z suchthatthe infimum
in (2.1) is attained and thatraeasurable selection = Rn(x) of such minimum points
¢ exists. Then we have

Nh(X) = h(X + Rn(S, X)) + €+ A|Rn (S, X)|. (2.2)

Note that if we do not have any interventions, th&is an Ito diffusion with a generator
A which coincides or€3(R") with the partial differential operator

52

X ax

L= Zb.(X)— +1 Z(UUT)u(X)

i,j=1

(2.3)

As is customary, we leE*(R") (resp.C2(R")) denote the set of all once (resp. twice)
continuously differentiable functions drl", andCé(R”) denotes the set of functions in
C2(R") with compact support.

The Green measuref Y; is the “total expected occupation measu@= Gy (-, y)
defined for eacly € R" by

Gy(F,y) =Ey [/Ooc Xe(Yh) dt} ; F cR" (Borel). (2.4)

We say that a continuous functidn R" — R is stochastically € (with respect tor) if
Lf (x) is defined (pointwise) for a.& with respect to the Green meas@e (-, y) and
thegeneralized Dynkin formulholds for f:

Ey[f<vf>]=f<y>+Ey[/0 Lf(Yodt] y R, 25)

for all bounded stopping times which are less than the exit time fof from some
compact set. By the classical Dynkin formula@f(R") functions are stochasticaly?.
More generally, functions which a@? except on a “small” set (foY;) are stochastically
C?2. See [B@1] for more details.

Theorem 2.1 [B@2] (Sufficient Quasi-Variational Inequalities for Impulse Control).

Letc> 0.
(a) Suppose we can find a continuous functiorR" — R, ¢ > 0, such that

¢ is stochastically € with respect to Y (2.6)
Le(y)+ f(y) =0 for a.a. y with respectto G(,z) forall z e R". (2.7)
p(Y) <Ng(y) forally eR" (2.8)
tILrgo oY) =0 as. Qy forall veV andall yeR" (2.9)

The family{¢(X?); T stopping tim¢is Qy-uniformly integrable
forall yeR" andall veV. (2.10)
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Then
e(y) < J(y) forallveV,yeR",

where ' (y) is defined by1.7).
(b) Define thecontinuation regiorD by

D = {y; p(y) < No(y)}.
Suppose thatn addition to(2.6){2.10)above we have
Lo(y)+ f(y) =0 forall yeD.

Define the impulse control
V= (fl,fz,...;g']_,{z,...)

inductively as follows
Puttyg = 0and

fier = infit > fi; Y ¢ D),

fir =Ry (Yflf) ) ,

Tkl

where Y¥ is the result of applying the impulse contil= (%1,
k=12, ..., tothe processYSuppose

eV
Then

o(y)=Jd(y) forally.
Hence

@(y) = Ve(y)  (defined by1.8))
and therefore

v =10 is optimal(i.e., satisfieg1.9)).

ey Tk 1, ...

(2.11)

(2.12)

(2.13)
(2.14)

, ),

(2.15)

(2.16)

(2.17)

(2.18)
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A Special Case We now apply this to a special case. The following impulse control

problem is related to the problems studied in [HST] and [V]. Whea 0 this problem

was solved in Section 1 of [MR1].

If there are no interventions, we assume that the sy3tamgiven by

Yo =(s+t,x+ By, t>0,

(2.19)

whereB; is a one-dimensional Brownian motion starting at OYgsstarts aty = (s, X)).

If the impulse controb = (11, 72, . . .; {1, {2, - . .) € Vis applied to]Y}, it gets the form

Y = (s+t, X{),

(2.20)



362 B. @ksendal

where

X{ =x+B—> & 0<t<T*=o0. (2.21)

<t
We assume that the cost of applying the impulse 0 is given by

K() =c+ g, (2.22)
wherec > 0, A > 0 are constants. Assume that the cost rate is

F(r6) = e g2, (2.23)

This leads to a total expected caBt(s, x) given by

J¥(s,x) = Esx [ / e P (X2 dt+ ) (c+ Mzknep“ﬂk)} : (2.24)
0 K

Note that it is not optimal to mov&; downward if X; is already below 0. Hence
it is enough to consider impulse contrals= (11, 72, .. .; {1, {2, .. .) Such thatgy <
X+ By — Y1 ¢ e, Y ¢ < X+ By, We let the family of such satisfying (1.5)
be our admissible family.

Problem 2.2 (Special Impulse Control Problem). Lat (s, x) be as in (2.24) and let
X{ be asin (2.21). For att > 0 find the value functioi,(s, x) and the optimal impulse
controlv* = v} € V such that

Ve(s, X) = inL J2(s, %) = IV (s, X). (2.25)
ve
In order to solve this problem we make some guesses about the value function
Vc(s, X) and the continuation regiob given by (2.11). Then we verify that this is

indeed the solution by applying Theorem 2.1.
First, as a candidate(s, X) = ¢c(s, X) for (s, X) we try to put

@(8,X) = & "5¢(x) (2.26)
and as a candidate for the continuation regibwe try

D ={(s,X); X < X1}, (2.27)
wherey (X) andx; € R remain to be determined. With this choicegofve get

dp  1d%
Lo(s, X) + f(S,X) = — + =—— + e "5%?
(s, X) + f(s,%) 8s+28x2+

=e " (Y00 — pY () +X7)
so0 (2.12) indicates that we choogéx) in (—oo, X;) as a solutiorh(x) of the equation

I (x) — ph(x) +x? = 0. (2.28)
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The general solution of (2.28) is

1 1
h(x) = C1eV? X 4+ Coe VX  Zx2 4 =, (2.29)
o o

whereC3, C, are arbitrary constants.
If we make no interventions, then the expected total cost is

J0(s, x) = Esx [/ e"’(s“)(th)zdt} = e—PS/ e "'(x% +t) dt
0 0

1
—ps [ 1,2
=e” <;x + —2> .
0
Hence we must have

1 1
O§1/x(X)§—X2+—2 forall x < xg,
o p

and comparing with (2.29) we see that the last inequality is only possiBGledf 0. The
first inequality rules out tha€, < 0. HenceC, = 0. ThenC; < 0 and we put

1 1
VU (X) = ;xz + pi aev¥*  for x <xi, (2.30)

wherea = —C; > 0. We guess that > 0.
Forx > x; we havep(x) = N¢(x) and hence

¥ (X) =§ig[){1/f(><—§)+c+x;}. (2.31)

To find the minimum oh(¢) := ¥ (x — ¢) + ¢+ Az we look for; = ¢(x) such that
(@) =—-y'(x-0)+1=0,ie,

) = i (2.32)
where
Xo = X — £(X). (2.33)

From (2.31) we get that (x) = ¥ (X — £ (X)) + ¢+ A (X), i.e.,

Y (X) = ¥ (Xo) + C+ A(X — Xo) for x> Xxg. (2.34)
In particular,

Y'(x1) = A (2.35)
and

¥ (X1) = ¥ (Xo) + €+ A(Xy — Xo). (2.36)

363
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To summarize we put
1 2 1 2
Zx2 4 = _aeVx for X <Xy,
Yx)=1p 2 = (2.37)
¥ (Xo) + C+ A(X — Xo) for x> xg,
wherexg, X1, anda are determined by (2.32), (2.35), and (2.36), i.e.,
2
ay2pev2xo — Sxo (2.38)
0
V2ox _ 2
a/2p eV = —x; — A, (2.39)
0
2p X1 2p Xo 1 2 2
a —a = ;(xl —Xg) —C— A(X1 — Xo), (2.40)
where 0< Xg < X1 anda > 0.
Note that by subtracting (2.38) from (2.39) and rearranging we get
(X1 — X0) (X1 + Xo — 2X) = Cp, (2.40)
where
5. DX 1
==+ —. 241
>t 5 (2.41)
To study the solutions of (2.38)—(2.40), we first consider the function
2
g(X) = da(X) = ay/2p evV2ox _ Ly 1y for fixed a > 0. (2.42)
yel

Note that
2
g'(x) = 2paeV?* — =
0
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so that
2
g =0 & 2paev¥*=2 (2.43)
0
which has a unique solution= X = X(a).
Since
g’ (X) =+/2p 2pae\/5" >0 for all x, (2.44)

we see thax = X is a minimum point fog(x). Then note that from (2.43) we have

-2
gX) <0& a/2pev**—Zx4+1 <0
0

I
?<>

2 2 A
& ——= X+21<0 & 7>'0

—+
pN2p P 2

(2.45)

8-
e}

A g(x)

Equivalently, since by (2.43)
1

a= e V¥X (2.46)
P
we get thag(X) < O ifand only ifa < A, where
1 ApA/2 1
A= —exp(—1-22YP) _ = exp—/20%). (2.47)
p? 2 p?

From this we conclude that (2.38) and (2.39) have exactly two solutipasxg(a) and
X1 = X1(a) such that

0 < xp(@) < X@ < x1(a)

ifandonlyif0 <a < A.
From now on assume thatf a < A. To study howxy = Xp(a) depends om we
differentiate (2.38) with respect tpand get

2
V2p eV2® 1 agpev/2 @ (a) = Sxi(a)
P
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or
/520 %0(@ /55 e/ 20 %@
x)(@) = P =YL= > 0. (2.48)
2/p — 2paev/20 @ —0' (x0)
Similarly
/55 eN/20 %@ /25 eV/20x@
X, (@) = P =YL < (2.49)
2/p — 2paeV20 @ —g'(x1)
Hencexq(a) decreases as— 0 and from (2.38) it follows that
. Ap
{L@OXO(a) == (2.50)
On the other hand; (a) increasesasa — 0 and from (2.39) it follows that
lim xy(a) = lim aev2°x1® — o, (2.51)
a—0 a—0
If a — A, thenX(a) — pA/2+ 1/+4/2p by (2.45) and (2.47) and hence
- V2 2_
%a(X@) = YL — Zx(@ +1 -0,
P P
while g (X(a)) is bounded away from 0. Therefore
lim xo@) = lim x;(a) = lim %@ = 2% + —— — & (2.52)
asA 0 T ana Y T ol 2 2 '
Moreover, we claim that
xo@) +x1(@) <0 forall ae (0, A). (2.53)

To prove this we use (2.48), (2.49) and rewrite (2.53) as (W§ta: Xp(a@), X1 = X1(a))
e 2p Xo e 2p %1

< .
2/p — 2,0ae\/ZXO 2,oae\/le —2/p
By (2.46) this inequality is equivalent to

e 2p XO(e\/ 2p(x1—X) __ 1) < eV 2p Xl(l — eV 2/J(Xo—7))

or, by multiplying withe«/ﬂﬁxw,

eV/#R (/200D _ 1) < eV (eVHE 1), (2.54)
Sinceg” (x) = 4p?aev>* > 0 for all x we must have

X1 —X <X —Xo

and since we also have< x;, we conclude that (2.54)—and hence (2.53)—holds.
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We have now proved the following:

Lemma 2.3. Foralla € (0, A) there exists a unique solutiop x Xp(a) < X; = X1(a)
of (2.38)and (2.39).Moreovey

Xp(@) >0, xy(a) <0, xy@ +x;(@) <0, (2.55)

Iimxa—k—p lim x;(a) = (2.56)

a—>00()_2’ a0 1()—00, .

. . . Ap 1

allinAxo(a) = J@Axl(a) =X= > + \/—Z_p . (2.57)
Accordingly

Ap .

> < Xp(@) < X < x1(@) (2.58)
and

Xo(@) + x1(a) > 2X forall ae (0, A). (2.59)

Using this result we get the existence of a soluiomry, x; of (2.38)—(2.40):
Lemma 2.4. Forallc > Othere exists a= a*(c) € (0, A) such tha{2.40)holds With

this choice of a= a* the triple a= a*, xg = Xo(@*), X3 = x1(a*) is a solution of the
systen(2.38)+2.40).

Proof. LetL(a) = (X1(a) — Xo(@))(X1(a) + Xo(a) — 2X) denote the left-hand side of
(2.40). Then by Lemma 2.3 we have

;@0 L@) = oo, allinA L@ =0.

Hence, for allc > 0 there exista = a*(c) such that_(a) = cpo. Now use this value of
ainLemma 2.3. O

We can summarize this as follows:

Theorem 2.5. Forc > Olet a* = a*(c), Xo = Xp(a*), and x = xy(a*) be as in
Lemma2.4.Define

@c(S, X) = € e (X) (2.60)
with
1, 1 V2
XS+ = —atevX for x < xy(@,
) =13p = p? @) (2.61)

Y (Xo(a*)) + €+ A(X — Xp(@*)) for x> xi(@%).
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Theng, satisfies all the conditions of Theoreédil. Hencey, solves Problen2.2,i.e.,

0c(S, X) = V(S, X) defined in(2.25) (2.62)
and the following impulse contref* = (z}, 75, ...; ¢{, ¢5, .. .) is optimal

Setry = 0 and define inductivelyas in(2.13),

7 = inf{t > 75 X > xa(@”) (2.63)
and (from (2.33))

G = C(xa(@) = x1(@%) — Xo(@); k=0,1,2,.... (2.64)

Remark. (a) Note that since, , does not depend dn we clearly have that
g — 00 as k— oo

and therefore* € V.
(b) It follows from Theorem 2.5 thaa* must be unique (and henog(a*) and
x1(@*)), because the correspondipgy) is the (unique) value functio¥;(y).

We proceed to study how the solution dependscos 0. Leta = a(c), Xg =
Xo(C), andx; = X;(c) denote the unique solution we have found for (2.38)—(2.40).
Differentiating (2.38) and (2.39) with respectdave get, witha' = a'(c), x; = X3(C),
andx; = x;(c):

2
a'\/2peV % a2pev2ro . x| = Zx (2.65)
P
2
2peVPX L a2peV Ny = ;x;. (2.66)

Differentiating (2.40) with respect togives
(X1 — Xg)[X1 + X0 — 28] + (X1 — Xo)[X1 + Xo] = p

or
(2x1 — AP)X; = (2% — A )x’+—2 (X1 —Xg) + (2.67)
1—Ap 0= Ap - p- :
1~ 0 \/Z 1 0
Now (2.65) and (2.66) can be written, using (2.38) and (2.39),

2
peﬂx0+\/7< Yo — )X(/):_Xé, (2.68)

0

2
20eV% 4 f2p ( X1 — )x’lz—xi. (2.69)

P

Subtracting (2.68) from (2.69) and using (2.67) we get

5 e 2
aly/2p(eV¥ — eV 4 YL ( (X — %) + p) = —(x = Xp)
o o

2
v2p
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or
a'(c) = —(evV2X© _ gv20%©)~1 _ o (2.70)

Combining (2.48) with (2.70) we get

dxg dx da
oy - 9% OX% da 2.71
%(©) dc _ da dc 0 (2.71)
and
Xm dX]_ da
4 =—=—.—>0. 2.72
X1(©) dc ~ da dc (2.72)

We conclude from (2.70), (2.71), and (2.72) that
a:=Ilima(c), Xo:=Ilimxg(c), and Xy:= lim x1(c) (2.73)
c—>0 c—0 c—0

exist. To find these limits, we note that they must solve the system (2.38)—(2.40) with
c=0,ie,

. 2
a,/2peva¥o = Zgy— 2, (2.74)
0
A 20 X 2 A
a/20evyP = —% — A, (2.75)
1)
(X1 — Ro)(Rg + %o — 2%) = 0. (2.76)

Clearlyd < A. Assumed < A. Then by Lemma 2.3 we must hakg < X; and
Ko + X1 > 2X. However, this contradicts (2.76). Hern&e= A and therefore

Xo = lim xp(@) =X and X = lim xy(a) = X.
a—A a—>A
From (2.70) it follows thag’(c) — —oo asc > 0. Then by (2.71), (2.71) combined

with (2.48), (2.49) we see thaf(c) — —oo andx;(c) — oo asc — 0%,
We summarize this as follows:

Theorem 2.6. Let a(c), ag(c), and x (c) be the solution given in Theore®5 of the
special impulse control proble®roblem2.2)for ¢ > 0. Then

. . Ap 1 R
| = | ==+ == 2.77
chr(;|+ Xo(©) an(}”f X1(©) 2 + \/Z X ( )
and
. 1 .
lim a(c) = — - eXp(—y/2p X) = A. (2.78)
c—0* P
Moreover

a(c) = —(eV2PR© _ V201 o as c— O (2.79)
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and
X5(C) = —00,  X1(C) — 00 as c— Ot. (2.80)
Hence
Iing+ Ve (S, X) = e Syg(X), (2.81)
CcC—
where
1 1
—x2+—2—Ae\/5X for x <X,
Yo(x) = { P p (2.82)
Yo(X) + A(X — X) for x> X.
Moreovey
lim d Ve(S, X) = o0 forall s, x (2.83)
0t dC C y - ) . .

3. The Singular Stochastic Control Problem
We now consider the case= 0 only. As explained in the Introduction (see Problem 1.2)

there is a natural singular control problem interpretation of Problem 2.2, as follows:
Fory e T let the statey{” of our system be given by

t
0

Assume that the cost of applying the contyok T is given by

0

J7(y) = J7(s, X) = Esx U e"(S“)(Xty)zdt+A/e”(S“)dyt:| , (3.2)
0
where
t
X' =x+ B —/ dy;. (See (2.20)—(2.24).) 3.3)
0
This leads to the following problem:

Problem 3.1 (Special Singular Stochastic Control Problem whkea 0). LetJ¥ (s, X)
be as in (3.2). Find the value functid(s, x) and the optimal contrgt* € I" such that

W(s, X) = infF J7(s, x) = IV (s, X). (3.4)
ye

We briefly recall the concept ofraflectedito diffusion:

LetY; be an Ito diffusion irR" given by

dY; = b(Yy) dt + o (V) dB; t>0, Yo=yeR"
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Let D be a domain ifR" whose boundary has a tangent at every point. For gacli D
choose a vecton(x) € R" pointing into D. Choosey € D, the closure ofD. Then
consider the problem of finding a pam?t, &) of continuous,F;-adapted stochastic
processes with the following properties:

Y.eD foral t=>0, (3.5)

£ is a nondecreasing process, increasing only whenA: = {t; Y; € aD}, (3.6)

A = Alw) C [0, 00) has Lebesgue measure 0 for aa. 3.7)
and

dY; = b(Yodt+o (V) dB + n(Y) d&,  t >0, (3.8)

Yo=yeD and &=0. (3.9)

Equations (3.8)—(3.9) (with the conditions (3.5)—(3.7)) are call8&@ohodstochastic
differential equationlf it has a unique solution, the‘ﬁ is called thereflectionof Y; at
aD (in the direction of the vector fields(x), X € D) andé; is calledthe local time of
Y; at 8 D. For more information see [F] and the references therein.

In the special case whe¥j = Z; is a constant times a Brownian motion plus a
constant driftirR andD has the fornD = (—o0, x*), then there is a simple construction
of the reflegted procesﬁ, which in this case is called tldownward reflectioof Z; at
x*. In fact, Z; is given by

ZI = ZI - Et,
where

&= supZs — xM)*
s<t

is the local time off Z;} atx*. This is due to Skorohod (see, e.g., p. 222 of [RY]). Here
we have used the standard notation= max(y, 0).

The pair(Z, &) satisfies all the requirements above, except possibly (3.%). If
nonzero, it also satisfies (3.7). However, (3.7) is not needed in the result below.

Analogous to the quasi-variational inequality verification result for impulse control
(Theorem 2.1) there is a variational inequality verification result for singular stochastic
control. The following formulation is sufficient for our purposes.

Note that it is not optimal to movX; downward if X; is already below 0. Hence
we have

W(s, X): = inf JV (s, X) = inf J7(s, X),
yel yelg

where

o= {y € T'; i1 increases only wheix; > 0}.
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Theorem 3.2 [L@] (Sufficient Variational Inequalities for the Singular Stochastic Con-
trol Problem). Suppose we can finde C2(R?), ¢ > 0, such that

dp

xS re”t  everywherg (3.10)
dp 1d% o,
— +=-——+e"”x*>0 everywher 3.11
at + 2 9x2 + - y © ( )
and
F!im Esx[e(Tr. X7 )] =0  forall y eIy, (3.12)
— 00
where
Tr = RAINf{t > 0; |X/| > R}
Then
p(t, x) < W(t, x). (3.13)

Now define th@onintervention region
ad
D= {(t, X): a—i < ,\ept} . (3.14)

Assume that

D = {(t, X); X < x*} forsome X eR (3.15)
and that

R1%) 182(/) _ .

— 4+ 4e”x2=0 nD. 3.16

ot To2axe TEX ! (3.16)

Let X0 = x + By (corresponding toy = 0in (3.3)). Define the following control
]7 e I'o:

—_ w¥) Tt —
e P @1
where
& = zgtp(XS —xH7. (3.18)
Then
p(t, x) = W(t, x) (3.19)
and

y*=1yp is optimal (3.20)
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The proof of Theorem 3.2 is similar to the proof of Theorem 3.3 in [L&] and is
omitted.

Note that the first statement of the following theorem is just a special case of a result
in [MR1] (see (1.20)).

Theorem 3.3. With V;(s, X) as in Theoren2.6for c > 0and W as in Probler8.1we
have

Iing Ve (s, X) = W(s, X).
c—0*

Moreoverthe optimal singular stochastic contrpt € T" for Problem3.1coincides with
the local timeg, at x = X whereX is as in Theorernd.6,i.e.,

A 1 . .
X = i + —— = lim Xg(c) = lim xy(c), (3.22)
c—0* c—0t

2 N 2p

corresponding to an optimal state procesé* Yeing thedownward reflectiorof the
process ¥ = (s+t, X% ataD = {(t, x); X = X}.

Proof. We verify thatp(s, X) = e ”3y(x) with g given by (2.82) satisfies the re-
quirements of Theorem 3.2. By (2.82) it suffices to verify titgfx) € C?(R) and that
the following hold:

Yo(X) < A everywhere (3.22)
—pYo(X) + 3Yg(X) + x> >0  everywhere (3.23)
D= {(t, X); Y5 (X) < A} = {(t, x); X < X}, (3.24)
—p¥o(X) + 3Yg(X) +x*=0  for x <ZX. (3.25)

Moreover, we must check that (3.12) holds, i.e.,

Jim Esxle”™yo(Xf )] =0  forall y eTo. (3.26)
— 00

To check thatyy € C?(R) we first note that

d(l +——Ae\/_>—;x—A\/_pe\/_ =1

dx

for x = X by (2.74) and (2.77). Sinc@ /dX) (¥o(X) + A(X — X)) = A also, we have
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Yo € C1(R). Next, since

dz /1 1
o (3 - mev)
) o

dx2
2
— £ _2p AeVZX
]
2 1 R .
=——2p- S eXply/2p(Xx — X)) =0 for x =X, (3.27)
P P

we conclude thaty € C3(R).
Forx > X we havey(x) = A, while forx < X we have

2
Yo(X) = =X — AY/2peV* <
0

because/{(x) > 0 forx < X by (3.27). Hence (3.22) holds. Moreover,
D = {X; ¥5(X) < A} = {X; X < X}.
To verify (3.23) we first show that the functidrix) defined by
h(X) := —p(Wo(R) + A(X = R)) + 3(Wo(R) + A(X — R))" + X
= —pPo(X) — pA(X — X) + X?
satisfies
h(x) >0 for x> X. (3.28)

Sinceh’(x) = —pA+2x > 0forx > pA/2andX = pA/2+1//2p > Ap/2, it suffices
to verify (3.27) forx = X, i.e., to verify that

—pYo(R) + %2 > 0. (3.29)

By (2.82) we have
o 1
—pPo(R) + K2 = pAeVFE _ = — 0,
0

To verify (3.25), and thereby also completing the verification of (3.23), we note that for
X < X we have

—po(X) + 3¥5 () +x* =0

by (2.82) and (2.28).
Finally we note that (3.26) clearly holds, becausg # 'y, then

1
Yo(X{) < ;Bf+c,

for some constan® not depending oh. That completes the proof of Theorem 3.31
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Summary

We have studied an impulse control problem and found its value funstidior all
positive intervention costs Then we have shown that

. d
lim —V, = o0,
c—0* dC

which implies that increasing the intervention cost from= 0 to a positivec, albeit
small, can have a big effect on the value function for the problem.
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