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Abstract. This paper is concerned with the stochastic linear quadratic optimal
control problem (LQ problem, for short) for which the coefficients are allowed
to be random and the cost functional is allowed to have a negative weight on the
square of the control variable. Some intrinsic relations among the LQ problem,
the stochastic maximum principle, and the (linear) forward—backward stochastic
differential equations are established. Some results involving Riccati equation are
discussed as well.
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1. Introduction—A General Formulation and Some Examples

Let (2, F, P, {Fi}i=0) be a complete filtered probability space on which a one-
dimensional standard Brownian motian(-) is defined such tha{F:i}i-o is the
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natural filtration generated by(-), augmented by all th®-null sets inF. We con-
sider the following linear controlled stochastic differential equation:

dx(t) = [A®)X(t) + Bt)u(t)] dt
+[COX() + DOu®]dw(t), tel[r,T], (1.1)
X(t) =&,

wheret € 710, T], the set of all{F;}i>o-Stopping times taking values in ,[T],

Ee X, éL%(Q; R"), the set of allR"-valued F,-measurable square-integrable ran-
dom variables;A, B, C, D are matrix-valued F;}i-o-adapted bounded processes. In
the aboveu(-) is acontrol processand x(-) is the corresponding state process. Let
Ulr,T] = Lff(r, T; R™M), the set of allR™-valued{F;}i~o-adapted square-integrable
processes defined on the random intervall]] (with t € 7[0, T]). The control process
u(-) is take fromi[z, T].

Clearly, for any(¢, u(-)) € &; x U[r, T], there exists a unique (strong) solution
X() € sz(r, T;R") to (1.1). Thus, we can definecast functionahs follows:

T
J(r.5;u() =E {f [(QMX(), X(1)) + (R(Hu(t), u(t))] dt

+ (Gx(T), X(T))Ifz} , (1.2)

whereQ(-) and R(-) are symmetric matrix-value@F; };>o-adapted bounded processes
andG is a symmetric matrix-value@t-measurable bounded random variable. Itis seen
that

3 o) x X xU[r, T) - LE (2 R). (1.3)
7eT[0,T]

We now state the stochastic linear quadratic optimal control problem as follows:

Problem (LQ). Foreachr € 7]0, T] and¢ € X%, find au(-) € U[r, T] such that

J(t,§;U()) = u(-)eimr - J(t, &;u()) éV(r, &), as. we . (1.4)

We callV thevalue functiorof Problem(LQ). Note that
V(T,§) = (G§, &), VE € Ay. (1.5)
For the state equation (1.1), one might introduce another cost functional:
J(7, & u() = Ed(z, §; ()
= E{ /TT [ (XM, x®) + (Ru(t). u(®) |t
+(GX(T), x(T)]. (1.6)

and pose a similar optimal control problem. Such a formulation has been used for the
case of deterministic coefficients and within tieaksolution framework for the state
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equation (see [11], [28], and the references cited therein). However, in this paper we
study LQ problems with random coefficients. Thus, it is necessary to usstrtreg
solution framework for which the probability spac@, F, P, {F:}i-0) has to be fixed.

In such a framework, cost functional (1.2) is more appropriate than (1.6).

Stochastic LQ problems have been studied by many authors, among them we men-
tion [25], [22], [9], and [13]. In [22] one can find some applications in engineering
giving rise to problems with stateontrol dependent diffusion (see [16] also). On the
other hand, in many recent works on mathematical finance, the portfolio regarded as
the control appears in the diffusion (see [15], [11], [10], and [28] for extensive discus-
sions). It is quite understandable that the coefficients of the system (as well as the cost
functional) could depend on some other diffusion processes, and, therefore, they could
be random. This is the case in problems like option pricing, utility optimization, etc.
The point here is that the LQ problem with random coefficients has both mathematical
interest and potential applications in other fields.

In what follows, we make the following convention: Bye [0, T] and¢ € R", we
mean that and¢ are deterministic (compare withe 70, T]andé € X;). Next, forany
o,7 € T[0, T],witho < T almostsurely, welef [0, 7] be the set of alj 7 };~o-Stopping
timesr such that <r < t, almost surely, and le[o, 7] = Ureﬂm][{r} x X]. The
meanings off [o, t), Alo, 1), etc., are obvious. By (1.3), one has

V: A[0, T] — L% (2 R).

We recall the corresponding deterministic LQ problem. Consider

d
[ax(t) = A()X() + B(tu(t), t e[z, T, (1.7)

X(1) =§,

with A(-) and B(-) being bounded (deterministic) matrix-valued functiots,£) €
[0, T) x R"andu(-) € L?(0, T; R™). The cost functional is

.
J(r,&u()) = / [(QM)X(D), x(1)) + (R(Hu(t), u(t))] dt
+(GX(T), X(T)), (1.8)

for some bounded symmetric matrix-valued functigps) and R(-), and a symmetric
matrix G (all are deterministic). The deterministic LQ problem is to minimize (1.8)
subject to (1.7). For such a problem, there is an extensive literature, see [14], [1], [6],
and [7], to mention a few, and the references cited therein (see also [17] and [18] for
infinite-dimensional cases). It is well known that (see [1], for example) for deterministic
LQ problems, a necessary condition for the value function to be finite is

Rt) >0, a.e; (1.9)

and if (1.9) holds withR(t) being degenerate on a set of positive Lebesgue measure,
the LQ problem might have no optimal control in general (see an example below).
Inspired by this, when people study stochastic LQ problems, the positive definiteness
condition for (the deterministic functionR(-) was also assumed which led to some
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theories completely parallel to the deterministic one (see [25], [9], and [3]). Recently, it
has been pointed out in [8] that condition (1.9) seems neither necessary for the infimum
of the cost functional being finite, nor for the existence of optimal controls (see an
example below). This reveals one of the significant differences between deterministic
and stochastic LQ problems. To make the situation more appealing, we present several
examples.

Example 1.1. Consider the following one-dimensional deterministic control system:

X(t) = u(t), t e[z, T],

{X(r) _teR, (1.10)

with ¢ € [0, T) and the cost functional
T

Ji(t, E;u() = —/ ut)?dt + x(T)% (1.11)
Since (1.11) has a negative weight on the tefyby a direct computation, we have

Vite, )= inf _Ji(r. £ u() = —o0,  ¥(r,§) [0, TIxR,  (1.12)

ueeU[r,T]

and, of course, no optimal control exists.

Now, we consider the following stochastic control system (compare with (1.10)):

dx(t) = u(t) dt 4 su(t) dw(t), telr, T],
{X(r) —fen, (1.13)
for somes # 0, with the cost functionals (compare with (1.11))
T
J(r, & u() =E {—/ U2 dt + x(T)? ( ff}. (1.14)

It is seen from (1.13) that the control affects the size of the noise in the system. We can
prove (see Section 5) that, for afdy > 1 with

§(2Inls| —1) > T — 1, (1.15)

Problem(LQ) admits optimal controls for any € 7[0, T], and, thus, the value function
is finite, in particular. An intuitive explanation is that even if the control is “rewarding”
in the cost functional, due to the “noise” affected by the control in the systemndttis
necessarily that “the bigger the control, the better.”

Example 1.2. Consider control system (1.10) with the cost functional

T
Jo(z, E; (") = / x(t)2dt. (1.16)
In this case, (1.9) holds with (actuallf® = 0. A direct calculation shows that
Va(r.6) = inf _ J(r.&u()) =0, ¥(r,§) €[0,T) xR. (1.17)
u(-)eU[z,T]

On the other hand, for arfy# 0, one can show that there exists no optimal control. This
control problem is known assngularLQ problem.
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Now, we consider the stochastic control system (1.13) with the cost functionals

.
J(t,&u() =E {/ x(t)?dt | ff}, (1.18)
Define
p(t) = 82 (1 _ eﬁ—w) . telo, Tl (1.19)

By Itd’s formula, we have

0= E{p(Mx(T)?| 7}
= p(r)&?

-
LE { / ((Siz o(t) — 1) X()2 + 2pHXOU) + azpa)u(t)z} dt | ff} .

Thus,

.
J(r.&;u) = E / X(t)zdt|.7-}}
T 2
=p(r>52+E{/ 82p(t) [u(t>+%} dt!ﬁ},

which implies that ProblenlLQ) admits an optimal control given by the following state
feedback form:

X(t)

and the value function is given by
V(6 =82 (1-e" )2 vz e e AT (1.21)

This example shows that a deterministic singular LQ problem may became
singularif the noise exists in the control system.

Example 1.3. Consider control system (1.10) with the cost functional

-
B = [ uwtdt-xTy, (1.22)
This is an LQ problem with the weight on the square of the terminal state being negative.
LetT > landr e (T —1, T]. Foranyu(:) € L?(r, T; R), letx(-) be the corresponding
state trajectory. Applying the Newton—Leibniz formulaxi@)?/(t +1— T) over [z, T],

we have

2 T 2
)=t | { 2xOud ___ x© }dt.
cr1-T7 ) ltr1=T  tr1-T2
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Thus,
I T x® |?
J(r, & uU()) = m +/T uct) — m dt.
Consequently, the optimal control is given by
X(t)
t)y= ———— t T 1.23
U =7 €[z T], (1.23)
and the corresponding value function is given by
Vi(7,§) = u(~>e|2{m Ja(7, & u()
_52
= m, V(T, g) € (T — 1, T] x R. (124)

However, if we consider the stochastic control system (1.13) with the cost functionals

.
J(r,&;u() = E {/ u(t)2dt — x(T)? ‘ }}}, (1.25)

then foranyd| > 1, we can prove that (z, &) is not finite foranyr < T, and, therefore,
there will be no optimal controls (see Section 2).

This example shows that a well-posed deterministic LQ problem may become “ill-
posed” if the noise gets into the control system.

From the above examples, we have seen that the stochastic LQ problem is quite
different from its deterministic counterpart, mainly due to the appearance of the control
in the diffusion. We will see more about this shortly.

The following simple example shows another interesting feature of Profl&n
Example 1.4. Consider control system (1.10) with the cost functionals

J(t, & u) = E{GX(T)?* | }. (1.26)
whereG is anF,-measurable random variable such that

0<P(G <0 <1, (1.27)

with o € [0, T). Then, for anyr > o and¢ € X, by taking

___¢ t U, T
Ue(')——T_T +8(T—‘[) G<0 € U[T, T],
we have
T 2
J(r,é;u8)=E{G<$+/ us(S)dS) Iff}

G
=E {?I(G<O)

G
fr} = S_ZI(G<0)- (128)
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Lettinge — 0, we see that

on(G > 0),

00, on(G < 0). (1.29)

Wn@={2

Hence, the value functiovi(z, &) of Problem(LQ) is finite on a subset ¢& and (1.28)—
(1.29) imply that

J(t,&;u,) = ueZi/{r[]I - J(z, &; ), as. we (G=0). (1.30)

Thus,u, is “partially” optimal.

From this example, we see that when the coefficients are allowed to be random, the
situation could be very rich.

The rest of this paper is organized as follows. In Section 2, we introduce some
basic notions and state the main results of this paper. In Section 3 we use functional
analysis, backward, aridr forward—backward stochastic differential equations to study
the LQ problem. A stochastic maximum principle is derived. In Section 4 we pre-
sent a necessary condition for our LQ problem to be finite. In Section 5 we briefly
discuss the case of constant coefficients via the Riccati equation. The results of
this paper set up a solid base for further study of Prob{ef@) in our forthcoming
publications.

We point out that all the results of this paper can be carried out for control systems
with multidimensional Brownian motions. For the simplicity of presentation, we restrict
ourselves to the case of one-dimensional Brownian motion.

2. Finiteness and Solvability

We letS" be the set of alin x n) symmetric matrices. Lét2 (0, T; X) (respCx([0, T];

X)) be the set of alK-valued{F };~o-adapted bounded (resp. bounded continuous) pro-
cesses, and ldt% (Q2; X) be the set of alX-valuedF7-measurable bounded random
variables, whereX could beR", R"™", S", etc. Also, we recall, from Section 1 that

X, £ L%(Q; R™) foranytr € 7[0, T], andAlo, 7] = U,eﬂ”][{r} x X;]. We denote

X[z, T] 2 sz(r, T; R"), the set of alR"-valued{.F; };~o-adapted square integrable pro-
cesses overt] T].
We introduce the following basic assumptions:

(S) Let

A, C e LE(O, T;R™M), B e LE(O, T; R™™),
D € Cx([0, T]: R™™),

Qe Cx([0,TL; SN, Re Cx([0, T]; 8™,
G e LE (8.

2.1)

We introduce the following definitions.
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Definition 2.1. Problem(LQ) is said to be
() partially finiteat(z, &) € A[O, T]if
P(V(z,§) > —o0) > 0; (2.2)
(i) (uniquely partially solvableat(z, £) € A[O, T]ifthere exists a (unique) control
u(-) € U[r, T] such that
J(t,&;0) =V (1, §), as. we (V(,&) > —0). (2.3)

In case (ii), controli(-) is called gpartially optimal contro| the corresponding(-)
is called apartially optimal state procesand (X(-), U(-)) is called apartially optimal
pair.

It is clear that (ii) implies (i), and the converse seems untrue. If one has
P(V(r, £) > —oo) =1, (2.4)

we omit the word “partial” in the above three notions.

If, for T € 7[0, T], Problem(LQ) is finite (resp. (uniquely) solvable) at alt, &)
with& € X, we say that ProblertL Q) isfinite(resp. (iniquely solvablg atz. If Problem
(LQ) is finite (resp. (uniquely) solvable) at alle 770, T], we say that ProbleniLQ)
is finite (resp. (iniquely solvablg.

The first main result of this paper is the following:

Theorem 2.2. Let(S) hold. Suppose ProblerlLQ) is partially finite at soméz, &) €
AJO, T). Then

R(T) + D(T)'GD(T) > 0, as. we (V(r,&) > —00). (2.5)

In the case thaR, D, andG are deterministic, (2.5) is equivalent to
R+ D'GD > 0. (2.6)

From this, we see the role played by the appearance of the control in the diffusion (of
the state equation). Whed = 0, we recover the well-known condition (see (1.9)) for
the deterministic LQ problem. Note that in Example 1.3, whgn- 1,

R(T)+D(M'GD(T)=1-6°<0.

Thus, (2.6) is violated an¥f (, £) must be equal te-co, as we claimed in Section 1.
From (2.5), we also see that @ is positive andD # 0, R is allowed to be a little
negative.

Next, we introduce the following stochastic differential equation:

{dp(t) = —[ATp®) + CTq®) + y®ldt+qt) dw(t),  te[r, T],
p(T) =n € &7.

This is a terminal value problem. Heng) € X[r, T] andn € X7. We are looking for
a pair of{#;}i>p-adapted processé€g(-), q(-)), called anadapted solutionsatisfying
(2.7). Equation (2.7) is called lmackward stochastic differential equatigBSDE, for
short). The following is known (see [23]).

2.7)
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Proposition 2.3. For any W-) € X[r, T] andn € Xy, there exists a unique adapted
solution(p(-), q(-)) to (3.10) satisfying

T T
E ( sup |p<s>|2+f |q(s)|2ds> <KE (|n|2+/ |y(s>|2ds),
t t

t<s<T

vt € [0, T]. (2.8)

Equation (2.7) plays an interesting role in the next section.
To state our second main result, we need to introduce the following stochastic
differential equation, which is closely related to (2.7):

dx(t) = [Ax(t) + Bu(t)] dt + [Cx(t) + Du(t)] dw(t),
dp(t) = —[AT pt) + CTq(t) + Qx(®)] dt + q(t) dw(t), (2.9)
X(t)=¢&  p(T)=Gx(T).

Such a system is calledfarward—backward stochastic differential equati(FBSDE,
for short) since the equation fot(-) is forward (meaning that it is an initial value
problem, whichisto be solved forwardly) and the equatiorpfey (andq(-)) isbackward
(meaning that it is a terminal value problem, which is to be solved backwardly). For
given (¢, u(-)) € X; x U[r, T], an adapted solutiorof (2.9) is a triple of{Fi}i>o-
adapted process€xs(-), p(-), q(-)) satisfying (2.9). It is clear that (2.9) is decoupled.
Thus, for any(&, u(-)) € X, x U[z, T], we can first solve the forward equation fof)
and then solve the backward equation fp«-), q(-)). Hence, by Proposition 2.3, for
any (&, u(-)) € X; x U[t, T], there exists a unique adapted solut{@g-), p(-), q(-)) to
(2.9). See [19]-[21], [26], and [27] for more information concerning the general theory
of FBSDEs.

Our second main result of this paper is the following.

Theorem 2.4. Let (S) hold. Then Problem(LQ) is (uniquely partially solvable at
(1, &) € A[O, T]with a(the) partially optimal pair(X(-), t(-)) ifand only if the following
FBSDE

dx(t) = [AX(t) + Bu(t)] dt + [CX(t) + Du(t)] dw(t),
dp(t) = —[ATP() + CTa(t) + QX(t)] dt + g(t) dw(t), (2.10)
X(7) =&, P(T) = GX(T),

admits a(uniqué adapted solutiorX(-), P(-), g(-)) such that
low.e [RUC) + BTP() + DTG()] =0, in LZ(z, T; R, (2.11)
and, for any u-) € U[r, T], the unique adapted solutiax(-), p(-), q(-)) of (2.9) with
& = O satisfies
T
E {/ (Ru(t) + BT p(t) + DTq(t), u(t)) dt | ]-"T} >0,
as. we Q(t,é§). (2.12)

In addition, if Q(r, &) = Qand R e L%(0, T; S™), then an(the) optimal control
u(-) admits a representation

ut) = —ROYBOTPM®) +CH)TqM)],  telr, T] (2.13)
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The above theorem is a version of tstechastic maximum principisee [3]-[5],
[12], [24], and [28]) for ProblemL(Q), in which (2.10) is the Hamiltonian system and
(2.11) is adirect consequence of the maximum condition. Condition (2.12) makes (2.10)—
(2.11) sufficient for the paifx(-), X(-)) to be optimal.

3. Approach by Functional Analysis and FBSDEs

In this section we use functional analysis and FBSDESs to approach Prgb@mAt
end of this section, Theorem 2.4 is proved.

Since the state equation is linear and the cost functional is quadrak¢)nu(-)),
the cost functional (z, &; u(-)) is quadratic in&, u(-)) (t is a parameter). Our first goal
is to representl(z, &; u(-)) explicitly as a bilinear form in(&, u(-)). To this end, we
introduce the following:

{d@(t) = Ad(t)dt + CO(t) dw(t), t >0, (3.1)

d0O) = 1.

Then it is known that (see [2], for exampl&)(t)~! exists for allt > 0 satisfying the
following:

-1_ “1Irp _ 2 . -1
{dd)(t) =—d(t) A= Cdt — &) 'C dw(t), t >0, (3.2)

o0 t=1.

and the solutiorx(-) of (1.1) can be written as follows:
t
X(t) = dM)D(r) " + d)(t)f ®(s)"}(B — CD)u(s)ds

t
+<I>(t)/ ®(s)"1Du(s) dw(s), t ez, T]. (3.3)

By the Burkholder—Davis—Gundy inequality (see [15]), we have

t
E{ sup|x<s>|2!f,} < KE{|&'|Z+/ |u(s>|2ds\f,},
1'535'[ T

vt e[r,T], a.s. (3.4)

Now, we define the following operators:

(L:w)() = 2() / ®(s)"*(B— CD)u(s)ds

+ @(.)/' ®(s)"1Du(s) dw(s), (3.5)

Cou= L. -
(SHO =PSB, SE = dTMd() .

Clearly, for anyr € T[0, T],

{LT; Ut Tl - X[r. Tl LU, T] - Ay, (3.6)

S[: XT_)X[TvT]a S[ X‘[—)XTv
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and all are bounded linear operators (by (3.4)). We now want to find the bounded linear
operators

L X[r. T] > U[r. T, L& X —> Uz, 7],

S X[r, T] - AL, S Xt - A, 8.7)
such that
T T
E {/ ((L:uy(), y(t)) dt | fr} =E {/ (), (L¥y)(®) dt | fr} ,
[T ’ (3.8)
E {/ (S&)®), yt) dt | fr} =E{(&. Sy | =},
i) eU[r, T, yO) e X[r,T], £ed,,
and
— T o~
E{(L.un) | F}=E {/ (u, (Lym () dt | fr}
—~ —~ 3.9
E{(S&n | -} =E{E Sn) | 7}, (39
VU(')GU[T,T], éeXr’ neE xT.

In the above, we have uséd -) as inner products in different Euclidean spaces, which
can be identified from the context.

Note that the operators in (3.7) satisfying (3.8)—(3.9)r#ormal adjoint of those
in (3.5). For example, the formal adjoint 8f is [®(T)®(r)~1]" which maps fromYy
to At (notto X;) in general. A similar situation happens for the other three operators in
(3.5). To find the operators (3.7) satisfying (3.8)—(3.9), we need to use BSDE (2.7) and
Proposition 2.3. We have the following result.

Proposition 3.1.

(i) Forany W) € X[z, T], let(po(-), qo(-)) € X[z, T] x X[z, T] be the adapted
solution of(2.7)with » = 0. Define

* _nT T
{(Lfy)(t)— B 'po(H) + D o), telr,T] (3.10)
Sy = po(7).
Then B: X[r, T] - U[zr, T]and §: X[r, T] — X, are boundegdsatisfying
(3.9).

(i) Foranyn € X7, let (p1(+), qi(-)) € X[z, T] x X[z, T] be the solution 0f2.7)
with y(-) = 0. Define

S (3.11)

Crp) = B put) + DTqu(t),  telrn Tl
Sin = pu(v).

ThenL*: Xr — U[r, T]andS: X1 — X, are boundegsatisfying(3.9).
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Proof. For any¢ € &;, n € At, y(-) € X[z, T], andu(-) € U[z, T], let x(-) and
(p(+), g(-)) be the solutions of (1.1) and (2.7), respectively. By (2.8), all the operators
defined in (3.10) and (3.11) are bounded. Next, applyin fSrmula to(x(-), p(-)),

we obtain

<X(T)7 77) - <§’ p(T)>
T T
=/ [(u(), BT p(t) + DTq(t)) — (x(t), y(t))] dt +f [ ]dw(®).
Using (3.3) and (3.5), and taking conditional expectation, one has:

E{(S&+L.u,n) — (& p@) | F)

-
=E {/ [(u®), BT p(t) + D q(t))

— ((SH® + (L), yv))] dt| ]:r}- (3.12)

Then, in (3.12), by taking = 0 andn = 0, we obtain the first relations in (3.8); by
takingu(-) = 0 andn = 0, we obtain the second relations in (3.8); by taking 0 and
y(-) = 0, we obtain the first relations in (3.9); and by taking) = 0 andy(-) = 0, we
obtain the second relations in (3.9). O

By the above result, we obtain the following representation for the cost functional
(1.2):

J(z, §:u()) = E{(Q(Sfé* + L), S+ L-u) + (Ru u)

+(GSE+Lu), Se+Lu | ff}

E|((R+ L*QL; + L*GLu, u) + 2((L*QS + L*GS)&, u)
+(SQS +8GS)k.6) | 7|
2 E{<Nfu, u) + 2(H:&, u) + (M;£, &) |f,}, (3.13)

where
N,u=[R+L*QL, + L*GL,Ju,  VueU[r,T].
Hru=[SQL, + SGLJu,  Vuel[r,T],
H.& =[L:QS +L:GSle.  Veea.,
Mr€=[$Q3+SjGSr]§’ VéeXr,

and(-, -) represents the inner products in different spaces. It is clear that the operators

(3.14)

N.: U[z, T] = U[z, T], H: U, T] - A,
H.: X, — U[z, T], M. X, — X,

are all bounded.
We now look at some conditions for the (partial) finiteness and solvability of
Problem LQ).
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Theorem 3.2. Let (S) hold. Suppose ProbleniLQ) is partially finite at (z,&) €
AJ0, T]. Then

E{(N:u,u) | 7.} >0, Yuel[r,T], as. we Q(t, &), (3.15)
whereQ(r,g)é(V(r,s) > —o0). Moreover Problem (LQ) is (uniquely partially

solvable at(z, &) € A[O, T] if and only if (3.15) holds and there exists @unique
U € U[z, T] such that

loee (NT+ H.£) =0, in L%(z, T: R™). (3.16)
In this caseu is a(the) partially optimal control
Proof. It is obvious that (3.15) is necessary for Probl@r) being partially finite at
(1, &) € Alr, T]. Now, suppose ProblerLQ) is partially solvable atz, &) € Alz, T]
withU € U[z, T] being a partially optimal control. Denofe, = Q(z, &). Then, for any
u € U[z, T], we have
1
0 < —lg[I(z. & U+ eu) — (7, & U]
&
— 2lg,E {(N.U+ H.&,u) | . }. (3.17)
By takingu = —(N.U + H.&) € U[z, T]in the above, we obtain (no®g € F;)
E{lgIN.U+ H.&?| 7} =0, as. (3.18)

Then (3.16) follows.
Conversely, suppose (3.15) holds and for saneel([z, T], (3.16) holds. Then, for
anyu € Uz, T], we have

lo, (I(r, &;u) — I(7,§; )}
= Ig,E {(N.u, u) + 2(H.&, u) — (N U, TU) — 2(H.&,T) | 7}
= E{lg,(N:(u—T),u—1) | 7} > 0. (3.19)

Hence is partially optimal and ProblerfLQ) is partially solvable.
The uniqueness part is clear. O

Using Proposition 3.1, we can easily prove the following result, which gives a represen-
tation of operatordN,, H*, H,, andM; defined in (3.14) in terms of adapted solutions
of (2.9).

Proposition 3.3.
() Forany w-) € U[t, T], let (Xo(-), po(-), do(-)) be the unique adapted solution
of (2.9)with& = 0. Then

{(Nru)(t) = Rut) + B po(t) + DTqo(t),  te[z, T, (3.20)

HT*U = po(‘E).
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(i) Foranyé e X;,let (x1(-), p1(+), g1(+)) be the unique adapted solution(@f9)
with u(-) = 0. Then

(H6)®) = BTpi(t) + DTqut),  te[r, T],
{Mrs = p2). (321)

(i) Forany(&,u(-)) € X, x U[z, T], let (x(-), p(-), q(-)) be the unique adapted
solution of(2.9). Then

{(Nfu><t>+<Hfs>(t>= RUD+BTp®+DTq®).  te[r. Tl 5,55

M:& + HXu=p(1).

Combining Theorem 3.2 and Proposition 3.3, we obtain a proof of Theorem 2.4.
Now, we take a closer look at the case

R()™ e LE(O,T;S™). (3.23)

Note that we do not require the nonnegativityR(t) here. When (3.23) holds, (2.10)
and (2.11) with2(z, £) = Q is equivalent to the following:

dx(t) = [AX(t) — BR™*BTp(t) — BRIDTqG(t)] dt
+[CX(t) — DR™IBTp(t) — DRIDTG(t)] dw(t),

dp(t) = [-Qx(t) — ATp(t) — CTq®)] dt + q(t) dw(s),
X(t) =&, P(T)=GX(T),

(3.24)

This is acoupledlinear FBSDE. From Theorem 2.4, we have the following result.

Corollary 3.4. Let(S)hold and(2.12) hold withQ(z, &) = Q. Then Problem{LQ) is
(uniquely solvable af(z, &) if and only if the FBSDE3.24) admits a(unique adapted
solution(X(-), P(-), G(-)). In this casean (the) optimal control is given by2.13).

The above result gives an intrinsic relation between the solvability of Problem
(LQ) and FBSDE (3.24). In [27], equations of form (3.24) were studied directly, where
some necessary and sufficient conditions were obtained for the solvability of such linear
FBSDEs.

Corollary 3.5. Let(S)hold. Suppose further that for somec 710, T),

{G >0, as. weQ, (3.25)

Q) >0, R(t) >0, Vte[r,T], as weQ.

Then(3.15)holds withQ2 (7, £) = Q. In addition, if (3.23)also holdsthen the operator
N.;: U[z, T] — U[z, T] is invertible Problem(LQ) is uniquely solvable at, and for
any¢ € X,, the unique optimal control is given by

U= —N1H,¢. (3.26)

In this casethe FBSDE3.24) also admits a unique adapted solutiér(-), p(-), G(-))
and the optimal control also admits representat{@rnl 3).
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Proof. In the present case, it is easy to see that the opekatot/[z, T] — Uz, T]
is invertible. Then the rest of the conclusions follows. O

We refer to the case that (S), (3.23), and (3.25) hold asdhgentional case

By Corollary 3.5, if (3.25) holds, (3.15) (witf2 (z, £) = ) or, equivalently, (2.12)
automatically hold. Thus, when (3.25) holds, (2.10)—(2.11) completely characterize the
(partially) optimal paitX(-), U(-)). This covers the conventional deterministic case com-
pletely in this context.

We now look at some further properties of the value functions.

Theorem 3.6. Let Problem(LQ) be solvable att € 7[0, T]. Then there exists a
P, € L (R2; 8"), such that

V(t,§) = (P:£,§), VE € &:. (3.27)

From (3.13), we know that there exists a self-adjoint operBtorX, — X, satis-
fying (3.27). The above result asserts that the opetaan actually be represented by
a boundedF,-measurabl&s"-valued random variable.

To prove our result, we need the following seemingly obvious result.

Lemma 3.7. Supposé — V(zt, &) is continuousThen for any (z, &) € A[O, T],
V(t, X)(a))|x=é(w) =V(1, &) (w), as. weQ. (3.28)

Proof. First, for any(x(-), u(-)) € X[0, T] x U[0, T], we have a unique adapted
solution(y(-), z(-)) to the following BSDE:

{dY(t) = —[(Qx(), x(1)) + (Ru(t), ut))] dt + z(t) dw(t), te[0,T],

y(T) = (Gx(T), X(T)),
and, for anyr € 70, T],

y(t) = y(t; X(-), u(-)) = I(z, X(7); U(-)). (3.30)
Now, let(r, &) € A[O, T] be fixed. For any > 0, we can find a partitiofF®, i > 1} C
F; of @ andx’ € R", such that

£° = Z leX — &, inL% (R, (3.31)

i>1
Let x(-; 7, &, u) be the solution of (1.1) starting froftt, £) under controlu(-). Then,
multiplying |- on both sides of (1.1) (wit§ = x) and summing in > 1, using the
uniqueness of the solutions, we have

D TEXC T, U) = X(5 T, E°, ).

i>1

(3.29)

Consequently, using (3.29) and (3.30) (together with the unigqueness of the adapted
solutions to (3.29)), we have

DT d@ X ue) = I(@ 85 u)). (332)

i>1
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Therefore, by the continuity &f — V (, &), we obtain

V(z, X = lim lesV (T, x°) = lim lgeinf J(z, x%; u(
(0] HO; FV (T, %) Ho; Ryt I XU

= !@Ou(.)elzr}{m J(r,&%5u() = yLnOV(r, £°) =V(1,8).

This proves (3.28). O

Proof of Theoren3.6. First, itis clear that there exists a self-adjoint bounded operator
P.: X, — X, such that (3.27) holds. Consequenély~> V (z, &) is continuous, and,

for almost surelyw € Q, X = V(t, X)(w) is a bilinear form oriR". Thus, there exists
anS"-valued functionP (w) such that

V(, X) (@) = (P(@)Xx,X), VxeR", as. weQ. (3.33)
Then it is necessary that
P)x = (P,X)(w), V¥XxeR", as. weQ.

This implies thatP e LE (2; 8M). Now, by (3.27) (withP,: &, — &%), (3.28), and
(3.33), we have

(P@)E(®), E@)) = V(T 0@, ()
= V(1,6
= ((P:&)(w), £ (w)), as. weQ, VEedA,.

Thus,
5(a))§(a)) = (P.&)(w), as. weQ, VE&e.

This shows that we can tak® < L (€2; S") in (3.27). O

4. A Necessary Condition for the Finiteness of LQ Problems
In this section we present a proof of Theorem 2.2.

We first state the followinglynamic programming principle’hose proof is pretty
straightforward.

Lemma4.1. Forany(r,§) € A[0, T)andte 7[z, T], it holds that

V(t,&) = u(.)ierzllf[r,t] E{V(t, X(1))

t
+/ [(Qx(s), X(9)) + (Ru(s), u(s))] ds|ff}, as.
' 4.1)

The following corollary will be useful later.
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Corollary 4.2. Foranyt € 7[0,T),andte 7|z, T],

(V(z,8) > —o0)

S (] (VEtxtit.&u) >-o0),  VteT[rT] 4.2)
u(-)el[z,T]

The above result implies that if ProblechQ) is finite (resp. partially finite) at
(1,&) € A0, T),thenforany(-) € U[z, T],alongthetrajectory(-) = x(-; z, &, u(-)),
V(t, x(t)) is finite (resp. finite on the sel (r,&) > —o0)) almost surely, for any
t € T[z, T]. This fact will be useful below.

Proof of Theoren2.2. We first prove the following:

E {{{R(T) + D(T)'GD(T)]v, v) | F;} =0,
as. we(V(r,§)>—-00), YvelZ (Q:RM). (4.3)

Suppose (4.3) does not hold. Then we may finda szr(sz; R™), a constan > 0,
and some, € F, with Q, € (V(t, &) > —0), P(R2;) > 0, such that

E {([R(T) + D(T)TGD(M)]v, v) | F;} < -8, Yo € Q. (4.4)

From [23] we know that the there exists a pair ®f-valued square integrable
{Fi}i=0-adapted processéR (), A(-)) such that

+ Adw(t), tel[r,T], (4.5)

[dP = —[PA+ATP+C'PC+ AC+CTA + Q] dt
Pli=r = G.

By Itd’s formula, Burkholder—Davis—Gundy’s inequality [15], and Gronwall’s inequality,
we have

;
E{ sup |P(s)|2+/ |A(s)|?ds | }}}
t

t<s<T

< KoE{IGI?| 7}, vt e [r, T], (4.6)

for some constark, > 0, where|®|? étr[@G)T], forany® € R™".

Next, we takes € (0,1] and letr, = t V(T —¢) € T[z, T). Also, letA > 0 be
F.-measurable, time-independent, and undeterminedxjl(et be the state process of
the system (1.1) starting frois, &), under the control

Ui(t) = Ax, (D), te[r, T]. (4.7)

Then, by I18’s formula, Burkholder—Davis—Gundy'’s inequality, and Gronwall’'s inequal-
ity, we obtain (note that, is F,-measurable)

E{ sup [x¢ ()| | ff} < Kac{IE* + (o™t — )t}

T<r<t

te[r, T], as. k=1 (4.8)
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for some constant&y, > 0, independent of ande. Now, by It’s formula and (4.5),
we have (suppressirgin some of the integrands)

E

{GX (M), () | 7o}

=E {(P(rg)xi(rg), X5 (Te))
T
+/ {~(QX (9, %(9) +2:([B"P + DTPC+ DTAIX/(9), v)

+22(D"PDv, v)}ds|]—'r}.

Hence, by the definition o¥ (z, &) and (S), as well as (4.6) and (4.8), we obtain (note

0<T

— 1. < ¢ almost surely and, is F,-measurable)

.
V(.§) <E {(Gxﬁ(T),xﬁ(T)) +/ [(QX(9), X (9)) + (RLﬁ(S),Ui(S»]dS!fr}

where

—E {(P(mx;(rs),x;(rsm/ QX (9). X (9)) ds
T
+/ {2:([BTP + DTPC+ DT A]X(S), v)

+ 2%([R+ D'PDJv, v)} ds|}}}

IA

E{%|P(rg>|2+%|x§(rg>|“+||Q||oo/ 1 ()12 ds
T
+)\f {IX{(s)|* + |(PB-+C"PD+ AD)v|?} ds

;
+ )\2/ ((R+ D'PD)v, v)ds|]—}}

K K
7°E{|G|2|ff} + 7“|§|4+ | Qlloo K2l 12T

+ AT = 1)KL IEI? + A% AT = )] + Apa(e)

+ 23T — w){E[([R(T) + D(T)TGD(T)]v, v) | F: ] + pa(e)}

K (@) + AT = 1) Kal€|* + Ka[v|?A3(T — 1) + Apa(e)

FAAT - rg)[E{([R(T) + DM GD(M)v, v) | 7} + ,02(8)}, (4.9)

IA

IA

K K
K (o) = 7°E [IGP2| 7} + 7“|&|“+ 1Qllo K2l£[2T,

T
p1(e) =E {f

Te

|(PB+ CTPD+AD)v|2dS|.7-}},
1 T (4.10)
+—E {/ ([R(s) + D(5)" P(5)D(9)

p2(e) =

— R(T) = D(T)TGD(T)]v, v)ds|}}}.
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By the continuity ofR, D, andP, as well as (4.8), we see that
01(8) + p2(e) — 0O, as. weQ (¢— 0. (4.11)

Now, for anyw € 2, (on which (4.4) holds), such that (4.11) holds, we take (note that
p1(¢) is independent of > 0)

=) 2T — ) T — 7 + pu(e)] ¥
> (T—1)"%* > oo, as ¢—>0, as. weQ. (4.12)

Thenai is F,-measurable, and, as— 0,

AMT —1) =[T — . + pr(&)]¥* - 0,
AT — 1) = (T — ) T — 7 + pa(e)]?

> (T —1) Y2 > o, as. weqQ. (4.13)
E) 1T — 7 + p1(e)] Y4 < p1(e)¥* — 0,

AT — 1)
Hence, (4.9) together with (4.4) and (4.13) yields

V(t,£) < K(o) + AT — 1.)KlE|?

p1(8)
T R CR
= oo, (4.14)

K
+ 23T — 1) {72|U|ZA(T 1)+

ase — 0, almost surely o2, which is a contradiction, proving (2.5). From Corol-
lary 4.2, we know that for any € 7 (z, T), there exists § € X; such thatv (z, &) is
finite. Thus, the above proof shows that we must have

E{([R(T) + D(T)TGD(M)]v, v) | F:} = 0,
as. we (V(r,§) > —00), YvelZ (RN, (4.15)

foralltT € 7[r, T). Now, takingt = 7 v (T —¢) and sending — 0, by the continuity
of {Fi}i=0, we obtain (2.5). O

The following example shows that condition (2.5) is really only necessary.

Example 4.3. Consider the following one-dimensional control system:

dx(t) = 2x(t) dt + u(t) dw(t), t e[z, T],
{X(T) _ (4.16)
with the cost functional:
.
J(r,&;u() =E {/ u(t)?dt — x(T)? | f,}. (4.17)

Inthe currentcased = 2, B=C=Q=0,D = R=1,andG = —1. Thus,

R+ D'GD=0.
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Applying Itd’s formula to—e" ~'x(t)2, we have that

.
J@&ul)=E {f u®?1—e’Hdt—e TE?| f,} ,
Yu(-) € Y[0, T]. (4.18)

Since 1- e’ ' < Oforallt < T, Problem(LQ) is not (partially) finite at anyr, £)
A[O0, T).

Hence, in general, in order to have the solvability of Prob{&Q), we had better
assume that

R(T) + D(T)'GD(T) > &, a.s, (4.19)

which is a little stronger than (2.5).

5. A Sufficient Condition for the Solvability of LQ Problems

In this section we briefly consider a sufficient condition for the solvability of LQ prob-
lems. We discuss only the case of constant coefficientsA, &8, C, D, Q, R, G are all
constant matrices. We introduce the following terminal value problem of a differential
equation for the matrix-valued functid®(-):

Pt)=—-PtA—-ATP(t)— Q+[Pt)B+CTP(t)D]
x [R+ DTP(t)D] BT P(t) + DTP(t)C], telr, T], (5.1)
P(T) =G,

wheret € [0, T). The above is called thRiccati equationfor Problem(LQ) (with
constant coefficients). In the present case, condition (4.19) can be replaced by

R+D'GD > 0. (5.2)

Then one can always find some e [0, T), such that (5.1) admits a solutidd(-)
satisfying

R+ D'Pt)D > 0, t e[z, T]. (5.3)

The following result can be found in [8].

Proposition 5.1. Supposgor t € [0, T), there exists a solution @: [z, T] - S"to
(5.1) satisfying(5.3). Then Problem(LQ) is solvable atr with the optimal controti(-)
being of state feedback form

ut) = —[R+ DTP@®)D] BT P(t) + DT P(t)C]x(1), telr, T], (5.4)
and with the value function represented by

V(z,§) = (P(1)§,§), VE € x:. (5.5)
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From the above result, we see that the interval on which the Riccati equation (5.1)
admits a solutiorP(-) satisfying condition (5.3) is closely related to the solvability of
Problem [Q). We now define

IRé{r €[0,T) | (5.1) admits a solutiorP(-) satisfying (5.3),

Is={r [0, T) |Vt € [r, T]. & € &, (5.6)
JU e UL, T], V(t, &) = I(t, & T(C))},

le2{z €[0,T) |Vt e[r, T], & € &, V(r,&) > —o0, as).
By Proposition 5.1, we see thigt C Is C |¢. Now, we define
o =inflg. (5.7)

Thus, (o, T] is the maximum interval on which (5.1) admits a solutiBg) such that
(5.3) holds on(o, T]. From the definition ob, and Proposition 5.1, we see that for any
T € (o, T], Problem(LQ) is solvable at. We would like to know the solvability andr
finiteness of ProblenLQ) ato.

Theorem 5.2. Letallthe coefficients be constants and®®) hold. Then the following
are equivalent

(i) o € lf.
(i) There exists a sequenegg| o and B, € 8" such that

kIi_)rr;o P(t) = P,. (5.8)
In this caseit is necessary that
V(o, &) = (P,&,8), as. weQ, VEeldl,. (5.9
(iii) There exists a Pe S" such that
f”?l P(x) = P,. (5.10)
Proof. (iii) = (ii) The implication of (5.10) to (5.8) is clear. The proof of (5.9) is

contained in the following.
(ii) = (i) For any¢ € X, < X,,, by Proposition 5.1,

V(. §) = (P(w)é. &), vk > 1

Thus, for anyu(-) € U[o, T], we have (notem|[rk 7 € Ulw. T1)

‘J(Tkv év u|[rk.T]) 2 V(Tk’ S) g (PUS’ S)a
which yields
J(o,§;:u() = (P§,§), vu() € U[o, T]. (5.11)
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Henceo < |s. We note that in this case (by Theorem 3.6)

V(o,8) = (P,£,8) > (P,6,8), VEeX,, (5.12)

for someP, e L% (2; ™). On the other hand, by the dynamic programming principle
(Lemma 4.1), and taking(-) = 0, we have

Tk

V(e.§) <E {V(Tkvx(fk)) +[ (QX(S),X(S)>dS|fa} - (R:§,§).  (5.13)

Thus, combining (5.12)—(5.13), we see that

Pt =Pk,  VEed,
which leads to the first equality in (5.9). The second relation in (5.9) can be proved
similarly.

(i) = (iii) Suppose ProbleniLQ) is finite ato. Take anyt € X,. Let x(-) be the
state process starting fro¢a, £) under the controli(-) = 0. Then

X(t) = dM)d(0) EL Dt 0)E, telo Tl
where® (-) is the solution of
do(t) = Ad(t) dt + CP(t) dw(t), D0 = 1.
Itis known that
E[|c1>(t,a)—1| }fg} <Ko, Vte[o,T], as. weQ, (5.14)

for some absolute constal > 0. A direct computation shows that the solutiBi)
of (5.1) satisfies the following:

-
P(t) = A T-HGeAT-D) +/ eAT(s—t)QeA(s—t)dS

t

.
- / e’ ¢Y[PB+ CTPD]J[R+ D"PD]}[B"P + D' PCle** ! ds
t

T
< eAT(T—t)GeA(T—t)+f eAT(S—t)QeA(S—t)dséﬁ(t). (5.15)
t

On the other hand, by Theorem 3.6, there exisfs & LT (S 8™ such that the first
equality in (5.12) holds. Thus, by the dynamic programming principle again, we obtain
that, for anyt € (o, T],

~ t
(Ps§.8) =V (0.§) <E {V(t, X(1)) +/ (QX(S),X(S))dS|fa}

t
- E{<P(t)x(t>,x<t>>+/ <Qx(s),x<s>>ds\fq}
E {(POX(), (V) + Kolt 2t - 0) | £} < Kolé .

IA
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Consequently,

EN(®(t, o) PP, 0)&, &) < KoE[£]?, V&€ e X,, Vtelo,T], (5.16)
which, together with (5.14), implies that

IP®)] < Ko, vt € [0, T]. (5.17)

Then there exists a sequengel o, and someP, € S", such that (5.8) holds. Thus,
(5.9) has to be true, and the whole sequence has to be convergent. O

The following example shows that ¢ | is possible.

Example5.3. Lethn=m=1,A=D=Q=0,B=C=R=1,G=-1,and
T > 1. Then (5.1) becomes

Pty=P®?2  te(oT],
{P(T) -1 (5.18)

A direct computation gives us that
Pt) = te(,T], o=T-1 (5.19)

T-t—-1
Thus,P(t) — —oo ast | o, whereas (5.3), which is simpR > 0, remains true.

Now we return to Example 1.1. The state equation is (1.13) and the cost functional
is (1.14). We assume (1.15). In this case, the Riccati equation reads(rote = 1,
A=C=Q=0,B=G=1,R=-1,andD =)

. P@®)?
[P(t)—m, t<T,

P(T) = 1.

(5.20)

A direct computation shows that the solutiBr-) satisfies

P(t) te (o, T].
82P(t) > 1,

[Szln P(t) + 1 =t+1-T,

We see easily that the defined by (5.6) satisfie¥ P (o) = 1 and thus
?(1-2In8) =0 +1-T

or

o=T-1-6%2In|s| — 1).

Hence, (1.15) ensures that< 0, which guarantees the solvability of Probleb®) at
all t € 710, T], by Proposition 5.1.
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To conclude this paper, we make the following remark. The Riccati equation for
Problem(LQ) with general random coefficients takes the following form:

dP= —{PA+ ATP+CTPC+ AC+CTA+Q

— (PB+C"PD+ AD)(R+ DTPD) !

x (BTP 4+ DTPC+ DTA)}dt + A dw(t), telr, T,  (5.21)
P(M) =G,
det[R(t) + D(t)T P(T)D(t)] # 0, te[r,T], as. weQ.

This is again a BSDE, an adapted solution of which is a (fjrA) of {F;}i-0-adapted
S"-valued processes. Once an adapted solut®yn) is obtained, one can construct

an optimal state feedback control (see [8]). However, in (5.21) we note that the drift
term dependg. quadratically, and, moreover, it contains some possible singularity in
Thus, the general solvability for such a BSDE remains open. Some results concerning
the locajglobal solvability of (5.21) under certain conditions have been obtained by the
authors and will be published elsewhere.
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