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1. Introduction

This work is concerned with the controllability of the equation

yt (x, t)−1y(x, t)+ f (x, t, y(x, t)) = m(x)u(x, t),
∀(x, t) ∈ Q = Ä× (0, T),

y(x, t) = 0, ∀(x, t) ∈ 6 = ∂Ä× (0, T),
y(x,0) = y0(x), ∀x ∈ Ä,

(1.1)

whereÄ is an open and bounded subset ofRn with a smooth boundary∂Ä andm is the
characteristic function of an open subsetω ⊂ Ä. Here1 is the Laplace operator with
respect tox.

The function f : Q× R→ R is continuous iny, measurable in(x, t), and satisfies
the following conditions:

f (x, t, r )r ≥ −µ0r
2, ∀r ∈ R, (x, t) ∈ Q, (1.2)

| f (x, t, r )| ≤ L|r |(η(|r |)+ | f0(x)|), ∀r ∈ R, (x, t) ∈ Q. (1.3)
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Government.
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HereL is a positive constant,µ0 ≥ 0, f0 ∈ Ln(Ä), andη is a nonnegative, continuous,
and increasing function.

We asume first that

η(r ) ≤ C(|r |a + 1), ∀r ∈ R, (1.4)

where

a ∈ (0,∞) if n = 1,2; a = 1

n− 2
if n > 2.

We set

ρ(r ) = sup

((∫
Ä

(η(|w(x)|))2n dx

)1/2n

; ‖w‖Lq(Ä) ≤ r

)
, (1.5)

where

q = 2n

n− 2
if n > 2; q ∈ [2,∞) if n = 2; q = ∞ if n = 1. (1.6)

The main results of this paper, Theorems 1 and 2 below, amount to saying that system
(1.1) is null controllable for ally0 ∈ H1

0 (Ä) satisfying the condition

‖y0‖H1
0 (Ä)
≤ C sup(re−µρ(r ); r > 0) (1.7)

and respectively for ally0 ∈ Yn(Ä) = W2
q(n)(Ä) ∩ H1

0 (Ä) such that

‖y0‖Yn(Ä) ≤ C sup(re−µη
2/3(r ); r > 0) (1.7)′

if f0 ∈ L∞(Ä) and 1≤ n < 6. Hereµ = µ(L , f0, T),C is independent ofL and f0,
and

n+ 2

2
< q(n) ≤ 2(n+ 2)

n− 2
if n ≥ 2; q(n) = 2 if n = 1. (1.8)

(In the latter case condition (1.4) is no longer necessary.) These theorems provide an
estimate for the null controllability radius of system (1.1). The internal controllability
implies the boundary controllability of (1.1) (Theorem 3) as well the controllability of
the stationary solutions.

Null controllability of the linear heat equation was established by Lebeau and Rob-
biano [14] and was extended later to the sublinear heat equations, i.e., forη = 0,
by Fursikov and Imanuvilov [7]). Null controllability for Lipschitzian nonlinearitiesf
involving gradient terms was studied recently in [6] and [10]. Of course null control-
lability does not imply the controllability of an arbitrary smooth statey1. However, if
f is Lipschitzian it turns out (see [3] for (1.1) and [6] and [18] for nonlinearities with
gradient terms) that system (1.1) is approximately controllable, i.e., the set of final states
yu(T) of (1.1) is dense inL2(Ä). A stronger version of this property (finite-approximate
controllability) was studied by Zuazua [17].

Null controllability of superlinear control systems of the form (1.1) was recently
proved by Fernandez-Cara [4] for nonlinearities of the formf (y) = g(y)y where
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g(y)(log(|y|+1))−1→ 0 as|y| → ∞. The present approach is somewhat different and
refers to more general nonlinearitiesf of accretive type and initial datay0. In particular,
if 1 ≤ n < 6 one derives from Theorem 2 the null controllability of (1.1) forf = g(y)y
whereg(y)(log(|y| + 1))−3/2→ 0 as|y| → ∞ (Corollary 1.)

In general the best one can expect is local controllability [7] but we do not address
this problem here.

The controllability problem for semilinear hyperbolic equations was previously
studied in [16] (see also [13]). There is an extensive literature on the controllability of
linear control systems of hyperbolic type and we refer the reader to the books by Lions
[15] and Komornik [11] for general results and specific methods.

The paper is organized as follows. The main results, Theorems 1 and 2, are stated in
Section 2 and proved in Section 3 (respectively Section 5) via the infinite-dimensional
Kakutani fixed-point theorem (see, e.g., p. 310 of [2]) The proof relies on the Carleman
inequality for the backward adjoint linearized system associated with (1.1), which is
proved in Section 4. In fact, a large part of this paper is devoted to establishing a sharp
estimate of the constant which appears on the right-hand side of the Carleman inequality
proved earlier by Fursikov and Imanuvilov [7] (see also [9]).

In what follows we use the standard notations for the Sobolev spacesHk(Ä), H1
0 (Ä)

and theL p spaces onÄ andQ, 1 ≤ p ≤ ∞, with the norm denoted‖ · ‖p. Moreover,
we set

W2
p(Ä) = {y ∈ L p(Ä); Ds

xi
y ∈ L p(Ä); s= 1,2; i = 1, . . . ,n}, 2≤ p ≤ ∞,

W1,2([0, T ]; L2(Ä)) =
{

y ∈ L2(0, T; L2(Ä)); dy

dt
∈ L2(0, T; L2(Ä))

}
,

W2,1
p (Q) = {y ∈ Lq(Q); Dr

t Ds
xi

y ∈ L p(Q);2r + s ≤ 2; i = 1, . . . ,n},
wheredy/dt andDr

t Ds
x y are taken in the sense of distributions.

We setH2,1(Q) = W2,1
2 (Q) ∩ L2(0, T; H1

0 (Ä)).

2. The Main Results

Let y0 ∈ H1
0 (Ä) be arbitrary but fixed. The control system (1.1) is said to benull con-

trollable or exactly null controllableif there areu ∈ L2(Q) andy ∈ L2(0, T; H1
0 (Ä) ∩

H2(Ä)) ∩W1,2([0, T ]; L2(Ä)) which satisfy (1.1) and

y(x, T) = 0, a.e. x ∈ Ä.
Now we are ready to formulate the main results of this paper.

Theorem 1. Assume that conditions(1.2)–(1.4)hold.Then there isµ=µ(L , ‖ f0‖n, T)
bounded with respect to L and‖ f0‖n such that for all y0 ∈ H1

0 (Ä) satisfying(1.7)system
(1.1) is exactly null controllable. In particular, if

lim sup
r→∞

(re−µρ(r )) = +∞, ∀µ > 0, (2.1)

then system(1.1) is exactly null controllable for all y0 ∈ H1
0 (Ä).
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Theorem 2. Assume that conditions(1.2) and (1.3)hold and that f0 ∈ L∞(Ä). Then
for 1≤ n < 6 system(1.1) is null controllable for all y0 ∈ Yn(Ä) = W2

q(n)(Ä)∩H1
0 (Ä),

satisfying(1.7)′. If

lim sup
r→∞

(re−µη
2/3(r )) = +∞, ∀µ > 0, (2.1)′

then system(1.1) is exactly null controllable for all y0 ∈ Yn(Ä).

Now we derive some simple consequences of Theorem 1. First notice that since
ρ(r ) ≤ C(r a+ 1), it follows by Theorem 1 that system (1.1) is exactly null controllable
for all y0 ∈ H1

0 (Ä) satisfying the condition

‖y0‖H1
0 (Ä)
≤ 1

(νa)1/a
, (2.2)

whereν = ν(L , ‖ f0‖n, T).

Corollary 1. Assume that f0 ∈ Ln(Ä), f satisfies(1.2),and

| f (x, t, r )| ≤ L|r |(ϕ(|r |) log(|r | + 1)+ | f0(x)|), ∀(x, t, r ) ∈ Q× R, (2.3)

whereϕ is a continuous function such thatlims→∞ ϕ(s) = 0.Then system(1.1)is exactly
null controllable for all y0 ∈ H1

0 (Ä). If y0 ∈ Yn(Ä),1≤ n < 6, and f0 ∈ L∞(Ä), then
condition(2.3)can be weakened to

| f (x, t, r )|≤ L|r |(ϕ(|r |)(log(|r |+1))3/2+| f0(x)|), ∀(x, t, r )∈Q×R. (2.3)′

Proof of Corollary1. By the mollifiers technique it follows that there isC > 0 such
thatSq(r ) ⊂ S(r ) whereS(r ) = {w ∈ C(Ä); ‖w‖∞ ≤ Cr}, S(r ) is the closure ofS(r )
in Lq(Ä) andSq(r ) = {w ∈ Lq(Ä); ‖w‖q ≤ r }. We have, therefore,

ρ(r ) ≤ L sup

((∫
Ä

(ϕ(|w|)(log(|w| + 1)))2n dx

)1/2n

;w ∈ S(r )

)
≤ C(ϕ(θr ) log(|θr | + 1)), ∀r > 0, (2.4)

where 0≤ θr ≤ Cr . Hence condition (2.1) is satisfied and we conclude the proof by
invoking Theorem 1.

If y0 ∈ Yn(Ä) and f0 ∈ L∞(Ä), then(2.3)′ implies(2.1)′.

Remark 1. It follows by (2.4) that if f satisfies condition (1.2) and

| f (x, t, r )| ≤ |r |(L log(|r | + 1)+ | f0(x)|), ∀(x, t, r ) ∈ Q× R,

then for L sufficiently small but independent ofy0 condition (2.1) is satisfied and so
system (1.1) is exactly null controllable for ally0 ∈ H1

0 (Ä).
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Remark 2. The first part of Corollary 1, i.e., null controllability under condition (2.3)
was previously proved by Fernandez-Cara [4] forL∞ smooth initial datay0. In general
for nonlinearitiesf with polynomial growth of orderp > 1, exact controllability may
fail (see the examples given in [7], [8], and [5]). Moreover, analysis of the proofs of
Theorems 1 and 2 seems to indicate that in general one cannot expect null controllability
for functions f which grow to infinity faster thanr (log(r+ 1))α whereα > 3

2.

Theorem 3. Under assumptions(1.2)–(1.4),there isµ > 0 such that, for each y0 ∈
H1(Ä) satisfying the condition

‖y0‖H1(Ä) ≤ 2(µ),

there arev ∈ L2(6) and y∈ H2,1(Q) such that

yt −1y+ f (y) = 0 in Q,
y = v in 6,
y(x,0) = y0(x) in Ä,
y(x, T) = 0 in Ä,

(2.5)

with the usual modification if y0 ∈ Yn(Ä),1 ≤ n < 6, and f0 ∈ L∞(Ä). Moreover, the
conclusions of Corollary1 remain valid in the present situation.

Here2 is the function defined by the right-hand side of (1.7)

Proof of Theorem3. One applies Theorem 1 (respectively Theorem 2) onÄ̃ ⊃ Ä

whereω = Ä̃\Ä and ỹ0 (the initial data) is an extension ofy0 to H1
0 (Ä̃). If ỹ is a cor-

responding solution to the controllability problem provided by Theorem 1 (respectively
by Theorem 2), then by the trace theorem we see that

y = ỹ|Ä and v = ỹ|∂Ä

satisfy (2.5).

Remark 3. The above results also imply the exact controllability of the stationary
solutions to (1.1). The functiony1 ∈ H1

0 (Ä) is said to be astationary solutionto system
(1.1) if there isw ∈ L2(Ä) such that

−1y1(x)+ f (x, y1(x)) = m(x)w(x), x ∈ Ä.

We note also that these theorems extend to mutivalued functionsf of the form
f (r ) = f0(r ) + cr where f0 is a maximal monotone graph such that its minimal
sectionf 0

0 satisfies conditions (1.2)–(1.4). To this end one applies Theorem 1 to function
( f0)ε(r )+ cr and letsε tend to zero. Here( f0)ε is the Yosida approximation off0.



78 V. Barbu

3. Proof of Theorem 1

We fix y0 ∈ H1
0 (Ä) and define the set

K = {w ∈ L∞(0, T; Lq(Ä)); ‖w(t)‖q ≤ M, a.e.t ∈ (0, T)}, (3.1)

whereM is a positive constant to be defined later and

q = 2n

n− 2
if n > 2; q ∈ (2,∞) if n = 2; q = ∞ if n = 1.

We set

g(x, t, r ) = f (x, t, r )

r
for |r | > 0; g(x, t,0) = lim

r→0
g(x, t, r ).

Without loss of generality we may assume that the above limit exists and sog(x, t, r ) is
continuous inr . Otherwise we approximatef by a family of smooth functions inr and
tend to limit in the corresponding controllability problem.

Forw ∈ K consider the linear system

yt −1y+ g(x, t, w)y = mu in Q,
y(x,0) = y0(x) in Ä,
y = 0 in6.

(3.2)

Lemma 1 below is the main ingredient of the proof.

Lemma 1. For each y0 ∈ H1
0 (Ä) and w ∈ K there are y ∈ L2(0, T; H1

0 (Ä) ∩
H2(Ä)) ∩W1,2([0, T; L2(Ä)) and u∈ L2(Q) which satisfy(3.2)and

y(x, T) = 0, a.e. x ∈ Ä, (3.3)∫
Q

mu2 dx dt≤ γeµρ(M)‖y0‖22, (3.4)

whereµ = µ(L , ‖ f0‖n) > 0 and γ are independent of y0, w,M and bounded with
respect to L and‖ f0‖n.

Proof. We note first that for allw ∈ K , u ∈ L2(Q), and y0 ∈ H1
0 (Ä), (3.2) has a

unique solution

y = yu ∈ L2(0, T; H1
0 (Ä) ∩ H2(Ä)) ∩W1,2([0, T ]; L2(Ä)).

Here is the argument. Sinceg ≥ −µ0 we get the a priori estimate

|y(t)|22+
∫ t

0

∫
Ä

|∇y(x, s)|2 dx ds≤ C

(
|y0|22+

∫ t

0

∫
Ä

mu2 dx ds

)
,

∀t ∈ [0, T ], (3.5)



Exact Controllability of the Superlinear Heat Equation 79

while by (1.3) and (1.5) we have∫
Q
|g(x, t, w)y|2 dx dt

≤C
∫ T

0
dt
∫
Ä

(η2(|w(x, t)|)+ | f0(x)|2)|y|2 dx

≤C
∫ T

0
dt

(∫
Ä

|y|p∗ dx

)2/p∗
((∫

Ä

(η(|w|))2p∗/(p∗−2) dx

)(p∗−2)/p∗

+ ‖ f0‖2n
)
,

wherep∗ = 2n/(n− 2) for n > 2 andp∗ is arbitrary in(1,∞) if 1 ≤ n ≤ 2.
By the Sobolev embedding theorem we have∫

Q
|g(x, t, w)y|2 dx dt

≤ C
∫ T

0
dt

(∫
Ä

|∇y(x, t)|2 dx

)((∫
Ä

η(|w(x, t)|)n dx

)2/n

+ 1

)

≤ C(ρ2(M)+ 1)

(
‖y0‖22+

∫
Q

mu2 dx dt

)
(3.6)

and by a standard approximating argument the existence of a unique solutiony = yu

which satisfies the estimate

‖y(t)‖2H1
0 (Ä)
+
∫ T

0

∫
Ä

|1y|2 dx dt+
∫

Q
y2

t (x, t)dx dt

≤ C

(
‖y0‖2H1

0 (Ä)
+
∫

Q
mu2 dx dt

)
(ρ2(M)+ 1) (3.7)

follows. Here and throughout in what follows we denote byC several positive constants
independent ofu, y0,w,M but bounded with respect toL and‖ f0‖n. (The latter estimate
follows in the usual way by multiplying (3.2) byyt and using (3.6).)

Now consider the optimal control problem (ε > 0)

Minimize
∫

Q
u2 dx dt+ 1

ε

∫
Ä

y2(x, T)dx subject to (3.2). (3.8)

Let (yε,uε) be an optimal pair (the existence follows in a standard way by esti-
mate (3.7)) because in (3.2) the mapu → yu is closed in(L2(Q))w × L2(Q). (Here
(L2(Q))w is the spaceL2(Q) endowed with the weak topology.)

By the maximum principle we have

uε(x, t) = m(x)pε(x, t), a.e. (x, t) ∈ Q, (3.9)

wherepε is the solution to the backward adjoint system

(pε)t +1pε − g(x, t, w)pε = 0 in Q,
pε = 0 in6,

pε(x, T) = −1

ε
yε(x, T) in Ä.

(3.10)
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This yields∫
Q

mp2
ε dx dt+ 1

ε

∫
Ä

y2
ε (x, T)dx =

∫
Ä

y0(x)pε(x,0)dx. (3.11)

To continue the proof we need the following observability result for the solutions
p ∈ C([0, T ]; L2(Ä)) ∩ L2(0, T; H1

0 (Ä)) to

pt +1p− g(x, t, w)p = 0 in Q. (3.12)

Lemma 2. There areµ = µ(L , ‖ f0‖n) andγ independent ofw,M, p and bounded
with respect to L and‖ f0‖n such that∫

Ä

p2(x,0)dx ≤ γeµρ(M)
∫ T

0

∫
ω

p2(x, t)dx dt. (3.13)

This must be viewed as a uniform observability result for the linear adjoint sys-
tem (3.12) with respect tow ∈ K . We postpone the proof of Lemma 2 until Section 4
where another version of this lemma will also be proved for the purposes of the proof of
Theorem 2.

Now using (3.13) in (3.11) we get∫
Q

mp2
ε dx dt+ 1

ε

∫
Ä

y2
ε (x, T)dx ≤ ‖y0‖2

(
γeµρ(M)

)1/2(∫
Q

mp2
ε dx dt

)1/2

≤ 2−1
∫

Q
mp2

ε dx dt+ 2−1γ ‖y0‖22eµρ(M).

Hence∫
Q

u2
ε dx dt+ 2

ε

∫
Ä

y2
ε (x, T)dx ≤ γeµρ(M)‖y0‖22, ∀ε > 0. (3.14)

By estimates (3.7) and (3.14) it follows that, selecting a subsequence, we have

uε → u weakly inL2(Q),
yε → y weakly inL2(0, T; H1

0 (Ä) ∩ H2(Ä)) ∩W1,2([0, T ]; L2(Ä)),

where(y,u) satisfy (3.2) andy(T) ≡ 0. Moreover,u satisfies estimate (3.4) as claimed.
This completes the proof of Lemma 1.

Proof of Theorem1 (continued). For eachw ∈ K denote by8(w) ⊂ L2(Q) the set of
all solutionsyu ∈ L2(0, T; H1

0 (Ä) ∩ H2(Ä)) ∩W1,2([0, T ]; L2(Ä)) to (3.2) such that

yu(T) ≡ 0; ‖mu‖2L2(Q) ≤ γeµρ(M)‖y0‖22, (3.15)

whereµ andγ are as in Lemma 1.
By Lemma 1 it follows that8(w) 6= ∅ for eachw ∈ K . Moreover, it is readily

seen that8(w) is a closed and convex subset ofL2(Q). (The fact that8(w) is closed
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follows by estimate (3.7) which implies that the mapu → yu is closed inL2(Q) for
eachw ∈ K .) By estimate (3.7) and by (3.15) we have

‖y(t)‖2H1
0 (Ä)
+
∫

Q
(y2

t (x, t)+ |1y(x, t)|2)dx dt

≤ C(ρ(M)+ 1)2(‖y0‖2H1
0 (Ä)
+ eµρ(M)‖y0‖22) (3.16)

and so by the Sobolev embedding theorem

‖y(t)‖22n/(n−2) ≤ Ce2µρ(M)‖y0‖2H1
0 (Ä)

, ∀t ∈ [0, T ], (3.17)

whereC is independent ofM andw. If n ≤ 2 we have

‖y(t)‖2s ≤ Ce2µρ(M)‖y0‖2H1
0 (Ä)

, ∀t ∈ [0, T ], (3.18)

wheres is arbitrary in(1,∞). Now we choose

M = arg sup(re−µρ(r ); r > 0).

Thus it follows by (3.17) and (3.18) that if

‖y0‖H1
0 (Ä)
≤ C−1/2 sup(re−µρ(r ); r > 0),

then8(K ) ⊂ K .
Moreover, by estimate (3.16) it follows via the Arzel`a–Ascoli theorem that8(K )

is a relatively compact subset ofL2(Q).
Note also that8 is upper semicontinuous inL2(Q) × L2(Q). Let wn → w in

L2(Q), wn ∈ K , andyn → y in L2(Q), yn ∈ 8(wn), yn = yun . By Lemma 1 and by
estimate (3.16) it follows (selecting a subsequence if necessary) that

un→ u weakly inL2(Q),
yn→ y strongly inC([0, T ]; L2(Ä))

and weakly inL2(0, T; H1
0 (Ä) ∩ H2(Ä)) ∩W1,2([0, T ]; L2(Ä)).

We have

g(x, t, wn(x, t))yn(x, t)→ g(x, t, w(x, t))y(x, t), a.e. inQ,

and by estimate (3.6) we have

g(x, t, wn)yn→ η weakly inL2(Q).

Then by the Egorov theorem we infer that

η(x, t) = g(x, t, w(x, t))y(x, t), a.e. (x, t) ∈ Q.
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Thus lettingn tend to+∞ in the equations

(yn)t −1yn + g(x, t, wn)yn = mun in Q,
yn = 0 in6,
yn(x,0) = y0(x), yn(x, T) = 0 inÄ,

we conclude that(y,u) satisfy (3.2) and (3.15), i.e.,y ∈ 8(w) as claimed.
Then applying the Kakutani fixed-point theorem in the spaceL2(Q) to the mapping

8 we infer that there is at least onew ∈ K such thatw ∈ 8(w). By definition of8 this
implies that there is at least one pair(y,u) satisfying the conditions of Theorem 1. This
completes the proof.

4. Proof of Lemma 2

It should be said that (3.13) follows by the Carleman inequality established in [7].
However, for the sake of completeness and for easy reference we give here a direct
proof keeping the notations and the scheme developed in [7]. Namely, letw0 ⊂⊂ ω and
ψ ∈ C2(Ä) be such that

ψ(x) > 0, ∀x ∈ Ä, ψ = 0 in ∂Ä,

|∇ψ(x)| > 0, ∀x ∈ Ä0 = Ä\ω0.
(4.1)

We set

ϕ(x, t) = eλψ(x)

t (T − t)
, α(x, t) = eλψ(x) − e2λ‖ψ‖

C(Ä)

t (T − t)
.

Let z = esα p wheres andλ are positive parameters which will be made precise later.
Thenz satisfies the equation

zt +1z− 2sλϕ∇ψ · ∇z+ (λ2s2ϕ2|∇ψ |2− λ2sϕ|∇ψ |2− sαt − λsϕ1ψ)z
= g(x, t, w)z in Q,

z= 0 in6; z(x,0) = z(x, T) = 0 inÄ.
(4.2)

Arguing as in [1] we set

X(t)ζ = −2(sλ2ϕ|∇ψ |2ζ + sλϕ∇ζ · ∇ψ)
and

F(t)z = −1z− (λ2s2ϕ2|∇ψ |2+ sλ2ϕ|∇ψ |2− sαt − λsϕ1ψ)z.

We have

d

dt

∫
Ä

F(t)z(x, t)z(x, t)dx

=
∫
Ä

Ft (t)z(x, t)z(x, t)dx

+ 2
∫
Ä

F(t)z(x, t)(F(t)z−X(t)z+ g(x, t, w)z(x, t))dx.
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Integrating onQ we obtain

− 1
2

∫
Q

Ft (t)zz dx dt

=
∫

Q
(F(t)z(x, t))2 dx dt+

∫
Q
F(t)z(x, t)g(x, t, w)z(x, t)dx dt+Y, (4.3)

where

Y =
∫

Q
(2sλ2ϕ|∇ψ |2z+ 2sλϕ∇ψ · ∇z)

× (−1z− s2λ2ϕ2|∇ψ |2z− sλ2ϕ|∇ψ |2z− sλϕ1ψz− sαt z)dx dt. (4.4)

Since|ϕt | ≤ Cϕ2, it follows by (4.3) that

Y ≤ C
∫

Q
(s2λ2ϕ3+ |g(w)|2)z2 dx dt. (4.5)

We set

D(s, λ, z) =
∫

Q
((s3λ3+ s2λ4)ϕ3z2+ sλϕ|∇z|2)dx dt.

Then after some calculation involving the Gauss–Ostrogradski formula it follows by
(4.4) that

Y ≥
∫

Q
(2sλ2ϕ|∇ψ |2|∇z|2+ s3λ4ϕ3|∇ψ |4z2

− 2sλϕ(∇ψ · ∇z)1z)dx dt− CD(s, λ, z). (4.6)

On the other hand, we have

2sλ
∫

Q
ϕ1z(∇ψ · ∇z)dx dt

= 2sλ
∫
6

ϕ(∇ψ · ∇z)(∇z · ν)dx dt− sλ
∫
6

ϕ|∇z|2(∇ψ · ν)dx dt

+ sλ2
∫

Q
ϕ|∇ψ |2|∇z|2 dx dt−

∫
Q

2sλ2ϕ(∇z · ∇ψ)2

+ sλϕ

(
|∇z|21ψ +

n∑
i, j=1

zxi zxjψxi ,xj

)
dx dt,

whereν is the outward normal toÄ. Sincez= ψ = 0 on∂Ä andψ ≥ 0 inÄ, we have

(∇ψ · ∇z)(∇z · ν) = |∇z|2(∇ψ · ν) = −|∇ψ |2|∇z|2.

Hence

2sλ
∫

Q
ϕ1z(∇ψ · ∇z)dx dt≤ sλ2

∫
Q
ϕ|∇ψ |2|∇z|2 dx dt+ CD(s, λ, z).
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Along with (4.5) and (4.6) the latter yields

s3λ4
∫

Q
ϕ3|∇ψ |4z2 dx dt+ sλ2

∫
Q
ϕ|∇ψ |2|∇z|2 dx dt

≤ C

(
D(s, λ, z)+

∫
Q
|g(x, t, w)|2z2 dx dt

)
≤ C

∫
Q
(s3λ3+ s2λ4)ϕ3z2+ sλϕ|∇z|2+ (η2(|w|)+ | f0|2)z2)dx dt. (4.7)

On the other hand, by the Holder inequality we have∫
Ä

(η(|w|))2z2 dx ≤
(∫

Ä

(η(|w|)2z)2n/(n+2)dx

)(n+2)/2n (∫
Ä

|z|p∗dx

)1/p∗

≤
(∫

Ä

|z|p∗ dx

)1/p∗ (∫
Ä

|η(|w|)|2n dx

)1/n (∫
Ä

z2 dx

)1/2

≤ 1
2

(
ρ(M)

(∫
Ä

|z|p∗ dx

)2/p∗

+ ρ3(M)
∫
Ä

z2 dx

)
and similarly,∫

Ä

| f0z|2 dx ≤
(∫

Ä

|z∗|p∗ dx

)2/p∗ (∫
Ä

| f0|n dx

)2/n

,

where p∗ = 2n/(n − 2) if n > 2, p∗ ∈ (2,∞) if 1 ≤ n ≤ 2. Then by the Sobolev
embedding theorem we get∫

Q
((η(|w|))2+ | f0|2)|z|2 dx dt

≤ 1
2ρ(M)

∫
Q
|∇z|2 dx dt+ ( 1

2ρ
3(M)+ ‖ f0‖2n)

∫
Q

z2 dx dt.

Substituting the latter into (4.7) and recalling that|∇ψ(x)| ≥ γ0 > 0, ∀x ∈ Ä0, it
follows that, forλ ≥ λ0 ands ≥ s0 + Cρ(M) whereλ0, s0 are sufficiently large but
independent ofM, z, we have∫

Q
(s3λ4ϕ3z2+ sλ2ϕ|∇z|2)dx dt

≤ C
∫

Qω0

(((s3λ3+ s2λ4)ϕ3+ ρ3(M))z2+ (ρ(M)+ sλϕ)|∇z|2)dx dt, (4.8)

whereQw0 = ω0× (0, T). This yields∫
Q

e2sα(s3λ4ϕ3 p2+ sλ2ϕ|sp∇α +∇ p|2)dx dt

≤ C
∫

Qω0

(s3λ3+ s2λ4)e2sα(ϕ3+ ρ3(M))p2 dx dt

+ C
∫

Qω0

(ρ(M)+ sλϕ)e2sα|sp∇α +∇ p|2 dx dt.
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Then recalling (4.1) and using Green’s formula it follows as above that∫
Q

e2sα(ϕ3 p2+ ϕ|∇ p|2)dx dt

≤ C
∫

Qω0

e2sα((ϕ3+ ρ3(M))p2+ (ρ(M)+ 1)ϕ|∇ p|2)dx dt (4.9)

for s ≥ s0+ Cρ(M), λ ≥ λ0. (HereC is independent ofp,M, w.) Letχ ∈ C∞0 (Ä) be
such thatχ = 1 inω0 andχ = 0 inÄ\ω.

Multiplying (3.12) byχϕe2sα p and integrating onQ we get after some calculation
that∫

Qω0

e2sαϕ|∇ p|2 dx dt≤ C(ρ(M)+ 1)3
∫

Qω

e2sαϕ3 p2 dx dt

and substituting into (4.9) we get the Carleman inequality∫
Q

e2sα(ϕ3 p2+ ϕ|∇ p|2)dx dt≤ C(ρ(M)+ 1)3
∫

Qω

e2sαϕ3 p2 dx dt (4.10)

for s ≥ s0 + Cρ(M) andλ ≥ λ0 wheres0, λ0 are sufficiently large but likewiseC are
independent ofM, p, w and bounded with respect toL and‖ f0‖n.

Now by (3.12) we see that∫
Ä

p2(x,0)dx ≤ C
∫
Ä

p2(x, t)dx, ∀t ∈ [0, T ]. (4.11)

Integrating (4.11) on(t0, t1) ⊂ (0, T), using (4.10), and

inf
t∈(t0,t1)

{e2sα(x,t)ϕ3(x, t)} ≥ Ce−Cρ(M), ∀x ∈ Ä, (4.12)

wheres = s0 + Cρ(M) andC = C(L , ‖ f0‖) is independent ofp,M, w and bounded
with respect toL , ‖ f ‖n, we obtain inequality (3.13) as claimed. This completes the
proof.

By the previous proof we get the following sharpening of Lemma 2 in the case
where

w ∈ K∞; f0 ∈ L∞(Ä). (4.13)

HereK∞ = {w ∈ L∞(Q); ‖w‖∞ ≤ M}.

Lemma 3. Under assumptions(4.13)we have∫
Q

e2sα(ϕ3 p2+ ϕ|∇ p|2)dx dt≤ C(η(M)+ 1)3
∫

Qω

e2sαϕ3 p2 dx dt, (4.14)

∫
Ä

p2(x,0)dx ≤ γeβη
2/3(M)

∫
Qω

e2sαϕ3 p2(x, t)dx dt (4.15)

for s ≥ s0+ Cη2/3(M), λ ≥ λ0. Here C, γ, β are independent of M and p.



86 V. Barbu

Proof. Taking in account thatη(|w|) ≤ η(M) a.e. in Q for all w ∈ K∞ we get
(see (4.7))

s3λ4
∫

Q
ϕ3|∇ψ |4z2 dx dt+ sλ2

∫
Q
ϕ|∇ψ |2|∇z|2 dx dt

≤ C
∫

Q
((s3λ3+ s2λ4)ϕ3z2+ sλϕ|∇z|2+ (η2(M)+ | f0|∞)z2)dx dt.

Then arguing as above (see (4.8)) we obtain

∫
Q
(s3λ4z2+ sλ2ϕ|∇z|2)dx dt≤ C

(∫
Qω0

(ϕ3+ η2(M))z2+ ϕ|∇z|2 dx dt

)

for s ≥ s0 + Cη2/3(M) andλ ≥ λ0. This implies (4.10) above which is just the desired
inequality (4.14). Finally, by (4.14) and (4.11) wheres = s0 + Cη2/3(M) one obtains
(4.15) as claimed.

5. Proof of Theorem 2

Let q(n) be defined by (1.8) and lety0 ∈ W2
q(n)(Ä) ∩ H1

0 (Ä) be arbitrary but fixed.
Consider the set

K∞ = {w ∈ L∞(Q); ‖w‖∞ ≤ M} (5.1)

and recall the notationYn(Ä) = W2
q(n)(Ä) ∩ H1

0 (Ä) whereq(n) is defined by (1.8).

Lemma 4. For eachw ∈ K∞ there are y∈ L2(0, T; H1
0 (Ä)) ∩ W2,1

q(n)(Q) and u ∈
Lq(n)(Q) which satisfy system(3.2)and

y(x, T) = 0, a.e. x ∈ Ä, (5.2)

‖mu‖2Lq(n)(Q) ≤ γeµη
2/3(M)‖y0‖22, (5.3)

whereµ = µ(L , ‖ f0‖∞) > 0 andγ are independent of y0, w,M .

Proof. As noticed in the proof of Lemma 1, the solutiony to (3.2) satisfies estimate (3.7).
Consider the optimal control problem

Minimize
∫

Q
e−2sαϕ−3u2 dx dt+ 1

ε

∫
Ä

y2(x, T)dx subject to (3.2). (5.4)

Hereα, ϕ are defined by(4.1)′ ands, λ are chosen as in Lemma 3.
Let (yε,uε) be an optimal pair. By the maximum principle we have

uε(x, t) = m(x)pε(x, t)e
2sαϕ3, a.e. (x, t) ∈ Q, (5.5)

wherepε is the solution to system (3.10). This yields∫
Qω

e2sαϕ3 p2
ε dx dt+ 1

ε

∫
Ä

y2
ε (x, T)dx =

∫
Ä

y0(x)pε(x,0)dx. (5.6)
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Then by Lemma 3 (inequality (4.15)) it follows that∫
Qω

e2sαϕ3 p2
ε dx dt+ 1

ε

∫
Ä

y2
ε (x, T)dx ≤ Ceβη

2/3(M)‖y0‖22, ∀ε > 0. (5.7)

Moreover, by (4.14) and (5.7) we see that (for simplicity we writepε = p)∫
Q

e2sα(ϕ3 p2+ ϕ|∇ p|2)dx dt≤ Ce2βη2/3(M)‖y0‖22.

This yields∫
Q

e2sαϕ3(pt +1p)2 dx dt≤ CA(M, y0),

whereA(M, y0) = e2βη2/3(M)‖y0‖22 andC is independent ofy0 andM . Therefore∫
Q

e2sαϕ−3(p2
t + |1p|2)dx dt≤ CA(M, y0). (5.8)

We setv = e2sαϕ3 p. Then by (5.7) and (5.8) we see that

‖v‖2H2,1(Q) ≤ CA(M, y0).

SinceH2,1(Q) ⊂ Lq(n)(Q) we infer that

‖muε‖2Lq(n)(Q) ≤ CA(M, y0). (5.9)

This estimate and the existence theory of parabolic boundary value problems inLq(n)(Q)
(see [12]) imply that on a subsequence we have

uε → u weakly inLq(n)(Q),
yε → y weakly inL2(0, T; H1

0 (Ä)) ∩W2,1
q(n)(Q),

where(y,u) satisfy (3.2) andy(T) ≡ 0. Moreover, we see thatu satisfies the estimate
(5.3) forµ = 2β andγ suitably chosen. This completes the proof of Lemma 4.

Proof of Theorem2 (continued). We proceed as in the proof of Theorem 1. Namely, for
eachw ∈ K∞ denote by8(w) ⊂ L2(Q) the set of all solutionsyu ∈ L2(0, T; H1

0 (Ä))∩
W2,1

q(n)(Q) to (3.2) such that

yu(T) ≡ 0; ‖mu‖2Lq(n)(Q) ≤ γeµη
2/3(M)‖y0‖22, (5.10)

whereµ andγ are as in Lemma 4.
By Lemma 4 it follows that8(w) 6= ∅ for eachw ∈ K∞. Notice also that8(w) is

a closed and convex subset ofL2(Q). Moreover, we have

‖yu‖2∞ ≤ C‖yu‖2
W2,1

q(n)(Q)
≤ C(η(M)+ 1)2‖y0‖2Yn(Ä)

eµη
2/3(M) (5.11)
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whereC is independent ofM andw. Here is the argument. As in the proof of Lemma 1
it follows by (1.2) (condition (1.4) is unnecessary in this case) that

‖yu‖H2,1(Q) ≤ C(η(M)+ 1)(‖y0‖H1
0 (Ä)
+ ‖mu‖2)

and therefore

‖g(w)yu‖q(n) ≤ C(η(M)+ 1)(‖y0‖H1
0 (Ä)
+ ‖mu‖2)

which in virtue of (5.10) and [12] implies that

‖yu‖2
W2,1

q(n)(Q)
≤ C(η(M)+ 1)2eµη

2/3(M)‖y0‖2Yn(Ä)
.

SinceW2,1
q(n)(Q) ⊂ C(Q) for 1≤ n < 6 the latter implies (5.11) as claimed.

We take

M = arg sup(re−µη
2/3(r ); r > 0).

Thus it follows by (5.11) that if

‖y0‖Yn(Ä) ≤ C sup(re−µη
2/3(r ); r > 0),

then8(K∞) ⊂ K∞.
Moreover, by estimate (5.11) it follows that8(K∞) is a relatively compact subset

of L2(Q) (as a matter of fact inC(Q)) and, as seen in the proof of Theorem 1,8 is
upper semicontinuous inL2(Q)× L2(Q).

Then applying the Kakutani fixed-point theorem in the spaceL2(Q) we infer that
there is at least onew ∈ K∞ such thatw ∈ 8(w) and therefore there is at least one pair
(y,u) satisfying the conditions of Theorem 2. This completes the proof.

Remark 4. Recently Fernandez-Cara and Zuazua have shown that the null controlla-
bility result in Corollary 1 remains true without the dissipativity condition (1.2).
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