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Abstract. In this paper we are concerned with the existence of optimal stationary
policies for infinite-horizon risk-sensitive Markov control processes with denumer-
able state space, unbounded cost function, and long-run average cost. Introducing a
discounted cost dynamic game, we prove that its value function satisfies an Isaacs
equation, and its relationship with the risk-sensitive control problem is studied.
Using the vanishing discount approach, we prove that the risk-sensitive dynamic
programming inequality holds, and derive an optimal stationary policy.
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1. Introduction

In this paper we are concerned with the existence of optimal stationary policies for
infinite-horizon risk-sensitive stochastic control problems with denumerable state space,
discrete time parameter, unbounded cost function, and long-run average cost. For the risk-
neutral stochastic control problem, the same kind of problem has been addressed, see,
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e.g., [C],[CS],[S1], [S2], [HL2], and [HL3], exploiting the vanishing discount approach,

in which the value function of the average cost control problem is approximated by the
value function of a sequence of discounted problems. However, for the risk-sensitive
control problem there does not seemto be a sequence of discounted control problems with
which we can approximate the value function of the average cost problem. Therefore, we
introduce a dynamic game, and consider both the discounted and the average cost criteria.
Establishing some relationships (see Theorem 3.1) between the value function of the
average cost dynamic game and the value function of the risk-sensitive control problem,
it is possible to approximate the value function of the risk-sensitive control problem
through the value function of a discounted cost dynamic game, which satisfies an Isaacs
equation. Then, using well-known techniques of the vanishing discount approach, we
prove the existence of a solution to the risk-sensitive dynamic programming inequality
(DPI), and derive an optimal stationary policy. In [HM] it was proved that there exists

a bounded solution to the risk-sensitive dynamic programming equation (DPE), under
conditions that force the controlled process to have very strong recurrence properties
for all stationary policies. In this paper we introduce weaker assumptions, and prove the
existence of a solution to the DPI.

The use of game theory to solve this problem is not surprising, and it has been
explored extensively in the study of risk-sensitive control problems [BJ], [FH], [FM1],
[FM2], [DMRY], [W]. See also [FGM], where risk-sensitive control problems for hid-
den Markov models were treated. A key tool for establishing the relationships between
dynamic games and the risk-sensitive control problem is a variational lemma, that ex-
presses the duality relationship between the relative entropy function and the logarithmic
moment-generating function. Recently, Dupuis and Ellis [DE] found interesting appli-
cations of this lemma in their study of representation formulas and weak convergence
methods.

The paper is organized as follows. Section 2 describes the control model we deal
with. In Section 3 we introduce some preliminary results, and finally Section 4 contains
the main result.

2. Preliminaries

The Control Model. Let (S, A, , c) be a Markov control model [ABH], [HL1]
satisfying the following. The se&b = {0, 1, ...} is the state space, endowed with the
discrete topology, whil&\ is a Borel space, called the action or control space. For every
x € S, thereis a nonempty sét(x) C A, which represents the set of admissible actions
when the system is in state The set of admissible pairskié ;.= {(x,a) : X € S;a €
A(xX)}, and is assumed to be a Borel subspac&of A. The transition lawr is a
stochastic kernel 0% givenK. Finally,c: K — R is a lower semicontinuous (I.s.c.)
function, nonnegative, which represents the one stage cost.

Assumption A.1.

(i) Foreachx,y € S, the mappinga — 7 (y|X, a), witha € A(x), is |.s.c.
(i) Foreachx € S, A(x) is a compact subset &.
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Define Ho =S, andS =K x H_1ift =1,2,.... A control policy, or strategy, is a
sequencé = {&} of stochastic kernels oA given H; that satisfy the constraint

St (Alxp)hy) =1, Vhye H, t>0.

The set of policies is denoted ky. A poIicyS € A is called a Markov policy if there
exists a sequence of functiofig;}, with 7;: S — P(A), whereP(A) is the set of
probability measures oA, such thatr; (x) (A(X)) = 1. We denote by\y, the set of
Markov policies, and throughout we restrict ourselves, without loss of generality, to
this set of control policies. We denote Bythe set of functionsf: S — A such that
f(x) e Ax)forallx e S A policy§ € A is stationary if there exist§ € F such that

St (f(xp)|hy) = 1 forallh; € H,t > 0O; this policy is also denoted bl < F.

If the initial statex € S ands € Ay are given, there exists a unique probability
measure? on (2, ¢), the canonical measurable space that consists of the sample space
Q = (Sx A)* and the corresponding productalgebra; . Further, a stochastic process
{(x,a),t =0,1,...} is defined in a canonical way, whexeanda; dengte the state
and action at time, respectively. The expectation operator with respe&a denoted
by EZ.

Next we introduce the risk-sensitive cost criterion. koe S,g € Aw, the cost
functional to be minimized is defined by

. 1 . 1T—l
J(x,8) =limsupy=logElexp! = ) c(x, ,
(x. 8) = limsupy - log &, p{y; mm}

wherey > 0 is the risk factor. Throughout, without loss of generality, weset 1. Let

J(X) = iAnJJ(x, )

be the corresponding value function. Then the problem we are concerned with is to find
a policy f € F such that

JX) = J(x, f%).

Assumption A.2.
(a) There exists a stationary polidye F such that
p=J(x, f)

is finite and independent of.
(b)
liminf min)c(x, a) > p.

X—>00 aeA(X

Remark 2.1. Assumption A.2 is a slight variation of that used in previous literature for
the risk-neutral average cost criterion [C],[CS], [B]. However, the way we approach our
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problem is technically different, and depends heavily on the introduction of a dynamic
game. This idea has been used in [HM], where dynamic programming techniques were
used to prove the existence of optimal solutions to the risk-sensitive stochastic control
problem with bounded cost function, and in [FH] for finite state problems.

Inthe remainder of this section we give a sufficient condition for Assumption A.2(a).
See Theorem 2.1.10 of [DS]. Ldt € F, and letx, be the Markov chain with transition
kernelz (y|x, f(x)).

Let P(S) be the set of probability vectors @& i.e.,

P(S = M:(/LO,Ml,...)ZMi ZO,ZMi :1},
i=0

endowed with the weak topology. We denotefdyhe occupation measure of the Markov
chain %, with initial condition x, and assume thdty!} satisfies the Large Deviation
Principle inP(S) with rate function independent af Further, letd : P(S) — [0, o]

be defined by

e =) cx. FeO)uX).

XeS

If @ is finite, continuous, and satisfies, for each S,

im lim SUD} log E,/ {1:04=c) (Y") expl @ (Y)]} = oo,

|
C—00 tsoo I

then, according to Theorem 2.1.10 of [D$]satisfies Assumption A.2(a).

3. Stochastic Dynamic Games

We fix v € P(S). The relative entropy functioh(:||v) is a map fromP(S) into the
extended real numbers. It is defined by

] 2 xes10g(r () e (x) if <y,
Gl = {+OOS otherwise
where
_ r®x)/v(x) if v(x)#0,
rx) = {1 otherwise

The stochastic dynamic game is defined as follows (see [FH] and [HM]). Tisset
the state space, whikeandP (S) are the control sets for Players 1 and 2, respectively. The
reward function igx, a, u) — c(x, a) — | (u||7(:|x, a)), with (X, a, u) € K x P(S).

The evolution of the system is as follows. Letbe the state at timee {0, 1, ...},
and leta; andu; be the actions chosen by Players 1 and 2, respectively. Then a reward
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c(xt, a) — | (uillm(-]1%, &)) is earned, and the system moves to the next state
according to the probability distributiom;.

For eacht > 0, letN; andK; be the set of feasible histories up to titner Players
1 and 2, respectively. That Bl = SandN; = (Sx P(9)! x S, whileKy = K and
K; = K! x K. We say thatf is stationary if, foralt > 0, f, = f € Fisindependent of
t. Arandomized Markov strategy for Player 1is a sequénee{&t} of functions fromS
to P(A), such thas: (x)(A(x)) = 1; with some abuse of notation, we denote this set of
strategies aa v . A nonrandomized Markov strategy for Player 1 is a sequdneef f;}
of functions f; from Sto A such thatf;(x) € A(x). A nonrandomized Markov strategy
for Player 2 is a sequené,-'e: {&} of stochastic kerne; on SgivenK. Analogouslyg
is stationary if, foralt > 0, & = &: K — P(9).

Let (2, ¢) be the canonical measurable space. Given the initial stateS, and
strateglesS g, there exists a unigue probability measuit%é and, again, a stochastic
procesgx, a;,t > 0} is defined on($2, ¢) in a canonical way, wheng denotes the state
attimet of the system, ané, is the action for Player 1. The corresponding expectation
operator is denoted by~ .

Givenx € S, §, £, define the cost functional

Vp(x.8.8) = EF Y Betx. a) — | ElimCIx. a)l, (3.1)
t=0

where € (0, 1) is the discount factor. Note that, sincds (possibly) unbounded,

Vg (X, 5, E) might be undetermined. To avoid this, we restrict the set of admissible strate-
gies for the second player in the following way. Givene Ay, we say thatt is
s-admissible if§ is a nonrandomized Markov strategy for Player 2, and, for eaelS,

T

EXS Y 1 ECIx a)m (%, &) <oo, T >1,
t

|
SN

Il
(=}

and

1 -1
lim sup— E‘SEZ L& CIx @)l x. @) < oo,

T—o0 t=0

We denote this set bQ(S). Note that this set is not empty;= 7 € Q(5). qugfine,
analogously, the value function with average optimality criterion. GkenS, §, &, we
define

1
A, 8.5) = limsup E“Z[c(xt,ao — 1 &l (1%, a))]- (3:2)

T—o0 t=

Finally, we define the upper values of these games, respectively, by

Vg (x) := inf sup Vs(x, 3, )
8 EeQ@)
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and

A*(x) :=inf sup A(X, 5, 5).
3 £eQ(d)

The following theorem is the basis for the existence of bounds which are used in the
vanishing discount method.

Theorem 3.1. Fix T > 0ands ¢ An.Foreachk=0,..., T — 1define
. 12
AkT-1(X, 8) = sup E;f [Z(c(xt,ao — L&l (1% 30) X = x}
EcQ() t=k
and
. _ T-1
JT-1(X,8) = log E exp[z C(Xt, @) X = X} .
t=k
Then

(@) forallx e Sandk=0,..., T —1,
AkT-1(%,8) < JT-1(X, 8), (3.3)

(b) limsup_, (1/T)AgT(X,8) < I(X, 5),
(©) A*(x) < I(X).

Proof. Wefirstprove (3.3)fok = T—1.Givenx € S,weassumethak_1 t_1(X, 5) <
o0, since otherwise (3.3) is obvious. Then

dgl(y|xv a) i|

At_17-1(x,8) = sup |:C(X’ a) - / log |:dn(y|X Q)

£cQ()
x &1[dylX, a]81(da|x)]
< / c(x, a)dt_1(dalx)

< Jroi7o1(%, 8).

Now, we assume that (3.3) holds for=n+1,..., T — 1. Letx € Sbe such that
Jn.1-1(X, 8) < o0, and choose any € Q(8) such that

t=n

.l T1
AnTo1(X,8,€) = E}F [Z[c(xt, a) — | (&l (1%, a))] % = x}
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is nonnegative. Then

C(Xn, @n) — | (&nll7 (-[Xn, @n))

+ / Any1,7-10Y, gv ‘g)én(dwxn, an)|Xn = X:|

X
el

Ant 10X, 8,E) = E

< EME{ O an) — | (Enll(-[%n, @n))
+/An+1,T—l(ya E)Sn(dylxn, an)|Xn = X}
< EM¥{ ¢ @n) — | (Enll (%0, @n))

+/ Intr,7-1(Y, g)én(dyp(nv an) Xy = X]

_ f o(x, ) — | (Enll (X, @)

+ [ Jniato1(Y, $)En(dylX, a)} Sn(dalx)

< f log / e+ har1 0D (dy|x, a)] Sn(dalx)
< Jnr1(X,9),

where the last inequality is due to Jensen’s inequality. The proof of (b) follows im-
med|ately from (a). Now we prove (c). Léte Ay, and choosé € Q(3) such that

A(X, 8, s) > 0. We prove first that
A(X,8,8) < J(X, ). (3.4)

Assume that (x, 8) < oo, since otherwise there is nothing to prove. We first prove that
A(X, 5, s) < 00. Assume that\ (X, 5, g) oo, and let{T,} be a sequence such that

- - 01 sz
A(x,8,5) = lim —Epf [Z[e(xt,a>—l<st||n( |xt,a>)]]

n— oo Tn

Then, givenM > 0, there existiN > 0 such that, fon > N,

M

IA

IA
>
o
B
-
~
x
=g}
~

IA
[
o
B
IR
—~
x
(s2)
=

(3.5)



280 D. Herrmndez-Heranhdez and S. |. Marcus

where we have used part (a) of the theorem. Therefore, latting oo in (3.5), and
using part (b), we obtain

M < J(x, 8).

SinceM was chosen arbitrarily, this inequality implies thhx, 5) = oo, which is a
contradiction. Thug\ (x, 8, £) < oo. Then, using essentially the same kind of arguments
asin (3.5), (3.4) follows. O

Lemma 3.2.
(a) Foreachg € (0,1) and xe S,
0<Vg(X) < o0
and

limsup(l — B)Ve(X) < p.
B—1

(b) The upper value functiongMs the minimal nonnegative solution of the Isaacs
equation

Vg(x) = inf  sup [c(x, a) — |l (u]|l7 (X, a) + B / \ d,u] , (3.6)

acA(x) neA(X,a)

whereA(x,a) = {u € P(S) : | (u]|m(-]|X, @)) < oo}.
(c) The stationary strategies; fandé*, with

f5(x) € arg min{ec(“‘) / Ve Y (dylx, a)}

and

eBVe X (X" |x, @)
[ePVsWr(dylx, a)
are optima) whenevet™ € Q(fg).

£ (X"|x,a) =

Proof. Let feF be asin Assumption A.2(a), and bete Sbe arbitrary, but fixed. Now
we choose& € Q(f) such thatvs(x, f, &) > 0. Then, using a well-known Tauberian
theorem (see, e.g., [SF]),

limsup(l — B)Vs(x, f,&) < A(x, f, &)
B—1

< J(x, f)
=p,

where we have used Theorem 3.1. Part (a) follows in a straightforward manner.
(b) LetB € (0, 1) be fixed. For each functiotr: S— R define the operator

Ty (X) = arr}\i(n) {c(x, a) +|og[eﬁ‘“y>n(dy|x, a)}.
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Itis easy to see thdlz is monotone, i.e., ify > u, thenTgy > Tgu. Letyyg = 0 and
define

Ipn_»'_]_ = Tﬁwn

Since{y,} is a nondecreasing sequence, there exists a nonnegative fupiioch that
Ym 1 . Then following analogous arguments to those used by &iwtez-Lerma and
Lasserre [HL2, Theorem 3.1], together with Lemma A.1, it can be seenjtkatisfies
the Isaacs equation (3.6). Furtheris the minimal nonnegative solution to this equation.
Now we prove thaiy = V;. Let f be a stationary policy such that

f(x) e argaenlli(g) {C(X,a) +|og/e’3‘“y>n(dylx, a)}.

Then, for any admissible poli@e Q(f) for the second player and any> 1,

Y0 = > EF B et a) — | ElIm % a)] + BTHE Y (ki)
t=0

n -
> > EMBCow ) — 1 (&l (- Ix, up)).
t=0
Lettingn — oo, this implies that
Y(xX) = Vp(x, £.).
Sinceé was chosen arbitrarily, we have that
Y(¥) = sup Vp(x, f,£)
EeQ(f)
> Vg (X). (3.7)

To prove the reverse inequality, we use the fact that the fungtida the value function
of the n-stage problem with terminal cost zero (see [HL1]). The proof of this fact is
standard and is left to the reader. Thus, for eaehS,

_.n-1
Yn(0) = _inf sup Ex¥ Y B'cx, a) — I (&l (I a)]-

S€AM EcQ(s) t=0

Then, for any policy, x € Sandn=1,2, ...,

..nh=1
Yn(0) < sup EpS Y Blc(x, a) — | Gl (1%, )]
£€Q(d) t=0

< sup EXF ) Ae(x. a) — | (&l (-Ix. a)]-
£€Q(®) t=0
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Therefore,

Y(x) < sup Va(x, 5, )
§€Q(d)

and then
¥ < Vg(X).

Together with (3.7), this completes the proof of (b). The rest of the lemma follows
immediately from standard dynamic programming arguments and Lemma A.10

Lemma 3.3. There exists afinite set G agg < (0, 1) such thatfor eachg € (8o, 1),
with By as in Lemma.2,and x € S,

Vﬁ(X) — Vﬂ(Xﬂ) >0

for some ¥ < G. In addition for any sequencés,} converging tol, there exists a
subsequencEn, } such that the sequen¢e;, } is constant

The proof of this lemma is a slight variation of the one given by Cavazos-Cadena
[C] (see also [CS]), and we omit it.

4. Risk-Sensitive Optimal Controls

In this section we present our main result (see [HL3] for similar results in the risk-neutral
case).

Theorem 4.1. Under Assumptions.Aand A2,there exist a number* and a(possibly
extendellfunction W on S such thgor all x € S,

e WO > jnf {e“x’a)/ew(y)n(dwx, a)}
aceA(x)

and the set H= {x € S: W(x) is finite} is not emptyMoreoveythere exists an optimal
control f* € F whenever the initial state belongs to, Bind

p* = J(x, %)

forallx € H.

Proof. Let{B,} be a sequence if®, 1) converging to 1, and take a subsequence (also
denoted by{8,}) as in Lemma 3.3, labeling by the common value of the sequence
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{Xg,}. Following a standard approach, we defipe:= (1 — Bn)Vg,(€), Wh(X) =
Vg, (X) — Vg, (€), andWg(X) := Vz(X) — Vg(e), and rewrite (3.6), using LemmaA.1, as

et — min {e°<x»a) / MW (dy|x, a)} ) (4.1)
acAx)

We definep* := lim sup, pn andW(x) := liminf, W, (x); then, taking the liminf on

both sides of (4.1), and using Fatou’s lemma and Assumption A.1, we conclude that

e W% > liminf min {eﬂx’a) f MWz (dyx, a)}

aeA(x)

acA(x)

> min {e“x*a)/ew(y)n(dwx, a)}. (4.2)

On the other hand, from the definition of functiwv, it follows that at lease belongs
to H. Now, let f* € F achieve the minimum on the right-hand side of (4.2).

It remains to prove that * is optimal. First, we prove that, for any CONtBE Ay,
with J(X, 5) < p,andx € S,

p* < J(X, ). (4.3)
Letx € S. Then, by Lemma 3.3, for ea¢ghe (8o, 1),
1= BVe(x) = (1= B)Wp(X) + (1 — B)Vg(e)
= (1= pB)Vs(e),
which implies

p* < limsup(l — B)Vg(X). (4.4)
B—1

Now lets € Ay such thatd(x, §) < p, and choosé € Q(8) such thaV(x, 5, &) > 0.
Then by a well-known Tauberian theorem and (3.4), we obtain

limsup(l — B)Vs(x, 8, &) < A(X, 3, &)
B—1

< J(X, 9).

Therefore, it follows that

limsup(1 — B)Vg(x) < J(X),
B—>1

which together with (4.4) implies (4.3). We prove now thédt> J(x, f*) whenever
X € H. From (4.2), we have that, for anye H,

. T-1 [ QW)
B o) ) o an | = e B [ s gy sy

t=0 t=0
eW(X)

B W(y) *(x))
XIQLfe m(dylx, f*(x))

T
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where the last inequality follows from standard properties of conditional expectations
and the Markov property.

Therefore,

J(x, £%) < p*. (4.5)
Then (4.5) and (4.3) imply the optimality df*. O
Appendix

The nextlemma establishes a variational formula for the logarithmic moment-generating
function. We refer to Proposition 4.5.1 of [DE] for its proof.

LemmaA.1l. Letvy be areal-valued function defined on S bounded from helad
let v be a probability measure on (). Then

Iog/e‘/’ dv = sup {/wdu—l(u||v)}, (A1)

HEA(V)

whereA(v) := {u € P(S) : I (u]|v) < oo}. Morever the supremum on the right-hand
side of(A.1) is attained atu* defined by

ey (x)

Tea s XS

wr(X) =

whenever/ e/ dv is finite
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