
DOI: 10.1007/s002450010016

Appl Math Optim 43:21–45 (2001)

© 2001 Springer-Verlag New York Inc.

Stochastic Linear Quadratic Optimal Control Problems∗

S. Chen1 and J. Yong2

1Department of Mathematics, Zhejiang University,
Hangzhou 310027, People’s Republic of China

2Laboratory of Mathematics for Nonlinear Sciences, Department of Mathematics,
and Institute of Mathematical Finance, Fudan University,
Shanghai 200433, People’s Republic of China

Communicated by I. Lasiecka

Abstract. This paper is concerned with the stochastic linear quadratic optimal
control problem (LQ problem, for short) for which the coefficients are allowed
to be random and the cost functional is allowed to have a negative weight on the
square of the control variable. Some intrinsic relations among the LQ problem,
the stochastic maximum principle, and the (linear) forward–backward stochastic
differential equations are established. Some results involving Riccati equation are
discussed as well.
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1. Introduction—A General Formulation and Some Examples

Let (Ä,F,P, {Ft }t≥0) be a complete filtered probability space on which a one-
dimensional standard Brownian motionw(·) is defined such that{Ft }t≥0 is the
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natural filtration generated byw(·), augmented by all theP-null sets inF . We con-
sider the following linear controlled stochastic differential equation:dx(t) = [ A(t)x(t)+ B(t)u(t)] dt

+ [C(t)x(t)+ D(t)u(t)] dw(t), t ∈ [τ, T ],
x(τ ) = ξ,

(1.1)

where τ ∈ T [0, T ], the set of all{Ft }t≥0-stopping times taking values in [0, T ],

ξ ∈ Xτ 1=L2
Fτ (Ä;Rn), the set of allRn-valuedFτ -measurable square-integrable ran-

dom variables;A, B,C, D are matrix-valued{Ft }t≥0-adapted bounded processes. In
the above,u(·) is a control processand x(·) is the corresponding state process. Let
U [τ, T ] = L2

F (τ, T;Rm), the set of allRm-valued{Ft }t≥0-adapted square-integrable
processes defined on the random interval [τ, T ] (with τ ∈ T [0, T ]). The control process
u(·) is take fromU [τ, T ].

Clearly, for any(ξ,u(·)) ∈ Xτ × U [τ, T ], there exists a unique (strong) solution
x(·) ∈ L2

F (τ, T;Rn) to (1.1). Thus, we can define acost functionalas follows:

J(τ, ξ ;u(·)) = E

{∫ T

τ

[〈Q(t)x(t), x(t)〉 + 〈R(t)u(t),u(t)〉] dt

+ 〈Gx(T), x(T)〉|Fτ
}
, (1.2)

whereQ(·) and R(·) are symmetric matrix-valued{Ft }t≥0-adapted bounded processes
andG is a symmetric matrix-valuedFT -measurable bounded random variable. It is seen
that

J:
⋃

τ∈T [0,T ]

({τ } × Xτ × U [τ, T ])→ L2
FT
(Ä;R). (1.3)

We now state the stochastic linear quadratic optimal control problem as follows:

Problem (LQ). For eachτ ∈ T [0, T ] andξ ∈ Xτ , find au(·) ∈ U [τ, T ] such that

J(τ, ξ ; u(·)) = inf
u(·)∈U [τ,T ]

J(τ, ξ ;u(·)) 1=V(τ, ξ), a.s. ω ∈ Ä. (1.4)

We callV thevalue functionof Problem(LQ). Note that

V(T, ξ) = 〈Gξ, ξ〉, ∀ξ ∈ XT . (1.5)

For the state equation (1.1), one might introduce another cost functional:

J(τ, ξ ;u(·)) = EJ(τ, ξ ;u(·))
≡ E

{ ∫ T

τ

[
〈Q(t)x(t), x(t)〉 + 〈R(t)u(t),u(t)〉

]
dt

+ 〈Gx(T), x(T)〉
}
, (1.6)

and pose a similar optimal control problem. Such a formulation has been used for the
case of deterministic coefficients and within theweaksolution framework for the state
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equation (see [11], [28], and the references cited therein). However, in this paper we
study LQ problems with random coefficients. Thus, it is necessary to use thestrong
solution framework for which the probability space(Ä,F,P, {Ft }t≥0) has to be fixed.
In such a framework, cost functional (1.2) is more appropriate than (1.6).

Stochastic LQ problems have been studied by many authors, among them we men-
tion [25], [22], [9], and [13]. In [22] one can find some applications in engineering
giving rise to problems with state/control dependent diffusion (see [16] also). On the
other hand, in many recent works on mathematical finance, the portfolio regarded as
the control appears in the diffusion (see [15], [11], [10], and [28] for extensive discus-
sions). It is quite understandable that the coefficients of the system (as well as the cost
functional) could depend on some other diffusion processes, and, therefore, they could
be random. This is the case in problems like option pricing, utility optimization, etc.
The point here is that the LQ problem with random coefficients has both mathematical
interest and potential applications in other fields.

In what follows, we make the following convention: Byτ ∈ [0, T ] andξ ∈ Rn, we
mean thatτ andξ are deterministic (compare withτ ∈ T [0, T ] andξ ∈ Xτ ). Next, for any
σ, τ ∈ T [0, T ], with σ ≤ τ almost surely, we letT [σ, τ ] be the set of all{Ft }t≥0-stopping
timesr such thatσ ≤ r ≤ τ , almost surely, and let1[σ, τ ] =⋃r∈T [σ,τ ] [{r } ×Xr ]. The
meanings ofT [σ, τ),1[σ, τ), etc., are obvious. By (1.3), one has

V : 1[0, T ] → L2
FT
(Ä;R).

We recall the corresponding deterministic LQ problem. Consider
d

dt
x(t) = A(t)x(t)+ B(t)u(t), t ∈ [τ, T ],

x(τ ) = ξ,
(1.7)

with A(·) and B(·) being bounded (deterministic) matrix-valued functions,(τ, ξ) ∈
[0, T)× Rn andu(·) ∈ L2(0, T;Rm). The cost functional is

Ĵ(τ, ξ ;u(·)) =
∫ T

τ

[〈Q(t)x(t), x(t)〉 + 〈R(t)u(t),u(t)〉]dt

+ 〈Gx(T), x(T)〉, (1.8)

for some bounded symmetric matrix-valued functionsQ(·) and R(·), and a symmetric
matrix G (all are deterministic). The deterministic LQ problem is to minimize (1.8)
subject to (1.7). For such a problem, there is an extensive literature, see [14], [1], [6],
and [7], to mention a few, and the references cited therein (see also [17] and [18] for
infinite-dimensional cases). It is well known that (see [1], for example) for deterministic
LQ problems, a necessary condition for the value function to be finite is

R(t) ≥ 0, a.e.; (1.9)

and if (1.9) holds withR(t) being degenerate on a set of positive Lebesgue measure,
the LQ problem might have no optimal control in general (see an example below).
Inspired by this, when people study stochastic LQ problems, the positive definiteness
condition for (the deterministic function)R(·) was also assumed which led to some
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theories completely parallel to the deterministic one (see [25], [9], and [3]). Recently, it
has been pointed out in [8] that condition (1.9) seems neither necessary for the infimum
of the cost functional being finite, nor for the existence of optimal controls (see an
example below). This reveals one of the significant differences between deterministic
and stochastic LQ problems. To make the situation more appealing, we present several
examples.

Example 1.1. Consider the following one-dimensional deterministic control system:{
ẋ(t) = u(t), t ∈ [τ, T ],
x(τ ) = ξ ∈ R, (1.10)

with τ ∈ [0, T) and the cost functional

Ĵ1(τ, ξ ;u(·)) = −
∫ T

τ

u(t)2 dt + x(T)2. (1.11)

Since (1.11) has a negative weight on the termu2, by a direct computation, we have

V̂1(τ, ξ) ≡ inf
u(·)∈U [τ,T ]

Ĵ1(τ, ξ ;u(·)) = −∞, ∀(τ, ξ) ∈ [0, T ] × R, (1.12)

and, of course, no optimal control exists.

Now, we consider the following stochastic control system (compare with (1.10)):{
dx(t) = u(t)dt + δu(t)dw(t), t ∈ [τ, T ],
x(τ ) = ξ ∈ Xτ , (1.13)

for someδ 6= 0, with the cost functionals (compare with (1.11))

J(τ, ξ ;u(·)) = E

{
−
∫ T

τ

u(t)2 dt + x(T)2
∣∣∣ Fτ} . (1.14)

It is seen from (1.13) that the control affects the size of the noise in the system. We can
prove (see Section 5) that, for any|δ| > 1 with

δ2
(
2 ln |δ| − 1

)
> T − 1, (1.15)

Problem(LQ) admits optimal controls for anyτ ∈ T [0, T ], and, thus, the value function
is finite, in particular. An intuitive explanation is that even if the control is “rewarding”
in the cost functional, due to the “noise” affected by the control in the system, it isnot
necessarily that “the bigger the control, the better.”

Example 1.2. Consider control system (1.10) with the cost functional

Ĵ2(τ, ξ ;u(·)) =
∫ T

τ

x(t)2 dt. (1.16)

In this case, (1.9) holds with (actually)R= 0. A direct calculation shows that

V̂2(τ, ξ) ≡ inf
u(·)∈U [τ,T ]

Ĵ2(τ, ξ ;u(·)) = 0, ∀(τ, ξ) ∈ [0, T)× R. (1.17)

On the other hand, for anyξ 6= 0, one can show that there exists no optimal control. This
control problem is known as asingularLQ problem.
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Now, we consider the stochastic control system (1.13) with the cost functionals

J(τ, ξ ;u(·)) = E

{∫ T

τ

x(t)2 dt
∣∣ Fτ} , (1.18)

Define

p(t) = δ2
(
1− e(t−T)/δ2

)
, t ∈ [0, T ]. (1.19)

By Itô’s formula, we have

0 = E
{

p(T)x(T)2
∣∣ Fτ}

= p(τ )ξ2

+ E

{∫ T

τ

[(
1

δ2
p(t)− 1

)
x(t)2+ 2p(t)x(t)u(t)+ δ2 p(t)u(t)2

]
dt
∣∣ Fτ} .

Thus,

J(τ, ξ ;u) = E

{∫ T

τ

x(t)2 dt
∣∣ Fτ}

= p(τ )ξ2+ E

{∫ T

τ

δ2 p(t)

[
u(t)+ x(t)

δ2

]2

dt
∣∣ Fτ} ,

which implies that Problem(LQ) admits an optimal control given by the following state
feedback form:

u(t) = −x(t)

δ2
, t ∈ [τ, T ], (1.20)

and the value function is given by

V(τ, ξ) = δ2
(
1− e(τ−T)/δ2

)
ξ2, ∀(τ, ξ) ∈ 1[0, T ]. (1.21)

This example shows that a deterministic singular LQ problem may becomenon-
singular if the noise exists in the control system.

Example 1.3. Consider control system (1.10) with the cost functional

Ĵ3(τ, ξ ;u(·)) =
∫ T

τ

u(t)2 dt − x(T)2. (1.22)

This is an LQ problem with the weight on the square of the terminal state being negative.
Let T > 1 andτ ∈ (T−1, T ]. For anyu(·) ∈ L2(τ, T;R), let x(·) be the corresponding
state trajectory. Applying the Newton–Leibniz formula tox(t)2/(t +1−T) over [τ, T ],
we have

x(T)2 = ξ2

τ + 1− T
+
∫ T

τ

{
2x(t)u(t)

t + 1− T
− x(t)2

(t + 1− T)2

}
dt.
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Thus,

Ĵ3(τ, ξ ;u(·)) = −ξ2

τ + 1− T
+
∫ T

τ

{
u(t)− x(t)

t + 1− T

}2

dt.

Consequently, the optimal control is given by

u(t) = x(t)

t + 1− T
, t ∈ [τ, T ], (1.23)

and the corresponding value function is given by

V̂3(τ, ξ) ≡ inf
u(·)∈U [τ,T ]

Ĵ3(τ, ξ ;u(·))

= −ξ2

τ + 1− T
, ∀(τ, ξ) ∈ (T − 1, T ] × R. (1.24)

However, if we consider the stochastic control system (1.13) with the cost functionals

J(τ, ξ ;u(·)) = E

{∫ T

τ

u(t)2 dt − x(T)2
∣∣∣ Fτ} , (1.25)

then for any|δ| > 1, we can prove thatV(τ, ξ) is not finite for anyτ < T , and, therefore,
there will be no optimal controls (see Section 2).

This example shows that a well-posed deterministic LQ problem may become “ill-
posed” if the noise gets into the control system.

From the above examples, we have seen that the stochastic LQ problem is quite
different from its deterministic counterpart, mainly due to the appearance of the control
in the diffusion. We will see more about this shortly.

The following simple example shows another interesting feature of Problem(LQ).

Example 1.4. Consider control system (1.10) with the cost functionals

J(τ, ξ ;u) = E
{
Gx(T)2

∣∣ Fτ} , (1.26)

whereG is anFσ -measurable random variable such that

0< P(G < 0) < 1, (1.27)

with σ ∈ [0, T). Then, for anyτ ≥ σ andξ ∈ Xτ , by taking

uε(·) = − ξ

T − τ +
1

ε(T − τ) I(G<0) ∈ U [τ, T ],

we have

J(τ, ξ ;uε) = E

{
G

(
ξ +

∫ T

τ

uε(s)ds

)2 ∣∣ Fτ}

= E

{
G

ε2
I(G<0)

∣∣∣∣Fτ} = G

ε2
I(G<0). (1.28)
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Letting ε→ 0, we see that

V(τ, ξ) =
{

0, on (G ≥ 0),
−∞, on (G < 0).

(1.29)

Hence, the value functionV(τ, ξ) of Problem(LQ) is finite on a subset ofÄ and (1.28)–
(1.29) imply that

J(τ, ξ ;uε) = inf
u∈U [τ,T ]

J(τ, ξ ;u), a.s. ω ∈ (G ≥ 0). (1.30)

Thus,uε is “partially” optimal.

From this example, we see that when the coefficients are allowed to be random, the
situation could be very rich.

The rest of this paper is organized as follows. In Section 2, we introduce some
basic notions and state the main results of this paper. In Section 3 we use functional
analysis, backward, and/or forward–backward stochastic differential equations to study
the LQ problem. A stochastic maximum principle is derived. In Section 4 we pre-
sent a necessary condition for our LQ problem to be finite. In Section 5 we briefly
discuss the case of constant coefficients via the Riccati equation. The results of
this paper set up a solid base for further study of Problem(LQ) in our forthcoming
publications.

We point out that all the results of this paper can be carried out for control systems
with multidimensional Brownian motions. For the simplicity of presentation, we restrict
ourselves to the case of one-dimensional Brownian motion.

2. Finiteness and Solvability

We letSn be the set of all(n×n) symmetric matrices. LetL∞F (0, T; X) (resp.CF ([0, T ];
X)) be the set of allX-valued{Ft }t≥0-adapted bounded (resp. bounded continuous) pro-
cesses, and letL∞FT

(Ä; X) be the set of allX-valuedFT -measurable bounded random
variables, whereX could beRn, Rn×n, Sn, etc. Also, we recall, from Section 1 that
Xτ 1= L2

Fτ (Ä;Rn) for anyτ ∈ T [0, T ], and1[σ, τ ] =⋃r∈T [σ,τ ] [{r } × Xr ]. We denote

X [τ, T ]
1= L2
F (τ, T;Rn), the set of allRn-valued{Ft }t≥0-adapted square integrable pro-

cesses over [τ, T ].
We introduce the following basic assumptions:

(S) Let
A,C ∈ L∞F (0, T;Rn×n), B ∈ L∞F (0, T;Rn×m),

D ∈ CF ([0, T ];Rn×m),

Q ∈ CF ([0, T ];Sn), R ∈ CF ([0, T ];Sm),

G ∈ L∞FT
(Ä;Sn).

(2.1)

We introduce the following definitions.
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Definition 2.1. Problem(LQ) is said to be

(i) partially finiteat (τ, ξ) ∈ 1[0, T ] if

P(V(τ, ξ) > −∞) > 0; (2.2)

(ii) (uniquely) partially solvableat(τ, ξ) ∈ 1[0, T ] if there exists a (unique) control
u(·) ∈ U [τ, T ] such that

J(τ, ξ ;u) = V(τ, ξ), a.s. ω ∈ (V(τ, ξ) > −∞). (2.3)

In case (ii), controlu(·) is called apartially optimal control, the correspondingx(·)
is called apartially optimal state process, and(x(·),u(·)) is called apartially optimal
pair.

It is clear that (ii) implies (i), and the converse seems untrue. If one has

P
(
V(τ, ξ) > −∞) = 1, (2.4)

we omit the word “partial” in the above three notions.
If, for τ ∈ T [0, T ], Problem(LQ) is finite (resp. (uniquely) solvable) at all(τ, ξ)

with ξ ∈ Xτ , we say that Problem(LQ) isfinite(resp. (uniquely) solvable) atτ . If Problem
(LQ) is finite (resp. (uniquely) solvable) at allτ ∈ T [0, T ], we say that Problem(LQ)
is finite (resp. (uniquely) solvable).

The first main result of this paper is the following:

Theorem 2.2. Let (S) hold. Suppose Problem(LQ) is partially finite at some(τ, ξ) ∈
1[0, T). Then

R(T)+ D(T)TGD(T) ≥ 0, a.s. ω ∈ (V(τ, ξ) > −∞). (2.5)

In the case thatR, D, andG are deterministic, (2.5) is equivalent to

R+ DTGD≥ 0. (2.6)

From this, we see the role played by the appearance of the control in the diffusion (of
the state equation). WhenD = 0, we recover the well-known condition (see (1.9)) for
the deterministic LQ problem. Note that in Example 1.3, when|δ| > 1,

R(T)+ D(T)TGD(T) = 1− δ2 < 0.

Thus, (2.6) is violated andV(τ, ξ) must be equal to−∞, as we claimed in Section 1.
From (2.5), we also see that ifG is positive andD 6= 0, R is allowed to be a little
negative.

Next, we introduce the following stochastic differential equation:{
dp(t) = −[ AT p(t)+ CTq(t)+ y(t)]dt + q(t)dw(t), t ∈ [τ, T ],
p(T) = η ∈ XT .

(2.7)

This is a terminal value problem. Here,y(·) ∈ X [τ, T ] andη ∈ XT . We are looking for
a pair of{Ft }t≥0-adapted processes(p(·),q(·)), called anadapted solution, satisfying
(2.7). Equation (2.7) is called abackward stochastic differential equation(BSDE, for
short). The following is known (see [23]).
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Proposition 2.3. For any y(·) ∈ X [τ, T ] andη ∈ XT , there exists a unique adapted
solution(p(·),q(·)) to (3.10) satisfying

E

(
sup

t≤s≤T
|p(s)|2+

∫ T

t
|q(s)|2ds

)
≤ KE

(
|η|2+

∫ T

t
|y(s)|2ds

)
,

∀t ∈ [0, T ]. (2.8)

Equation (2.7) plays an interesting role in the next section.
To state our second main result, we need to introduce the following stochastic

differential equation, which is closely related to (2.7):
dx(t) = [ Ax(t)+ Bu(t)] dt + [Cx(t)+ Du(t)] dw(t),
dp(t) = −[ AT p(t)+ CTq(t)+ Qx(t)] dt + q(t)dw(t),
x(τ ) = ξ, p(T) = Gx(T).

(2.9)

Such a system is called aforward–backward stochastic differential equation(FBSDE,
for short) since the equation forx(·) is forward (meaning that it is an initial value
problem, which is to be solved forwardly) and the equation forp(·) (andq(·)) isbackward
(meaning that it is a terminal value problem, which is to be solved backwardly). For
given (ξ,u(·)) ∈ Xτ × U [τ, T ], an adapted solutionof (2.9) is a triple of{Ft }t≥0-
adapted processes(x(·), p(·),q(·)) satisfying (2.9). It is clear that (2.9) is decoupled.
Thus, for any(ξ,u(·)) ∈ Xτ × U [τ, T ], we can first solve the forward equation forx(·)
and then solve the backward equation for(p(·),q(·)). Hence, by Proposition 2.3, for
any(ξ,u(·)) ∈ Xτ ×U [τ, T ], there exists a unique adapted solution(x(·), p(·),q(·)) to
(2.9). See [19]–[21], [26], and [27] for more information concerning the general theory
of FBSDEs.

Our second main result of this paper is the following.

Theorem 2.4. Let (S) hold. Then Problem(LQ) is (uniquely) partially solvable at
(τ, ξ) ∈ 1[0, T ] with a(the) partially optimal pair(x(·),u(·)) if and only if the following
FBSDE,

dx(t) = [ Ax(t)+ Bu(t)] dt + [Cx(t)+ Du(t)] dw(t),
dp(t) = −[ AT p(t)+ CTq(t)+ Qx(t)] dt + q(t)dw(t),
x(τ ) = ξ, p(T) = Gx(T),

(2.10)

admits a(unique) adapted solution(x(·), p(·),q(·)) such that

IÄ(τ,ξ)
[
Ru(·)+ BT p(·)+ DTq(·)] = 0, in L2

F (τ, T;Rm), (2.11)

and, for any u(·) ∈ U [τ, T ], the unique adapted solution(x(·), p(·),q(·)) of (2.9) with
ξ = 0 satisfies

E

{∫ T

τ

〈Ru(t)+ BT p(t)+ DTq(t),u(t)〉dt
∣∣ Fτ} ≥ 0,

a.s. ω ∈ Ä(τ, ξ). (2.12)

In addition, if Ä(τ, ξ) = Ä and R(·)−1 ∈ L∞F (0, T;Sm), then an(the) optimal control
u(·) admits a representation:

u(t) = −R(t)−1[B(t)T p(t)+ C(t)Tq(t)], t ∈ [τ, T ]. (2.13)
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The above theorem is a version of thestochastic maximum principle(see [3]–[5],
[12], [24], and [28]) for Problem (LQ), in which (2.10) is the Hamiltonian system and
(2.11) is a direct consequence of the maximum condition. Condition (2.12) makes (2.10)–
(2.11) sufficient for the pair(x̄(·), x̄(·)) to be optimal.

3. Approach by Functional Analysis and FBSDEs

In this section we use functional analysis and FBSDEs to approach Problem(LQ). At
end of this section, Theorem 2.4 is proved.

Since the state equation is linear and the cost functional is quadratic in(x(·),u(·)),
the cost functionalJ(τ, ξ ;u(·)) is quadratic in(ξ,u(·)) (τ is a parameter). Our first goal
is to representJ(τ, ξ ;u(·)) explicitly as a bilinear form in(ξ,u(·)). To this end, we
introduce the following:{

d8(t) = A8(t)dt + C8(t)dw(t), t ≥ 0,
8(0) = I .

(3.1)

Then it is known that (see [2], for example)8(t)−1 exists for allt ≥ 0 satisfying the
following:{

d8(t)−1 = −8(t)−1[ A− C2] dt −8(t)−1C dw(t), t ≥ 0,
8(0)−1 = I .

(3.2)

and the solutionx(·) of (1.1) can be written as follows:

x(t) = 8(t)8(τ)−1ξ +8(t)
∫ t

τ

8(s)−1(B− C D)u(s)ds

+8(t)
∫ t

τ

8(s)−1Du(s)dw(s), t ∈ [τ, T ]. (3.3)

By the Burkholder–Davis–Gundy inequality (see [15]), we have

E

{
sup
τ≤s≤t
|x(s)|2 ∣∣Fτ} ≤ K E

{
|ξ |2+

∫ t

τ

|u(s)|2 ds
∣∣Fτ} ,

∀t ∈ [τ, T ], a.s. (3.4)

Now, we define the following operators:

(Lτu)(·) = 8(·)
∫ ·
τ

8(s)−1(B− C D)u(s)ds

+8(·)
∫ ·
τ

8(s)−1Du(s)dw(s),

L̂τu = (Lτu)(T),
(Sτ ξ)(·) = 8(·)8(τ)−1ξ, Ŝτ ξ = 8(T)8(τ)−1ξ.

(3.5)

Clearly, for anyτ ∈ T [0, T ],{
Lτ : U [τ, T ] → X [τ, T ], L̂τ : U [τ, T ] → XT ,

Sτ : Xτ → X [τ, T ], Ŝτ : Xτ → XT ,
(3.6)
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and all are bounded linear operators (by (3.4)). We now want to find the bounded linear
operators{

L∗τ : X [τ, T ] → U [τ, T ], L̂∗τ : XT → U [τ, T ],
S∗τ : X [τ, T ] → Xτ , Ŝ∗τ : XT → Xτ , (3.7)

such that
E

{∫ T

τ

〈(Lτu)(t), y(t)〉dt
∣∣ Fτ} = E

{∫ T

τ

〈u(t), (L∗τ y)(t)〉dt
∣∣ Fτ} ,

E

{∫ T

τ

〈(Sτ ξ)(t), y(t)〉dt
∣∣ Fτ} = E

{〈ξ, S∗τ y〉 ∣∣ Fτ} ,
∀u(·) ∈ U [τ, T ], y(·) ∈ X [τ, T ], ξ ∈ Xτ ,

(3.8)

and
E
{〈L̂τu, η〉 | Fτ} = E

{∫ T

τ

〈u(t), (L̂∗τ η)(t)〉dt | Fτ
}

E
{〈Ŝτ ξ, η〉 | Fτ} = E

{〈ξ, Ŝ∗τ η〉 | Fτ
}
,

∀u(·) ∈ U [τ, T ], ξ ∈ χτ , η ∈ χT .

(3.9)

In the above, we have used〈· , ·〉 as inner products in different Euclidean spaces, which
can be identified from the context.

Note that the operators in (3.7) satisfying (3.8)–(3.9) arenot formal adjoint of those
in (3.5). For example, the formal adjoint of̂Sτ is [8(T)8(τ)−1]T which maps fromXT

toXT (not toXτ ) in general. A similar situation happens for the other three operators in
(3.5). To find the operators (3.7) satisfying (3.8)–(3.9), we need to use BSDE (2.7) and
Proposition 2.3. We have the following result.

Proposition 3.1.

(i) For any y(·) ∈ X [τ, T ], let (p0(·),q0(·)) ∈ X [τ, T ] ×X [τ, T ] be the adapted
solution of(2.7)with η = 0. Define{
(L∗τ y)(t) = BT p0(t)+ DTq0(t), t ∈ [τ, T ],

S∗τ y = p0(τ ).
(3.10)

Then L∗τ : X [τ, T ] → U [τ, T ] and S∗τ : X [τ, T ] → Xτ are bounded, satisfying
(3.8).

(ii) For anyη ∈ XT , let (p1(·),q1(·)) ∈ X [τ, T ]×X [τ, T ] be the solution of(2.7)
with y(·) = 0. Define{
(L̂∗τ η)(t) = BT p1(t)+ DTq1(t), t ∈ [τ, T ],

Ŝ∗τ η = p1(τ ).
(3.11)

ThenL̂∗τ : XT → U [τ, T ] andŜ∗τ : XT → Xτ are bounded, satisfying(3.9).
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Proof. For anyξ ∈ Xτ , η ∈ XT , y(·) ∈ X [τ, T ], and u(·) ∈ U [τ, T ], let x(·) and
(p(·),q(·)) be the solutions of (1.1) and (2.7), respectively. By (2.8), all the operators
defined in (3.10) and (3.11) are bounded. Next, applying Itˆo’s formula to〈x(·), p(·)〉,
we obtain

〈x(T), η〉 − 〈ξ, p(τ )〉
=
∫ T

τ

[〈u(t), BT p(t)+ DTq(t)〉 − 〈x(t), y(t)〉]dt +
∫ T

τ

[· · ·] dw(t).

Using (3.3) and (3.5), and taking conditional expectation, one has:

E
{〈Ŝτ ξ + L̂τu, η〉 − 〈ξ, p(τ )〉 ∣∣Fτ}
= E

{∫ T

τ

[〈u(t), BT p(t)+ DTq(t)〉

− 〈(Sτ ξ)(t)+ (Lτu)(t), y(t)〉] dt
∣∣Fτ} . (3.12)

Then, in (3.12), by takingξ = 0 andη = 0, we obtain the first relations in (3.8); by
takingu(·) = 0 andη = 0, we obtain the second relations in (3.8); by takingξ = 0 and
y(·) = 0, we obtain the first relations in (3.9); and by takingu(·) = 0 andy(·) = 0, we
obtain the second relations in (3.9).

By the above result, we obtain the following representation for the cost functional
(1.2):

J(τ, ξ ;u(·)) = E
{
〈Q(Sτ ξ + Lτu), Sτ ξ + Lτu〉 + 〈Ru,u〉

+ 〈G(Ŝτ ξ + L̂τu), Ŝτ ξ + L̂τu〉
∣∣ Fτ}

= E
{
〈(R+ L∗τ QLτ + L̂∗τGLτ )u,u〉 + 2〈(L∗τ QSτ + L̂∗τGŜτ )ξ,u〉

+ 〈(S∗τ QSτ + Ŝ∗τGŜτ )ξ, ξ〉
∣∣ Fτ}

1= E
{
〈Nτu,u〉 + 2〈Hτ ξ,u〉 + 〈Mτ ξ, ξ〉

∣∣ Fτ}, (3.13)

where
Nτu = [R+ L∗τ QLτ + L̂∗τGL̂τ ]u, ∀u ∈ U [τ, T ],
H∗τ u = [S∗τ QLτ + Ŝ∗τGL̂τ ]u, ∀u ∈ U [τ, T ],
Hτ ξ = [L∗τ QSτ + L̂∗τGŜτ ]ξ, ∀ξ ∈ Xτ ,
Mτ ξ = [S∗τ QSτ + Ŝ∗τGŜτ ]ξ, ∀ξ ∈ Xτ ,

(3.14)

and〈· , ·〉 represents the inner products in different spaces. It is clear that the operators{
Nτ : U [τ, T ] → U [τ, T ], H∗τ : U [τ, T ] → Xτ ,
Hτ : Xτ → U [τ, T ], Mτ : Xτ → Xτ ,

are all bounded.
We now look at some conditions for the (partial) finiteness and solvability of

Problem (LQ).
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Theorem 3.2. Let (S) hold. Suppose Problem(LQ) is partially finite at (τ, ξ) ∈
1[0, T ]. Then

E
{〈Nτu,u〉 ∣∣ Fτ} ≥ 0, ∀u ∈ U [τ, T ], a.s. ω ∈ Ä(τ, ξ), (3.15)

whereÄ(τ, ξ)
1=(V(τ, ξ) > −∞). Moreover, Problem (LQ) is (uniquely) partially

solvable at(τ, ξ) ∈ 1[0, T ] if and only if (3.15) holds and there exists a(unique)
u ∈ U [τ, T ] such that

IÄ(τ,ξ) (Nτu+ Hτ ξ) = 0, in L2
F (τ, T;Rm). (3.16)

In this case, u is a(the) partially optimal control.

Proof. It is obvious that (3.15) is necessary for Problem(LQ) being partially finite at
(τ, ξ) ∈ 1[τ, T ]. Now, suppose Problem(LQ) is partially solvable at(τ, ξ) ∈ 1[τ, T ]
with u ∈ U [τ, T ] being a partially optimal control. DenoteÄ0 = Ä(τ, ξ). Then, for any
u ∈ U [τ, T ], we have

0 ≤ 1

ε
IÄ0 [ J(τ, ξ ;u+ εu)− J(τ, ξ ;u)]

→ 2IÄ0 E
{〈Nτu+ Hτ ξ,u〉

∣∣ Fτ} . (3.17)

By takingu = −(Nτu+ Hτ ξ) ∈ U [τ, T ] in the above, we obtain (noteÄ0 ∈ Fτ )
E
{
IÄ0|Nτu+ Hτ ξ |2

∣∣ Fτ} = 0, a.s. (3.18)

Then (3.16) follows.
Conversely, suppose (3.15) holds and for someu ∈ U [τ, T ], (3.16) holds. Then, for

anyu ∈ U [τ, T ], we have

IÄ0 {J(τ, ξ ;u)− J(τ, ξ ;u)}
= IÄ0 E

{〈Nτu,u〉 + 2〈Hτ ξ,u〉 − 〈Nτu,u〉 − 2〈Hτ ξ,u〉
∣∣ Fτ}

= E
{
IÄ0〈Nτ (u− u),u− u〉 ∣∣ Fτ} ≥ 0. (3.19)

Hence,u is partially optimal and Problem(LQ) is partially solvable.
The uniqueness part is clear.

Using Proposition 3.1, we can easily prove the following result, which gives a represen-
tation of operatorsNτ , H∗τ , Hτ , andMτ defined in (3.14) in terms of adapted solutions
of (2.9).

Proposition 3.3.

(i) For any u(·) ∈ U [τ, T ], let (x0(·), p0(·),q0(·)) be the unique adapted solution
of (2.9)with ξ = 0. Then{
(Nτu)(t) = Ru(t)+ BT p0(t)+ DTq0(t), t ∈ [τ, T ],
H∗τ u = p0(τ ).

(3.20)
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(ii) For anyξ ∈ Xτ , let (x1(·), p1(·),q1(·)) be the unique adapted solution of(2.9)
with u(·) = 0. Then{
(Hτ ξ)(t) = BT p1(t)+ DTq1(t), t ∈ [τ, T ],
Mτ ξ = p1(τ ).

(3.21)

(iii) For any(ξ,u(·)) ∈ Xτ × U [τ, T ], let (x(·), p(·),q(·)) be the unique adapted
solution of(2.9).Then{
(Nτu)(t)+(Hτ ξ)(t)=Ru(t)+BT p(t)+DTq(t), t ∈ [τ, T ],
Mτ ξ + H∗τ u= p(τ ).

(3.22)

Combining Theorem 3.2 and Proposition 3.3, we obtain a proof of Theorem 2.4.
Now, we take a closer look at the case

R(·)−1 ∈ L∞F (0, T;Sm). (3.23)

Note that we do not require the nonnegativity ofR(t) here. When (3.23) holds, (2.10)
and (2.11) withÄ(τ, ξ) = Ä is equivalent to the following:

dx(t) = [ Ax(t)− B R−1BT p(t)− B R−1DTq(t)] dt
+ [Cx(t)− DR−1BT p(t)− DR−1DTq(t)] dw(t),

dp(t) = [−Qx(t)− AT p(t)− CTq(t)] dt + q(t)dw(s),
x(τ ) = ξ, p(T) = Gx(T),

(3.24)

This is acoupledlinear FBSDE. From Theorem 2.4, we have the following result.

Corollary 3.4. Let (S)hold and(2.12) hold withÄ(τ, ξ) = Ä. Then Problem(LQ) is
(uniquely) solvable at(τ, ξ) if and only if the FBSDE(3.24) admits a(unique) adapted
solution(x(·), p(·),q(·)). In this case, an (the) optimal control is given by(2.13).

The above result gives an intrinsic relation between the solvability of Problem
(LQ) and FBSDE (3.24). In [27], equations of form (3.24) were studied directly, where
some necessary and sufficient conditions were obtained for the solvability of such linear
FBSDEs.

Corollary 3.5. Let (S) hold. Suppose further that for someτ ∈ T [0, T),{
G ≥ 0, a.s. ω ∈ Ä,
Q(t) ≥ 0, R(t) ≥ 0, ∀t ∈ [τ, T ], a.s. ω ∈ Ä. (3.25)

Then(3.15)holds withÄ(τ, ξ) = Ä. In addition, if (3.23)also holds, then the operator
Nτ : U [τ, T ] → U [τ, T ] is invertible, Problem(LQ) is uniquely solvable atτ , and for
anyξ ∈ Xτ , the unique optimal control is given by

u = −N−1
τ Hτ ξ. (3.26)

In this case, the FBSDE(3.24) also admits a unique adapted solution(x(·), p(·),q(·))
and the optimal control also admits representation(2.13).
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Proof. In the present case, it is easy to see that the operatorNτ : U [τ, T ] → U [τ, T ]
is invertible. Then the rest of the conclusions follows.

We refer to the case that (S), (3.23), and (3.25) hold as theconventional case.
By Corollary 3.5, if (3.25) holds, (3.15) (withÄ(τ, ξ) = Ä) or, equivalently, (2.12)

automatically hold. Thus, when (3.25) holds, (2.10)–(2.11) completely characterize the
(partially) optimal pair(x(·),u(·)). This covers the conventional deterministic case com-
pletely in this context.

We now look at some further properties of the value functions.

Theorem 3.6. Let Problem(LQ) be solvable atτ ∈ T [0, T ]. Then there exists a
Pτ ∈ L∞Fτ (Ä;Sn), such that

V(τ, ξ) = 〈Pτ ξ, ξ〉, ∀ξ ∈ Xτ . (3.27)

From (3.13), we know that there exists a self-adjoint operatorPτ : Xτ → Xτ satis-
fying (3.27). The above result asserts that the operatorPτ can actually be represented by
a boundedFτ -measurableSn-valued random variable.

To prove our result, we need the following seemingly obvious result.

Lemma 3.7. Supposeξ 7→ V(τ, ξ) is continuous. Then, for any(τ, ξ) ∈ 1[0, T ],

V(τ, x)(ω)
∣∣
x=ξ(ω) = V(τ, ξ)(ω), a.s. ω ∈ Ä. (3.28)

Proof. First, for any(x(·),u(·)) ∈ X [0, T ] × U [0, T ], we have a unique adapted
solution(y(·), z(·)) to the following BSDE:{

dy(t) = −[〈Qx(t), x(t)〉 + 〈Ru(t),u(t)〉] dt + z(t)dw(t), t ∈ [0, T ],

y(T) = 〈Gx(T), x(T)〉, (3.29)

and, for anyτ ∈ T [0, T ],

y(τ ) ≡ y(τ ; x(·),u(·)) = J(τ, x(τ );u(·)). (3.30)

Now, let(τ, ξ) ∈ 1[0, T ] be fixed. For anyε > 0, we can find a partition{Fε
i , i ≥ 1} ⊆

Fτ of Ä andxεi ∈ Rn, such that

ξε ≡
∑
i≥1

I Fε
i
xεi → ξ, in L2

Fτ (Ä;Rn). (3.31)

Let x(· ; τ, ξ,u) be the solution of (1.1) starting from(τ, ξ) under controlu(·). Then,
multiplying I Fε

i
on both sides of (1.1) (withξ = xi ) and summing ini ≥ 1, using the

uniqueness of the solutions, we have∑
i≥1

I Fε
i
x(· ; τ, xεi ,u) = x(· ; τ, ξ ε,u).

Consequently, using (3.29) and (3.30) (together with the uniqueness of the adapted
solutions to (3.29)), we have∑

i≥1

I Fε
i
J(τ, xεi ; ;u(·)) = J(τ, ξ ε;u(·)). (3.32)
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Therefore, by the continuity ofξ 7→ V(τ, ξ), we obtain

V(τ, x)
∣∣
x=ξ = lim

ε→0

∑
i≥1

I Fε
i
V(τ, xεi ) = lim

ε→0

∑
i≥1

I Fε
i

inf
u(·)∈U [τ,T ]

J(τ, xεi ;u(·))

= lim
ε→0

inf
u(·)∈U [τ,T ]

J(τ, ξ ε;u(·)) = lim
ε→0

V(τ, ξ ε) = V(τ, ξ).

This proves (3.28).

Proof of Theorem3.6. First, it is clear that there exists a self-adjoint bounded operator
Pτ : Xτ → Xτ , such that (3.27) holds. Consequently,ξ 7→ V(τ, ξ) is continuous, and,
for almost surelyω ∈ Ä, x 7→ V(τ, x)(ω) is a bilinear form onRn. Thus, there exists
anSn-valued functionP̂(ω) such that

V(τ, x)(ω) = 〈P̂(ω)x, x〉, ∀x ∈ Rn, a.s. ω ∈ Ä. (3.33)

Then it is necessary that

P̂(ω)x = (Pτ x)(ω), ∀x ∈ Rn, a.s. ω ∈ Ä.
This implies thatP̂ ∈ L∞Fτ (Ä;Sn). Now, by (3.27) (withPτ : Xτ → Xτ ), (3.28), and
(3.33), we have

〈P̂(ω)ξ(ω), ξ(ω)〉 = V(τ, x)(ω)
∣∣
x=ξ(ω)

= V(τ, ξ)(ω)

= 〈(Pτ ξ)(ω), ξ(ω)〉, a.s. ω ∈ Ä, ∀ξ ∈ Xτ .
Thus,

P̂(ω)ξ(ω) = (Pτ ξ)(ω), a.s. ω ∈ Ä, ∀ξ ∈ Xτ .
This shows that we can takePτ ∈ L∞Fτ (Ä;Sn) in (3.27).

4. A Necessary Condition for the Finiteness of LQ Problems

In this section we present a proof of Theorem 2.2.
We first state the followingdynamic programming principlewhose proof is pretty

straightforward.

Lemma 4.1. For any(τ, ξ) ∈ 1[0, T) and t ∈ T [τ, T ], it holds that

V(τ, ξ) = inf
u(·)∈U [τ,t ]

E

{
V(t, x(t))

+
∫ t

τ

[〈Qx(s), x(s)〉 + 〈Ru(s),u(s)〉] ds
∣∣ Fτ}, a.s.

(4.1)

The following corollary will be useful later.
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Corollary 4.2. For anyτ ∈ T [0, T), and t ∈ T [τ, T ],

(V(τ, ξ) > −∞)
⊆

⋂
u(·)∈U [τ,T ]

(V(t, x(t; τ, ξ,u(·))) > −∞) , ∀t ∈ T [τ, T ]. (4.2)

The above result implies that if Problem(LQ) is finite (resp. partially finite) at
(τ, ξ) ∈ 1[0, T), then for anyu(·) ∈ U [τ, T ], along the trajectoryx(·) ≡ x(· ; τ, ξ,u(·)),
V(t, x(t)) is finite (resp. finite on the set(V(τ, ξ) > −∞)) almost surely, for any
t ∈ T [τ, T ]. This fact will be useful below.

Proof of Theorem2.2. We first prove the following:

E
{〈[R(T)+ D(T)TGD(T)]v, v〉 ∣∣ Fτ} ≥ 0,

a.s. ω ∈ (V(τ, ξ) > −∞), ∀v ∈ L2
Fτ (Ä;Rm). (4.3)

Suppose (4.3) does not hold. Then we may find av ∈ L2
Fτ (Ä;Rm), a constantδ > 0,

and someÄτ ∈ Fτ with Äτ ⊆ (V(τ, ξ) > −∞), P(Äτ ) > 0, such that

E
{〈[R(T)+ D(T)TGD(T)]v, v〉 ∣∣ Fτ} ≤ −δ, ∀ω ∈ Äτ . (4.4)

From [23] we know that the there exists a pair ofSn-valued square integrable
{Ft }t≥0-adapted processes(P(·),3(·)) such that

d P = −[PA+ AT P + CTPC+3C + CT3+ Q] dt
+3dw(t), t ∈ [τ, T ],

P|t=T = G.
(4.5)

By Itô’s formula, Burkholder–Davis–Gundy’s inequality [15], and Gronwall’s inequality,
we have

E

{
sup

t≤s≤T
|P(s)|2+

∫ T

t
|3(s)|2 ds

∣∣ Fτ}
≤ K0E

{|G|2 ∣∣ Fτ} , ∀t ∈ [τ, T ], (4.6)

for some constantK0 > 0, where|2|2 1= tr [22T ], for any2 ∈ Rn×n.
Next, we takeε ∈ (0,1] and letτε = τ ∨ (T − ε) ∈ T [τ, T). Also, letλ > 0 be

Fτ -measurable, time-independent, and undetermined. Letxελ(·) be the state process of
the system (1.1) starting from(τ, ξ), under the control

uελ(t) = λvχ[τε,T ](t), t ∈ [τ, T ]. (4.7)

Then, by Itô’s formula, Burkholder–Davis–Gundy’s inequality, and Gronwall’s inequal-
ity, we obtain (note thatτε isFτ -measurable)

E

{
sup
τ≤r≤t
|xελ(t)|2k

∣∣ Fτ} ≤ K2k
{|ξ |2k + (λ|v|)2k(t − τε)+

}
,

t ∈ [τ, T ], a.s. k ≥ 1, (4.8)
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for some constantsK2k > 0, independent ofλ andε. Now, by Itô’s formula and (4.5),
we have (suppressings in some of the integrands)

E
{〈Gxελ(T), xελ(T)〉

∣∣ Fτ}
= E

{
〈P(τε)xελ(τε), xελ(τε)〉

+
∫ T

τε

{−〈Qxελ(s), xελ(s)〉 + 2λ〈[BT P + DTPC+ DT3]xελ(s), v〉

+ λ2〈DTPDv, v〉}ds
∣∣Fτ}.

Hence, by the definition ofV(τ, ξ) and (S), as well as (4.6) and (4.8), we obtain (note
0≤ T − τε ≤ ε almost surely andτε isFτ -measurable)

V(τ, ξ) ≤ E

{
〈Gxελ(T), xελ(T)〉 +

∫ T

τ

[〈Qxελ(s), xελ(s)〉 + 〈Ruελ(s),u
ε
λ(s)〉

]
ds
∣∣Fτ}

= E

{
〈P(τε)xελ(τε), xελ(τε)〉 +

∫ τε

τ

〈Qxελ(s), xελ(s)〉ds

+
∫ T

τε

{
2λ〈[BT P + DTPC+ DT3]xελ(s), v〉

+ λ2〈[R+ DTPD]v, v〉}ds
∣∣Fτ}

≤ E

{
1
2|P(τε)|2+ 1

2|xελ(τε)|4+ ‖Q‖∞
∫ τε

τ

|xελ(s)|2 ds

+ λ
∫ T

τε

{|xελ(s)|2+ |(PB+ CTPD+3D)v|2}ds

+ λ2
∫ T

τε

〈(R+ DTPD)v, v〉ds
∣∣Fτ}

≤ K0

2
E
{|G|2 ∣∣Fτ}+ K4

2
|ξ |4+ ‖Q‖∞K2|ξ |2T

+ λ(T − τε)K2[|ξ |2+ λ2|v|2(T − τε)] + λρ1(ε)

+ λ2(T − τε)
{
E
[〈[R(T)+ D(T)TGD(T)]v, v〉 ∣∣Fτ ]+ ρ2(ε)

}
≤ K (ω)+ λ(T − τε)K2|ξ |2+ K2|v|2λ3(T − τε)2+ λρ1(ε)

+ λ2(T − τε)
{

E
{〈[R(T)+ D(T)TGD(T)]v, v〉 ∣∣Fτ}+ ρ2(ε)

}
, (4.9)

where

K (ω) = K0

2
E
{|G|2 ∣∣Fτ}+ K4

2
|ξ |4+ ‖Q‖∞K2|ξ |2T,

ρ1(ε) = E

{∫ T

τε

|(PB+ CTPD+3D)v|2 ds
∣∣Fτ} ,

ρ2(ε) = 1

T − τε E

{∫ T

τε

〈[R(s)+ D(s)T P(s)D(s)

− R(T)− D(T)TGD(T)]v, v〉ds
∣∣Fτ} .

(4.10)
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By the continuity ofR, D, andP, as well as (4.8), we see that

ρ1(ε)+ ρ2(ε)→ 0, a.s. ω ∈ Ä (ε→ 0). (4.11)

Now, for anyω ∈ Äτ (on which (4.4) holds), such that (4.11) holds, we take (note that
ρ1(ε) is independent ofλ > 0)

λ ≡ λ(ε) 1=(T − τε)−1[T − τε + ρ1(ε)]
1/4

≥ (T − τε)−3/4→∞, as ε→ 0, a.s. ω ∈ Ä. (4.12)

Thenλ isFτ -measurable, and, asε→ 0,
λ(T − τε) = [T − τε + ρ1(ε)]

1/4→ 0,
λ2(T − τε) = (T − τε)−1[T − τε + ρ1(ε)]

1/2

≥ (T − τε)−1/2→∞, a.s. ω ∈ Ä.
ρ1(ε)

λ(T − τε) = ρ1(ε)[T − τε + ρ1(ε)]
−1/4 ≤ ρ1(ε)

3/4→ 0,

(4.13)

Hence, (4.9) together with (4.4) and (4.13) yields

V(τ, ξ) ≤ K (ω)+ λ(T − τε)K2|ξ |2

+ λ2(T − τε)
{

K2

2
|v|2λ(T − τε)+ ρ1(ε)

λ(T − τε) + ρ2(ε)− δ
}

→ −∞, (4.14)

asε → 0, almost surely onÄτ , which is a contradiction, proving (2.5). From Corol-
lary 4.2, we know that for anȳτ ∈ T (τ, T), there exists āξ ∈ Xτ̄ such thatV(τ̄ , ξ̄ ) is
finite. Thus, the above proof shows that we must have

E
{〈[R(T)+ D(T)TGD(T)]v, v〉 ∣∣ Fτ̄} ≥ 0,

a.s. ω ∈ (V(τ, ξ) > −∞), ∀v ∈ L2
Fτ̄ (Ä;Rm), (4.15)

for all τ̄ ∈ T [τ, T). Now, takingτ̄ = τ ∨ (T − ε) and sendingε→ 0, by the continuity
of {Ft }t≥0, we obtain (2.5).

The following example shows that condition (2.5) is really only necessary.

Example 4.3. Consider the following one-dimensional control system:{
dx(t) = 1

2x(t)dt + u(t)dw(t), t ∈ [τ, T ],
x(τ ) = ξ, (4.16)

with the cost functional:

J(τ, ξ ;u(·)) = E

{∫ T

τ

u(t)2dt − x(T)2
∣∣ Fτ} . (4.17)

In the current case,A = 1
2, B = C = Q = 0, D = R= 1, andG = −1. Thus,

R+ DTGD= 0.
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Applying Itô’s formula to−eT−t x(t)2, we have that

J(τ, ξ ;u(·)) = E

{∫ T

τ

u(t)2(1− eT−t )dt − eT−τ ξ2
∣∣ Fτ} ,

∀u(·) ∈ U [0, T ]. (4.18)

Since 1− eT−t < 0 for all t < T , Problem(LQ) is not (partially) finite at any(τ, ξ) ∈
1[0, T).

Hence, in general, in order to have the solvability of Problem(LQ), we had better
assume that

R(T)+ D(T)TGD(T) ≥ δ0, a.s., (4.19)

which is a little stronger than (2.5).

5. A Sufficient Condition for the Solvability of LQ Problems

In this section we briefly consider a sufficient condition for the solvability of LQ prob-
lems. We discuss only the case of constant coefficients, i.e.,A, B, C, D, Q, R, G are all
constant matrices. We introduce the following terminal value problem of a differential
equation for the matrix-valued functionP(·):

Ṗ(t) = −P(t)A− AT P(t)− Q+ [ P(t)B+ CT P(t)D]
× [R+ DT P(t)D]−1[BT P(t)+ DT P(t)C], t ∈ [τ, T ],

P(T) = G,
(5.1)

whereτ ∈ [0, T). The above is called theRiccati equationfor Problem(LQ) (with
constant coefficients). In the present case, condition (4.19) can be replaced by

R+ DTGD> 0. (5.2)

Then one can always find someτ ∈ [0, T), such that (5.1) admits a solutionP(·)
satisfying

R+ DT P(t)D > 0, t ∈ [τ, T ]. (5.3)

The following result can be found in [8].

Proposition 5.1. Suppose, for τ ∈ [0, T), there exists a solution P(·): [τ, T ] → Sn to
(5.1)satisfying(5.3).Then Problem(LQ) is solvable atτ with the optimal controlu(·)
being of state feedback form:

u(t) = −[R+ DT P(t)D]−1[BT P(t)+ DT P(t)C]x(t), t ∈ [τ, T ], (5.4)

and with the value function represented by

V(τ, ξ) = 〈P(τ )ξ, ξ〉, ∀ξ ∈ χτ . (5.5)
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From the above result, we see that the interval on which the Riccati equation (5.1)
admits a solutionP(·) satisfying condition (5.3) is closely related to the solvability of
Problem (LQ). We now define

I R
1={τ ∈ [0, T)

∣∣ (5.1) admits a solutionP(·) satisfying (5.3)},
IS

1={τ ∈ [0, T)
∣∣ ∀t ∈ [τ, T ], ξ ∈ Xt ,

∃u ∈ U [t, T ], V(t, ξ) = J(t, ξ ;u(·))},
I F

1={τ ∈ [0, T)
∣∣ ∀t ∈ [τ, T ], ξ ∈ Xt , V(τ, ξ) > −∞, a.s.}.

(5.6)

By Proposition 5.1, we see thatI R ⊆ IS ⊆ I F . Now, we define

σ = inf I R. (5.7)

Thus,(σ, T ] is the maximum interval on which (5.1) admits a solutionP(·) such that
(5.3) holds on(σ, T ]. From the definition ofσ , and Proposition 5.1, we see that for any
τ ∈ (σ, T ], Problem(LQ) is solvable atτ . We would like to know the solvability and/or
finiteness of Problem (LQ) atσ .

Theorem 5.2. Let all the coefficients be constants and let(5.2)hold.Then the following
are equivalent:

(i) σ ∈ I F .
(ii) There exists a sequenceτk ↓ σ and Pσ ∈ Sn such that

lim
k→∞

P(τk) = Pσ . (5.8)

In this case, it is necessary that

V(σ, ξ) = 〈Pσ ξ, ξ〉, a.s. ω ∈ Ä, ∀ξ ∈ Xσ . (5.9)

(iii) There exists a Pσ ∈ Sn such that

lim
τ ↓ σ

P(τ ) = Pσ . (5.10)

Proof. (iii)⇒ (ii) The implication of (5.10) to (5.8) is clear. The proof of (5.9) is
contained in the following.

(ii)⇒ (i) For anyξ ∈ Xσ ⊆ Xτk , by Proposition 5.1,

V(τk, ξ) = 〈P(τk)ξ, ξ〉, ∀k ≥ 1.

Thus, for anyu(·) ∈ U [σ, T ], we have (noteu
∣∣
[τk,T ] ∈ U [τk, T ])

J(τk, ξ ;u
∣∣
[τk,T ]) ≥ V(τk, ξ)→ 〈Pσ ξ, ξ〉,

which yields

J(σ, ξ ;u(·)) ≥ 〈Pσ ξ, ξ〉, ∀u(·) ∈ U [σ, T ]. (5.11)
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Hence,σ ∈ IS. We note that in this case (by Theorem 3.6)

V(σ, ξ) = 〈P̃σ ξ, ξ〉 ≥ 〈Pσ ξ, ξ〉, ∀ξ ∈ Xσ , (5.12)

for someP̃σ ∈ L∞Fσ (Ä;Sn). On the other hand, by the dynamic programming principle
(Lemma 4.1), and takingu(·) = 0, we have

V(σ, ξ) ≤ E

{
V(τk, x(τk))+

∫ τk

σ

〈Qx(s), x(s)〉ds
∣∣Fσ}→ 〈Pσ ξ, ξ〉. (5.13)

Thus, combining (5.12)–(5.13), we see that

P̃σ ξ = Pσ ξ, ∀ξ ∈ Xσ ,

which leads to the first equality in (5.9). The second relation in (5.9) can be proved
similarly.

(i)⇒ (iii) Suppose Problem(LQ) is finite atσ . Take anyξ ∈ Xσ . Let x(·) be the
state process starting from(σ, ξ) under the controlu(·) = 0. Then

x(t) = 8(t)8(σ)−1ξ
1=8(t, σ )ξ, t ∈ [σ, T ],

where8(·) is the solution of

d8(t) = A8(t)dt + C8(t)dw(t), 8(0) = I .

It is known that

E
{
|8(t, σ )−1| ∣∣Fσ} ≤ K0, ∀t ∈ [σ, T ], a.s. ω ∈ Ä, (5.14)

for some absolute constantK0 > 0. A direct computation shows that the solutionP(·)
of (5.1) satisfies the following:

P(t) = eAT (T−t)GeA(T−t) +
∫ T

t
eAT (s−t)QeA(s−t) ds

−
∫ T

t
eAT (s−t)[PB+ CTPD][ R+ DTPD]−1[BT P + DT PC]eA(s−t) ds

≤ eAT (T−t)GeA(T−t) +
∫ T

t
eAT (s−t)QeA(s−t) ds

1= P(t). (5.15)

On the other hand, by Theorem 3.6, there exists aP̃σ ∈ L∞Fσ (Ä;Sn) such that the first
equality in (5.12) holds. Thus, by the dynamic programming principle again, we obtain
that, for anyt ∈ (σ, T ],

〈P̃σ ξ, ξ〉 = V(σ, ξ) ≤ E

{
V(t, x(t))+

∫ t

σ

〈Qx(s), x(s)〉ds
∣∣Fσ}

= E

{
〈P(t)x(t), x(t)〉 +

∫ t

σ

〈Qx(s), x(s)〉ds
∣∣Fσ}

≤ E
{〈P(t)x(t), x(t)〉 + K0|ξ |2(t − σ)

∣∣Fσ} ≤ K0|ξ |2.
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Consequently,

E|〈8(t, σ )T P(t)8(t, σ )ξ, ξ〉| ≤ K0E|ξ |2, ∀ξ ∈ Xσ , ∀t ∈ [σ, T ], (5.16)

which, together with (5.14), implies that

|P(t)| ≤ K0, ∀t ∈ [σ, T ]. (5.17)

Then there exists a sequenceτk ↓ σ , and somePσ ∈ Sn, such that (5.8) holds. Thus,
(5.9) has to be true, and the whole sequence has to be convergent.

The following example shows thatσ /∈ I F is possible.

Example 5.3. Let n = m = 1, A = D = Q = 0, B = C = R = 1, G = −1, and
T > 1. Then (5.1) becomes{

Ṗ(t) = P(t)2, t ∈ (σ, T ],
P(T) = −1.

(5.18)

A direct computation gives us that

P(t) = 1

T − t − 1
, t ∈ (σ, T ], σ = T − 1. (5.19)

Thus,P(t)→−∞ ast ↓ σ , whereas (5.3), which is simplyR> 0, remains true.

Now we return to Example 1.1. The state equation is (1.13) and the cost functional
is (1.14). We assume (1.15). In this case, the Riccati equation reads (noten = m = 1,
A = C = Q = 0, B = G = 1, R= −1, andD = δ)Ṗ(t) = P(t)2

δ2P(t)− 1
, t ≤ T,

P(T) = 1.
(5.20)

A direct computation shows that the solutionP(·) satisfiesδ2 ln P(t)+ 1

P(t)
= t + 1− T,

δ2P(t) > 1,
t ∈ (σ, T ].

We see easily that theσ defined by (5.6) satisfiesδ2P(σ ) = 1 and thus

δ2
(
1− 2 lnδ

) = σ + 1− T

or

σ = T − 1− δ2
(
2 ln |δ| − 1

)
.

Hence, (1.15) ensures thatσ < 0, which guarantees the solvability of Problem (LQ) at
all τ ∈ T [0, T ], by Proposition 5.1.
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To conclude this paper, we make the following remark. The Riccati equation for
Problem(LQ) with general random coefficients takes the following form:

dP= −{PA+ AT P + CTPC+3C + CT3+ Q
− (PB+ CTPD+3D)(R+ DTPD)−1

× (BT P + DTPC+ DT3)}dt +3dw(t), t ∈ [τ, T ],

P(T) = G,

det[R(t)+ D(t)T P(T)D(t)] 6= 0, t ∈ [τ, T ], a.s. ω ∈ Ä.

(5.21)

This is again a BSDE, an adapted solution of which is a pair(P,3) of {Ft }t≥0-adapted
Sn-valued processes. Once an adapted solution(P,3) is obtained, one can construct
an optimal state feedback control (see [8]). However, in (5.21) we note that the drift
term depends3 quadratically, and, moreover, it contains some possible singularity inP.
Thus, the general solvability for such a BSDE remains open. Some results concerning
the local/global solvability of (5.21) under certain conditions have been obtained by the
authors and will be published elsewhere.

References

1. Anderson BDO, Moore JB (1989) Optimal Control—Linear Quadratic Methods, Prentice-Hall, New York
2. Arnold L (1974) Stochastic Differential Equations: Theory and Applications, Wiley, New York
3. Bensoussan A (1983) Lecture on Stochastic Control, Part I, Lecture Notes in Mathematics, Vol 972,

Springer-Verlag, Berlin, pp 1–39
4. Bismut JM (1973) Analyse Convexe etProbabilites, These, Faculte des Sciences de Paris
5. Bismut JM (1978) An introductory approach to duality in stochastic control, SIAM Rev 20:62–78
6. Chen S (1992) Necessary and sufficient conditions for the existence of positive solutions to algebraic

Riccati equations with indefinite quadratic terms, Appl Math Optim 26:95–110
7. Chen S, Li X, Peng S, Yong J (1994) A linear quadratic optimal control problem with disturbances—an

algebraic Riccati equation and differential games approach, Appl Math Optim 30:267–305
8. Chen S, Li X, Zhou XY (1998) Stochastic linear quadratic regulators with indefinite control weight costs,

SIAM J Control Optim 36:1685–1702
9. Davis MHA (1977) Linear Estimation and Stochastic Control, Chapman and Hall, London

10. El Karoui N, Peng S, Quenez MC (1997) Backward Stochastic Differential Equations in Finance, Math
Finance 7:1–71

11. Fleming WH, Soner HM (1992) Controlled Markov Processes and Viscosity Solutions, Springer-Verlag,
New York

12. Haussmann UG (1986) A Stochastic Maximum Principle for Optimal Control of Diffusions, Pitman,
Boston

13. Ichikawa (1979) Dynamic programming approach to stochastic evolution equation, SIAM J Control
Optim 17:152–174

14. Kalman RE (1960) Contributions to the theory of optimal control, Bol Soc Mat Mexicana 5:102–119
15. Karatzas I, Shreve S (1988) Brownian Motion and Stochastic Calculus, Springer-Verlag, Berlin
16. Krasovskii NN (1965) Stabilization of systems in which noise is dependent on the value of the control

signal, Engrg Cybernetics 3:94–102
17. Lasiecka I, Triggiani R (1991) Differential and Algebraic Riccati Equations with Applications to

Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in
Control & Information Science, Vol 164, Springer-Verlag, Berlin

18. Li X, Yong J (1995) Optimal Control Theory for Infinite Dimensional Systems, Birkh¨auser, Boston
19. Ma J, Protter P, Yong J (1994) Solving forward–backward stochastic differential equations explicitly—a

four step scheme, Probab Theory Rel Fields 98:339–359



Stochastic Linear Quadratic Optimal Control Problems 45

20. Ma J, Yong J (1997) Adapted solutions of a degenerate backward SPDE, with applications, Stochastic
Process Appl 70:59–84

21. Ma J, Yong J (1999) Forward–Backward Stochastic Differential Equations and Their Applications,
Springer-Verlag, Berlin

22. McLane PJ (1971) Optimal stochastic control of linear systems with state- and control-dependent distur-
bances, IEEE Trans Automat Control 16:793–798

23. Pardoux E, Peng S (1990) Adapted solutions of backward stochastic equations, Systems Contr Lett
14:55–61

24. Peng S (1990) A general stochastic maximum principle for optimal control problems, SIAM J Control
Optim 28:966–979

25. Wonham WM (1968) On a matrix Riccati equation of stochastic control, SIAM J Control 6:312–326
26. Yong J (1997) Finding adapted solution of forward–backward stochastic differential equations—method

of continuation, Probab Theory Rel Fields 107:537–572
27. Yong J (1999) Linear forward–backward stochastic differential equations, Appl Math Optim 39:93–119
28. Yong J, Zhou XY (1999) Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag,

New York

Accepted15May2000.Online publication27November2000.


