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Abstract
This note addresses the well-posedness of weak solutions for a general linear evolu-
tion problem on a separable Hilbert space. For this classical problem there is a well
known challenge of obtaining a priori estimates, as a constructed weak solution may
not be regular enough to be utilized as a test function. This issue presents an obstacle
for obtaining uniqueness and continuous dependence of solutions. Utilizing a generic
weak formulation (involving the adjoint of the system’s evolution operator), the classi-
cal reference (Ball in Proceedings of the AmericanMathematical Society 63:370-373,
1977) provides a characterization which makes equivalent well-posedness of weak
solutions and generation of a C0-semigroup. On the other hand, the approach in (Ball
in Proceedings of the American Mathematical Society 63:370-373, 1977) does not
take into account any underlying energy estimate, and requires a characterization of
the adjoint operator, the latter often posing a non-trivial task. We propose an alterna-
tive approach, when the problem is posed on a Hilbert space and admits an underlying
“formal" energy estimate. For such a Cauchy problem, we provide a general notion of
weak solution and through a straightforward observation, obtain that arbitrary weak
solutions have additional time regularity and obey an a priori estimate. This yields
weak well-posedness. Our result rests upon a central hypothesis asserting the exis-
tence of a “good" Galerkin basis for the construction of a weak solution. A posteriori,
a C0-semigroup may be obtained for weak solutions, and by uniqueness, weak and
semigroup solutions are equivalent.
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1 Existence of Weak Solutions

Let H be a separable real Hilbert space with inner product (·, ·)H and norm ‖ · ‖H ,
respectively, and let A : D(A) ⊂ H → H be a densely defined closed linear operator.
The space H is thought to be embedded in a bigger Hilbert space, allowing us to
continuously extend A outside of its domain, as is typically the case for differential
operators. Assume that we are given the abstract evolution in H on the time-interval
[0, T ] {

ẋ = Ax + f ,

x(0) = x0 ∈ H ,
(1.1)

in the unknown x = x(t), where f = f (t) is a forcing term. The aim of this note is to
provide a convincing definition of weak solution which fully captures the structure of
the Cauchy problem (1.1), and then present a corresponding existence and uniqueness
result. We make a baseline assumption.

Assumption 1.1 Identifying H with its dual space H∗, there exist two Hilbert spaces
V and W with dense and continuous embeddings

V ↪→ W ↪→ H = H∗ ↪→ W ∗ ↪→ V ∗

such that the following hold:

(i) A extends to a bounded operator from W onto V ∗.
(ii) There exist a ≥ b > 0 such that, for all x ∈ D(A),

− (Ax, x)H ≥ b‖x‖2W − a‖x‖2H . (1.2)

In the sequel, 〈·, ·〉 will stand for the duality pairing between V ∗ and V , extending
the inner product in H , whenever both defined. We introduce the bilinear form a(·, ·) :
W × V → R

a(x, x̃) = −〈Ax, x̃〉,

whose continuity follows from (i). Concerning the external force, we assume that

f ∈ L2(0, T ;W ∗).

Definition 1.2 (W -Weak Solution) A function x ∈ L∞(0, T ; H) ∩ L2(0, T ;W ) is a
W -weak solution of (1.1) if and only if x(0) = x0 and, for a.e. t ∈ [0, T ] and every
test y ∈ V ,

〈ẋ(t), y〉 + a(x(t), y) = 〈 f (t), y〉.

From our assumptions, such an equality dictates that ẋ ∈ L2(0, T ; V ∗), and the
embedding H1(0, T ; V ∗) ↪→ C([0, T ]; V ∗) ensures that x(0) has meaning.
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In general, the space W complying with Assumption 1.1 is not unique. This will
be clear in Example 2.1, where there are infinitely many choices ofW . For any viable
W , we produce a legitimate notion of a (weak) solution. Among them, we can locate
the best possible one, corresponding to the minimum with respect to the relation of
inclusion of such spaces W . This minimum provides the notion of solution that fully
captures the features of the equation, as it exploits the maximal information which
can be extracted weakly from the operator A. In principle, such a minimum might not
exist (if it is only an infimum), but it seems very unlikely to find a concrete example
where this sorry situation occurs. We agree to simply call weak solution the W -weak
solution corresponding to the minimum W or, equivalently, the strongest among W -
weak solutions.

Theorem 1.3 Under Assumption 1.1, problem (1.1) admits at least one W-weak solu-
tion.

Proof The proof is based on a standard Galerkin approximation scheme. We select a
basis {hn} of the space H made by elements in V , and we denote by�n the self-adjoint
projection from H onto Fn , where Fn is the n-dimensional subspace of H generated
by the vectors h1, . . . , hn . We agree to call the pair of spaces and projections (Fn,�n)

a Galerkin family. Usually, the basis {hn} is chosen to be orthonormal, although this
is not strictly necessary. Appealing to the classical theory of ODEs, for every n ∈ N

there is a unique function xn ∈ AC([0, T ]; Fn) with prescribed initial condition
xn(0) = �nx0 that solves the equation

〈ẋn(t), y〉 + a(xn(t), y) = 〈 f (t), y〉, (1.3)

for a.e. t ∈ [0, T ] and every test y ∈ Fn . Observe that the duality pairings appearing
above are actually just H inner products at the level of Fn . Such an xn is sometimes
called a Galerkin approximate solution. Choosing as test function y = xn , from point
(ii) of Assumption 1.1, together with Young’s inequality, we obtain the differential
inequality

d

dt
‖xn‖2H = −2a(xn, xn) + 2〈 f , xn〉 ≤ −b‖xn‖2W + 2a‖xn‖2H + 1

b
‖ f ‖2W ∗ .

As ‖xn(0)‖H ≤ ‖x0‖H , an application of the standard Gronwall lemma yields an
energy estimate

‖xn‖L∞(0,T ;H) + ‖xn‖L2(0,T ;W ) ≤ C
[‖x0‖H + ‖ f ‖L2(0,T ;W ∗)

]
, (1.4)

for some C > 0 independent of n. Then, from (1.3) and the embedding W ∗ ↪→ V ∗,
we also deduce the uniform bound

‖xn‖H1(0,T ;V ∗) ≤ C
[‖x0‖H + ‖ f ‖L2(0,T ;W ∗)

]
,

up to redefining C . Accordingly, there exists x ∈ L∞(0, T ; H) ∩ H1(0, T ; V ∗) ∩
L2(0, T ;W ) such that, up to a subsequence, we have the weak∗ and weak conver-
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gences

xn
∗

⇀x ∈ L∞(0, T ; H), xn⇀x ∈ H1(0, T ; V ∗), xn⇀x ∈ L2(0, T ;W ).

At this point, we fix m ∈ N and we take y ∈ Fm . Passing to the limit in (1.3), we
obtain

〈ẋ(t), y〉 + a(x(t), y) = 〈 f (t), y〉.

Since this is true for everym, we conclude that the latter equality holds for all test y ∈
V . Finally, in light of the embedding H1(0, T ; V ∗) ↪→ C([0, T ]; V ∗), we establish
the equality x(0) = x0. Thus, x is a W -weak solution. �

Any solution obtained through this limiting procedure is called aGalerkin solution.
On account of the weak lower semicontinuity of the norm, we infer from (1.4) an
immediate corollary.

Corollary 1.4 There exists C > 0 such that any Galerkin solution x satisfies the energy
estimate

‖x‖L∞(0,T ;H) + ‖x‖L2(0,T ;W ) ≤ C
[‖x(0)‖H + ‖ f ‖L2(0,T ;W ∗)

]
. (1.5)

Moreover, x ∈ C([0, T ]; V ∗).

We note that, at this point, the constructed Galerkin solution satisfies the above a priori
estimate; however, an arbitrary weak solution as per Definition 1.2 need not.

The uniqueness problem is more subtle, since one would hope to test a solution x
of the homogeneous problem (with a null initial datum) with x itself. This is possible
only if x resides in the correct test space, V , which may not be the case. However,
we will see that by introducing an additional straightforward hypothesis on a(·, ·),
we automatically gain uniqueness and boosted regularity of the weak solution. Before
stating this hypothesis, and the consequent result, we consider some motivational
examples to establish the validity and applicability of our scheme.

2 Three Examples

Let X0 be a separable real Hilbert space with inner product 〈·, ·〉0 and norm ‖ · ‖0,
and let B be a strictly positive self-adjoint linear operator on X0 with domain D(B),
compactly embedded into X0 (hence the spectrum of B comprises only eigenvalues).
For r ∈ R, we introduce the compactly nested scale of Hilbert spaces

Xr = D(B
r
2 ), (u, v)r = (B

r
2 u, B

r
2 v)0, ‖u‖r = ‖B r

2 u‖0.

If r > 0, it is understood that Xr is the completion of the domain, so that X−r is
the dual space of Xr . The duality pairing between X−r and Xr will be still denoted
by 〈·, ·〉. The paradigmatic example we have in mind for such a B is the Dirichlet
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Laplacian −� acting on the Hilbert space L2(�) with D(−�) = H2(�) ∩ H1
0 (�),

where � ⊂ R
n is a bounded domain with smooth boundary.

2.1 The Abstract Heat Equation

Given f ∈ L2(0, T ; X−1), we consider the Cauchy problem in H = X0

{
u̇ = −Bu + f ,

u(0) = u0 ∈ H ,

which is in the form (1.1) with A = −B. For every u ∈ X2 we have that

(Bu, u)0 = ‖u‖21. (2.1)

Accordingly, we take W = V = X1 and V ∗ = X−1, and we define the bilinear form
on X1 × X1

a(u, ũ) = (u, ũ)1.

A weak solution is then a function u ∈ L∞(0, T ; X0) ∩ L2(0, T ; X1) such that
u(0) = u0 and

〈u̇(t), φ〉 + (u(t), φ)1 = 〈 f (t), φ〉,

for a.e. t ∈ [0, T ] and every test φ ∈ X1. From Theorem 1.3, such a solution exists.
Moreover, considering a solution u of (1.1) with u0 = 0 and f = 0, we are in the ideal
case where we can utilize u itself as a test function, since u(t) ∈ X1 for a.e. t ∈ [0, T ].
This provides the energy estimate (1.4) with C = 0, establishing the uniqueness of
the solution as well.

Remark 2.1 It is evident from (2.1) that Assumption 1.1 would be in place with any
W = Xr with r ∈ [0, 1]. Hence, although we obtained the weak solution (i.e.,
the strongest in this framework) by choosing W = X1, we could have given the
notion of Xr -solution for any r ∈ [0, 1) as well. The weakest among those is the one
corresponding to W = X0. Namely, for f ∈ L2(0, T ; X0), a X0-weak solution is a
function u ∈ L∞(0, T ; X0) such that u(0) = u0 and

〈u̇(t), φ〉 − (u(t), Bφ)0 = ( f (t), φ)0,

for a.e. t ∈ [0, T ] and every test φ ∈ X2. (See also the second bullet in Sect. 4.)
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2.2 The AbstractWave Equation

Given g ∈ L2(0, T ; X0), we consider the Cauchy problem

{
ü = −Bu + g,

u(0) = u0, u̇(0) = u1,

with u0 ∈ X1 and u1 ∈ X0. Setting x = [u, v]� and f = [0, g]�, the above can given
the form (1.1) in H = X1 × X0, by setting

A =
[

0 I
−B 0

]
with domain D(A) = X2 × X1.

For x ∈ X2 × X1, we have

−(Ax, x)X1×X0 = 0.

In light of (1.2), this forces the equalityW = H = X1× X0. Since AW = X0× X−1,
and since the pivot space of the chain of embeddings is H , we obtain V = X2 × X1

and V ∗ = X0 × X−1, while, for x = [u, v]� and x̃ = [ũ, ṽ]�, the bilinear form is
given by

a(x, x̃) = −(v, Bũ)0 + (u, ṽ)1.

Then x = [u, v]� with u ∈ L∞(0, T ; X1) and v ∈ L∞(0, T ; X0) is a weak solution
if x(0) = [u0, u1]� and for every test y = [φ,ψ]� ∈ X2 × X1 the equality

(u̇(t), Bφ)0 + 〈v̇(t), ψ〉 − (v, Bφ)0 + (u(t), ψ)1 = (g(t), ψ)0

holds for a.e. t ∈ [0, T ]. Since the hypotheses on B ensure that the vectors of the form
Bφ with φ ∈ X2 span X0, we can equivalently say that x is a weak solution if for
every test y = [ξ, ψ]� ∈ X0 × X1

(u̇(t), ξ)0 + 〈v̇(t), ψ〉 − (v, ξ)0 + (u(t), ψ)1 = (g(t), ψ)0.

From this definition, we can easily recover the usual weak form of the wave equation.
Indeed, choosing ψ = 0 above, we readily obtain the equality v = u̇ in X0. From
there, we choose ξ = 0 to obtain what might be considered the weak formulation of
the wave equation, that is,

〈ü(t), ψ〉 + (u(t), ψ)1 = (g(t), ψ)0.

Although the existence follows fromTheorem 1.3, the subtle point comes in obtain-
ing the energy estimate (1.4) for any weak solution. In this case, one should choose
ψ = u̇ as test function in the latter equality, which is forbidden, since ψ is required to
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live in X1, whereas u̇ is in X0 only. Thus, in order to obtain uniqueness of solutions,
as well as a continuous dependence estimate, some additional (and nontrivial) work
is needed. In the reference [4, pp.406–408] a temporal anti-differentiation is used to
obtain uniqueness and by identifying the unique solution with the Galerkin solution,
continuous dependence is obtained. In [8, II.4.1, pp.76–79] a well-cited hyperbolic
regularization lemma is presented that yields an energy estimate for arbitrary weak
solutions; uniqueness then follows.

Instead, by the method presented below, we will see that when one has existence of
a weak solution via a “good" Galerkin construction, as it happens here, then the weak
solution is automatically unique, satisfies the energy estimate, continuously dependent
on the initial data, and has additional regularity.

2.3 The Abstract DampedWave Equation

Let α ∈ [0, 1] be fixed. Given a forcing term g ∈ L2(0, T ; X−α), we consider the
Cauchy problem

{
ü = −Bu − Bα u̇ + g,

u(0) = u0, u̇(0) = u1,

with u0 ∈ X1 and u1 ∈ X0. Of particular interest are the two limit cases α = 0,
corresponding to the weakly damped wave equation or telegrapher’s equation, and
α = 1 corresponding to the strongly damped wave equation, also known as Kelvin-
Voigt equation. The problem can be given the form (1.1) with H = X1 × X0, by
setting

A =
[

0 I
−B −Bα

]
with domain D(A) =

{
[u, v]�

∣∣∣∣ v ∈ X1

u + Bα−1v ∈ X2

}
,

which becomes D(A) = X2 × X1 whenever α ≤ 1/2. For x = [u, v]� ∈ D(A), we
now have

−(Ax, x)X1×X0 = ‖v‖2α.

Accordingly, W = X1 × Xα is the best possible space complying with (1.2). When
α = 0 the only possibility is W = H . Since AW = Xα × X−1, and since the pivot
space is H , we obtain

V = X2−α × X1, W = X1 × Xα, W ∗ = X1 × X−α, V ∗ = Xα × X−1.

For x = [u, v]� and x̃ = [ũ, ṽ]�, the bilinear form is given by

a(x, x̃) = −(v, ũ)1 + (u, ṽ)1 + (v, ṽ)α.
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A function x = [u, v]� with u ∈ L∞(0, T ; X1) and v ∈ L∞(0, T ; X0) ∩
L2(0, T ; Xα) is a weak solution if x(0) = [u0, u1]� and for every test y = [φ,ψ]� ∈
X2−α × X1 the equality

(u̇(t), B1−αφ)α + 〈v̇(t), ψ〉 − (v(t), B1−αφ)1 + (u(t), ψ)1 + (v(t), ψ)α

= 〈g(t), ψ〉

holds for a.e. t ∈ [0, T ]. Since B1−α maps X2−α onto Xα , this is the same as saying
that x is a weak solution if for every test y = [ξ, ψ]� ∈ Xα × X1

(u̇(t), ξ)α + 〈v̇(t), ψ〉 − (v(t), ξ)1 + (u(t), ψ)1 + (v(t), ψ)α

= 〈g(t), ψ〉.

Similarly to the previous example, we obtain the equality v = u̇ in Xα , along with the
usual weak formulation of the damped wave equation, that is,

〈ü(t), ψ〉 + (u(t), ψ)1 + (u̇(t), ψ)α = 〈g(t), ψ〉,

Again, existence follows fromTheorem1.3.Whenα = 1 uniqueness is easily obtained
as in Sect. 2.1, as the solution lives in the test space.

3 Uniqueness and Regularity

Whenever Assumption 1.1 is in force, Theorem 1.3 ensures the existence of aW -weak
solution to the Cauchy problem in (1.1) via a standard Galerkin construction. The next
assumption will automatically guarantee uniqueness of the solution, among several
other improved properties.

Assumption 3.1 In the terminology of the proof of Theorem 1.3, let there exists a
Galerkin family (Fn,�n) with the following property: for all vectors x ∈ W and all
x̃ ∈ V ,

a(x,�n x̃) = a(�nx, x̃), ∀n ∈ N.

Theorem 3.2 Under Assumptions 1.1 and 3.1, the Cauchy problem (1.1) admits a
unique W-weak solution x, for any admissible W space. Moreover, x ∈ C([0, T ]; H)

and the map x0 �→ x(t) belongs to C(H ; H) for any fixed t ∈ [0, T ].
Proof Due to linearity, uniqueness follows once we prove that any solution to the
homogeneous problemwith null initial datum is trivial. Let then x be any such solution
(namely, of (1.1) with x0 = 0 and f = 0), and set xn(t) = �nx(t). In light of
Assumption 3.1, taking a test y ∈ Fn , we have the equality

〈ẋn(t), y〉 + a(xn(t), y) = 0.

123



Applied Mathematics & Optimization            (2024) 90:38 Page 9 of 12    38 

This tells that xn is a Galerkin approximate solution, which is known to converge
(up to a subsequence) to some Galerkin solution x̂ . But since we already have that
xn(t) → x(t) in H , this forces the equality x̂ = x . Hence, x is aGalerkin solution of the
homogeneous problemwith initial datum x0 = 0, and applyingCorollary 1.4 allows us
to conclude that x is the null solution.By the same token, onceuniqueness is established
(and so all solutions are Galerkin solutions) we establish the continuous dependence
estimate. Indeed, let x, x̂ be two solutions of (1.1) with initial data x(0) = x0 and
x̂(0) = x̂0, respectively. Then, their difference x−x̂ is the solution of the homogeneous
problem with initial datum x0 − x̂0, and Corollary 1.4 provides the estimate

‖x − x̂‖L∞(0,T ;H) + ‖x − x̂‖L2(0,T ;W ) ≤ C‖x0 − x̂0‖H .

We are left to prove the continuity in time. To this end, let us assume first that f ∈
L2(0, T ; H). For an arbitrarily given x0 ∈ H , we construct the Galerkin approximate
solutions xn , based on the Galerkin family (Fn,�n). Now let n ≥ m. Exploiting
Assumption 3.1, for any test y ∈ Fn , we have the equality

〈ẋm(t), y〉 + a(xm(t), y) = 〈ẋm(t),�m y〉 + a(xm(t),�m y)

= 〈 f (t),�m y〉 = 〈�m f (t), y〉.

Hence, for any test y ∈ Fn , the difference xn − xm fulfills

〈ẋn(t) − ẋm(t), y〉 + a(xn(t) − xm(t), y) = 〈 f (t) − �m f (t), y〉.

Choosing y = xn − xm , and arguing as in the proof of Theorem 1.3, we obtain the
estimate

sup
t∈[0,T ]

‖xn(t) − xm(t)‖H ≤ C
[
‖�nx0 − �mx0‖H + ‖ f − �m f ‖L2(0,T ;H)

]
.

Observe that the last term of the right-hand side above goes to zero as m → ∞, by
the Lebesgue dominated convergence theorem. Therefore, xn is a Cauchy sequence
in C([0, T ]; H), and so converges to an element x in that space. Such an x is exactly
the previously established (unique) solution, taken with initial datum x0. Now, to deal
with the general case, let us consider a sequence fn ∈ L2(0, T ; H) converging to
f ∈ L2(0, T ;W ∗) in the latter norm. This time, we call xn the solution with initial
datum x0 corresponding to the forcing term fn . A further application of Corollary 1.4
yields the estimate

sup
t∈[0,T ]

‖xn(t) − xm(t)‖H ≤ C‖ fn − fm‖L2(0,T ;W ∗).

Again, we conclude that xn converges to x ∈ C([0, T ]; H). And it is standard matter
to verify that x is the solution with initial datum x0 corresponding to the forcing term
f . �
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Remark 3.3 It is clear from the above proof that, if one wants to prove only uniqueness
and continuous dependence, then Assumption 3.1 is not needed in its full strength; it
suffices to take only the weaker assumption

a(x,�n x̃) = a(�nx,�n x̃), ∀n ∈ N.

Returning to the examples of Sect. 2, let λ1 ≤ · · · ≤ λn → ∞ be the sequence of
eigenvalues of B, countedwithmultiplicity, and let {bn} be the corresponding sequence
of eigenvectors, which form (if normalized) a complete orthonormal family in X0

belonging to Xr for all r > 0. For the Cauchy problem (2.1), the basis {hn} of H = X0

needed to construct Fn is simply {bn}. For the Cauchy problems (2.2) and (2.3), the
orthonormal basis of H = X1 × H0 is made by the vectors h2n+1 = bn/

√
λn ⊕0 and

h2n = 0 ⊕ bn . In all cases presented here, our Assumption 3.1 is then immediately
verified.

4 Final Remarks

• Under Assumptions 1.1 and 3.1, we have a uniqueW -weak solution of the Cauchy
problem (1.1). Since all the W -weak solutions arise from the same Galerkin
scheme, they must coincide. Hence, the point of locating the best possible W
is actually the one of giving a notion of solution apt to describe all the regularity
properties satisfied by the solution itself.

• Althoughwe stated our results under the hypothesis f ∈ L2(0, T ;W ∗), everything
works if we take a more general forcing term f ∈ L1(0, T ; H) + L2(0, T ;W ∗).
The only additional ingredient needed in the proofs is a modified form of the
Gronwall lemma (see, e.g., [6]), in order to obtain the energy estimate (1.4).

• In a standard way, the existence of a unique W -weak solution satisfying (1.5)
implies that the operator A is the infinitesimal generator of a C0-semigroup S(t)
acting on H . In which case, it is well known that if f ∈ L1(0, T ; H) then the
Cauchy problem (1.1) admits a unique mild solution, given by the variation of
parameters (Duhamel) formula (see, e.g., [3]),

x(t) = S(t)x +
∫ t

0
S(t − s) f (s)ds.

Such a mild solution is nothing but the H -weak solution, hence, the weakest
possible arising in the framework presented here.

• A different definition of weak solution for (1.1) has been proposed in [2]. Namely,
a function x ∈ C([0, T ]; H) is a weak solution of (1.1) if and only if x(0) = x0
and for every y ∈ D(A∗) the map t �→ (x(t), y)H is absolutely continuous on
[0, T ] and

d

dt
(x(t), y)H = (x(t), A∗y)H + ( f (t), y)H , (4.1)

for a.e. t ∈ [0, T ], where A∗ is the adjoint of the operator A. Actually, in [2]
it is shown that A is the generator of a C0-semigroup if and only if for every
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initial datum x0 ∈ H there exists a unique weak solution in the sense of (4.1).
The relation between a weak solution of type (4.1) and semigroup generation was
also considered in [1]. This definition, although very elegant, is of less practical
use since, in general, finding the adjoint of A is a formidable task. Among many
others, an example in this direction is the infinitesimal generator A of the semigroup
describing the evolution of the relative displacement in a linearly viscoelastic solid
(see, e.g., [5, §3]), for which A∗ seems to be particularly difficult to compute. In
this case, generation of the semigroup is proved (not without some effort) via the
classical Lumer-Phillips theorem. On the other hand, for this problem a Galerkin
family is available (see [7]).

• As already mentioned, one way to establish the existence and uniqueness of weak
(mild) solutions is to prove that the operator A is the infinitesimal generator of a
C0-semigroup S(t). This requires us to apply the Feller–Miyadera–Phillips the-
orem. Unfortunately, as clearly stated in [3, Comment 3.9, pp.77–78], checking
the hypotheses of this theorem is out of question for general operators. It can
be reasonably accomplished only when the resulting S(t) is an ω-contraction (in
which case the Feller–Miyadera–Phillips theorem boils down to the Hille–Yosida
theorem). This means that, in the operator norm, S(t) must fulfill the estimate
‖S(t)‖ ≤ eωt , for some ω ∈ R. If so, such a semigroup generator A necessarily
satisfies the estimate

(Ax, x)H ≤ ω‖x‖2H , ∀x ∈ D(A).

This is (in fact, a particular case of) point (ii) of our Assumption 1.1.
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