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1. Introduction

This work is concerned with the controllability of the equation

Y (X, ) — Ay(x, ) + f(x, t, y(x, 1)) = mx)u(x, t),
Vx,) e Q=2 x (0, T),

y(X,t) =0, VX, t) e X =90Q x (0, T),

y(X, 0) = yo(X), VX € Q,

(1.1)

whereg2 is an open and bounded subseffwith a smooth boundar§2 andm is the
characteristic function of an open subsgetC 2. Here A is the Laplace operator with
respect tox.

The functionf: Q x R — Ris continuous iry, measurable iiix, t), and satisfies
the following conditions:

f (X, t,1)r > —por?, vr e R, (x,t) € Q, (1.2)
F ot < Liri(ndrD + [ fo(OD), YreR, (x,t)eQ. (1.3)

* This work was supported by Grant CNSU/CNFIS 120(1997) of the World Bank and the Romanian
Government.
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Herel is a positive constanfyo > 0, fg € L"(2), andn is a nonnegative, continuous,
and increasing function.
We asume first that

nry<C(r*+1, VreR, (1.4)
where

a e (0, 00) if n=12 a:i if n>2

n—2
We set
1/2n

p(r) = SUP((/Q('?(IUJ(X)I))Z"dX> s llwllLag) < r), (1.5)
where

q= n2n2 ifn>2 gqel2,00) ifn=2 qgq=o00 ifn=1 (1.6)

The main results of this paper, Theorems 1 and 2 below, amount to saying that system
(1.1) is null controllable for alyy € H}(S2) satisfying the condition

1Yol wie) < C supre™*®;r > 0) (1.7)
and respectively for aNg € Yn(R2) = qu(n)(Q) N Hol(sz) such that

IYollva@ < Csupre™®"°®;r > 0) (1.7

if fo e L>°(Q)and 1< n < 6. Hereu = u(L, fo, T), C is independent of and fo,
and

nJZrZ <qn) < 2(n:r22)

(In the latter case condition (1.4) is no longer necessary.) These theorems provide an
estimate for the null controllability radius of system (1.1). The internal controllability
implies the boundary controllability of (1.1) (Theorem 3) as well the controllability of
the stationary solutions.

Null controllability of the linear heat equation was established by Lebeau and Rob-
biano [14] and was extended later to the sublinear heat equations, i.e, o0,
by Fursikov and Imanuvilov [7]). Null controllability for Lipschitzian nonlinearitiés
involving gradient terms was studied recently in [6] and [10]. Of course null control-
lability does not imply the controllability of an arbitrary smooth stgte However, if
f is Lipschitzian it turns out (see [3] for (1.1) and [6] and [18] for nonlinearities with
gradient terms) that system (1.1) is approximately controllable, i.e., the set of final states
yY(T) of (1.1) is dense in.%(R2). A stronger version of this property (finite-approximate
controllability) was studied by Zuazua [17].

Null controllability of superlinear control systems of the form (1.1) was recently
proved by Fernandez-Cara [4] for nonlinearities of the fofity) = g(y)y where

if n>2; qn) =2 if n=1 (1.8)
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g(y)(log(Jy|+ 1))t — O as|y| — oo. The present approach is somewhat different and
refers to more general nonlineariti€of accretive type and initial datg. In particular,

if 1 < n < 6 one derives from Theorem 2 the null controllability of (1.1) foe= g(y)y
whereg(y)(log(ly| + 1))~¥? — 0 as|y| — oo (Corollary 1.)

In general the best one can expect is local controllability [7] but we do not address
this problem here.

The controllability problem for semilinear hyperbolic equations was previously
studied in [16] (see also [13]). There is an extensive literature on the controllability of
linear control systems of hyperbolic type and we refer the reader to the books by Lions
[15] and Komornik [11] for general results and specific methods.

The paper is organized as follows. The main results, Theorems 1 and 2, are stated in
Section 2 and proved in Section 3 (respectively Section 5) via the infinite-dimensional
Kakutani fixed-point theorem (see, e.g., p. 310 of [2]) The proof relies on the Carleman
inequality for the backward adjoint linearized system associated with (1.1), which is
proved in Section 4. In fact, a large part of this paper is devoted to establishing a sharp
estimate of the constant which appears on the right-hand side of the Carleman inequality
proved earlier by Fursikov and Imanuvilov [7] (see also [9]).

In what follows we use the standard notations for the Sobolev sp#tE?), Hol(Q)
and theL P spaces o2 andQ, 1 < p < oo, with the norm denotedl - ||,. Moreover,
we set

W2(Q) ={y e LP(@): Dy e LP(Q);s=1,2i=1....n}, 2<p<oo,
WE2([0, T]; LA(Q)) = {y e L%0, T; LA)); %’ e L%0, T; L2(9>)},

WSH(Q) = {y € LYQ); D{Dyy € LP(Q); 2r +s<2i=1,...,n},

wheredy/dt and D] D3y are taken in the sense of distributions.
We setH?1(Q) = W2 (Q) N L2(0, T; HE ().

2. The Main Results

Let yo € H3(R) be arbitrary but fixed. The control system (1.1) is said tobk con-
trollable or exactly null controllabléf there areu € L2(Q) andy € L?(0, T; H}(22) N
H2(Q)) N WL2([0, T]; LZ(2)) which satisfy (1.1) and

y(x, T) =0, a.e. xe Q.

Now we are ready to formulate the main results of this paper.

Theorem 1. Assume that conditiorf$.2)—(1.4hold. Thenthereigi = (L, || folln, T)
bounded with respect to L anjdo||, such that for all y € Hg () satisfying(1.7)system
(1.1)is exactly null controllableln particular, if

limsupre ") = 400, Vi > 0, (2.1)

r—o00

then systen(l.1)is exactly null controllable for all y € Hg ().
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Theorem 2. Assume that conditiongl.2) and (1.3jold and that § € L>(2). Then
for 1 < n < 6systen(1.1)is null controllable for all y € Y(2) = WS, () N Hy (),
satisfying(1.7). If

limsupre Oy = 400,  Vu >0, 2.1y

r—o00

then systenfl.1)is exactly null controllable for all y € Y,(2).

Now we derive some simple consequences of Theorem 1. First notice that since
p(r) < C(r2+1), it follows by Theorem 1 that system (1.1) is exactly null controllable
for all yo € Hi () satisfying the condition

IYollnie) = (2.2)

wherev = v(L, || folln, T).
Corollary 1. Assume thatofe L"(2), f satisfieq1.2),and
[T, t, ) < Lir[(edrDlogdr] +1) + [ fo()D, vix,t,r) e Qx R, (2.3)

wheregp is a continuous function such tHahg . o, ¢(S) = 0. Then systerflL.1)is exactly
null controllable for all y € Hol(Q). If yo e Ya(R2),1<n < 6,and fy € L*(Q), then
condition(2.3) can be weakened to

| (. t, )< LIr[(edIr dog(lr [+1)¥2+] fo(x))), Y(x,t,r)eQxR. (2.3)
Proof of Corollaryl. By the mollifiers technique it follows that there@ > 0 such

thatS,(r) C S(r) whereS(r) = {w € C(Q); |wll < Cr}, S(r) is the closure of(r)
in LA9Q) andS(r) = {w € LYQ); lwllq < r}. We have, therefore,

1/2n
p(r) < LSUP((/Q(w(IwI)GOg(ItUI + 1)))2ndX) ;w e SU))
< C(gp(6r)log(l6r| + 1)), vr >0, (2.4)

where 0< 6, < Cr. Hence condition (2.1) is satisfied and we conclude the proof by
invoking Theorem 1. O

If yo € Yn(2) and fo € L*°(L2), then(2.3)" implies(2.1)'.
Remark 1. It follows by (2.4) that if f satisfies condition (1.2) and
[ fx, t,r)] < Irf(Llogr|+ 1) + | fo(x))), VX, t,r) e Qx R,

then for L sufficiently small but independent gf condition (2.1) is satisfied and so
system (1.1) is exactly null controllable for g} € H}(<).
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Remark 2. The first part of Corollary 1, i.e., null controllability under condition (2.3)
was previously proved by Fernandez-Cara [4]f6f smooth initial datay,. In general

for nonlinearitiesf with polynomial growth of ordeip > 1, exact controllability may

fail (see the examples given in [7], [8], and [5]). Moreover, analysis of the proofs of
Theorems 1 and 2 seems to indicate that in general one cannot expect null controllability

for functions f which grow to infinity faster than(log(r + 1))¢ wherea > g’

Theorem 3. Under assumptiongl.2)—(1.4)there isu > 0 such thatfor each y €
H () satisfying the condition

IYollHiey < ©(w),

there arev € L?(X) and ye H21(Q) such that

Vi —Ay+ f(y) =0 inQ,
y=v inXZ,
y(X, 0) = yo(X) in g,
yix,T)=0 inQ,

(2.5)

with the usual modification ifoye Y (2),1 < n < 6,and f € L*°(Q2). Moreoverthe
conclusions of Corollaryl remain valid in the present situation

Here® is the function defined by the right-hand side of (1.7)

Proof of Theoren8. One applies Theorem 1 (respectively Theorem Z)KNDrD Q
whereo = Q\Q and¥j (the initial data) is an extension g§ to H3 (). If ¥ is a cor-
responding solution to the controllability problem provided by Theorem 1 (respectively
by Theorem 2), then by the trace theorem we see that

y=Yloe and v=7Ye

satisfy (2.5). O

Remark 3. The above results also imply the exact controllability of the stationary
solutions to (1.1). The functiop, € H3 () is said to be atationary solutiorto system
(1.1) if there isw e L?(R) such that

—Ay1(X) + (X, y1(X)) = m(xX)w(x), X € Q.

We note also that these theorems extend to mutivalued funcfioofsthe form
f(r) = fo(r) + cr where fg is a maximal monotone graph such that its minimal
sectionf(? satisfies conditions (1.2)—(1.4). To this end one applies Theorem 1 to function
(fo)e(r) + cr and letse tend to zero. Heréfy), is the Yosida approximation df,.
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3. Proof of Theorem 1
We fix yo € H3(2) and define the set

K={welL®0T;LYRQ)); lwt)llq < M, a.et e (0, T)}, (3.1)
whereM is a positive constant to be defined later and

2n

q= 5 if n>2 ge(2,00) if n=2 g=oc if n=1
We set
g(x,t,r):M for |r| > 0; g(x,t,O):Iimog(x,t,r).
r—

Without loss of generality we may assume that the above limit exists ageksb, r ) is
continuous irr. Otherwise we approximate by a family of smooth functions in and
tend to limit in the corresponding controllability problem.

Forw € K consider the linear system

Yt — Ay +9g(X, t,w)y=mu inQ,
y(X, 0) = yo(X) in €, (3.2)

Lemma 1 below is the main ingredient of the proof.

Lemmal. For each y € H}Q) andw e K there are ye L?(0, T; H}(Q) N
H2(Q)) N WY2([0, T; L2(2)) and ue L?(Q) which satisfy(3.2)and

y(x, T) =0, ae XxXeQ, (3.3)

/ mZdx dt < ye ™ yo|2 (3.4)
Q

whereu = u(L, | folln) > 0 andy are independent ofgyw, M and bounded with
respectto L and fol|n.

Proof. We note first that for al € K, u € L?(Q), andyy € H}(Q), (3.2) has a
unique solution

y =y! € L0, T; Hy(2) N H2() NW2([0, T]; LA(9).
Here is the argument. Since> —uo we get the a priori estimate

t t
|y(t)|§+//|Vy(x, s)|2dxds< C(IYO|§+//mb|2dx ds>,
0Je oJe
vt € [0, T], (3.5)
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while by (1.3) and (1.5) we have

/|g(x,t, w)yl? dx dt
Q

]
50/0 dtf(n2<|w<x,t>|> + (0Dl dx
Q

T o\ e (r*-2/p'
SCf dt (/ lyIP dX) ((/(n(lwl))zp /P ‘Z)dX> + 1l follﬁ>,
0 Q Q

wherep* = 2n/(n — 2) for n > 2 andp* is arbitrary in(1, co) if 1 <n < 2.
By the Sobolev embedding theorem we have

/|g(x,t, w)yl*dx dt
Q

T 2/n
50/ dt(/Wy(x, t)|2dx> <</n(|w(x,t)|)“dx> +1>
0 Q Q

< C(pA(M) + 1) <||yo||§+/mu2dxdt) (3.6)
Q

and by a standard approximating argument the existence of a unique sglutiop”
which satisfies the estimate

;
||y(t)||2H1(Q)+/ /|Ay|2dx dt~|—/ y2(x, t) dx dt
0 0Ja Q

<C <|Iyoll,24§(9) +/QmU2 dx dt) (p*(M) + 1) 3.7)

follows. Here and throughout in what follows we denotebgeveral positive constants
independent afl, yo, w, M but bounded with respect toand|| fo||. (The latter estimate
follows in the usual way by multiplying (3.2) by and using (3.6).)

Now consider the optimal control problem £ 0)

1
Minimizefuzdx dt+ —/yz(x,T)dx subject to (3.2) (3.8)
Q €JQ

Let (Y., U;) be an optimal pair (the existence follows in a standard way by esti-
mate (3.7)) because in (3.2) the map— y is closed in(L?(Q)),, x L%(Q). (Here
(L%(Q)),, is the spacé.?(Q) endowed with the weak topology.)

By the maximum principle we have

Ue (X, 1) = M(X) pe (X, 1), ae. (x,t)eQ, (3.9)
wherep; is the solution to the backward adjoint system

(P)t + Ap. —g(x, t,w)p, =0 inQ,
p: =0 L In X, (3.10)
P(X, T) = == Ye(X, T) in .

&
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This yields
175
/mpfdx dt+ —/ys(x,T)dx=/y0(x)pg(x, 0)dx. (3.11)
Q &Jq Q

To continue the proof we need the following observability result for the solutions
p e C([0, T]; LA(R)) N L2(0, T; HJ(2)) to

pt + Ap—gx,t,w)p=0 in Q. (3.12)

Lemma?2. There areu = u(L, | folln) andy independent ofv, M, p and bounded
with respect to L and| fo||, such that

.
/pz(x, 0)dx < ye’“’("")/ fpz(x,t)dx dt (3.13)
Q 0 Jo

This must be viewed as a uniform observability result for the linear adjoint sys-
tem (3.12) with respect to € K. We postpone the proof of Lemma 2 until Section 4
where another version of this lemma will also be proved for the purposes of the proof of
Theorem 2.

Now using (3.13) in (3.11) we get

/Qmpgdx dt+ %/ny(x, T)dx < |Iyoll2 (yer™)" (mepfdx dt)l/z
< 2—1/Qmp§dx dt+ 271y [|yoll2e*™.
Hence
/Qufdx dt+ ;/ny(x, Tydx < ye*My3,  Ve>O0. (3.14)
By estimates (3.7) and (3.14) it follows that, selecting a subsequence, we have

U — u  weaklyinL?(Q),
Ve = Y weakly inL2(0, T; H3(22) N H2(2)) N WL2([0, T]; L%()),

where(y, u) satisfy (3.2) ang/(T) = 0. Moreovery satisfies estimate (3.4) as claimed.
This completes the proof of Lemma 1. O

Proof of Theoreni (continued). For each € K denote byd(w) C L?(Q) the set of
all solutionsy" € L2(0, T; H}() N H?Z(£2)) N WX2([0, T]; L2()) to (3.2) such that

YT =0 [Imu,q < ve ™yl (3.15)

whereu andy are as in Lemma 1.
By Lemma 1 it follows thatd (w) # @ for eachw € K. Moreover, it is readily
seen thatb (w) is a closed and convex subsetlof(Q). (The fact thatb (w) is closed
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follows by estimate (3.7) which implies that the map— y is closed inL?(Q) for
eachw € K.) By estimate (3.7) and by (3.15) we have

YO0, + /Q (Y (%, ) + [Ay(x, D)?) dx dt
< C(p(M) + D?(1¥oll s ) + €™ llyoll2) (3.16)
and so by the Sobolev embedding theorem
YO 1502 = CE*Mlyollfng,  VLel0.T], (3.17)
whereC is independent oM andw. If n < 2 we have
Iy < Ce*™Wiyolfg,.  vte[0. T, (3.18)

wheres is arbitrary in(1, oo). Now we choose

M = arg sugre **"; r > 0).

Thus it follows by (3.17) and (3.18) that if

IYollzey < C2supre ™ ®;r > 0),
then®(K) c K.

Moreover, by estimate (3.16) it follows via the AraelAscoli theorem thab (K)
is a relatively compact subset bf(Q).

Note also thatb is upper semicontinuous ih?(Q) x L?(Q). Let w, — w in
L2(Q), wy € K, andy, — yin L%(Q), yn € ®(wn), Yo = y*. By Lemma 1 and by
estimate (3.16) it follows (selecting a subsequence if necessary) that

up — u  weakly inL%(Q),

Yo — Yy  strongly inC([0, T]; L%())

and weakly inL2(0, T; H}(Q) N H2(Q)) N WL2([0, T]; L2(Q)).
We have

g(X, t, wn(X, HYa (X, 1) = g(x, t, w(x, 1)) y(x, 1), a.e.inQ,
and by estimate (3.6) we have

g(X, t,wn)yn — 1 weakly inL*(Q).

Then by the Egorov theorem we infer that

n(x, t) = gx, t, w(x, t))y(x,t), a.e. (x,t) e Q.
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Thus lettingn tend to+-oco in the equations

(Yn)t — AYn + 9(X, t, wn)Yn = MU, in Q,
Ya=0 inX,
yn(X» O) = YO(X)» yn(X! T) = 0 In 97

we conclude thaty, u) satisfy (3.2) and (3.15), i.ey, € ®(w) as claimed.

Then applying the Kakutani fixed-point theorem in the spa®@) to the mapping
® we infer that there is at least omec K such thatw € ®(w). By definition of® this
implies that there is at least one p@éj, u) satisfying the conditions of Theorem 1. This
completes the proof. O

4. Proof of Lemma 2

It should be said that (3.13) follows by the Carleman inequality established in [7].
However, for the sake of completeness and for easy reference we give here a direct
proof keeping the notations and the scheme developed in [7]. Namely et w and

¥ € C%(Q) be such that

v(X) >0, VxeQ, Yv=0 in 9Q,

IV (x)| > 0, VX € Qo = Q\wo. (4.1)

We set
v e v _ g2Vl
X, t) = ——, X, t) =
b=ty oD (T -1

Let z = e* p wheres and are positive parameters which will be made precise later.
Thenz satisfies the equation

Z + AZ— 250V - VZ+ (A2S20?| V|2 — A2Sp| V|2 — say — ASpAYr)Z
=g(x,t,w)z inQ, (4.2)
z=0 inX; Z(X,00=z(x, T)=0 inQ.

Arguing as in [1] we set
X (V)¢ = —2s)2p| VY P¢ +shoVe - Vi)
and
F()z = —Az— (A2S%0%| VY |? + sA%p| VY |? — say — ASpAY)Z.
We have
%/ﬁF(t)z(x,t)z(x,t)dx
:/QFt(t)z(x, t)z(x,t) dx

+ Z/F(t)z(x, D(Ft)z—X({t)z+ g(x, t, w)z(x, t)) dx.
Q
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Integrating onQ we obtain
—%/ Fi(t)zzdx dt
Q

=/(F(t)z(x, )2 dx dt—i-/F(t)z(x, g, t, w)z(x, t) dx dt+Y, (4.3)
Q Q
where
Y =/(23A2¢|wf|22+ 2shpVyr - V2)
Q

X (—AZ — 22202\ V%2 — sA%9| VY 22 — shoAyz — sapz) dx dt. (4.4)
Since|g;| < C¢?, it follows by (4.3) that

Y < c/(sﬁ?qﬁ +|g(w)[?»)Z% dx dt (4.5)
Q
We set

D(s, A, 2) =/((53k3 + 204 p37% 4+ shp|VzZ?) dx dt
Q

Then after some calculation involving the Gauss—Ostrogradski formula it follows by
(4.4) that

= / (2502¢|Vy 2|V 22 + $40% Vi *2
Q
— 2sAp(Vr - VZ)Az) dx dt — CD(s, A, 2). (4.6)

On the other hand, we have
ZSA/ pAzZ(Vy - Vz)dx dt
Q
= 25/\/ o(Vy - V2)(Vz-v)dx dt— s/\/ @|VZ2(Vy - v) dx dt
) )

+SA2/<p|V1p|2|VZ|2dX dt—/ZSA2¢(VZ~Vw)2
Q Q

n
+ She <|Vz|2mp + ) 70z wxi,xj) dx dt,

i,j=1
wherev is the outward normal t&. Sincez = ¥ = 0 ondQ andys > 0in Q, we have
(V§ - V2)(VZ-v) = [VZP (VY -v) = —|Vy [*|VZ

Hence

25,\/ eAZ(Vy - Vz)dx dt < s,\zf @IV 12|VZ? dx dt+ CD(s, A, 2).
Q Q
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Along with (4.5) and (4.6) the latter yields

s3,\4/ O|IVy *2dx dt+ SX2/¢|VIﬁ|2|VZ|2dX dt
Q Q
<C <D(s, X, 2) +/ lg(x, t, w)|?z2dx dt)
Q

<C f (A3 + PN @32 + shp|VZE + (P(lw]) + | folPZD) dx dt  (4.7)
Q

On the other hand, by the Holder inequality we have

(n+2)/2n ) 1/p*
/(n(|w|)>2z2dx < (/(n(|w|)zz)2”/<“+2>dx> (f |2|P dx)
Q Q Q
1/p* 1/n 1/2
<f|z|P*dx) </|n(|w|)|2“dx> (fzzdx>
Q Q Q
kL
%(p(lvl) </|z|p dx) +p3<M>/z2dx>
Q Q

and similarly,

2/p* 2/n
/|foz|2dx5 (/|z*|P*dx) <f|f0|“dx> ,
Q Q Q

wherep* = 2n/(n —2)if n > 2, p* € (2,00) if 1 < n < 2. Then by the Sobolev
embedding theorem we get

A

IA

/Q((n(lwl))z + | fol®)|z/* dx dt

< Lo [ |vaaxdts o' + 1ol [ 2dxat
Q Q

Substituting the latter into (4.7) and recalling th&ty (X)| > yo > 0, VX € Qq, it
follows that, forh > Ag ands > 55 + Cp(M) whereig, S are sufficiently large but
independent oM, z, we have

/(33A4<p322 + sA%p|Vz|?) dx dt
Q
<c f (3 + 2049% + p5(MNZ + (o(M) + shg)[VZP) dx dt (4.8)
Qug
whereQ,,, = wp x (0, T). This yields

/ 2 (s*A %3 p? + sa2p|spVa + Vp|?) dx dt
Q

<C| (*r34s2aHe®™ (@3 + p3(M))p?dx dt
Quo

+ c/ (p(M) + Srp)€®*|spVa + Vp|>dx dt
Qug
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Then recalling (4.1) and using Green's formula it follows as above that
[ &= @0 + 017 p dxct
Q
< c/ (% + p* (M) P? + (p(M) + 1|V p?) dx dt (4.9)
Qug

fors > sg+ Cp(M), A > Xg. (HereC is independent op, M, w.) Let x € C§°(R2) be
suchthaty = 1inwgandy = 0in Q\w.

Multiplying (3.12) by x ¢€* p and integrating o) we get after some calculation
that

/ e ¢|Vp|2dxdt< C(p(M) + 1)3f e p3p?dx dt
Qug Qu

and substituting into (4.9) we get the Carleman inequality
/ e (p°p? + ¢|Vp/2) dx dt< C(p(M) + 1)3f e 3p?dx dt (4.10)
Q Qo

fors > 55+ Cp(M) andi > Ag Wheresy, Ao are sufficiently large but likewis€ are
independent oM, p, w and bounded with respect toand|| fol|n.
Now by (3.12) we see that

/pz(x, O)dxgcf p?(x, t) dx, vt € [0, T]. (4.11)
Q Q

Integrating (4.11) orito, t1) C (0, T), using (4.10), and

tei(gftl){e25°*<X~‘><p~°'(x, t)} > Ce M), VX € Q, (4.12)

wheres = 59 + Cp(M) andC = C(L, || fo|)) is independent op, M, w and bounded
with respect toL, || f ||,, we obtain inequality (3.13) as claimed. This completes the
proof. O

By the previous proof we get the following sharpening of Lemma 2 in the case
where

w € Koo; fo € L%(). (4.13)
HereKy = {w € L*(Q); [wlloo < M}.

Lemma 3. Under assumptiong}.13)we have
/eZS“(<o3p2 +¢|VpH) dxdt< Cn(M) + 1)3/ e p®p*dxdt, (4.14)
Q Qo
/ p?(x, 0)dx < yeﬂﬂz/s“\")/ e?3p?(x, 1) dx dt (4.15)
Q Qo

fors > 5 4+ Cn?3(M), » > Aq. Here C, y, B are independent of M and. p
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Proof. Taking in account thag(jw|) < n(M) a.e. inQ for all w € K, we get
(see (4.7))

s%\“/ Q|IVy *Z2dx dt+ SAZ/ @IV |?|Vz)? dx dt
Q Q

<C / (S22 + 462 + 19| VZP + (P(M) + | foloo)22) dx dt
Q

Then arguing as above (see (4.8)) we obtain

f(s3k422 +sa%p|Vz)?)dx dt< C ( (0% + N> (M)Z? + ¢|Vz? dx dt)
Q

Que

for s > 94+ Cn%3(M) andr > Aq. This implies (4.10) above which is just the desired
inequality (4.14). Finally, by (4.14) and (4.11) wheve= s + C;?3(M) one obtains
(4.15) as claimed. O

5. Proof of Theorem 2
Let q(n) be defined by (1.8) and lgly € WZ, (2) N H3(R) be arbitrary but fixed.
Consider the set

Koo = {w € L¥(Q); [wllew < M} (5.1)
and recall the notatiol,(2) = qu(m(sz) N H(Q) whereq(n) is defined by (1.8).

Lemma4. For eachw € K, there are ye L2(0, T; H}(2)) N qu(ﬁ)(Q) and u e
LM (Q) which satisfy systeif8.2) and

y(x, T) =0, a.e. Xxeq, (5.2)
ImulZgn g < €™ yol3. (5.3)
whereu = u(L, || foll) > 0 andy are independent ofgyw, M.

Proof. Asnoticedinthe proof of Lemma 1, the solutipto (3.2) satisfies estimate (3.7).
Consider the optimal control problem

1
Minimizefe‘2w¢‘3u2dx dt+ —/yz(x,T)dx subject to (3.2) (5.4)
Q €Ja

Herea, ¢ are defined by4.1)’ ands, A are chosen as in Lemma 3.
Let (Y., U.) be an optimal pair. By the maximum principle we have
U:(X, 1) = m(X) p: (X, D%, ae. (x,1) € Q, (5.5)

wherep;, is the solution to system (3.10). This yields

e p3p? dx dt+ }/yf(x, T)dx =/y0(x) P: (X, 0) dx. (5.6)
Qw & Q Q
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Then by Lemma 3 (inequality (4.15)) it follows that

1
e p3p2dx dt+ —/ y2(x, TYdx < C&"™* M y2, Ve > 0. (5.7)
Q. eJa

Moreover, by (4.14) and (5.7) we see that (for simplicity we wgte= p)
/Q & (¢°p” + 9|V pP) dx dt = CE" M yg 3.

This yields
/Qezsaso%pt +Ap)?dx dt < CAM, yo).

whereA(M, yo) = €/7°M)||y,||2 andC is independent of, andM. Therefore
/Qezs"‘(p_g(ptz +]Ap|?) dx dt < CAM, yo). (5.8)
We setv = €®¢3p. Then by (5.7) and (5.8) we see that
111321, < CAM, Yo).

SinceH2(Q) c L9M™(Q) we infer that
IMU 1240 o) < CAM, Yo). (5.9)

This estimate and the existence theory of parabolic boundary value problef® Q)
(see [12]) imply that on a subsequence we have

U — u  weaklyinL9™(Q),

Y. =y  weaklyinL?0, T; H}(Q)) ﬂWqurf)(Q),
where(y, u) satisfy (3.2) and/(T) = 0. Moreover, we see thatsatisfies the estimate
(5.3) foru = 28 andy suitably chosen. This completes the proof of Lemma 4. O

Proof of Theoren2 (continued). We proceed as in the proof of Theorem 1. Namely, for
eachw € K denote byb(w) C L2(Q) the setof all solutiong” € L2(0, T; H3(22))N
W2 (Q) to (3.2) such that

YT =0 ImulZemg < ve" ™ol (5.10)

wherep andy are as in Lemma 4.
By Lemma 4 it follows thatb (w) # @ for eachw € K. Notice also thatd (w) is
a closed and convex subsetlof(Q). Moreover, we have

115 < ClIY*I21 g, < CONM) + Dyl oy ™ (5.11)
qm
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whereC is independent oM andw. Here is the argument. As in the proof of Lemma 1
it follows by (1.2) (condition (1.4) is unnecessary in this case) that

1" lIH21@) = C(M) + D(llYolluz @) + IMull2)

and therefore

19wy llqm = COM) + D(UIYollwze) + IMull2)

which in virtue of (5.10) and [12] implies that

2/3
||yu||\2,vzi1 Q) < C(n(M) + 1)26’“’ / (M)Hyon\z(n(ﬂ)'
qm)

Sincech(’,f)(Q) C C(Q) for 1 < n < 6 the latter implies (5.11) as claimed.

We take

M = arg sugre “""®: r > 0).
Thus it follows by (5.11) that if

1Yollvy@ < Csupre ;1 > 0),

then®(Ky) C Kgo.

Moreover, by estimate (5.11) it follows thét(K ) is a relatively compact subset
of L?(Q) (as a matter of fact it©(Q)) and, as seen in the proof of Theoremdi js
upper semicontinuous ib?(Q) x L2(Q).

Then applying the Kakutani fixed-point theorem in the spateQ) we infer that
there is at least one € K, such thatw € ®(w) and therefore there is at least one pair
(y, u) satisfying the conditions of Theorem 2. This completes the proof. O

Remark 4. Recently Fernandez-Cara and Zuazua have shown that the null controlla-
bility result in Corollary 1 remains true without the dissipativity condition (1.2).
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