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Abstract. The problem of finding adapted solutions to systems of coupled linear
forward—backward stochastic differential equations (FBSDEs, for short) is inves-
tigated. A necessary condition of solvability leads to a reduction of general linear
FBSDEs to a special one. By some ideas from controllability in control theory, using
some functional analysis, we obtain a necessary and sufficient condition for the solv-
ability of a class of linear FBSDESs. Then a Riccati-type equation for matrix-valued
(not necessarily square) functions is derived using the idea of the Four-Step Scheme
(introduced in [11] for general FBSDES). The solvability of such a Riccati-type
equation is studied which leads to a representation of adapted solutions to linear
FBSDEs.
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1. Introduction

Let (2, P, F, {Fi}i=0, P) be a complete probability space on which a one-dimensional
standard Brownian motiolV(t) is defined such tha{F;}i-o is the natural filtration
generated byV(t), augmented by all th®-null sets inF. In this paper we consider the
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following system of coupled linedorward—backward stochastic differential equations
(FBSDEs, for short) o2, F, {Fi}i>0, P):

dX(t) = (AX(t) + BY(t) + CZ(t) + Db(t)} dt
+ {AX(t) + B1Y (1) + C1Z(t) + Dyo (1)} dW(1),

dY() = {/Kxg) + ’BIY(Q + 6Z(tl+ ﬁﬁ(t)}Adt (1.1)
+ {AX (1) + BrY (1) + CLZ(t) + Dio (1)} dW(t),
X©0) =%, Y(T)=GX(T)+Fg.

In the aboveA, B, C, etc., are (deterministic) matrices of suitable sibgs;, b, ands
are stochastic processes, and a random variable. We are looking foF; }-adapted
processeX(-), Y(-), and Z(-), valued inR", R™, andRR¢, respectively, satisfying the
above.

We see that (1.1) is a kind of two-point boundary value problem for a system of
linear stochastic differential equations. The key issue is that we want the proéesses
andY to be{F;}-adapted. This is by no means obviously possible sin¢e) is given
as anft-measurable random variable. Thanks to the introduction of fhpadapted
processZ, one obtains an extra freedom, which makes it possible to{ffaptadapted
processesX, Y) satisfying (1.1), under certain mild conditions. We see thaterves as
acorrection L

If there is only the equation fof (-) in (1.1) (with A = A; = 0andG = 0), we have
the so-calledackward stochastic differential equatiBSDE, for short). The study of
such an equation can be traced back to Bismut [3] and the general solvability result was
obtained by Bensoussan [2] using the Martingale Representation Theorem. Nonlinear
BSDEs were studied by Pardoux and Peng [15] using the contraction mapping theorem.
See [8] for a survey of BSDEs.

In the first part of this paper we present some necessary conditions for (1.1) to be
solvable. These lead to some reductions of (1.1) to a (seemingly) special one. Then,
for the reduced problem, we introduce two methods to study the solvability. Using
functional analysis together with some control theoretic idea, among other things, we
obtain a necessary and sufficient conditions for the solvability of a class of linear FBSDEs.
This result extends the relevant one in [20]. Our result reveals a significant difference
between the solvability of FBSDESs and two-point boundary value problems for ordinary
differential equations from the viewpoint of solvable time durations (see Section 4 for
details). Next, we use the idea of the Four-Step Scheme [11] to derive a Riccati-type
differential equation fofmx n)-matrix-valued functions and a BSDE associated with the
reduced linear FBSDESs. It is shown that the solvability of such a Riccati-type equation
gives the unique solvability of the linear FBSDEs and, moreover, the adapted solution
is represented explicitly in terms of the solutions of the Riccati-type equation and the
corresponding BSDE. Thus, this method is more constructive. In the casg tas
not appear in the drift, we obtain a necessary and sufficient condition for the Riccati-type
equation to be solvable and explicitly construct the solution to this equation. Finally, we
extend our results to the case with multidimensional Brownian motion.

To conclude this introduction, we briefly survey the literature of general nonlinear
FBSDEs. Antonelli used the contraction mapping theorem to prove the solvability of
FBSDEs insmall time duration [1]. See also [17]. In [12] Ma and Yong proved the
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weak solvability of a class of FBSDEs ovany finite time duration via stochastic
optimal control theory. Later, Ma, Protter, and Yong, inspired by [12], introduced the
so-called Four-Step Scheme [11] to obtain the solvability of FBSDEs with deterministic
coefficients and with nondegenerate diffusion in the forward equation. See also [7], [5],
and [6] for related results. Further development along this direction is still undergoing
(see[13]and[14]). In[9] Hu and Peng introduced a monotonicity condition, under which
the FBSDESs can be solved. See also [18] and [4]. In [20] Yong introduced the method
of continuation and the concept of a bridge to treat the solvability of FBSDESs in a very
general way. Pardoux and Tang studied the solvability of FBSDEs under some structure
conditions [16]. All the above-mentioned works gave solvability for different classes of
FBSDEs. We point out that the general solvability problem, however, is far away from
completely solved.

In [20], among other things, this author studied a special class of linear FBSDEs
via which, together with the bridge technique, some new classes of solvable FBSDEs
were obtained. Inspired by this, in the present paper we study the solvability of general
linear FBSDESs. Due to the linearity of the equations, it is expected to obtain relatively
satisfactory solvability results than in the general nonlinear situation. It is our hope that
via such a study, some new classes of solvable FBSDEs may be obtained by combining
the bridge technique introduced in [20].

2. A Necessary Condition for Solvability

We introduce some notation.

For any subs-field G of 7, we denote.2 ¢(€2; R™M) to be the set of alfj-measurable
R™-valued square-integrable random varlables LI.%(O T; R™ be the set of al| 7 }-
progressively measurable proces¥ds) valued inR" such that

.
/ E|X(t)?dt < co.
0

Also, let L%(Q; C([0, T]; R™) be the set of al{ 7 }-progressively measurable contin-
uous processeX (-) valued inR" such that

E sup |X(1)|? < oo.
te[0,T]

Further, we define
MI0, T]2 LZ2(Q: C([0, TI: R™) x LZ(Q: C([0, TI; R™) x LZ(0, T; RY). (2.1)
The norm of this space is defined by
1(XC), Y, ZEN
1/2
{E sup |X(t)|>+ E sup Y ()|? +E/ |Z(t)|2dt} ,

te[0,T] tel0,T]

V(X(),Y(), Z()) € M[0, T]. (2.2)
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Clearly, M[0, T] is a Banach space under norm (2.2). We introduce the following
definition.

Definition 2.1. Atriple (X, Y, Z) € MO0, T]is called anadapted solutiorof (1.1) if
the following holds for alk € [0, T], almost surely:

t
X@) = x+/ {AX(s) + BY(s) + CZ(s) + Db(s)} ds

0
+ / (ALX(S) + B1Y(S) + C1Z(S) + Dio(8)} dW(S),
0
T R R . (2.3)
Y(t) = GX(T) + Fg —f {AX(s) + BY(s) + CZ(s) + Db(s)} ds
t

T
- / {A1X(S) + B1Y(S) + C1Z(s) + D15 (s)} dW(s).

t
When (1.1) admits an adapted solution, we say that (1.1) is solvable.

In what follows, we let

A AL eR™M B B eR™™M;  C,CieR™

A A, GeR™" BB eR™M  C,CpeR™

DeR™™ D;eR™M; DeR™M DyeR™™; FeR™K
be L%-(O,T;]Rﬁ); o€ LZ}-(O,T;Rﬁl);

belZ©OT;R™; &elZ(0T;R™);

ge L% (2R x e R".

(2.4)

Following result gives a necessary condition for (1.1) to be solvable.

Theorem 2.2. Suppose there exists a ¥ 0, such thatfor all b, o, b, 5, g, and x
satisfying(2.4), (1.1)admits an adapted solutiaiX, Y, Z) € M[0, T]. Then

R(C1— GCy) 2 R(F) + R(Dy) + R(GDy), (2.5)
whereR(S) is the range of operator.3n particular, if
R(F) + R(D1) + R(GDy) = R", (2.6)

thenC; — GC; € R™¢ js onto and thug > m.

To prove the above result, we need the following lemma, which is interesting by
itself.

Lemma 2.3. Suppose thafor anys € L2.(0, T; R¥) and any ge LZ (2 R¥), there
existhe LZ(0, T; R™ and f e LZ(Q; C([0, T]; R™)), such that the following BSDE
admits an adapted solutiafY, Z) € L2(; C([0, T]; R™)) x L2-(0, T; R):

{d?(t) =h)dt+[f(t) + C1Z(t) + Do (t)] dW(t), t [0, T], 2.7

Y(T) = Fg,
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whereC; € R™¢ andD € R™K, Then

R(C1) 2 R(F) + R(D). (2.8)

Proof. Suppose (2.8) does not hold. Then we can fing @R™ such that
n'C1=0, but nTF#0 or n'D=#O0. (2.9)
Letz(t) = nTY(t). Then¢ () satisfies

{d;(t) =h@t)dt +[f(t) + nTDa ()] dW(t),
¢(T)=n"Fg,

whereh(t) = nTh(t), f(t) = 57 f(t). We claim that, for somgands (-), (2.10) does not
admit an adapted solutiar(-) for anyh € L2.(0, T; R) and f € LZ(; C([0, T]; R)).
To show this, we construct a deterministic Lebesgue measurable furciatisfying
the following:

B(S) = 1, Vs e [0, T],
(se[T.TIIAE® =1l =I(se [T T] B = ~1)| (2.11)

i .
=—5. =1,

2

for a sequencd; 1 T, where|{- - -}| stands for the Lebesgue measurg-of}. Such a
function exists by some elementary construction. Now we separate two cases.

(2.10)

Casel:n"F #0. We may assume thgE 5| = 1. We choose

.
g= (/ ﬁ(S)dW(S)> FTn, a(t)=0. (2.12)
0
Then, by defining
t
T = (f ﬁ(s)dW(s)), teo,T], (2.13)
0
we have
dlg(®) —Z®] = hty dt + [ (1) — BOTdWD.,
{;(T) ~T(M=o. (2.14)

Applying Itd’s formula to|Z (t) — E(t)|2, we obtain
T
Ele®) — ¢+ E/ |f(s) — B(s)*ds
t
.
= —ZE/ (£(s) — ¢(s),h(s)) ds
t

T T B T _ _
= ZE/ </ h(r)dr +/ [f@r)—B@r)]dW(r), h(s)>ds
t S S

T T _ _
= ZE/ </ h(r)dr, h(s)>ds
t S

T 2
=E/ h(s)ds
t

.
< (T—t)/ Elh(s)|?ds. (2.15)
t
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Consequently (note € L%(0, T; R) and f e LZ(Q2; C([0, T]; R))),

.
Ef |f(T) — B(s)12ds
t
.

.
< ZE/ 1f(s)— B(s)|?ds+ ZE/ | f(T) — f(s)]?ds
t . ) tT ) )
< 2T —t)/ E|h(s)|?ds+ ZE/ | f(T) = f(s)|?°ds=o(T —t). (2.16)
t t
On the other hand, by the definition gf-), we have

T T-T - -
Ef |f(T)—ﬂ(s)|2ds=T'(E|f(T)—1|2+E|f(T)+1|2), Vi > 1. (2.17)
T
Clearly, (2.17) contradicts (2.16), which meafls # 0 is not possible.

Case2:n"F =0andn"D # 0. We may assume thw_)Tm = 1. In this case
we chooser (t) = ﬂ(t)ﬁTn. Thus, (2.10) becomes

(2.18)

{d;(t) =h®)dt+[ft) + B1)] dW(1), t [0, T],
¢(T)=0.

Then the argument used in Case 1 applies. ThUB), # 0 is impossible either. Hence,
(2.8) follows. O

Proof of Theoren2.2.  Let(X,Y, Z) € M[O, T] be an adapted solution of (1.1). Set
Y () = Y(t) — GX(t). ThenY(.) satisfies the following BSDE:

dY = (A= GAX + (B~ GB)Y + (C — GC)Z + Db — GDbj dt
+{(A1 —GAYX + (B; — GB)Y
+ (C1 — GC1)Z + D15 — GDyo} dW(1), (2.19)

Denote

h=(A-GAX+ (B-GB)Y + (C—-GC)Z+ Db— GDb,

f = (AL— GA)X + (B, — GBY. (2.20)

We see thah € LZ(0, T; R™ and f e L2.(Q; C([0, T]; R™)). We can rewrite (2.19)
as follows:

dY = hdt+{f + (C, — GC))Z + D15 — GDyo} dW(t), (2.21)
Y(T) = Fg. '
Then, by Lemma 2.3, we obtain (2.5). The final conclusion is obvious. O

To conclude this section, we present the following further result, for completeness
of the above technique.
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Proposition 2.4. Suppose the assumption of Theoholds For any h o, b5, g,
and x satisfyind2.4),let (X, Y, Z) € M0, T] be an adapted solution ¢1.1). Then it

holds that
[A1 — G A+ (Bi—GB)G]X(T)+(B1—GBy)Fge R(C; — GCy),

If, in addition the following holds

R(A+BG) +R(BF) CR(D), R(A1+ B:1G) +R(B:1F) € R(Dy),
R(A+ BG) + R(BF) € R(D), R(A1+ B1G) + R(B.F) € R(Dy).

then

R(A1 — GA + (B, — GB)G) + R((BL — GB)F) C R(Ci — GCy).

Proof. Suppose € R™ such that
n"(Ci—GC) =0.
Then, by (2.5), we have
n"F=0, 5'D;=0, »"GD;=0.
Hence, from (2.21), we obtain

din"Y(®)] = nTh@)dt + 5" f(t) dW(t), t [0, T],
nTY(T)=0.

Applying Itd’s formula to|nT Y (t)|2, we have (similar to (2.15))

]
EmTY®P + E/ " f o2 ds
t
T 2
/nTh(s)ds
t

Dividing both sides byl — t and then sending— T, we obtain

]
_E (T —t)/ Eln"h(s)ds.
t

Eln" f(T)?=0

By (2.20), and the relatioM(T) = G X(T) + Fg, we obtain

1" [AL— GA + (Bi — GB)G]X(T) + 5" (Bi — GB)Fg=0, as.

as. (2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

99
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Thus, (2.22) follows. In the case where (2.23) holds, for ang R" andg € R™
(deterministic), by some choice & o, b, ando, (1.1) admits an adapted solution
(X,Y, Z) = (X, Gx+ Fg, 0). Then (2.22) implies (2.24). O

3. Some Reductions

In this section we make some reductions under condition (2.6). We note that (2.6) is very
general. Itis true if, forexampl&; = | € R™™, which is the case in many applications.
Now, we assume (2.6). By Theorem 2.2, if we want (1.1) to be solvable for all given
data, we must hav@; — GC; onto (and thug > m). Thus, it is reasonable to make the
following assumption:

Assumption A. LetZ =m and61 — GC; € R™M pe invertible.

We make some reductions under Assumption AYSet Y — G X. ThenY (T) = Fg
and (see (2.19))

= (AX+BY +CZ+ Dbydt + (A X + BY +C,Z + Di3)dW
—G(AX + BY +CZ+ Db)dt — G(A;X + BY + C1Z + Do) dW
={[A— GA+ (B—-GB)G]X + (B—-GB)Y
+ (€ - GC)Z + Db— GDb}dt
+{[A1 — GAL+ (Bi — GB)G]X + (B, — GB)Y
+ (€, — GC)Z + D15 — GDyo} dW. (3.1)

Define

Z =[A1—GA + (B. — GB)G]X + (B, — GB)Y
+(C1 — GC1Z + D15 — GDyo. (3.2)

Since(él — GCy) isinvertible, we have

Z=(C,-GC) HZ-[AL - GA + (B, — GB)G]X
— (B — GB)Y — (D1 — GDy0)). (3.3)

Then it follows that

dX=(AX+BY+CZ+bydt+ (A X+ BiY +CiZ +0)dW,
_=(K0x+§7+67+ﬁ)dt+7dw, (3.4)
X(0) =x, Y(T)=F
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where

A=A+BG-C(Cy—GC) A — GA + (B — GB)G],
B=B-C(C,—GC) (B~ GBy,

C=C({C,-GCp L,

b= Db—C(C, — GCy)"Y(Ds5 — GDyo),

A=A+ B:G — Cl(C1—GC1) 1[A; — GA + (B, — GB)G],
B1= Bl_Cl(Cl_GCl) 1(B; — GBy),

Ci1=Ci(Ci — GC)~ L (3.5)
& = Do — Ci(Cy - GCl) (D16 — GDio).
Ao=A-GA+(B-GB)G—(C-GC)(C,—GC?

x[ A — GA1+(51—G|31)G]

Bo=B - GB— (C—GC)(C, — GC)Y(By — GBy),
Co=(C-GO)C,—GCpH,

h=Db-GDb— (C - GC)(C, — GC)"}(D;5 — GDyo).

The above tells us that under Assumption A, (1.1) and (3.4) are equivalent. Next, we

denote
— A B = C
A_<TA_0 §_0>’ C_(E_(J)’ (3.6)
Z _ Aj_ B]_ E _ C]_ )

=\lo o) =)

Let W(-) be the solution of the following:
dw(t) = AW(t) dt + AW (t) dW(t), t>0, (3.7)
) =1I. '

Then (3.4) is equivalent to the following: For some R™,
XM\ X
(F)=vo(3)
t ey —
+ \D(t)/o w(s)! [(E — A1C)Z(s)+ (Eg ) —A (”és) )] ds
t —
+ w(t)/oqf(s)*l [EIZ(SH ("(()S))} dW(s), te[0,T], (3.8)
with the property that
Fg = (0, HW¥(T) ();) + (0, HW(T)
T = _
x/o w(s)! [(@— AiC)Z(s) + (%g) - A (“(()S)ﬂ ds

T —
+ (O, I)\II(T)/ w(s)~t [Elf(s)Jr (Ugs)ﬂ dW(s). (3.9
0
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Clearly, (3.9) is equivalent to the following: For some R™andZ(-) € L3 %0, T; R™),
it holds that

= Fg— (. I)wm(é)

T (b = (TS
1
—(O,I)\II(T)v/0 v (s) [(ﬁ(s))_Al< 0 )] ds
T ()
—(0,|)\1/(T)/ qj(s)—1<“ )dW(s)
0
= (0, I)\D(T)(S) + (0, I)W(T)/O W (s)"HC — AiC1)Z(s)ds

.
+ (0, HW(T) / W(s)~1Cy Z(s) dW(s). (3.10)
0

Thus, if we can solve the following:

X —(X\ == X -
dls)=1A(=)+Cz}dt+{A [ 5 )+Ciz} dW,

(Y) { <Y> } { 1<Y> ! } (3.11)
X0 =0, Y(T)=n,

with n being given by (3.10), then for such a pgie Y(0) andZ() = Z(-), by setting

(X, Y) as (3.8), we obtain an adapted solutioh Y, Z) € M[0, T] of (3.4). The above
procedure is reversible. Thus, by the equivalence between (3.4) and (1.1), we actually
have the equivalence between the solvability of (1.1) and (3.11). We state this result as
follows.

Theorem 3.1. Let F =1 € R™™and¢ = m. Then(1.1)is solvable for all ho, B,
7, X, and g satisfyind2.4)if and only if(3.11)is solvable for ally szT (2; R™).

We note that, by Theorem 2., = | and¢ = m imply Assumption A. Based on
the above reduction, in what follows we concentrate on the following FBSDE:

dX_(AX+ BY +CZ)dt+ (A X + BrY + C12) dW,
(AX+ BY+Cz)dt+2zdw, tel0, Tl (3.12)
X(O) 0, Y(T)=g.

By denoting

A B C
a=(%8) <=(8)
(A1 B (G
4=(5 %) a=(%)

we can write (3.12) as follows:

$(3) = (F)rerfofa(F) rafam

X0 =0 Y(T)=n.

(3.13)
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In what follows we do not distinguish (3.12) and (3.14), and we let

{d¢>(t) = AdD(t) dt + AP (1) dW(T), t [0, T],

SO = | (3.15)

If we regard(X, Y) as thestateand Z as thecontrol, (3.12) is called a (linear)
stochastic control systenThen the solvability of (3.12) becomes the followingn-
trollability problem: For giveng e LZfT(Q;Rm), find a controlZ € LZ(0, T; R™)
such that some initial stateX (0), Y(0)) € {0} x R™ can be steered to the final state
(X(T),Y(T)) € LETT(Q; R") x {g}. This can be referred to as the controllability of the
system (3.12) fronf0} x R™ to LZFT (22; R") x {g}. We note thagy is anFt-measurable
square integrable random vector, and we need to co¥itD) to g exactly. To the best
knowledge of this author, such a controllability problem has not been discussed in the
literature.

4. Solvability of Linear FBSDEs

In this section we present some solvability results for linear FBSDE (3.12). The basic
idea is adopted from the study of controllability in control theory. For convenience, we
denote hereafter that = L%_T (2;R™ and’H = LZ(0, T; R™) (which are Hilbert
spaces to which the final datugrand the proces&(-) belong, respectively).

First, we recall that ifb is the solution of (3.14), thed® ! exists and it satisfies the
following linear SDE:

do~t = - 1[A - A2 dt — 1A, dW(), t>0,
o 10) = 1.

Moreover, (X, Y, Z) € M0, T] is an adapted solution of (3.12) if and only if the
following variation of constant formula holds:

(4.1)

(ﬁ((tt))) — o) <8) + o) fot ®(s)"1(C — A1) Z(5) ds
+ ®(1) /Ot ®(s)"1C1Z(s) dW(s), t [0, T], (4.2)
for somey € R™ and with the property
g=(0,1) {CD(T) (3) +@(T) /OT ®(s)"H(C — AL Z(s) ds
+ @(T)/OT c1>(s)1clz(s)dW(s)} (4.3)
We introduce an operatdt: H — H as follows:

;
KZ = (0, I){CD(T)/ @(s)"HC — AiC1)Z(s)ds
0

.
+ &(T) / d)(s)‘lclz(s)dW(s)}. (4.4)
0
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Then, for giveng € H, finding adapted solutions to (3.12) amounts to the following:
Findy e R™andZ € H such that

9=, |>¢<T><?>y+/cz, (4.5)
and defing X, Y) asin (4.2), theriX, Y, Z) € M[0, T]is an adapted solution of (3.12).
Hence, the study of operatods(T) and/C is crucial to the solvability of linear FBSDE

(3.12). We now make some investigations®) and . We first give the following
lemma.

Lemma4.1. Forany fe LL(O, T; R™™) and he LZ(0, T; R™™), it holds that
Ed(t) = e™t,
t t
E {d)(t)/ d)(s)lf(s)ds} :/ et Ef(s)ds, t [0, T].
0, 0 (4.6)
E{CD(t)/ cp(s)‘lh(s)dW(s)} =0,
0
Alsg, it holds that

E sup |® ()%, E sup [®t) Y < o, vk > 1. 4.7
0<t<T 0<t<T

Proof. We first prove the second equality in (4.6). The other two in (4.6) can be proved
similarly. Set

t
é(t):d)(t)/ ®(s)"1f(s)ds, t [0, T]. (4.8)
0

Thené&(-) satisfies the following SDE:

det) = [A&@) + )] dt + A1&(t) dW(H), te[0,T], 4.9)
£(0) = 0. '
Taking expectation in (4.9), we obtain
d[EE()] = [AEE(t) + Ef(D)] dt, te[0, T],
E£(0) = . (4.10)
Thus,
t
E£(t) = / e Ef(s)ds, t [0, T], (4.11)
0

proving our claim.

Now we prove (4.7). For any € R™™, process (t) = d(t)& satisfies the follow-
ing SDE:

{dé(t) = A&(t) dt + A1E(t) dW(D), t [0, T], (4.12)

£(0) = &o.
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Then, by I9’s formula, Burkholder—-Davis—Gundy’s inequality [10], and Gronwall's
inequality, we can show that

E sup E®* < K|&l*,  k=>1, (4.13)
0<t<T

for some constanK > 0. (Hereafter,K denotes a generic constant, which can be
different at different places.) Thus, the first inequality in (4.7) follows. The second one
can be proved in the same way. O

From (4.7), we see tha: H — H is a bounded linear operator. Now, applying
(4.6) to (4.3), we obtain that (3.12) admits an adapted solution, then

;
Eg= (0, 1) {eAT (?) y+f etT=9c — Alcl)EZ(s)ds}, (4.14)
0

for somey € R™ andEZ(-) € L?(0, T;R™). This leads to the following necessary
condition for the solvability of (3.12).

Theorem 4.2. Supposé€3.12)is solvable for all ge H. Then

rank {(o, 1) (eAT (?) ,C — A1C1, AC — A1Ch), ..., A L(C — A161)>}
=m. (4.15)

Proof. It suffices to note that (see [19], for example) the range of the operator
T
ueyr [ AT I - Acueds ue) € L0 TR,
0

is given by
R(C — A1C1) + R(AC — A1C1) + - -+ + RA™™(C — A1Ch)).

Then we have (4.15). O

We note that in the casg= 4:C1, (4.15) becomes

det{(o, 1eAT (?)} 20, (4.16)

This amounts to saying that the FBSDE (3.12) (witk A;C,) is solvable forally € H
implies thatthe corresponding two-point boundary value problem for the following ODE,

X\ _ ,( X®)
(Y’(t))‘A(Ym)’ tel0. Tl 4.17)

X0 =0, Y(T) =g,



106 Jiongmin Yong

admits a solution for al§ € R™. In [20] it was proved that a little stronger condition
than (4.16) is also sufficient for the solvability of (3.12)Af, B, C;, C, andC are all
zero (note, sincg € H, (3.12) is still an FBSDE). We extend that result below.

On the other hand, we note that condition (4.15) implies that the (deterministic)
control systemf, C — A;C1],

XY\ _ [ XM
(Y(t)) —A<Y(t)>+(C—Alcl)Z(t), (4.18)

is controllable from{0} x R™to R" x {g} for anyg € R™.
We now present another necessary condition for the solvability of (3.12).

Theorem 4.3. LetC = 0. Suppos€3.12)is solvable for all ge H. Then

det((0, 1)e''Cy} > 0, vt € [0, T]. (4.19)
Consequentlyif
T = inf{T > 0] det[(0, 1e*"C;] = 0} < o, (4.20)

then forany T > T, there exists a & H such that(3.12)is not solvable

Remark 4.4. The above result reveals a significant difference between the solvability
of FBSDEs and that of two-point boundary value problems for ODEs. We note that
(4.17) is solvable for al§j € R™ if and only if (4.16) holds. Since the function

t > det{(O, |)eAt<?)}

is analytic (and is equal to 1 &= 0), except at most a discrete sefld$, (4.16) holds.
Thatimplies that, for any € (0, 00), if it happens that (4.17) is not solvable for= Ty

with someg € R™, then, at some later tim& > Ty, (4.17) will be solvable again for

all g € R™. However, in the above FBSDE casefif< oo, then, for anyT > f, we

can always find @ € H such that (3.12) (witlf = 0) is not solvable. Thus, besides
other differences, FBSDEs and the two-point boundary value problem for ODEs are
significantly different as far as the solvable duration is concerned.

Proof of Theorend.3. Suppose there exists e [0, T) such that

det{(0, 1)erT—=c;} = 0. (4.21)
Note that we must hav® < T. Then there exists apne R™, || = 1, such that
n' (0, HetT—2¢, = 0. (4.22)

We are going to prove that, for any > 0 with s + ¢ < T, there exists @ <
L%_SW(Q; R™) C H such that (3.12) has no adapted solutions. To this end, we let
B: [0, T] — R be a Lebesgue measurable function such that

B(s)==+1, Vse[0,s+c¢]; B(s)=0, Vse(sp+e T];

S — %o (4.23)

{s € [so, sIB(9) =1} ={s € %0, Sk]lﬁ(S)Z—l}IZT, k>1,
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for some sequenc® | o andsg < T — &. Next, we define
t
() =/ B(s) dW(s), te[0,T], (4.24)
0

and takeg = ¢(T)n € L2fsw(§2; R™) € H. Suppose (3.12) admits an adapted solution
(X,Y, Z) € MJ0, T] for this g. Then, for somey € R™, we have (remembet = 0)

-
¢(Tyn=(0, 1) {ef‘T (O> +f AT [Al < X(S) ) +clz(s)} dW(s) } (4.25)
y 0 Y(s)

Applying T from the left to (4.25) gives the following:

(M =a+ /OT{y<s> (Y (s), Z(s) AWS), (4.26)
where
a=n"(0,1)erT (8) eR,
y() =170, HeArT=) 4 (é(())> € LZ(Q; C([0, T]; R)), (4.27)
¥()=[n"0, NeATI]T  isanalytic, ¥ (so) = 0.
We denote
Ot) =a+ /Ot[y(s) + (¥ (9), Z(s))] dW(s), tel[0, T]. (4.28)

Then it follows that

{d[Q(t) — O] =[y® + (Y1), Z1) — BO]dW(), te[0, T, (4.29)
6(T) —¢(M] =0. '

By Itd's formula, we have

.
0=E|9(t)—§(t)|2+E/t ly(9+ (¥ (9), Z(s))—B(9)I°ds, te[0,T]. (4.30)

Thus,
B(S) —v(s) = (¥ (9), Z(9)), ae. se[0,T], as. (4.31)
which yields
S Sk
f ElB(s) —)/(S)IzdSzf El(¥(9), Z(9))ds, vk > 1. (4.32)
S S

Now, we observe that (note € L%(Q; C([0, T]; R)) and (4.23))

S
/ EIB(S) — y(9)|°ds

S

S S

= %/ Elﬂ(S)—y(So)lzdS—/ Ely(s) — y(0)°ds
So S

> X Ve[l @+ L@ -0 —w), k=l (439)
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On the other hand, sinag(-) is analytic withyr(s) = 0, we must have

Y =(6-0¥E), se0T] (4.34)
for some@(-) which is analytic and hence bounded onTQ. Consequently,
S S
f El(y(s), Z(9)) P ds < K (s —sO>2[ E|Z(s)1ds. (4.35)
S S

Hence, (4.32)—(4.33) and (4.35) imply

FPEIL -y @ + L+ (@) - ol - %)

< Kis —50)2/ ElZ®Pds k=1 (4.36)

S
This is impossible. Finally, noting the fact that g€t 1 )e"'C1}|1—o = 1, we obtain
(4.19). The final assertion is clear. O

Itis not clear if the above result holds for the cdsg 0 since the assumptigh= 0
is crucial in the proof.
We now present some results on the operktor

Lemma 4.5. The rangeR(K) of K is closed in H

Proof. We denoteHp = L% (Q: R") andH = Hy x H = L% (2: R™™M). Define

Kz = cb(T)/ d(s)"1C — A1C1) Z(s) ds
0

.
+ @(T)/ ®(s)"1C1Z(s) dW(s), ZeH. (4.37)

Then, by (4. 7)1C is a bounded linear operator akid= (0, I)IC We claim that the range
R(IC) of K is closed inA. To show this, we take any convergence sequence

X(MY _ ¢ o
(Yk(T) ) =KZx — ¢, inH, (4.38)

where(Xy, Yy) is the solution of the following:

d <>¢k> — {A(Xk) +czk} dt + {Al( )+Cizk} dW(t),
k Yi
Xk©@ )
(w@)_Q
2
ds}
_ E{|Xk(T)|2+ (T2

Then, by 16’s formula, we have
T
_ Xk(s) Xk(S)
Z/t <<Yk(S) )’A<Yk(s) > +Czk(5)>ds}~ (4.40)

(4.39)

g
2 2 X(S)
E{|xk(t>| +NOR + ‘Al(Yk(S)>+clzk<s>
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We note that (recatf; = (<))

’Al( ) +Clzk‘

2
=((l + CICI)ZI(’ Zy) + ‘.Al < >Y(k> ‘ + 2<CIA1 ( )Y(k> s Zk> (4.412)
k k
> 21 Z? — K(IXkl? + [Yil®,

for some constarik > 0. Thus, (4.40) implies
T
E {|xk(t>|2+|Yk<t)|2+/ |zk(s>|2ds}
t
.
<KE {|Xk<T)|2+|Yk(T>|2+/ <|xk<s>|2+|vk<s)|2)ds} te[0, T]. (4.42)
t

Using Gronwall’s inequality, we obtain

.
E {|xk(t>|2+ |Yk(t)|2+/ |zk(s>|2ds}
t
< KE{IXk(MPE+IY(MI3,  telo,T] (4.43)

From the convergence (4.38), we see thais bounded irf{. Thus, we may assume
thatZx — Z weakly inH. Then it is easy to see thitZ = ¢, proving the closeness of
R(K).

Now, R(IC) is a Hilbert space with the induced inner product—bfln this space we
define an orthogonal projectidpy : H— H by the following:

pH<§]>=(S> V(i)eHAEHoxH. (4.44)

Then the space
Pu (R(K)) = {0} x R(K) (4.45)

is closed irfR(IE) and so is inH. Hence,R(K) is closed inH. O

The following result gives some more information for the oper&tovhenC =
A1C1 = 0, which is equivalent to the conditios = 0,C = 0, andA;C; + B; = 0.
Note thatA;, B; andC; are not necessarily zero.

Lemma 4.6. LetC = A;C; = 0and let(4.19)hold. Then
R(K) = {n € H|En = 0} 2 N'(E), (4.46)

N(K)={Z e HIKZ = 0} = {0}. (4.47)
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Proof. First, by Lemma 4.5, we see tHa(K) is closed. Also, by (4.4) and Lemma 4.1,
R(K) € N(E) sinceC = A;C;. Thus, to show (4.46), it suffices to show that

N(E) NR(KC)* = {0). (4.48)
We now prove (4.48). Take € N'(E). Suppose
0=E(n KZ)
.
= E<n, (O, |)c1>(T)f d)(s)lClZ(s)dW(s)>, VZ e H. (4.49)
0
Denote
(3)=ow [0
- =d(t) | P(s)"1C1Z(s) dW(s), t [0, T]. (4.50)
Y(t) 0

Then, byC = A1C; = 0, we see that

o) -5 o) ] oo

— (4.51)
X0 _,
MOy
By Itd’s formula and Gronwall’s inequality, we obtain
t
E(IXOP +1Y®)I) < K/ ElZ(9)°ds  te[0,T]. (4.52)
0

Also, we have

X\ _ [ aades X(s)
(V(t)>_[oef” {A1<7(S)>+Clz(s)}dW(s), te[0,T]. (4.53)

SinceEn = 0 andn € H, by the Martingale Representation Theorem, there exists a
¢ € H such that

T
n:fo (s)ydW(s). (4.54)

Then, from (4.49) and (4.53), we have

o-eluon(37)
1 _
:/ E<;(s),(o, |)eA<T—S>{A1<é8>+clz(s)}>ds (4.55)
0

This yields

T T 0
/ E<ClTeA T-9 (I ) (s), Z(s)> ds
0

] _
_ T AT(T-s (O X(s)
__fo E<AleA< >(| )g(s), (V(s)>> ds (4.56)
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Now, let0< § < T and take

z(9 =clet’ T (?) t®xr-s1(8),  se[0,Tl. (4.57)
ThenX(s) = 0,Y(s) = 0foralls € [0, T — §]. Consequently, (4.56) and (4.52) result
in

N
/ E
T-5
.

s 1/2
<K [ (Elt©P? (/ E|Z(r)|2dr> ds
T-6

T-6

2
ds

Jet ™ (V) o

T s 1/2
< K/ (Elz(s)[HY? (/ E|c(r)|2dr) ds (4.58)
T-5 T-5

By (4.19), we obtain

T T s 1/2
/ El¢(s)|?ds < Kf <E|c(s)|2)l/2(/ E|¢(r>|2dr) ds
T-5 T8 T-5

T T S
< %/ E|;(s)|2ds+K/ / E|z(r)|?drds. (4.59)
T-6 T-6JT-6

Thus, it follows that

T T
/ Elc(s)ds < Kaf El¢(s)2ds (4.60)
T T-§

-4

with K > 0 being an absolute constant (independer)oT herefore, fols > 0 small,
we must have

¢(s) =0, ae. se[T-4,T], as. (4.61)
This together with (4.56) implies that

T-46 . O
/ E<ClTeA T-9 (I > z(9), Z(s)> ds
0

=3 T1_g [ O X(s)
- _ T (T-9) A
= /O E<Ale“ (I );(s), (Y(s) >> ds. (4.62)

Then, thanks to (4.19), we can continue the above procedure to conclude that (4.61)
holds over [0 T] and hence; = 0. This proves (4.48).

We now prove (4.47). Suppo$eZ = 0. Again, we let(X(-), Y(-)) be defined by
(4.50). Then, for any € H, by (4.53), we have

i
0= E</ ;(s>dW<s>,/cz>
0

T _ X(s)
=E/ (), (0, AT A [ &2 ) +CiZ(s)}) ds. (4.63)
0 Y(s)
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This implies that

Y(s)
By (4.19), we easily see that

(o,|)ef‘<TS>{A1<Y(S)>+clz(s)}=o, ae. se[0,T], as. (4.64)

B(s) 2{(0, NeAT-9¢1710, 1)eAT-9 4,
is analytic and hence bounded overTQ. From (4.64), we obtain
_ X(s)
Z(s) = —B(s) (V(s)) , ae. se[0,T], as. (4.65)

Then(X, Y) is the solution of

X X X
d (7) =A(V)dt+[A1—B(t)] <7>dW(t),
X0 _
(V(O)) =0
Hence, we must haveX, Y) = 0, which yieldsZ = 0 due to (4.65). This proves
(4.47). O

(4.66)

A consequence of the above is the following.

Theorem 4.7. LetC = A;C; = 0.Then linear FBSDHK3.12)is solvable for all ge H
if and only if(4.16)and(4.19)hold. In this case the adapted solution(®.12)is unique
(for any given ge H).

Proof. Theorems 4.2 and 4.3 tell us that (4.16) and (4.19) are necessary. We now prove
the sufficiency. First, for ang € H, by (4.16), we can fingy € R™ such that (4.14)
holds (noteC = A;C; = 0). Then we have

g— (0, Hd(T) (?)ye/\/’(E). (4.67)

Next, by (4.46), there existsa € H such that

a-0.nem (V)y-xz. (4.69)

For this painy, Z) € R™ x H, we defing X, Y) by (4.2). Then one can easily check that
(X,Y, Z) € M[0, T]is an adapted solution of (3.12). The unigueness follows easily
from (4.47) and (4.16). O

The above result gives a complete solution to the solvability of linear FBSDE (3.12)
with C = A;C; = 0. Although still very restrictive, it does extend the relevant results
in [20]. Combining Theorems 2.2, 3.1, and 4.7, we can obtain the solvability of original
linear FBSDE (1.1) under proper conditions. We omit the precise statement here.
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5. A Riccati-Type Equation

In this section we present another method. It will give a sufficient condition for the
unique solvability of (3.12). Also, it is more constructive and seems to be numerically
implementable. This method is inspired by the Four-Step Scheme proposed in [11]
for general nonlinear FBSDEs with deterministic coefficients and with the diffusion
coefficient of the forward SDE being nondegenerate. In the present case we do not have
the nondegeneracy of the forward diffusion. Also, the drift and diffusion are all allowed
to be unbounded (since they are linear). Such a case is not covered by [11]. We will
obtain a Riccati-type equation and a BSDE associated with (3.12). We now carry out a
heuristic derivation.

Suppose X, Y, Z) € MJ[0, T] is an adapted solution of (3.12). We assume tat
andY are related by

Y(t) = POX(®) + pt), Vtel0,T], as., (5.1)

whereP: [0, T] - R™"is a deterministic matrix-valued functionapd[0, T] x Q2 —
R™ is an{F;}-adapted process. We are going to derive the equatiorBferand p(-).
First, from (5.1) and the terminal condition in (3.12), we have

g = P(MX(T) + p(T). (5.2)
We impose
P(M) =0, p(T) =g. (5.3)

Sinceg € L% (Q: R™ andp(-) is required to bé.F;}-adapted, we should assume that
p(-) satisfies a BSDE:

{d p(t) = a(t) dt + qt)dW(t), t [0, T],
p(T) =9,

with «(-), q(-) € sz(o, T; R™) being undetermined. Next, byols formula, we have
(for simplicity, we suppressbelow)

(5.4)

dY = {PX+ P[AX+ BY 4+ CZ] +a}dt
+ {P[A1X + B1Y + C1Z] + q}dW
={[P+PA+PBP]X+PCZ+ PBp+a}dt
+{[PAL + PBP]X+PCZ+ PBp+q}dwW. (5.5)

Now, compare (5.5) with the second equation in (3.12), we obtain that
[P+PA+PBP|X+PCZ+PBp+a=[A+BP|X+CZ+Bp (5.6)
and
(PAL+PBP)X + PC,Z + PBip+q = Z. (5.7)
By assumindg — PC; to be invertible, we have from (5.7) that

Z=(—-PC)™H(PA +PBP)X+ PBp+q}. (5.8)
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Then (5.6) becomes

0=[P+PA+PBP—A—-BP+(PC—C)(I — PC) Y(PA + PBP)]X
+[PB—B+(PC-C)(I —PC)~'PBp
+(PC-C)(I — PC) g+ (5.9)

Now we introduce the following Riccati-type differential equation ®F*"-valued
function P(-):

+((PC-C)1 —PC)"Y(PA+PBP)=0, te[0,T], (5.10)

P+PA+PBP—A-BP
P(T) =0,

and the following BSDE folR™-valued proces®(-):

+ (PC-C)(I — PC)1q}dt+qdWw, (5.11)
p(T) =g.

Suppose (5.10) admits a soluti®{-) over [0, T] such that

[dp= —{[PB-B+(PC—C)(I — PC)'PB]p

[I — Pt)Cy ! isboundedfor te]0, T]. (5.12)
Then we can define the following:

A=A+BP+C(l — PC) HPA + PBP),
A1 =A;+BiP+Cy(l — PC) H(PA + PBP),
b=Bp+C(l — PC)*(PBip+0q,

& =Bip+Ci(l —PC)HPBip+0).

(5.13)

Itis clear thatA andA, are time-dependent matrix-valued functions batds are{ 7 }-
adapted processes. Under (5.12), the following SDE admits a unique strong solution:

{dX=(Kx+'6)dt+(/X1x+a)dvv, telo, T], (5.14)

X(0) = x.

The following result is comparable with the main result presented in [11] (for nonlinear
FBSDEs).

Theorem 5.1. Let (5.10) admit a solution R-) such that(5.12) holds Then(5.11)
admits a unique solution (p € LfT(O, T; RM). If (X,Y, Z) is determined by5.14),
(5.1),and(5.8),then it is the unique adapted solution(Bf12).

Proof. First, a direct computation shows that the processY, Z) determined by
(5.14), (5.1), and (5.8) is an adapted solution of (3.12). We now prove the uniqueness.
Let(X,Y, Z) € MJ|0, T] be any adapted solution of (3.12). Set

{Y: PX+p, (5.15)

Z=(—-PC) Y(PAL+ PBP)X+ PBp+q],
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whereP and p are solutions of (5.10) and (5.11), respectively. Denbte Y — Y and
Z = Z — Z. Then a direct computation shows that

dY =[(PB—B)Y + (PC—-C)Z]dt+[PBY — (I — PC)Z]dW(b), (5.16)
Y(T)=o. '
By (5.12), we may set
Z=PBY-(l —-PC)Z (5.17)
to get the following equivalent BSDE (of (5.16)):
dY = {{PB— B+ (PC—C)(I — PC)1PB]Y
—(PC=C)(I — PC)~1Z}dt + Z dW(1), (5.18)

Y(T) =0.

Itis standard that such a BSDE admits a unique adapted sotlﬁicfl) = 0 (see [15]).
ConsequentlyZ = 0. Hence, by (5.15), we obtain

{Y: PX+ p,

Z=(—-PC)[(PA +PBP)X+PBp+q]. (5.19)

This means that any adapted solut{ef Y, Z) must satisfy (5.19). Then, similar to the
heuristic derivation above, we have thathas to be the solution of (5.14). Hence, we
obtain the uniqueness. O

The following result tells us something more.

Proposition 5.2.  Let(5.10)admit a solution R-) such tha(5.12)holds forte [To, T]
(with some § > 0). Then forany T € [0, T — To], linear FBSDE(3.12)is uniquely
solvable or[0, T].

Proof. Let

Pt)=Pt+T-T), tel0,T] (5.20)
ThenP(.) satisfies (5.10) with [OT] replaced by [0T] and

[I —P(t)Cy ' isboundedfor t e [0, T]. (5.21)

Then Theorem 5.1 applies. |
Proposition 5.2 above tells us that if (5.10) admits a soluBgn such that (5.12)
holds, (3.12) is uniquely solvable over any T (T < T). Then, in the casé = A1(;,

by Theorem 4.2, the corresponding two-point boundary value problem (4.17) of an ODE
over [0, T] admits a solution for aly € R™. Thus, it is necessary and sufficient that

det{(o, et <?>} -0, Wte[0.T] (5.22)
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Therefore, by Theorem 4.7, compare (5.22) and (4.16), we see that the solvability of
Riccati-type equation (5.10) is only a sufficient condition for the solvability of (3.12) (at
least for the casé = A;C; = 0).

In the rest of this section we concentrate on the @¢ase 0 (without assuming
A1C1 = 0). In this case, (5.10) becomes

P+PA+PBP-A-BP=0, tel0,T]
{P(T) "o, (5.23)
and the BSDE (5.11) is reduced to
{dp=[§—PB]pdt+qu(t), t e [0, T, (5.24)
p(T)=g. '

We have seen that (5.22) is a necessary condition for (5.23) having a soRitipn
satisfying (5.12). The following result gives the inverse.

Theorem 5.3. LetC=0,C = 0. Let(5.22)hold. Then(5.23)admits a unique solution
P(-) which has the following representation

-1

P(t) = — [(o, 1)eAT-b (?)} (0, HeArTY (g) , te[0, T]. (5.25)

Moreovey it holds that
0\1* c

| —P(t)Cy= [(o, 1)eAT-b (I )} [(o, 1eAT-Y ( |1>] , tel0, T]. (5.26)
Consequentlyif in addition to (5.22), (4.19)holds then (5.12) holds and the linear
FBSDE(3.12) (ith C = 0)is uniquely solvable with the representation giver{hiyt4),
(5.1),and(5.8).

Proof. We first check that (5.25) is a solution of (5.23). To this end, we denote

@) = (0, eATY ('0) . telo,T]. (5.27)
Then we have

Ot) = —(0, 1)eATV (g) B — O(t)B. (5.28)
Hence,

P=0"100710,1)etTY (g) + 0710, HerT-Y 4 (g)
=1 {—(o, 1)eAT- (g) B— ®’|§} (=P)+©7Y0, )erTV (%)

= (PB— B)(—P) + ©® (0, 1)eAT (:)) A+ A

= _—PBP+BP—PA+A (5.29)
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Thus,P(-) given by (5.25) is a solution of (5.23). Uniqueness is obvious since (5.23) is a
terminal value problem with the right-hand side of the equation being locally Lipschitz.
Finally, an easy calculation shows (5.26) holds. Then we complete the proof. O

6. Extensions and Remarks

In this section we first briefly look at the case with multidimensional Brownian mo-
tion. LetW(t) = (W(t), ..., W4(t)) be ad-dimensional Brownian motion defined on

(2, F, {Fi}hso0, P) with {F;}i>0 being the natural filtration dV(-) augmented by all the
P-null sets. Similar to the case of one-dimensional Brownian motion, we may also start
with the most general case, by using some necessary conditions for solvability to obtain
a reduced FBSDE. For simplicity, we skip this step and directly consider the following
FBSDE:

d
dX = (AX+BY)dt+ ) (A X+ BiY +CyZ') dW (t),
i=1
d
dY = (AX+BY)dt+ ) Z'dWt)., telo, Tl
i=1
X0 =0, Y(T) =g,
where A, B, etc., are certain matrices of proper sizes. Note that we only consider the
case tha¥ does not appear in the drift here since we have only completely solved such
a case. We keep the notatiohas in (3.13). In the present case we define the space
M]JO0, T] as follows (compare with (2.1)):

M0, T] 2 LZ(: C([0, T]: R") x LZ(: C([0, T]: R™)

(6.1)

xL2.(0, T; R™9), (6.2)
with the norm being defined by (2.2), where
|Z]?=tr{zZ"}, VZ € R™d, (6.3)

If we assumeX(-) andY(-) are related by (5.1), then we can derive a Riccati-type
equation, which is exactly the same as (5.23). The associated BSDE is now replaced by
the following:

_ _ i
dp=[B PB]pdt+i;q dw'(t), telo,T], 6.4)
p(T) =g.
Also, (5.13), (5.14), and (5.8) are now replaced by the following:

A=A+BP, b=8Bp
Ay = AL+ BP +Ci(I — PC)"(PA, + PBP), (6.5)
' =Bip+Ci(l - PC)Y(PBip+q), 1<i<d,

d
dX = (AX+b)dt+ > (AX+5)dW ). telo, Tl

Z (6.6)

X(©0) =0,
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Zi=( -PCHY(PA +PBP)X+PBip+q}, 1<i=<d. (6.7)
Our main result is the following.

Theorem 6.1. Let(5.22)hold and

det (0, he*'Cl} > 0, vte[0,T], 1<i<d. (6.8)
Then(5.23)admits a unique solution @) given by(5.25)such that
[ — P(t)Cil]‘1 is bounded for t € [0, T], 1<i=<d, (6.9)

and the FBSDHK®6.1)admits a unique adapted solutioX, Y, Z) € MJ0, T] which can
be represented throudl6.6), (5.1),and(6.7).

The proof can be carried out similar to the case of one-dimensional Brownian motion.

To conclude this paper, we point out the following: From what we have done, it
is seen that the solvability of linear FBSDEs is still left wide open. There are several
situations that one can pursue: the case that the pr@appears in the drift, the time-
varying coefficient case, and the random coefficient case (which is the most interesting
and challenging one).
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