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Abstract. In this paper we are concerned with the existence of optimal stationary
policies for infinite-horizon risk-sensitive Markov control processes with denumer-
able state space, unbounded cost function, and long-run average cost. Introducing a
discounted cost dynamic game, we prove that its value function satisfies an Isaacs
equation, and its relationship with the risk-sensitive control problem is studied.
Using the vanishing discount approach, we prove that the risk-sensitive dynamic
programming inequality holds, and derive an optimal stationary policy.
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1. Introduction

In this paper we are concerned with the existence of optimal stationary policies for
infinite-horizon risk-sensitive stochastic control problems with denumerable state space,
discrete time parameter, unbounded cost function, and long-run average cost. For the risk-
neutral stochastic control problem, the same kind of problem has been addressed, see,
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e.g., [C], [CS], [S1], [S2], [HL2], and [HL3], exploiting the vanishing discount approach,
in which the value function of the average cost control problem is approximated by the
value function of a sequence of discounted problems. However, for the risk-sensitive
control problem there does not seem to be a sequence of discounted control problems with
which we can approximate the value function of the average cost problem. Therefore, we
introduce a dynamic game, and consider both the discounted and the average cost criteria.
Establishing some relationships (see Theorem 3.1) between the value function of the
average cost dynamic game and the value function of the risk-sensitive control problem,
it is possible to approximate the value function of the risk-sensitive control problem
through the value function of a discounted cost dynamic game, which satisfies an Isaacs
equation. Then, using well-known techniques of the vanishing discount approach, we
prove the existence of a solution to the risk-sensitive dynamic programming inequality
(DPI), and derive an optimal stationary policy. In [HM] it was proved that there exists
a bounded solution to the risk-sensitive dynamic programming equation (DPE), under
conditions that force the controlled process to have very strong recurrence properties
for all stationary policies. In this paper we introduce weaker assumptions, and prove the
existence of a solution to the DPI.

The use of game theory to solve this problem is not surprising, and it has been
explored extensively in the study of risk-sensitive control problems [BJ], [FH], [FM1],
[FM2], [DMR], [W]. See also [FGM], where risk-sensitive control problems for hid-
den Markov models were treated. A key tool for establishing the relationships between
dynamic games and the risk-sensitive control problem is a variational lemma, that ex-
presses the duality relationship between the relative entropy function and the logarithmic
moment-generating function. Recently, Dupuis and Ellis [DE] found interesting appli-
cations of this lemma in their study of representation formulas and weak convergence
methods.

The paper is organized as follows. Section 2 describes the control model we deal
with. In Section 3 we introduce some preliminary results, and finally Section 4 contains
the main result.

2. Preliminaries

The Control Model. Let (S, A, π, c) be a Markov control model [ABF+], [HL1]
satisfying the following. The setS = {0,1, . . .} is the state space, endowed with the
discrete topology, whileA is a Borel space, called the action or control space. For every
x ∈ S, there is a nonempty setA(x) ⊂ A, which represents the set of admissible actions
when the system is in statex. The set of admissible pairs isK := {(x,a) : x ∈ S,a ∈
A(x)}, and is assumed to be a Borel subspace ofS× A. The transition lawπ is a
stochastic kernel onS given K . Finally, c: K → R is a lower semicontinuous (l.s.c.)
function, nonnegative, which represents the one stage cost.

Assumption A.1.

(i) For eachx, y ∈ S, the mappinga→ π(y|x,a), with a ∈ A(x), is l.s.c.
(ii) For eachx ∈ S, A(x) is a compact subset ofA.
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DefineH0 = S, andSt = K × Ht−1 if t = 1,2, . . . . A control policy, or strategy, is a
sequenceEδ = {δt } of stochastic kernels onA given Ht that satisfy the constraint

δt (A(xt )|ht ) = 1, ∀ht ∈ Ht , t ≥ 0.

The set of policies is denoted by1. A policy Eδ ∈ 1 is called a Markov policy if there
exists a sequence of functions{πt }, with πt : S → P(A), where P(A) is the set of
probability measures onA, such thatπt (x)(A(x)) = 1. We denote by1M the set of
Markov policies, and throughout we restrict ourselves, without loss of generality, to
this set of control policies. We denote byF the set of functionsf : S→ A such that
f (x) ∈ A(x) for all x ∈ S. A policy Eδ ∈ 1 is stationary if there existsf ∈ F such that
δt ( f (xt )|ht ) = 1 for all ht ∈ Ht , t ≥ 0; this policy is also denoted byf ∈ F.

If the initial statex ∈ S and Eδ ∈ 1M are given, there exists a unique probability
measurePEδx on(Ä, ζ ), the canonical measurable space that consists of the sample space
Ä := (S×A)∞ and the corresponding productσ -algebraζ . Further, a stochastic process
{(xt ,at ), t = 0,1, . . .} is defined in a canonical way, wherext andat denote the state
and action at timet , respectively. The expectation operator with respect toPEδx is denoted
by EEδx.

Next we introduce the risk-sensitive cost criterion. Forx ∈ S, Eδ ∈ 1M , the cost
functional to be minimized is defined by

J(x, Eδ) = lim sup
T→∞

γ
1

T
log E

Eδ
x exp

{
1

γ

T−1∑
t=0

c(xt ,at )

}
,

whereγ > 0 is the risk factor. Throughout, without loss of generality, we setγ = 1. Let

J(x) = inf
1M

J(x, Eδ)

be the corresponding value function. Then the problem we are concerned with is to find
a policy f ∈ F such that

J(x) = J(x, f ∗).

Assumption A.2.

(a) There exists a stationary policȳf ∈ F such that

ρ := J(x, f̄ )

is finite and independent ofx.
(b)

lim inf
x→∞ min

a∈A(x)
c(x,a) > ρ.

Remark 2.1. Assumption A.2 is a slight variation of that used in previous literature for
the risk-neutral average cost criterion [C],[CS], [B]. However, the way we approach our
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problem is technically different, and depends heavily on the introduction of a dynamic
game. This idea has been used in [HM], where dynamic programming techniques were
used to prove the existence of optimal solutions to the risk-sensitive stochastic control
problem with bounded cost function, and in [FH] for finite state problems.

In the remainder of this section we give a sufficient condition for Assumption A.2(a).
See Theorem 2.1.10 of [DS]. Let̄f ∈ F, and letx̄t be the Markov chain with transition
kernelπ(y|x, f̄ (x)).

Let P(S) be the set of probability vectors onS, i.e.,

P(S) :=
{
µ = (µ0, µ1, . . .) : µi ≥ 0,

∞∑
i=0

µi = 1

}
,

endowed with the weak topology. We denote byYt the occupation measure of the Markov
chain x̄t with initial condition x, and assume that{Yt } satisfies the Large Deviation
Principle inP(S) with rate function independent ofx. Further, let8 : P(S)→ [0,∞]
be defined by

8(µ) =
∑
x∈S

c(x, f̄ (x))µ(x).

If 8 is finite, continuous, and satisfies, for eachx ∈ S,

lim
C→∞

lim sup
t→∞

1

t
log E f̄

x {1{µ:8(µ)≥C}(Yt )exp[t8(Yt )]} = −∞,

then, according to Theorem 2.1.10 of [DS],f̄ satisfies Assumption A.2(a).

3. Stochastic Dynamic Games

We fix ν ∈ P(S). The relative entropy functionI (·||ν) is a map fromP(S) into the
extended real numbers. It is defined by

I (µ||ν) :=
{∑

x∈S log(r (x))µ(x) if µ¿ ν,

+∞ otherwise,

where

r (x) =
{
µ(x)/ν(x) if ν(x) 6= 0,
1 otherwise.

The stochastic dynamic game is defined as follows (see [FH] and [HM]). The setSis
the state space, whileAandP(S)are the control sets for Players 1 and 2, respectively. The
reward function is(x,a, µ)→ c(x,a)− I (µ||π(·|x,a)), with (x,a, µ) ∈ K × P(S).

The evolution of the system is as follows. Letxt be the state at timet ∈ {0,1, . . .},
and letat andµt be the actions chosen by Players 1 and 2, respectively. Then a reward
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c(xt ,at ) − I (µt ||π(·||xt ,at )) is earned, and the system moves to the next statext+1

according to the probability distributionµt .
For eacht ≥ 0, letNt andK t be the set of feasible histories up to timet for Players

1 and 2, respectively. That is,N0 = S andNt = (S× P(S))t × S, while K0 = K and
K t = K t ×K . We say thatEf is stationary if, for allt ≥ 0, ft = f ∈ F is independent of
t . A randomized Markov strategy for Player 1 is a sequenceEδ = {δt } of functions fromS
to P(A), such thatδt (x)(A(x)) = 1; with some abuse of notation, we denote this set of
strategies as1M . A nonrandomized Markov strategy for Player 1 is a sequenceEf = { ft }
of functions ft from S to A, such thatft (x) ∈ A(x). A nonrandomized Markov strategy
for Player 2 is a sequenceEξ = {ξt } of stochastic kernelξt on SgivenK . Analogously,Eξ
is stationary if, for allt ≥ 0, ξt = ξ : K → P(S).

Let (Ä, ζ ) be the canonical measurable space. Given the initial statex ∈ S, and

strategiesEδ, Eξ , there exists a unique probability measureP
Eδ,Eξ
x and, again, a stochastic

process{xt ,at , t ≥ 0} is defined on(Ä, ζ ) in a canonical way, wherext denotes the state
at timet of the system, andat is the action for Player 1. The corresponding expectation

operator is denoted byE
Eδ,Eξ
x .

Givenx ∈ S, Eδ, Eξ , define the cost functional

Vβ(x, Eδ, Eξ) := E
Ef ,Eξ

x

∞∑
t=0

β t [c(xt ,at )− I (ξt ||π(·|xt ,at ))], (3.1)

whereβ ∈ (0,1) is the discount factor. Note that, sincec is (possibly) unbounded,
Vβ(x, Eδ, Eξ)might be undetermined. To avoid this, we restrict the set of admissible strate-
gies for the second player in the following way. GivenEδ ∈ 1M , we say thatEξ is
Eδ-admissible ifEξ is a nonrandomized Markov strategy for Player 2, and, for eachx ∈ S,

E
Eδ,Eξ
x

T−1∑
t=0

I (ξt (·|xt ,at )‖π(·|xt ,at )) <∞, T ≥ 1,

and

lim sup
T→∞

1

T
E
Eδ,Eξ
x

T−1∑
t=0

I (ξt (·|xt ,at )‖π(·|xt ,at )) <∞.

We denote this set byQ(Eδ). Note that this set is not empty;ξ = π ∈ Q(Eδ). We define,
analogously, the value function with average optimality criterion. Givenx ∈ S, Eδ, Eξ , we
define

3(x, Eδ, Eξ) := lim sup
T→∞

1

T
E
Eδ,Eξ
x

T−1∑
t=0

[c(xt ,at )− I (ξt ||π(·|xt ,at ))]. (3.2)

Finally, we define the upper values of these games, respectively, by

Vβ(x) := inf
Eδ

sup
Eξ∈Q(Eδ)

Vβ(x, Eδ, Eξ)
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and

3∗(x) := inf
Eδ

sup
Eξ∈Q(Eδ)

3(x, Eδ, Eξ).

The following theorem is the basis for the existence of bounds which are used in the
vanishing discount method.

Theorem 3.1. Fix T > 0 andEδ ∈ 1M . For each k= 0, . . . , T − 1 define

3k,T−1(x, Eδ) := sup
Eξ∈Q( Eδ)

E
Eδ,Eξ
x

[
T−1∑
t=k

(c(xt ,at )− I (ξt ||π(·|xt ,at )))|xk = x

]

and

Jk,T−1(x, Eδ) = log E
Eδ
x exp

[
T−1∑
t=k

c(xt ,at )|xk = x

]
.

Then

(a) for all x ∈ S and k= 0, . . . , T − 1,

3k,T−1(x, Eδ) ≤ Jk,T−1(x, Eδ), (3.3)

(b) lim supT→∞(1/T)30,T (x, Eδ) ≤ J(x, Eδ),
(c) 3∗(x) ≤ J(x).

Proof. We first prove (3.3) fork = T−1. Givenx ∈ S, we assume thatJT−1,T−1(x, Eδ) <
∞, since otherwise (3.3) is obvious. Then

3T−1,T−1(x, Eδ) = sup
Eξ∈Q( Eδ)

∫ [
c(x,a)−

∫
log

[
dξ1(y|x,a)
dπ(y|x,a)

]
× ξ1[dy|x,a]δ1(da|x)

]
≤
∫

c(x,a)δT−1(da|x)
≤ JT−1,T−1(x, Eδ).

Now, we assume that (3.3) holds fork = n + 1, . . . , T − 1. Let x ∈ S be such that
Jn,T−1(x, Eδ) <∞, and choose anyEξ ∈ Q(Eδ) such that

3n,T−1(x, Eδ, Eξ) := E
Eδ,Eξ
x

[
T−1∑
t=n

[c(xt ,at )− I (ξt ||π(·|xt ,at ))]|xn = x

]
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is nonnegative. Then

3n,T−1(x, Eδ, Eξ) = E
Eδ,Eξ
x

[
c(xn,an)− I (ξn||π(·|xn,an))

+
∫
3n+1,T−1(y, Eδ, Eξ)ξn(dy|xn,an)|xn = x

]
≤ E

Eδ,Eξ
[
c(xn,an)− I (ξn||π(·|xn,an))

+
∫
3n+1,T−1(y, Eδ)ξn(dy|xn,an)|xn = x

]
≤ E

Eδ,Eξ
[
c(xn,an)− I (ξn||π(·|xn,an))

+
∫

Jn+1,T−1(y, Eδ)ξn(dy|xn,an)|xn = x

]
=
∫ [

c(x,a)− I (ξn||π(·|x,a))

+
∫

Jn+1,T−1(y, Eδ)ξn(dy|x,a)
]
δn(da|x)

≤
∫ [

log
∫

ec(x,a)+Jn+1,T−1(y, Eδ)π(dy|x,a)
]
δn(da|x)

≤ Jn,T−1(x, Eδ),

where the last inequality is due to Jensen’s inequality. The proof of (b) follows im-
mediately from (a). Now we prove (c). Letδ ∈ 1M , and chooseEξ ∈ Q(Eδ) such that

3(x, Eδ, Eξ) ≥ 0. We prove first that

3(x, Eδ, Eξ) ≤ J(x, Eδ). (3.4)

Assume thatJ(x, Eδ) <∞, since otherwise there is nothing to prove. We first prove that
3(x, Eδ, Eξ) <∞. Assume that3(x, Eδ, Eξ) = ∞, and let{Tn} be a sequence such that

3(x, Eδ, Eξ) = lim
n→∞

1

Tn
E
Eδ,Eξ
x

[
Tn−1∑
t=0

[c(xt ,at )− I (ξt ||π(·|xt ,at ))]

]
.

Then, givenM > 0, there existsN > 0 such that, forn > N,

M ≤ 1

Tn
E
Eδ,Eξ
x

Tn−1∑
t=0

[c(xt ,at )− I (ξt ||π(·|xt ,at ))]

≤ 1

Tn
30,Tn−1(x, Eδ)

≤ 1

Tn
J0,Tn−1(x, Eδ), (3.5)
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where we have used part (a) of the theorem. Therefore, lettingn → ∞ in (3.5), and
using part (b), we obtain

M ≤ J(x, Eδ).

SinceM was chosen arbitrarily, this inequality implies thatJ(x, Eδ) = ∞, which is a
contradiction. Thus3(x, Eδ, Eξ) <∞. Then, using essentially the same kind of arguments
as in (3.5), (3.4) follows.

Lemma 3.2.

(a) For eachβ ∈ (0,1) and x∈ S,

0≤ Vβ(x) <∞
and

lim sup
β→1

(1− β)Vβ(x) ≤ ρ.

(b) The upper value function Vβ is the minimal nonnegative solution of the Isaacs
equation

Vβ(x) = inf
a∈A(x)

sup
µ∈1(x,a)

[
c(x,a)− I (µ||π(·|x,a))+ β

∫
Vβ dµ

]
, (3.6)

where1(x,a) = {µ ∈ P(S) : I (µ||π(·||x,a)) <∞}.
(c) The stationary strategies f∗β andξ ∗, with

f ∗β (x) ∈ arg min

{
ec(x,a)

∫
eβVβ (y)π(dy|x,a)

}
and

ξ ∗(x′′|x,a) = eβVβ (x′′)π(x′′|x,a)∫
eβVβ (y)π(dy|x,a)

are optimal, wheneverξ ∗ ∈ Q( fβ).

Proof. Let f̄ ∈ F be as in Assumption A.2(a), and letx ∈ Sbe arbitrary, but fixed. Now
we chooseEξ ∈ Q( f̄ ) such thatVβ(x, f̄ , Eξ) ≥ 0. Then, using a well-known Tauberian
theorem (see, e.g., [SF]),

lim sup
β→1

(1− β)Vβ(x, f̄ , Eξ) ≤ 3(x, f̄ , Eξ)

≤ J(x, f̄ )

= ρ,
where we have used Theorem 3.1. Part (a) follows in a straightforward manner.

(b) Letβ ∈ (0,1) be fixed. For each functionψ : S→ R define the operator

Tβψ(x) := min
a∈A(x)

{
c(x,a)+ log

∫
eβψ(y)π(dy|x,a)

}
.
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It is easy to see thatTβ is monotone, i.e., ifψ ≥ µ, thenTβψ ≥ Tβµ. Letψ0 ≡ 0 and
define

ψn+1 := Tβψn.

Since{ψn} is a nondecreasing sequence, there exists a nonnegative functionψ such that
ψn ↑ ψ . Then following analogous arguments to those used by Hern´andez-Lerma and
Lasserre [HL2, Theorem 3.1], together with Lemma A.1, it can be seen thatψ satisfies
the Isaacs equation (3.6). Further,ψ is the minimal nonnegative solution to this equation.
Now we prove thatψ = Vβ . Let f be a stationary policy such that

f (x) ∈ arg min
a∈A(x)

{
c(x,a)+ log

∫
eβψ(y)π(dy|x,a)

}
.

Then, for any admissible policyEξ ∈ Q( f ) for the second player and anyn ≥ 1,

ψ(x) ≥
n∑

t=0

E f,Eξ
x β t [c(xt ,at )− I (ξt ||π(·|xt ,at ))] + βn+1E f,Eξ

x ψ(xt+1)

≥
n∑

t=0

E f,Eξ
x β t [c(xt ,ut )− I (ξt ||π(·|xt ,ut ))].

Lettingn→∞, this implies that

ψ(x) ≥ Vβ(x, f, Eξ).

SinceEξ was chosen arbitrarily, we have that

ψ(x) ≥ sup
Eξ∈Q( f )

Vβ(x, f, Eξ)

≥ Vβ(x). (3.7)

To prove the reverse inequality, we use the fact that the functionψn is the value function
of the n-stage problem with terminal cost zero (see [HL1]). The proof of this fact is
standard and is left to the reader. Thus, for eachx ∈ S,

ψn(x) = inf
Eδ∈1M

sup
Eξ∈Q(Eδ)

E
Eδ,Eξ
x

n−1∑
t=0

β t [c(xt ,at )− I (ξt ||π(·|xt ,at ))].

Then, for any policyEδ, x ∈ Sandn = 1,2, . . . ,

ψn(x) ≤ sup
Eξ∈Q(Eδ)

E
Eδ,Eξ
x

n−1∑
t=0

β t [c(xt ,at )− I (ξt ||π(·|xt ,at ))]

≤ sup
Eξ∈Q(Eδ)

E
Eδ,Eξ
x

∞∑
t=0

β t [c(xt ,at )− I (ξt ||π(·|xt ,at ))].



282 D. Hernández-Hern´andez and S. I. Marcus

Therefore,

ψ(x) ≤ sup
Eξ∈Q(Eδ)

Vβ(x, Eδ, Eξ)

and then

ψ ≤ Vβ(x).

Together with (3.7), this completes the proof of (b). The rest of the lemma follows
immediately from standard dynamic programming arguments and Lemma A.1.

Lemma 3.3. There exists a finite set G andβ0 ∈ (0,1) such that, for eachβ ∈ (β0,1),
with β0 as in Lemma3.2,and x∈ S,

Vβ(x)− Vβ(xβ) ≥ 0

for some xβ ∈ G. In addition, for any sequence{βn} converging to1, there exists a
subsequence{βnk} such that the sequence{xβnk

} is constant.

The proof of this lemma is a slight variation of the one given by Cavazos-Cadena
[C] (see also [CS]), and we omit it.

4. Risk-Sensitive Optimal Controls

In this section we present our main result (see [HL3] for similar results in the risk-neutral
case).

Theorem 4.1. Under Assumptions A.1and A.2,there exist a numberρ∗ and a(possibly
extended) function W on S such that, for all x ∈ S,

eρ
∗+W(x) ≥ inf

a∈A(x)

{
ec(x,a)

∫
eW(y)π(dy|x,a)

}
and the set H:= {x ∈ S : W(x) is finite} is not empty. Moreover, there exists an optimal
control f∗ ∈ F whenever the initial state belongs to H, and

ρ∗ = J(x, f ∗)

for all x ∈ H .

Proof. Let {βn} be a sequence in(0,1) converging to 1, and take a subsequence (also
denoted by{βn}) as in Lemma 3.3, labeling bye the common value of the sequence
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{xβn}. Following a standard approach, we defineρn := (1− βn)Vβn(e), Wn(x) :=
Vβn(x)− Vβn(e), andWβ(x) := Vβ(x)− Vβ(e), and rewrite (3.6), using Lemma A.1, as

eρn+Wn(x) = min
a∈A(x)

{
ec(x,a)

∫
eβnWn(y)π(dy|x,a)

}
. (4.1)

We defineρ∗ := lim supn ρn andW(x) := lim infn Wn(x); then, taking the lim infn on
both sides of (4.1), and using Fatou’s lemma and Assumption A.1, we conclude that

eρ
∗+W(x) ≥ lim inf

n
min

a∈A(x)

{
ec(x,a)

∫
eβnWn(y)π(dy|x,a)

}
≥ min

a∈A(x)

{
ec(x,a)

∫
eW(y)π(dy|x,a)

}
. (4.2)

On the other hand, from the definition of functionW, it follows that at leaste belongs
to H . Now, let f ∗ ∈ F achieve the minimum on the right-hand side of (4.2).

It remains to prove thatf ∗ is optimal. First, we prove that, for any controlEδ ∈ 1M ,
with J(x, Eδ) ≤ ρ, andx ∈ S,

ρ∗ ≤ J(x, Eδ). (4.3)

Let x ∈ S. Then, by Lemma 3.3, for eachβ ∈ (β0,1),

(1− β)Vβ(x) = (1− β)Wβ(x)+ (1− β)Vβ(e)
≥ (1− β)Vβ(e),

which implies

ρ∗ ≤ lim sup
β→1

(1− β)Vβ(x). (4.4)

Now let Eδ ∈ 1M such thatJ(x, Eδ) ≤ ρ, and chooseEξ ∈ Q(δ) such thatVβ(x, Eδ, Eξ) ≥ 0.
Then by a well-known Tauberian theorem and (3.4), we obtain

lim sup
β→1

(1− β)Vβ(x, Eδ, Eξ) ≤ 3(x, Eδ, Eξ)

≤ J(x, Eδ).
Therefore, it follows that

lim sup
β→1

(1− β)Vβ(x) ≤ J(x),

which together with (4.4) implies (4.3). We prove now thatρ∗ ≥ J(x, f ∗) whenever
x ∈ H . From (4.2), we have that, for anyx ∈ H ,

E f ∗
x exp

[
T−1∑
t=0

c(xt ,at )

]
≤ eρ

∗T E f ∗
x

[
T−1∏
t=0

eW(xt )∫
eW(y)π(dy|xt ,at )

]

≤ eρ
∗T · eW(x)

inf
x∈H

∫
eW(y)π(dy|x, f ∗(x))

,



284 D. Hernández-Hern´andez and S. I. Marcus

where the last inequality follows from standard properties of conditional expectations
and the Markov property.

Therefore,

J(x, f ∗) ≤ ρ∗. (4.5)

Then (4.5) and (4.3) imply the optimality off ∗.

Appendix

The next lemma establishes a variational formula for the logarithmic moment-generating
function. We refer to Proposition 4.5.1 of [DE] for its proof.

Lemma A.1. Letψ be a real-valued function defined on S bounded from below, and
let ν be a probability measure on P(S). Then

log
∫

eψ dν = sup
µ∈1(ν)

{∫
ψ dµ− I (µ||ν)

}
, (A.1)

where1(ν) := {µ ∈ P(S) : I (µ||ν) <∞}. Morever, the supremum on the right-hand
side of(A.1) is attained atµ∗ defined by

µ∗(x) := eψ(x)ν(x)∫
eψ dν

, x ∈ S,

whenever
∫

eψ dν is finite.
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