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Abstract
In this article, a class of mean-variance portfolio selection problems with constant risk
aversion is investigated by means of closed-loop equilibrium strategies. Thanks to the
non-Markovian setting, two delicate kinds of equilibrium strategies are introduced
and both of them obviously reduce to the existing counterpart in the Markovian case.
To explicitly represent the equilibrium strategy, a class of backward stochastic Riccati
system is introduced, and its solvability is carefully discussed for the first time in the
literature. Different from the current literature, the spectacular role of random interest
rates in the model is firstly indicated by several interesting phenomena, and the new
deeper relations between closed-loop, open-loop equilibrium strategies are shown as
well. Finally, numerical analysis via deep learning method is shown to illustrate the
novel theoretical findings.
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1 Introduction

The well-known Markowitz mean-variance portfolio selection problem established
the foundation of modern investment portfolio theory. If one considers this financial
problem in amultiperiod setting, the so-called time inconsistency issue is encountered.
In other words, the strategy at one moment may not be optimal at the next moment,
which implies that the strategy must be continuously updated to maintain optimality.
Here it is worth mentioning that the pre-committed optimal solution is studied in, e.g.,
[1, 2]. However, it is optimal onlywhen viewed at the initial time, and the restriction for
the remaining time horizon is not optimal.Although such a static solution is of practical
and theoretical importance, it actually does not fit well with the dynamic nature of the
mean-variance portfolio selection problem, and may neglect the time-inconsistency
character.

In addition to optimality, the time consistency of policies is also a basic requirement
for rational decision-making inmany situations. As far aswe know, the time-consistent
strategy was first introduced by Strotz in [3], where a class of consumption problems
with non-exponential discount factors was carried out. Later, Strotz’s idea was inter-
preted in [4] in terms of game theory, and consistent planning was referred to as the
game-theoretic approach. Thus, for the dynamic mean-variance portfolio selection
problem, we adopt the notion of time-consistent equilibrium investment strategies,
where the term equilibrium is borrowed from game theory. Recently, such strategies
have attracted much attention. Basically, there are two types of equilibrium strategies
along this line: open-loop equilibrium investment strategies (OLEISs), which admit
certain linear closed-loop (or feedback) representations under proper conditions; and
closed-loop equilibrium investment strategies (CLEISs). We first look at the former
notion. For mean-variance problems with deterministic interest rate, OLEISs as well
as their closed-loop representations were introduced and investigated carefully in [5,
6]. Later, [7] extended it into the general asset-liability management problem with full
random coefficients. Other related topics can be found in [8–11], and the references
therein.As toCLEISs, theywere first investigated for dynamicmean-variance problem
with deterministic coefficients in [12]. To improve thewealth-independent equilibrium
strategies in [12], a class of state-dependent risk aversion strategies was introduced in
[13], and the equilibrium strategies were derived via the extended Hamilton–Jacobi–
Bellman (HJB) equations developed in [14]. We refer to [15–20], and [21] for other
related topics.

In this paper we discuss the dynamic mean-variance problem by means of CLEISs
when all the coefficients are random. Let us first explain the reasons of choosing
CLEISs. In the first place, it is in general a different notion from the OLEIS, even
under the Markovian framework, see e.g., [5, Section 5.4] or [19]. In the second place,
we find that CLEISs share an advantage of optimality in time-inconsistent problems
while OLEISs can not. For example, in the classical stochastic linear quadratic frame-
work that is inherently related to the mean-variance problems, [17] showed that the
open-loop equilibrium controls are fully characterized by first-order and second-order
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necessary optimality conditions, and are clearly not optimal in general, while the
closed-loop equilibrium controls naturally reduce to closed-loop optimal controls.
Now we show the motivations of working in the random coefficients setting. First, as
far as we know, there is no study that treats the corresponding CLEISs in the same
non-Markovian framework. Second, compared with the case of deterministic coeffi-
cients, this general scenario allows us to capture more features of risky asset prices,
describe more accurate market models, and obtain improved investment strategies.

In comparison with the existing literature, we will encounter several new features
and difficulties. First of all, to explicitly show the pre-committed optimal solution,
one can introduce two backward stochastic differential equations (BSDEs) that are
independent of each other (see [1]). However, here we need to solve two fully coupled
backward stochastic Riccati systems that are correlated. These systems are highly
nonlinear and very little is known about their direct solvability. Fortunately, stochas-
tic Riccati systems have a certain ad hoc structure among different equations. We
shall prove the existence of adapted solutions by some delicate analysis. The second
difficulty comes from the essential gap between certain strong requirements in the
definitions of CLEISs and the weak regularities of the second component of solutions
to a stochastic Riccati system. Because of the requirement of random coefficients for
interest rates, the martingale component of a BSDE, which does not appear in [5]
or [6], is introduced here. To fulfill the definition of CLEISs, one must ensure such
a martingale component to be well-defined for any t ∈ [0, T ), which is in general
impossible. Notice that this situation is naturally avoided in the deterministic coeffi-
cient case. To solve this problem, we provide two approaches. On the one hand, by
introducing proper Malliavin assumptions, we improve the property of the solutions
to the stochastic Riccati system. On the other hand, we keep the low regularity of the
martingale component. As a tradeoff, we introduce a slightly weaker notion that is
proved to be equivalent to the original CLEISs in a Markovian setting.

From our study, we observe that the randomness of the coefficients yields several
interesting phenomena. First, it is known that closed-loop equilibrium strategies in
the Markovian setting does not depend on initial wealth ([13]). However, in our non-
Markovian scenario, they are f eedback f orms of the equilibrium wealth process,
and naturally rely on initial wealth, which makes our conclusion clearly meaningful.
Second, for the mean-variance problems with constant risk aversion, we find that the
obtained closed-loop equilibrium strategy and the existing closed-loop representation
of an open-loop equilibrium strategy have the same feedback manner on the equilib-
rium wealth process, even when all the coefficients are random. If interest rates are
deterministic, these two equilibrium strategies happen to equal if they exist.1 Third,
in [13] the state-dependent risk aversion was introduced to make the obtained equilib-
rium strategy rely on the initial state. In our opinion, if so, the original mean-variance
problem essentially changed, and the new strategy surely can not recover the old one.
However, from our study, owing to the randomness of interest rates, the equilibrium
strategies are allowed to vary in terms of wealth level, and the previous mentioned
issues obviously disappear. Fourth, in the existing paper it is taken for granted that the

1 In general, the closed-loop representation of open-loop equilibrium strategies and closed-loop equilibrium
strategies are two different notions. However, in our scenario they happen to be the same.
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randomness of interest rates may not bring essential changes to the study. Therefore,
it is usually supposed to be deterministic while the expected return and the volatility
are allowed to be random. However, from our study we find that the random inter-
est rates can also bring us interesting conclusions. These four facts do not appear in
the deterministic coefficients (or Markovian) setting. More importantly, we further
explain them by numerical study via deep learning method. To the best of our knowl-
edge, the current paper is the first work to combine the deep learning approach with
the closed-loop equilibrium strategy of dynamic mean-variance problem.

At this moment, we summarize the main contributions of the current article from
three different viewpoints. Speaking of notions, the non-Markovian setting prompts
us to introduce two delicate kinds of closed-loop equilibrium strategy, both of which
naturally reduce to the Markovian case. Speaking of methodology, we explicitly solve
the encountered backward stochastic Riccati system, and demonstrate the theoretical
conclusions by numerical study via deep learning method. Both procedures appear
for the first time in the literature. Speaking of conclusions, we find the spectacular
role of random coefficients (especially the interest rates) and the deeper and clearer
connections between closed-loop equilibrium strategies and open-loop equilibrium
strategies.

The rest of this paper is organized as follows. In Sect. 2, some notations and spaces
are introduced, and the mean-variance problem is formulated in detail. Section 3
includes five parts. In the first part, we provide sufficient conditions for the closed-loop
equilibrium operators defined in Sect. 2. In the second part, we discuss the solvability
of the introduced Riccati systems, and present the explicit form of the closed-loop
equilibrium strategy. In the third part, we compare our results with the analogous study
in the Markovian setting and reveal several new phenomena that arise. In the fourth
part, we make detailed comparisons with the existing work of open-loop equilibrium
strategies and list a few interesting conclusions. In the fifth part, we discuss the mean-
variance problem with Vasiček’s stochastic interest rate. In Sect. 4, we demonstrate
some numerical studies via deep learning method. Section 5 concludes the study.

2 Preliminary Notation andModel Formulation

Throughout this paper, let (�,F , P,F) be the filtered probability space such that F0

contains all P-null sets, and filtration F
�= (Ft )t∈[0,T ], generated by a one-dimensional

standard Brownian motion, satisfies the usual conditions. For n, p ∈ N, 0 ≤ s <

t ≤ T , L2
Ft

(�;Rn) is the set of Ft -measurable mapping X : � → R
n such that

E|X |2 < ∞, L2
F

(
�; C([s, t];Rn)

)
is the set of measurable, F-adapted continuous

process X : [s, t] × � → R
n such that E sup

r∈[s,t]
|X(r)|2 < ∞, L∞

F
(�; C([s, t];Rn))

is the set of process X ∈ L2
F

(
�; C([s, t];Rn)

)
such that esssup

ω∈�

sup
r∈[s,t]

|X(r)| <

∞, L p
F
(�; L1(s, t;Rn)) is the set of measurable, F-adapted process X : [s, t] × �

such that E
(∫ t

s |X(r)|dr
)p

< ∞, L p
F
(�; L2(s, t;Rn)) is the set of process X ∈
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L p
F
(�; L1(s, t;Rn)) such thatE

(∫ t
s |X(r)|2dr

) p
2

< ∞. In particular, L2
F
(s, t;Rn) =

L2
F
(�; L2(s, t;Rn)).
We consider a financialmarketwhere the bond and the stock are traded continuously

on [0, T ]. In the following, r is the risk-free return (or interest rate); b is the expected
return of the risky asset; and σ is the corresponding volatility. The randomness of
these coefficients comes from Brownian motion W (·) as above. Given initial capital
x > 0, risk premium β := b − r , market price of risk θ = β

σ
, and the capital invested

in the risky asset u, for s ∈ [0, T ], the investor’s wealth X(s) satisfies

X(s) = x +
∫ s

0
[r(τ )X(τ ) + β(τ)u(τ )] dτ +

∫ s

0
u(τ )σ (τ )dW (τ ). (2.1)

(H0) Suppose r , b, σ are one-dimensional F-adapted bounded processes, and
|σ |2 ≥ δ for constant δ > 0.

At time t , the objective of the mean-variance portfolio selection is to choose an
investment strategy that minimizes J (u(·); t, X(t)) = Vart [X(T )] − γEt [X(T )] ,
where Et [·] := E[·|Ft ], γ is constant risk aversion, X(t) is the wealth at time t . Given
t ∈ [0, T ], ε > 0, a pair of (�∗, ϕ∗) and bounded v ∈ L2

Ft
(�;R), let

uv,ε := �∗ Xv,ε + ϕ∗ + v I[t,t+ε], u∗ := �∗ X∗ + ϕ∗, (2.2)

where Xv,ε(·) and X∗(·) satisfy (2.1) associated with uv,ε(·) and u∗(·), respectively.
For simplicity, here and next we omit the dependence of uv,ε, Xv,ε on time t . We point
out that the affine feedback representation in (2.2) is inspired by the existing literature
(e.g., [5–7, 13, 14, 16, 17]).

Definition 2.1 A pair of (�∗(·), ϕ∗(·)) ∈ L p
F
(�; L2(0, T ;R))× L2

F
(0, T ;R) is called

a closed-loop equilibrium operator if for any positive sequence εn → 0, x ∈ R, and
v ∈ L2

Ft
(�;R), one has u∗, uv,εn ∈ L2

F
(0, T ;R), and

lim
εn→0

J (uv,εn (·); t, X∗(t)) − J
(
u∗(·); t, X∗(t)

)

εn
≥ 0, ∀t ∈ [0, T ), a.s.

(2.3)

where u∗ and X∗ are the (linear) closed-loop equilibrium investment strategy, and the
closed-loop equilibrium wealth process, respectively.

Remark 2.1 We explain the meaning of “closed-loop,” “equilibrium,” and “opera-
tors” one by one. First, the term “closed-loop” comes from the feedback relation
between uv,ε and Xv,ε, and u∗ and X∗ in (2.2). It is different from that that of open-
loop equilibrium strategy (Remark 3.5). Second, as is stated in the Introduction, the
term “equilibrium” comes from game theory. The word “operator” is borrowed from
[22], where the characterization of closed-loop optimal operators for stochastic linear
quadratic problems with random coefficients is obtained. This operator indicates the
linear feedback relationship between the equilibrium strategy and equilibrium wealth.
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Remark 2.2 For time-inconsistent optimal control problem with either nonlinear state
or nonlinear cost functional, a generalization of (2.2) is uv,ε(·) := F(·, Xv,ε(·)) +
v I[t,t+ε](·), u∗(·) := F(·, X∗(·)), for some function F (e.g., [14, 23]). Here we restrict
ourselves to (2.2) due to the linear-quadratic structure of our problem, as well as the
ansatz technique to seek the Riccati system.

Remark 2.3 Due to the randomness of coefficients, the limit in (2.3) is taken with
any sequence {εn} tending to 0, not ε ∈ R tending to 0, see e.g. [23]. In fact, in the
non-Markovian framework, the difference quotient in (2.3) with εn replaced by ε is
well-defined in a full measure with respect to ω. Due to the uncountable property
of ε > 0, the limit in (2.3) may not be well-defined and this is the reason of using
{εn} instead. However, in the Markovian setting (e.g. [12, 13, 16]) one can avoid this
issue and replace {εn} by arbitrarily small ε > 0. In this case, our definition is in the
essentially similar spirit as theirs.

In the sequel, K is a generic constant that varies in different contexts.

3 Equilibrium Strategies in Mean-Variance Problems

3.1 Sufficient Condition for the Closed-Loop EquilibriumOperator

To show the sufficient conditions for the existence of closed-loop equilibrium operator,
we state the following hypothesis which will be verified in the next subsection.

(H1) Suppose there exists (�∗, ϕ∗) ∈ L p
F
(�; L2(0, T ;R))×L2

F
(0, T ;R) such that

for any x ∈ R, u∗, uv,ε ∈ L2
F
(0, T ;R), where u∗ and uv,ε are defined in (2.2).

Under (H1), we have X∗, Xv,ε ∈ L2
F
(�; C([0, T ];R)), J (u∗; t, X∗(t)),

J (uv,ε; t, X∗(t)), t ∈ [0, T ) are well defined. We define Xv,ε
1 (·) := Xv,ε(·) − X∗(·)

which satisfies

⎧
⎪⎨

⎪⎩

d Xv,ε
1 (s) = {[r(s) + β(s)�∗(s)]Xv,ε

1 (s) + β(s)v I[t,t+ε](s)
}
ds

+ σ(s)
[
�∗(s)Xv,ε

1 (s) + v I[t,t+ε](s)
]

dW (s), s ∈ [0, T ],
Xv,ε
1 (0) = 0.

(3.1)

From the definition of uv,ε in (2.2), a direct calculation implies that

J (uv,ε(·); t, X∗(t)) − J (u∗(·); t, X∗(t))
≥ Et

{[
2X∗(T ) − 2Et

[
X∗(T )

]− γ
]

Xv,ε
1 (T )

}
.

(3.2)

To deal with the right-hand term, for t ∈ [0, T ], we introduce (e.g., [16, 17])
⎧
⎪⎨

⎪⎩

dY ∗(s, t) = −{[r(s) + β(s)�∗(s)]Y ∗(s, t) + �∗(s)σ (s)Z∗(s, t)
}
ds

+ Z∗(s, t)dW (s), s ∈ [t, T ],
Y ∗(T , t) = 2X∗(T ) − 2Et

[
X∗(T )

]− γ.

(3.3)
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Suppose that (3.3) is solvable. Then by applying Itô’s formula to Y ∗(·, t)Xv,ε
1 (·),

Et
{[
2X∗(T ) − 2Et

[
X∗(T )

]− γ
]

Xv,ε
1 (T )

}

= vEt

∫ t+ε

t
[β(s)Y ∗(s, t) + σ(s)Z∗(s, t)]ds.

(3.4)

Therefore, from the above (3.2),

J (uv,ε(·); t, X∗(t)) − J (u∗(·); t, X∗(t))
ε

≥ v

ε
Et

∫ t+ε

t
[β(s)Y ∗(s, t) + σ(s)Z∗(s, t)]ds.

If there exists proper (�∗, ϕ∗) such that for any positive εn → 0,

lim
εn→0

1

εn
Et

∫ t+εn

t
[β(s)Y ∗(s, t) + σ(s)Z∗(s, t)]ds = 0, (3.5)

then according to Definition 2.1, (�∗, ϕ∗) will be the desired closed-loop equilibrium
operator. This motivates us to explore the appropriate property of (Y ∗, Z∗). Therefore,
we return to the solvability of (3.3). If �∗ in (H1) is deterministic ( [16, 17]), for any
t ∈ [0, T ], it is easy to see that there exists a unique pair of (Y ∗(·, t), Z∗(·, t)) ∈
L2
F
(�; C([t, T ];R)) × L2

F
(t, T ;R) satisfying (3.3). However, in our framework, it

becomes hard to directly deal with the well-posedness of (3.3). Note that (X∗, Y ∗, Z∗)
satisfy a decoupled linear forward-backward stochastic differential equation (FBSDE).
Therefore, we use the decoupling ideas to establish a connection between (3.3) and
a new class of backward stochastic Riccati system (BSRS). Then we discuss the
solvability of (3.3) via the introduced BSRS. To this end, we first suppose that

Y ∗(s, t) = P∗
1 (s)X∗(s) − 2P∗

2 (s)Et
[
P∗
3 (s)X∗(s) + P∗

4 (s)
]+ P∗

5 (s). (3.6)

Here and next, for s ∈ [t, T ], let (P∗
i (·),∗(·)) satisfy BSDE

{
d P∗

i (s) = �i (s)ds + ∗
i (s)dW (s), s ∈ [0, T ], i = 1, 2, 3, 4, 5,

P∗
1 (T ) = 2, P∗

2 (T ) = 1, P∗
3 (T ) = 1, P∗

4 (T ) = 0, P∗
5 (T ) = −γ,

where �i (·) is defined as:

�1 = −
[
2P∗

1 (r + β�∗) + 2∗
1σ�∗ + |�∗|2σ 2P∗

1

]
,

�2 = −
[
(r + β�∗)P∗

2 + �∗σ∗
2

]
,

�3 = −
[

P∗
3 r + (P∗

3 β + ∗
3σ)�∗],

�4 = −(P∗
3 β + ∗

3σ)ϕ∗,

�5 = −
[
(r + β�∗)P∗

5 + �∗σ∗
5 + (P∗

1 β + ∗
1σ + �∗σ 2P∗

1 )ϕ∗].

(3.7)

123



15 Page 8 of 30 Applied Mathematics & Optimization (2024) 89 :15

Next let us explain the way to obtain the above (3.7). First, by Itô’s formula, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d
[
P∗
1 X∗] = [

P∗
1 (r + β�∗) + �1 + ∗

1σ�∗] X∗ds

+ (P∗
1 β + ∗

1σ)ϕ∗ds + [P∗
1 (σ�∗ X∗ + σϕ∗) + ∗

1X∗]dW (s),

d
{

P∗
2 Et [P∗

3 X∗]} = {
�2Et [P∗

3 X∗] + P∗
2

{
Et
[
(P∗

3 r + P∗
3 β�∗ + �3 +∗

3σ�∗)X∗]

+Et
[
(P∗

3 β + ∗
3σ)ϕ∗]}} ds + ∗

2Et [P∗
3 X∗]dW (s),

d
[

P∗
2 Et

[
P∗
4

] ] = [
�2Et P∗

4 + P∗
2 Et�4

]
ds + ∗

2Et P∗
4 dW (s).

Therefore,

d
{

P∗
1 X∗ − 2P∗

2 Et
[
P∗
3 X∗ + P∗

4

]+ P∗
5

}

= {[
P∗
1 (r + β�∗) + �1 + ∗

1σ�∗] X∗ + (P∗
1 β + ∗

1σ)ϕ∗ + �5 − 2�2Et [P∗
3 X∗ + P∗

4 ]
−2P∗

2

{
Et
[
(P∗

3 r + P∗
3 β�∗ + �3 +∗

3σ�∗)X∗]

+Et
[
(P∗

3 β + ∗
3σ)ϕ∗ + �4

]}}
ds

+ {
P∗
1 [σ�∗ X∗ + σϕ∗] + ∗

1X∗ − 2∗
2Et [P∗

3 X∗ + P∗
4 ] + ∗

5

}
dW (s)

= − {
(r + β�∗)[P∗

1 X∗ − 2P∗
2 Et

[
P∗
3 X∗ + P∗

4

]+ P∗
5 ] + �∗σ Z∗} ds + Z∗dW (s).

By identifying the terms w.r.t. ds and dW (s), respectively, we see that

Z∗(·, t) = P∗
1 [σ�∗ X∗ + σϕ∗] + ∗

1X∗ − 2∗
2Et [P∗

3 X∗ + P∗
4 ] + ∗

5. (3.8)

Consequently,

(r + β�∗)[P∗
1 X∗ − 2P∗

2 Et
[
P∗
3 X∗ + P∗

4

]+ P∗
5 ] + �∗σ Z∗

=
[
(r + β�∗)P∗

1 + |�∗|2σ 2P∗
1 + �∗σ∗

1

]
X∗

+ (r + β�∗)P∗
5 + �∗σ 2P∗

1 ϕ∗ + �∗σ∗
5

− 2
[
(r + β�∗)P∗

2 + �∗σ∗
2

]
Et
[
P∗
3 X∗ + P∗

4

]
.

Comparing the ds terms in the previous expressions, we obtain a system of BSDEs,
the generators of which are shown in (3.7).

A careful look at (3.7) indicates that �2 = �3. Hence, P∗
2 = P∗

3 if they exist. As
a result, for notational simplicity, we keep the labels P∗

1 , P∗
2 , and replace P∗

3 , P∗
4 , P∗

5
by P∗

2 , P∗
3 , P∗

4 . To summarize, given an undetermined process (�∗, ϕ∗), we arrive at
a system of BSDEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d P∗
1 = −

[
2P∗

1 (r + β�∗) + 2∗
1σ�∗ + |�∗|2σ 2P∗

1

]
ds + ∗

1dW (s),

d P∗
2 = −

[
(r + β�∗)P∗

2 + �∗σ∗
2

]
ds + ∗

2dW (s),

d P∗
3 = −(P∗

2 β + ∗
2σ)ϕ∗ds + ∗

3dW (s),

d P∗
4 = −

[
(r + β�∗)P∗

4 + �∗σ∗
4 + (P∗

1 β + ∗
1σ + �∗σ 2P∗

1 )ϕ∗]ds + ∗
4dW (s),

P∗
1 (T ) = 2, P∗

2 (T ) = 1, P∗
3 (T ) = 0, P∗

4 (T ) = −γ.

(3.9)
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Remark 3.1 Recently, [23] also studied dynamic mean-variance portfolio selection
problem by closed-loop equilibrium strategy in the non-Markovian setting. However,
to obtain the backward stochastic Riccati system, they used the backward stochastic
PDEs while here we rely on FBSDEs and decoupling method. More importantly, the
solvability of the backward stochastic Riccati system was not touched in [23] while
in the following subsection we give a detailed discussion.

In the following, we define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�∗ := −β(P∗
1 − 2|P∗

2 |2) + σ(∗
1 − 2∗

2P∗
2 )

σ 2P∗
1

,

ϕ∗ := −β(P∗
4 − 2P∗

2 P∗
3 ) + σ(∗

4 − 2∗
2P∗

3 )

σ 2P∗
1

.

(3.10)

We will explain the reason for defining (�∗, ϕ∗) in this way via Remark 3.2. Plugging
these into the first two equations in (3.9), we obtain a coupled BSDEs system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d P∗
1 = −

{

2r P∗
1 −

[
β(P∗

1 − 2|P∗
2 |2) + σ(∗

1 − 2∗
2P∗

2 )
]

σ 2P∗
1

·
[
β(P∗

1 + 2|P∗
2 |2) + σ(∗

1 + 2∗
2P∗

2 )
]}

ds + ∗
1dW (s),

d P∗
2 = −

{

r P∗
2 − (β P∗

2 + σ∗
2)
[
β(P∗

1 − 2|P∗
2 |2) + σ(∗

1 − 2∗
2P∗

2 )
]

σ 2P∗
1

}

ds

+ ∗
2dW (s),

P∗
1 (T ) = 2, P∗

2 (T ) = 1.

(3.11)

Once (P∗
1 ,∗

1) (P∗
2 ,∗

2) are given, we obtain the coupled system for (P∗
3 , P∗

4 ) as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d P∗
3 = (P∗

2 β + ∗
2σ)

β(P∗
4 − 2P∗

2 P∗
3 ) + σ(∗

4 − 2∗
2P∗

3 )

σ 2P∗
1

ds + ∗
3dW (s),

d P∗
4 = −

[
(r + β�∗)P∗

4 + �∗σ∗
4 − (P∗

1 β + ∗
1σ + �∗σ 2P∗

1 )

· β(P∗
4 − 2P∗

2 P∗
3 ) + σ(∗

4 − 2∗
2P∗

3 )

σ 2P∗
1

]
ds + ∗

4dW (s),

P∗
3 (T ) = 0, P∗

4 (T ) = −γ.

(3.12)

Because the equation of (P∗
1 ,∗

1) is analogous to the classical backward stochastic
Riccati equation, we label the previous BSDE system (3.11)–(3.12) as a backward
stochastic Riccati system for our mean-variance portfolio selection problem.

By imposing appropriate assumptions on (P∗
i ,∗

i ), in the next theorem we obtain
the desired regularities of (Y ∗, Z∗), from which (using (3.5)) we further prove that
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(�∗, ϕ∗) in (3.10) is a closed-loop equilibrium operator. We leave the verification of
these assumptions of (P∗

i ,∗
i ) to the next subsection.

Theorem 3.1 Suppose (H0) holds, and there exist four pairs of (P∗
i ,∗

i ) satisfying
system (3.11)–(3.12), where P∗

1 (·) > δ > 0, δ is a constant. Moreover, (H1) holds,
and for any p > 2,

⎧
⎪⎪⎨

⎪⎪⎩

(P∗
i ,∗

i ) ∈ L∞
F

(�; C([0, T ];R)) × L p
F
(�; L2(0, T ;R)), i := 1, 2,

(P∗
j ,∗

j ) ∈ L p
F
(�; C([0, T ];R)) × L p

F
(�; L2(0, T ;R)), j := 3, 4,

sup
s∈[t,T ]

Et |∗
2(s)|2 < ∞, a.s. t ∈ [0, T ].

(3.13)

Then, (�∗, ϕ∗) as defined in (3.10) is a closed-loop equilibrium operator.

Proof Given (P∗
i ,∗

i ), i = 1, 2, 3, 4, satisfying system (3.11)–(3.12), and any (s, t) ∈
[0, T ], we define

Y ∗(s, t) := P∗
1 (s)X∗(s) − 2P∗

2 (s)Et
[
P∗
2 (s)X∗(s) + P∗

3 (s)
]+ P∗

4 (s),

Z∗(s, t) := P∗
1 (s)[σ(s)�∗(s)X∗(s) + σ(s)ϕ∗(s)] + ∗

1(s)X∗(s)
− 2∗

2(s)Et [P∗
2 (s)X∗(s) + P∗

3 (s)] + ∗
4(s).

Hence,

β(s)Y ∗(s, t) + σ(s)Z∗(s, t)

= [
β(s)P∗

1 (s) + σ(s)(P∗
1 (s)σ (s)�∗(s) + ∗

1(s))
]

X∗(s)
+ σ 2(s)P∗

1 (s)ϕ∗(s) + (β(s)P∗
4 (s) + σ(s)∗

4(s))

− 2
[
β(s)P∗

2 (s) + σ(s)∗
2(s)

]
Et (P∗

2 (s)X∗(s) + P∗
3 (s)).

(3.14)

From the arguments between (3.6) and (3.9), for t ∈ [0, T ], it is easy to check that
(Y ∗, Z∗) satisfy BSDE (3.3) on [t, T ]. In addition, by (3.13), for some q ∈ (1, 2), we
have (Y ∗(·, t), Z∗(·, t)) ∈ Lq

F
(�; C([t, T ];R)) × Lq

F
(t, T ;R).

Note that in the above definitions of (Y ∗, Z∗), time variable s, t are defined inde-
pendently. Hence by letting t = s, we see that (Y∗(s),Z∗(s)) := (Y ∗(s, s), Z∗(s, s)),
s ∈ [0, T ], are well-defined. By the definition of (�∗, ϕ∗) in (3.10), for almost all
s ∈ [0, T ], from (3.14),

0 = β(s)Y∗(s) + σ(s)Z∗(s) = β(s)Y ∗(s, s) + σ(s)Z∗(s, s)

= {
β(s)[P∗

1 (s) − 2|P∗
2 (s)|2] + P∗

1 σ 2�∗ + σ(∗
1 − 2∗

2 P∗
2 )
}

X∗(s)
− β(s)[2P∗

2 (s)P∗
3 (s) − P∗

4 (s)] + σ(s)
[
P∗
1 (s)σ (s)ϕ∗(s) − 2∗

2(s)P∗
3 (s) + ∗

4(s)
]
.

In order to obtain (3.5), it is sufficient to prove

lim
εn↓0Et

∫ t+εn

t

[
β(s)(Y ∗(s, t) − Y ∗(s, s)) + σ(s)(Z∗(s, t) − Z∗(s, s))

]

εn
ds = 0.

(3.15)
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In fact, we first have

Et
[
βY ∗(·, t) + σ Z∗(·, t)

] = Et
[
βY∗ + σZ∗]− 2Et

[
G ∗(·, X∗)(β P∗

2 + σ∗
2)
]
,

(3.16)

where

G ∗(·, X∗) := Et (P∗
2 X∗ + P∗

3 ) − P∗
2 X∗ − P∗

3 . (3.17)

From (3.13) and dominated convergence theorem, lim
εn↓0Et sup

s∈[t,t+εn ]
∣∣G ∗(s, X∗(s))

∣∣

= 0. a.s. Then, as εn ↓ 0, we obtain

1

εn
Et

∫ t+εn

t

∣∣∗
2(s)G

∗(s, X∗(s))
∣∣ds

≤ sup
s∈[t,T ]

[
Et |∗

2(s)|2
] 1
2
[
Et sup

s∈[t,t+εn ]
∣∣G ∗(s, X∗(s))

∣∣2
] 1
2 → 0.

(3.18)

Similarly, by the imposed regularity of P∗
2 ,

1

εn
Et

∫ t+εn

t

∣∣P∗
2 (s)G ∗(s, X∗(s))

∣∣ds → 0, εn ↓ 0. (3.19)

Putting (3.18) and (3.19) back into (3.16), we get the desired conclusion (3.15). ��
Remark 3.2 We point out two useful facts by the above proof. First, the pointwise
integrability of 2(·) in (3.13) plays an important role, even though it is stronger
than the conventional square integrability. We will verify this assumption in the next
subsection. Second, the reason of defining (�∗, ϕ∗) in (3.10) lies in the requirement
of β(s)Y ∗(s, s) + σ(s)Z∗(s, s) = 0, s ∈ [0, T ]. a.e. The equality is crucial for the
sufficiency of closed-loop equilibrium operators.

In the remaining part of this subsection, we drop the pointwise assumption of ∗
2

in (3.13). As a tradeoff, we introduce a slightly weak notion as follows.

Definition 3.1 The pair (�∗(·), ϕ∗(·)) is called a relaxed closed-loop equilibriumoper-
ator if for any x ∈ R, v ∈ L2

Ft
(�;R), and any positive sequence {εn} approaching to

zero, there exists a subsequence {ε′
n} such that u∗, uv,ε′

n ∈ L2
F
(0, T ;R), and

lim
ε′

n→0

J (uv,ε′
n (·); t, X∗(t)) − J

(
u∗(·); t, X∗(t)

)

ε′
n

≥ 0. a.e. a.s. (3.20)

Here, u∗ (resp. X∗) is a relaxed closed-loop equilibrium investment strategy (resp.
wealth process).
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If (�∗, ϕ∗) is a closed-loop equilibrium operator in the sense of Definition 2.1, then
for any positive sequence {εn} tending to zero, there exists a subsequence {ε′

n} such
that (3.20) holds for any t ∈ [0, T ). This is stronger than that of Definition 3.1. Hence
(�∗, ϕ∗) is also a relaxed closed-loop equilibrium operator. Conversely, we give the
positive answer in the deterministic coefficients case.

Lemma 3.1 Suppose that the coefficients in (H0) are deterministic, (�∗, ϕ∗) ∈
L2(0, T ;R2) is a relaxed closed-loop equilibrium operator. Then (�∗, ϕ∗) is also
a closed-loop equilibrium operator.

Proof Given (�∗, ϕ∗), it is easy to see the solvability of the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d P∗
1 = −

[
2(r + β�∗) + |�∗|2σ 2

]
P∗
1 ds,

d P∗
2 = −(r + β�∗)P∗

2 ds,
d P∗

3 = −P∗
2 βϕ∗ds,

d P∗
4 = −

[
(r + β�∗)P∗

4 + (P∗
1 β + �∗σ 2P∗

1 )ϕ∗]ds,

P∗
1 (T ) = 2, P∗

2 (T ) = 1, P∗
3 (T ) = 0, P∗

4 (T ) = −γ.

In addition, P∗
1 (·) ≥ δ > 0 for some constant δ. We observe that the following

(Y ∗, Z∗) satisfies (3.3) with deterministic (�∗, ϕ∗):

Y ∗(·, t) = P∗
1 X∗ − 2P∗

2 Et
[
P∗
2 X∗ + P∗

3

]+ P∗
4 , Z∗(·, t) = P∗

1 σ [�∗ X∗ + ϕ∗].

It follows from (3.4) that

Et
{[
2X∗(T ) − 2Et X∗(T ) − γ

]
Xv,ε
1 (T )

} = Et

∫ t+ε

t

[
H1(s)X∗(s) + H2(s)

]
dsv,

where Hi (·) are deterministic and are defined as

H1(t) := β(t)[P∗
1 (t) − 2|P∗

2 (t)|2] + σ 2(t)P∗
1 (t)�∗(t),

H2(t) := β(t)[P∗
4 (t) − 2P∗

2 (t)P∗
3 (t)] + σ 2(t)P∗

1 (t)ϕ∗(t).

For almost all t ∈ [0, T ], we see that

lim
ε→0

1

ε
Et
{[
2X∗(T ) − 2Et X∗(T ) − γ

]
Xv,ε
1 (T )

} =
[
H1(t)X∗(t) + H2(t)

]
v.

From Lemma 3.4 in [16], we have

lim
ε→0

1

ε
Et
{[Xv,ε

1 (T ) − Et Xv,ε
1 (T )]Xv,ε

1 (T )
} = 1

2
σ 2(t)P∗

1 (t)v2. dt ⊗ dP
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Therefore, it follows from the equality in (3.2) and Definition 3.1 that there exists
subsequence {ε′

n} such that

0 ≤ lim
ε′

n→0

1

ε′
n

[
J (uv,ε′

n (·); t, X∗(t)) − J (u∗(·); t, X∗(t))
]

=
[
H1(t)X∗(t) + H2(t)

]
v + 1

2
σ 2(t)P∗

1 (t)v2.

By the arbitrariness of v, we have H1(t) = 0 and H2(t) = 0, which implies that

�∗ = −β(P∗
1 − 2|P∗

2 |2)
σ 2P∗

1
, ϕ∗ = −β(P∗

4 − 2P∗
2 P∗

3 )

σ 2P∗
1

. (3.21)

We note that (H1) holds naturally for (�∗, ϕ∗) in (3.21). Therefore, according to
Theorem 3.1, (�∗, ϕ∗) is a closed-loop equilibrium operator. ��

The following result gives a sufficient condition for a relaxed closed-loop
equilibrium operator without imposing the pointwise assumption on ∗

2.

Theorem 3.2 Suppose (H0) holds, and there exist four pairs of (P∗
i ,∗

i ) satisfying
system (3.11)–(3.12), where P∗

1 > δ > 0, δ is a constant. Moreover, (H1) holds, and
for any p > 2,

{
(P∗

i ,∗
i ) ∈ L∞

F
(�; C([0, T ];R)) × L p

F
(�; L2(0, T ;R)), i := 1, 2,

(P∗
j ,∗

j ) ∈ L p
F
(�; C([0, T ];R)) × L p

F
(�; L2(0, T ;R)), j := 3, 4.

Then (�∗, ϕ∗) defined in (3.10) is a relaxed closed-loop equilibrium operator.

Proof By the proof of Theorem 3.1, for any sequence {εn} ↓ 0, it is sufficient to show
that there exists a subsequence {ε′

n} such that for almost every t ∈ [0, T ),

lim
ε′

n↓0
1

ε′
n
Et

∫ t+ε′
n

t

∣∣∗
2(s)G

∗(s, X∗(s))
∣∣ds = 0. a.s. (3.22)

Here, G ∗(·, X∗(·)) is defined in (3.17). For later usefulness, we extend the involved
functions on [0, 2T ] as,

f̃ ∗(s) := f ∗(s)I[0,T ](s), f := P2, P3, X , 2,

G̃ ∗(s, X̃∗(s)) := Et
[
P̃∗
2 (s)X̃∗(s) + P̃3(s)

]− P̃∗
2 (s)X̃∗(s) − P̃3(s).

As a result, for almost t ∈ [0, T ),

lim
ε′

n↓0
1

ε′
n
Et

∫ t+ε′
n

t

[∣∣∗
2(s)G

∗(s, X∗(s))
∣∣− ∣∣̃∗

2(s)G̃
∗(s, X̃∗(s))

∣∣
]
ds = 0.

(3.23)
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Using Hölder inequality, we obtain that

E

∫ T

0

1

ε

∫ t+ε

t

∣
∣̃∗

2(s)G̃
∗(s, X̃∗(s))

∣
∣dsdt

≤
[1
ε
E

∫ T

0

∫ t+ε

t
|̃∗

2(s)|2dsdt
] 1
2

[

E

∫ T

0
sup

s∈[t,t+ε]
∣∣G̃ ∗(s, X̃∗(s))

∣∣2dt

] 1
2

.

As for the first term,

lim
ε→0

1

ε
E

∫ T

0

∫ t+ε

t
|̃∗

2(s)|2dsdt = lim
ε→0

1

ε
E

∫ ε

0

∫ T +s

s
|̃∗

2(r)|2drds

= E

∫ T

0
|̃∗

2(r)|2dr .

Notice that

sup
s∈[t,t+ε]

|G̃ ∗(s, X̃∗(s))|2

≤ KEt sup
s∈[t,T ]

|P̃∗
2 (s)X̃∗(s) + P̃∗

3 (s)|2 + K sup
s∈[t,T ]

|P̃∗
2 (s)X̃∗(s) + P̃∗

3 (s)|2.

It then follows from the dominated convergence theorem that

lim
ε↓0 E

∫ T

0
sup

s∈[t,t+ε]
∣∣G̃ ∗(s, X̃∗(s))

∣∣2dt = 0.

To sum up, we have

lim
ε↓0

1

ε
E

∫ T

0

∫ t+ε

t

∣∣̃∗
2(s)G̃

∗(s, X̃∗(s))
∣∣dsdt = 0.

As a result, for any sequence {εn} ↓ 0, there exists {ε′
n} such that

lim
ε′

n↓0
1

ε′
n
Et

∫ t+ε′
n

t

∣∣̃∗
2(s)G̃

∗(s, X̃∗(s))
∣∣ds = 0, t ∈ [0, T ], dt ⊗ dP.

From (3.23), we see that (3.22) holds true for almost every t ∈ [0, T ). ��

3.2 Explicit Expressions for Closed-Loop Equilibrium Strategy

In this subsection, we present the explicit forms of closed-loop equilibrium strategies
for mean-variance portfolio selection problems with random coefficients.
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We make some intuitive arguments on the solvability of Riccati systems. First, let
us look at system (3.11), which is fully coupled. We cook up some techniques to
decouple them from each other. Given P∗

2 in (3.9), by Itô’s formula,

d|P∗
2 |2 = −

[
2r |P∗

2 |2 + 2P∗
2 (β P∗

2 + σ∗
2)�

∗ − |∗
2|2
]
ds + 2P∗

2 ∗
2dW (s).

Recalling P∗
1 in (3.9), we denote M∗ := P∗

1 − 2|P∗
2 |2, N∗ := ∗

1 − 4P∗
2 ∗

2. Then
we can describe (M∗, N∗) as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d M∗ = −
[

− (βM∗ + σ N∗)2 + 4σ P∗
2 ∗

2(βM∗ + σ N∗)
σ 2P∗

1

+ 2

(

r + |∗
2|2

P∗
1

)

M∗]ds + N∗dW (s),

M∗(T ) = 0.

(3.24)

Of course, M∗(·) = N∗(·) = 0 is a solution, which leads to P∗
1 = 2|P∗

2 |2,∗
1 =

4P∗
2 ∗

2. Recall (3.10), we further have �∗ = − 2∗
2 P∗

2
σ P∗

1
. Therefore,

2(P∗
1 β + ∗

1σ)�∗ + |�∗|2σ 2P∗
1 = −β∗

1

σ
− 3|∗

1|2
4P∗

1
. (3.25)

Hence, the first equation in (3.9)) reduces to

⎧
⎪⎨

⎪⎩

d P∗
1 = −

(

2r P∗
1 − β∗

1

σ
− 3|∗

1|2
4P∗

1

)

ds + ∗
1dW (s), s ∈ [0, T ],

P∗
1 (T ) = 2,

(3.26)

which does not rely on (P∗
2 ,∗

2). Similarly, one obtains the case of (P∗
2 ,∗

2).
Once (P∗

1 ,∗
1) and (P∗

2 ,∗
2) are obtained, we continue to look at the system (3.12).

Notice that

d(−2P∗
2 P∗

3 ) = −
[

− 2P∗
2 (P∗

2 β + ∗
2σ)ϕ∗ − 2(r + β�∗)P∗

2 P∗
3 − 2P∗

3 �∗σ∗
2

+2∗
2

∗
3

]
ds − (2P∗

2 ∗
3 + 2P∗

3 ∗
2)dW (s). (3.27)

Recalling (P∗
4 ,∗

4) in (3.12), we define � := P∗
4 − 2P∗

2 P∗
3 , � := ∗

4 − 2∗
2P∗

3 −
2∗

3P∗
2 . Then it follows from some basic calculations that

⎧
⎨

⎩
d� = −

[
(r + β�∗)� + �∗σ�

]
ds + �dW (s),

�(T ) = −γ,
(3.28)
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and ϕ∗ := − 2P∗
2 ∗

3
σ P∗

1
− (β�+σ�)

σ 2P∗
1

. Plugging ϕ∗ into the first equation in (3.12), we obtain

⎧
⎪⎨

⎪⎩

d P∗
3 =

[2(P∗
2 β + ∗

2σ)P∗
2

σ P∗
1

∗
3 + (P∗

2 β + ∗
2σ)(β� + σ�)

σ 2P∗
1

]
ds + ∗

3dW (s),

P∗
3 (T ) = 0,

(3.29)

which depends only on the given (P∗
1 ,∗

1), (P∗
2 ,∗

2), (�,�). Similarly, one can
obtain the case of (P∗

4 ,∗
4).

In the following, we make the above procedures rigorous and construct the solu-
tions of system (3.11)–(3.12) explicitly. To do so, we need the next hypothesis, the
verification of which is provided in Remark 3.4.

(H2) For s ∈ [0, T ], r(s), β(s)
σ (s) are Malliavin differentiable, and there exists a

constant K > 0 such that
∣
∣Dνr(s)

∣
∣+ ∣

∣Dν

[
β(s)
σ (s)

] ∣
∣ ≤ K , ν, s ∈ [0, T ].

Theorem 3.3 Suppose that (H0) and (H2) hold. Then (H1) holds true, and there exist
four pairs of (P∗

i ,∗
i ) satisfying system (3.11)–(3.12) with P∗

1 (·) > δ > 0 and (3.13)
being true with any p > 2. In addition, we have the following relation between
(P∗

1 ,∗
1) and (P∗

2 ,∗
2):

P∗
1 = 2|P∗

2 |2, ∗
1 = 4P∗

2 ∗
2,

and (3.10) is rewritten as (with (�,�) in (3.28)),

�∗ = − ∗
2

σ P∗
2

, ϕ∗ = −2P∗
2 ∗

3

σ P∗
1

− β� + σ�

σ 2P∗
1

∈ L p
F
(�; L2(0, T ;R)), p > 2.

(3.30)

Proof Step 1. We prove that (3.11) and (3.12) is solvable, (3.13) holds true.
First, we consider

⎧
⎨

⎩
d M = (

r M + β

σ
N
)
ds + NdW (s), s ∈ [0, T ],

M(T ) = −√
2.

(3.31)

It is easy to see that M is bounded and that
∫ ·
0 N (s)dW (s) is a BMO-martingale.

By defining P∗
1 := 4

M2 , ∗
1 := − 8N

M3 , we see that (P∗
1 ,∗

1) satisfies the above equa-
tion (3.26). Notice that M is bounded,

∫ ·
0 1(s)dW (s) is a bounded mean oscillation

(BMO)-martingale. We define (P∗
2 ,∗

2) as P∗
2 :=

√
P∗
1
2 , ∗

2 := ∗
1

4P∗
2
. Therefore, the

desired relations among P∗
1 , P∗

2 ,∗
1,

∗
2 are derived and the expression of�

∗ in (3.10)
becomes �∗ = − 2σ∗

2 P∗
2

σ 2P∗
1

= − ∗
2

σ P∗
2
. Moreover,

∫ ·
0 ∗

2(s)dW (s),
∫ ·
0 �∗(s)dW (s) are

BMOmartingales and the above (3.25) holds. As a result, we can rewrite (3.26) as the
first equation in (3.9), and (P∗

1 ,∗
1) is a solution to the first equation in (3.11).
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To prove that (P∗
2 ,∗

2) satisfies the second equation in (3.11), by Itô’s formula,

d

[
P∗
1

2

] 1
2 =

[
− r

(
P∗
1

2

) 1
2 + β∗

1

2
3
2 |P∗

1 | 12 σ
+ |∗

1|2
2

5
2 |P∗

1 | 32
]
ds + ∗

1

2
3
2 |P∗

1 | 12
dW (s).

(3.32)

With �∗ = − ∗
2

σ P∗
2
, we observe that

(β P∗
2 + σ∗

2)�
∗ = −

[

β

(
P∗
1

2

) 1
2 + σ∗

1

4P∗
2

]
∗

1

2σ P∗
1

= −
(
2− 3

2 |P∗
1 |− 1

2
β

σ
∗

1 + 2− 5
2 |P∗

1 |− 3
2 |∗

1|2
)

.

Since P∗
2 (T ) = 1, we can rewrite (3.32) into the second equation in (3.9), which

indicates the desired conclusion of (P∗
2 ,∗

2). It should be noted that the regularity of
(P∗

i ,∗
i ), i = 1, 2 in (3.13) is obvious.

We continue to investigate (P∗
3 ,∗

3), (P∗
4 ,∗

4). Because
∫ ·
0 �∗(s)dW (s) is BMO-

martingale, for any p > 2, by [24, Theorem 10], (3.28) admits a unique pair
of (�,�) ∈ L p

F
(�; C([0, T ];R)) × L p

F
(�; L2(0, T ;R)). By the integrability of

(P∗
2 ,∗

2), (�,�), for any p > 2, it follows from [24, Theorem 10] that (3.29)
admits the unique pair (P∗

3 ,∗
3) with the corresponding regularity in (3.13). We

define ϕ∗ := − 2P∗
2 ∗

3
σ P∗

1
− β�+σ�

σ 2P∗
1

. The result of ϕ∗ ∈ L p
F
(�; L2(0, T ;R)) is easy

to obtain. Moreover, we can transform (3.29) into the third equation in (3.9). Keeping
this in mind, by Itô’s formula, we obtain the above (3.27). Let P∗

4 := � + 2P∗
2 P∗

3 ,

∗
4 := � + 2∗

2P∗
3 + 2∗

3P∗
2 . We can rewrite the definition of ϕ∗ as the second

expression in (3.10). Therefore, (P∗
3 ,∗

3) is the solution to the first equation of (3.12).
In addition, it is a direct calculation that

⎧
⎪⎨

⎪⎩

d P∗
4 = − [

(r + �∗β)P∗
4 + �∗σ∗

4 − 2�∗σ P∗
2 ∗

3 + 2P∗
2 (P∗

2 β + ∗
2σ)ϕ∗

−2∗
2

∗
3

]
ds + ∗

4dW (s),

P∗
4 (T ) = −γ.

(3.33)

By the definition of (P∗
2 ,∗

2), we observe that�
∗ = − ∗

2
σ P∗

2
, �∗σ P∗

2 ∗
3+∗

2
∗
3 = 0,

∗
1 + �∗σ P∗

1 = 2P∗
2 ∗

2. Consequently,

−2�∗σ P∗
2 ∗

3 − 2∗
2

∗
3 + 2P∗

2 (P∗
2 β + ∗

2σ)ϕ∗ = P∗
1 βϕ∗ + (∗

1σ + �∗σ 2P∗
1 )σϕ∗.

Plugging it back into (3.33), we obtain the fourth equation in (3.9), and (P∗
4 ,∗

4)

satisfies the first equation of (3.12). The regularity of (P∗
4 ,∗

4) in (3.13) is obvious.
Step 2. In this step, we prove the integrability of ∗

2.
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Given τ ∈ [0, T ], ν ∈ [τ, T ], by (H2) and [25, Proposition 5.3], the Malliavin
derivatives (Dν M(s), Dν N (s)) exist, s ∈ [0, T ], and a version is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Dν M(t), Dν N (t)) = (0, 0), a.s. a.e., t ∈ [0, ν),

Dν M(t) = −
∫ T

t

{
Dνr(s) · M(s) + Dν

[
β(s)

σ (s)

]
· N (s) + r(s)Dν M(s)

+β(s)

σ (s)
Dν N (s)

}
ds − ∫ T

t Dν N (s)dW (s), t ∈ [ν, T ].

By the classical estimate of BSDEs, for ν ∈ [τ, T ],

Eτ sup
t∈[ν,T ]

|Dν M(t)|2 + Eτ

∫ T

ν

|Dν N (s)|2ds

≤ KEτ

{∫ T

ν

[
|Dνr(s)||M(s)| + |Dν

[
β(s)

σ (s)

]
||N (s)|

]
ds

}2
. a.s.

According to (H3), for τ ∈ [0, T ], we arrive at

sup
ν∈[τ,T ]

Eτ |Dν M(ν)|2 ≤ K sup
ν∈[τ,T ]

Eτ

{∫ T

ν

[|M(s)| + |N (s)|] ds

}2
< ∞.

Therefore, sup
t∈[τ,T ]

Eτ |N (t)|2 = sup
t∈[τ,T ]

Eτ |Dt M(t)|2 < ∞. a.s. Our conclusion follows

from the definition of ∗
1, and (P∗

2 ,∗
2).

Step 3. We verify the assumptions in (H1).
First, let us look at the case of (u∗, X∗). For t ∈ [0, T ], recall that

{
d X∗(s) = [

(r + β�∗)X∗ + βϕ∗] ds + [
σ�∗ X∗ + σϕ∗] dW (s),

X∗(0) = x .

We introduce �(·) satisfying �(0) = 1, and

d�(s) = �(r + β�∗)ds + σ�∗�dW (s), s ∈ [0, T ].

It is easy to check

d�−1 = �−1
[
σ 2|�∗|2 − r − β�∗] ds − �−1σ�∗dW (s).

Applying Itô’s formula to �−1X∗, for t ∈ [0, T ] we have

X∗(t) = �(t)x + �(t)
∫ t

0

ϕ∗(β − σ 2�∗)
�

ds + �(t)
∫ t

0

σϕ∗

�
dW (s). (3.34)
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By the integrability of (�∗, ϕ∗) in (3.30), for any p > 2, p′, q ′ > 1, 1
p′ + 1

q ′ = 1,

E

∣∣
∣
∫ T

0
|ϕ∗||β − σ 2�∗|ds

∣∣
∣

p

≤ E

{[ ∫ T

0
|ϕ∗|2ds

] p
2
[ ∫ T

0
|β − σ 2�∗|2ds

] p
2
}

≤
{

E

[ ∫ T

0
|ϕ∗|2ds

] pp′
2

} 1
p′ {

E

[ ∫ T

0
|β − σ 2�∗|2ds

] pq′
2

} 1
q′

< ∞.

(3.35)

We claim that �(·) = P∗
2 (0)

P∗
2 (·) , and thus � is bounded. In fact,

�(t) = exp

[∫ t

0

(

r − β∗
2

σ P∗
2

− |∗
2|2

2|P∗
2 |2

)

ds −
∫ t

0

∗
2

P∗
2

dW (s)

]

, t ∈ [0, T ].

By Itô’s formula to ln(P∗
2 ), we have

d(ln P∗
2 ) =

(

−r + β∗
2

σ P∗
2

+ |∗
2|2

2|P∗
2 |2

)

ds + ∗
2

P∗
2

dW (s).

The above expression of � is obvious. Combining this result with (3.34) and (3.35),
we conclude that for any p > 2,E sup

t∈[0,T ]
|X∗(t)|p < ∞. Using again the integrability

of (�∗, ϕ∗) in (3.30), we have

E

∫ T

0
|u∗(s)|2ds ≤ E

[
sup

s∈[0,T ]
|X∗(s)|2

∫ T

0
|�∗(s)|2ds

]
+ E

∫ T

0
|ϕ∗(s)|2ds < ∞.

Similarly, we have

E sup
t∈[0,T ]

|Xv,ε(t)|p < ∞, p > 2, E

∫ T

0
|uv,ε(s)|2ds < ∞.

The conclusion is easy to see. ��
Remark 3.3 If we introduce (M̃, Ñ ) as

⎧
⎨

⎩
d M̃ =

(
r M̃ + β

σ
Ñ

)
ds + ÑdW (s), s ∈ [0, T ],

M̃(T ) = 1,
(3.36)

then for (M, N ) satisfying (3.31), we have (M, N ) = −√
2(M̃, Ñ ). If r(·) is deter-

ministic, then M̃(·) is the common discount factor.When r(·) is random, for a financial
claim with unit terminal payoff, M̃(·) and σ−1(·)Ñ (·) can be considered as the price
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process and the replicating portfolio, respectively. According to [1], M̃(·) is referred
to as the risk-ad justed discount f actor . From the above proof of Theorem 3.3, we
see that P∗

2 = 1
M̃

, ∗
2 = − Ñ

|M̃|2 , �∗ = Ñ
M̃σ

. In other words, the first component �∗(·)
of the equilibrium operator is explicitly shown by the risk-adjusted discount factor
and the replicating portfolio.

Remark 3.4 For the solvability of (3.11)–(3.12), there is no need to impose assumption
(H2) which is only used to verify the pointwise integrability of ∗

2. For example, let

r(·) := f1(W (·)), β(·)
σ (·) := f2(W (·)), where both function fi and derivative function

f ′
i are bounded, i = 1, 2. In this case, (H2) is obvious.

From Theorem 3.3, in order to represent (�∗, ϕ∗), we only need
(P∗

2 ,∗
2), (�,�), (P∗

3 ,∗
3). For notational consistency, in the following we replace

these by (P∗
1 ,L ∗

1 ), (P∗
2 ,L ∗

2 ), (P∗
3 ,L ∗

3 ), respectively, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP∗
1 = −

[
rP∗

1 − L ∗
1

σP∗
1
(βP∗

1 + σL ∗
1 )

]
ds + L ∗

1 dW (s),

dP∗
2 = −

[
(r − βL ∗

1

σP∗
1
)P∗

2 − L ∗
1

P∗
1
L ∗

2

]
ds + L ∗

2 dW (s),

dP∗
3 = (P∗

1β + L ∗
1 σ)(2P∗

1L
∗
3 σ + βP∗

2 + σL ∗
2 )

2σ 2|P∗
1 |2 ds + L ∗

3 dW (s),

P∗
1 (T ) = 1, P∗

2 (T ) = −γ, P∗
3 (T ) = 0.

(3.37)

Moreover, the above (3.30) can be rewritten as

�∗ = − L ∗
1

σP∗
1
, ϕ∗ = −2P∗

1L
∗
3 σ + βP∗

2 + σL ∗
2

2σ 2|P∗
1 |2 . (3.38)

The following result is a concise combination of Theorem 3.1 and Theorem 3.3.

Theorem 3.4 Suppose that (H0), (H2) hold. Then there exist (P∗
i ,L ∗

i ), i = 1, 2, 3,
satisfying (3.37). In addition, (�∗, ϕ∗) in (3.38) is a closed-loop equilibrium operator,
u∗ := �∗ X∗ + ϕ∗ is a closed-loop equilibrium investment strategy,

{
sup

s∈[t,T ]
Et |�∗(s)|2 < ∞, a.s. t ∈ [0, T ],

ϕ∗ ∈ L p
F
(�; L2(0, T ;R)), p > 2.

(3.39)

We have the following corollary, which is useful in Sect. 3.3.

Corollary 3.1 Suppose that (H0) and (H2) hold, and the closed-loop equilibrium
operator is given in (3.38). Then, for any t ∈ [0, T ], we have

Et
[
X∗(T )

] = P∗
1 (t)X∗(t) + P∗

3 (t),

Et
[
X∗(T ) − Et X∗(T )

]2 = Et

∫ T

t

[
P∗

1σ(�∗ X∗ + ϕ∗) + L ∗
3

]2
ds.

(3.40)
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Proof By Itô’s formula to P∗
1 X∗ + P∗

3 , we have

X∗(T ) = P∗
1 (t)X∗(t) + P∗

3 (t) −
∫ T

t

[
P∗

1σ(�∗ X∗ + ϕ∗) + L ∗
3

]
dW (s).

According toTheorem3.3,we haveP∗
1 ∈ L∞

F
(�; C([0, T ];R)), u∗ := �∗ X∗+ϕ∗ ∈

L2
F
(0, T ;R). Therefore, (3.40) is easy to see. ��

3.3 New Phenomena in the Non-Markovian Framework

In this subsection, we present several interesting facts due to the randomness of the
coefficients.

If only r is deterministic, then (L ∗
1 ,L ∗

2 ) = (0, 0), and

⎧
⎪⎪⎨

⎪⎪⎩

dP∗
i = −rP∗

i ds, s ∈ [0, T ], i := 1, 2,

dP∗
3 =

(
β

σ
L ∗

3 − γβ2

2σ 2

)
ds + L ∗

3 dW (s),

P∗
1 (T ) = 1, P∗

2 (T ) = −γ, P∗
3 (T ) = 0.

In this case, �∗ = 0, ϕ∗ =
(

βγ

2σ 2 − L ∗
3

σ

)
e− ∫ T

· r(s)ds . If both β and σ become deter-

ministic, then L ∗
3 = 0, ϕ∗ = γβ

2|σ |2 e− ∫ T
· r(s)ds , which coincides with that in [12, 13,

16]. In other words, the randomness effect of β, σ induces the non-zero term L ∗
3 .

Notice thatP∗
1 (t) = e

∫ T
t r(s)ds . According to [12, pp.2979] and Corollary 3.1 above,

Et X∗(T ) − X∗(t)P∗
1 (t) = P∗

3 (t) represents the expected total gain or loss from the
optimal stock investment during time duration [t, T ]. This gives the financial inter-

pretation of P∗
3 (·). By defining dQ

dP = exp
{ − ∫ T

0
β(s)
σ (s)dW (s) − 1

2

∫ T
0

β2(s)
σ 2(s)

ds
}
, we

can rewrite P∗
3 (·) as P∗

3 (t) = E
Q

t
∫ T

t
γβ2(s)
2σ 2(s)

ds. Here, Q is the risk-neutral measure,
which coincides with the hedge-neutral measure in [12].

We present several interesting facts that have not been discussed elsewhere. Recall
that (�∗, ϕ∗) is the equilibrium operator that does not depend on x , and u∗ := �∗ X∗+
ϕ∗ is the equilibrium strategy.

Fact 1)When r is a deterministic function,β, and σ are random, and byRemark 3.3
we have �∗ = 0, u∗ = ϕ∗. This means that the investment does not depend on
the initial wealth. Of course, this does not make sense from the viewpoint of
economics. However, if r is random, we have �∗ �= 0, even though β, σ become
deterministic. This means that the f eedback dependence of equilibrium strategy
on the wealth level comes back, a big advantage of random interest rates.
Fact 2) For the pre-committed optimal strategy (e.g. [1]), it is common sense that
�∗ is used to hedge the risk/uncertainty of the risk premium β, the volatility σ ,
and the interest rate r in the non-Markovian setting. Even when β, σ , and r are
deterministic, they still affect the value of�∗. However, for an investor seeking the
above equilibrium strategy, he/she will not use �∗ to hedge the uncertainty of β
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and σ if r is deterministic. In other words, the interesting roles of b and σ become
clear only i f r is random, which is an essential difference from the pre-committed
solution.
Fact 3) To make the equilibrium strategy depend on initial wealth and become
economically meaningful, state-dependent risk aversion is introduced in [13].
However, this obviously changed the original structure of mean-variance port-
folio selection problem. Therefore, is it possible to achieve the following two
goals simultaneously: keeping the original constant risk aversion mean-variance
problem, providing state dependent equilibrium strategies? In our paper we give
an affirmative answer to this question.
Fact 4) Suppose the volatility σ is random and the risk premium β = 0. If the
interest rate r is deterministic, then ϕ∗ = 0,�∗ = 0, and equilibrium strategy
u∗ = 0; while if r is random, then in general �∗ �= 0, ϕ∗ �= 0, and thus u∗ �= 0.
These conclusions indicate that the randomness of r is more essential than that of
σ . The financial interpretation is as follows. If the expected rate of return of the
stock equals the deterministic interest rate of the bond, then there is no need to
put money into the risky asset. However, if the interest rate is random, then the
investor should put the proper investment in stock to hedge the risk of the interest
rate.

3.4 ComparisonsWith Open-Loop Equilibrium Strategy

Recall that for the closed-loop equilibrium strategy, we start with the closed-loop
equilibrium operator and then continue to construct the equilibrium strategy in a linear
manner.As for open-loop equilibrium strategies, it turns out to be the otherway around.
In the literature ([5–7, 9, 10]) the equilibrium strategies are introduced, and then a
particular class that is represented as linear feedback system is sought.

In the following, we compare our closed-loop equilibrium strategies with closed-
loop representations of open-loop equilibrium strategies. To this end, given (�̄, ϕ̄), we
define uv,ε

1 := �̄X̄ + ϕ̄ + v I[t,t+ε], ū := �̄X̄ + ϕ̄, where X̄ satisfies (2.1) associated
with ū. A pair of processes (�̄(·), ϕ̄(·)) is called an open-loop equilibrium operator if
for any x ∈ R, and any εn ↓ 0, we have ū ∈ L2

F
(0, T ;R), and

lim
εn→0

J (uv,εn
1 (·); t, X̄(t)) − J

(
ū(·); t, X̄(t)

)

εn
≥ 0. (3.41)

Here, ū is an open-loop equilibrium investment strategy that admits a closed-loop
representation, and (�̄, ϕ̄) is independent of x . Similar notions are discussed in [17]
(also see [5, 6, 9, 10], and [7]).

Remark 3.5 For the above uv,ε
1 and ū, both of them depend on equilibrium wealth

process X̄ . However, uv,ε and u∗ in (2.2), depend on two different processes Xv,ε and
X∗, respectively. This implies that uv,ε has the true feedback form with respect to the
corresponding state process, while uv,ε

1 does not. Moreover, this also indicates that for
an open-loop equilibriumoperator, one only needs to verify ū ∈ L2

F
(0, T ;R), while for

our closed-loop equilibrium operator, one has to check that u∗, uv,ε ∈ L2
F
(0, T ;R).
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To obtain the explicit forms of the open-loop equilibrium operator, we consider the
following system of equations in [0, T ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP̄1 = −
[
rP̄1 − (P̄1β + L̄1σ)

L̄1

σ P̄1

]
ds + L̄1dW (s),

dP̄2 = −rP̄2ds + L̄2dW (s),

dP̄3 = −
[
(

r − βL̄2

σ P̄2

)

P̄3 − L̄2

P̄2
L̄3

]
ds + L̄3dW (s),

dP̄4 = −(P̄1β + L̄1σ
)
(

βP̄3 + σ L̄3

σ 2P̄2P̄1
− L̄4

σ P̄1

)

ds + L̄4dW (s),

P̄1(T ) = 1, P̄2(T ) = −2, P̄3(T ) = −γ, P̄4(T ) = 0.

(3.42)

The above system (3.42) is derived by the following BSDE with parameter t :

Ŷ (τ, t) = 2X̂(T ) − 2Et X̂(T ) − γ +
∫ T

τ

r(s)Ŷ (s, t)ds

−
∫ T

τ

Ẑ(s, t)dW (s), τ ∈ [t, T ].
(3.43)

It is the analogue version of our BSDE (3.3) in the open-loop case with simpler form.
By [7], we see that (3.42) is solvable, from which we define

�̄ := − L̄1

σ P̄1
, ϕ̄ := βP̄3 + σ L̄3

σ 2P̄2P̄1
− L̄4

σ P̄1
. (3.44)

For ν, s ∈ [0, T ], suppose that the Malliavin derivative Dνr(s) exists and
∣∣Dνr(s)

∣∣ ≤
K . Using [7, Proposition 3.9], ū := �̄X̄ + ϕ̄ is an open-loop equilibrium strategy,
(�̄, ϕ̄) is an open-loop equilibrium operator in sense of (3.41).

If r is deterministic, then L̄i = 0, i = 1, 2, 3, and

⎧
⎪⎪⎨

⎪⎪⎩

dP̄i = −rP̄i ds, i := 1, 2, 3,

dP̄4 =
(

β

σ
L̄4 − β2γ

2σ 2

)
ds + L̄4dW (s),

P̄1(T ) = 1, P̄2(T ) = −2, P̄3(T ) = −γ, P̄4(T ) = 0.

In this case, �̄ = 0, ϕ̄ =
(

βγ

2σ 2 − L̄4

σ P̄1

)
e− ∫ T

· r(s)ds .

The following conclusions are pointed out for the first time in the literature.

Fact 5) If the interest rate r is random, system (3.42) includes four BSDEs, while
system (3.37) only contains three BSDEs. Because the expression of ϕ∗ in (3.38)
is different from ϕ̄ in (3.44), in general, the resulting closed-loop equilibrium
strategy �∗ X∗ + ϕ∗ is not equal to the open-loop equilibrium strategy �̄X̄ + ϕ̄.
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Fact 6) If we look carefully at �∗ in (3.38) and �̄ in (3.44), we find that they
are equal, even when (r , β, σ ) are random. In other words, both closed-loop equi-
librium strategies and open-loop equilibrium strategies have the same f eedback
coefficient on the equilibrium wealth process, and thus initial wealth. Similarly,
one can also obtain the same dependence between closed-loop equilibrium wealth
process and open-loop equilibrium wealth process on the initial wealth.
Fact 7) If r is deterministic, we have further equality between ϕ∗ and ϕ̄, even when
(β, σ ) are random. This means that the mean-variance portfolio selection problem
admits a pair of closed-loop and open-loop equilibrium strategies that coincide.
Fact 8) The above two equality conclusions indicate the distinctive role of constant
risk aversion, since they do not occur in the same framework with state-dependent
risk aversion ([5]).

3.5 Mean-Variance ProblemWith Vasicek’s Stochastic Interest Rate

In this subsection, we look at an interesting case when the bounded assumption of
stochastic interest rate r(·) in (H0) is not fulfilled. We will show that the previous
approach still works and the existence of closed-loop equilibrium strategy can be
obtained as well. Moreover, the investigation also closely relates to the numerical
study in Sect. 4.

Suppose b(·) and σ(·) are deterministic functions, while the interest rate r(·) is
described by the Vasiček model as

{
dr(s) = (

ζ − ξr(s)
)
ds + ρdW (s), s ∈ [0, T ],

r(0) = r0,
(3.45)

where ζ, ξ > 0, ρ ∈ R. For any p ≥ 0, by e.g., [7, Lemma 4.1], E

[

sup
t∈[0,T ]

ep|r(t)|
]

< ∞.
For t ∈ [0, T ], we define g(t) := 1

ξ

[
1 − e−ξ(T −t)

]
, and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1(t) = exp

{∫ T

t
g(s)

[
ζ − β(s)

σ (s)
ρ − 1

2
g(s)ρ2

]
ds

}
,

G2(t) =
∫ T

t

γ (β(s) + ρσ(s)g(s))2

2σ 2(s)
ds.

For t ∈ [0, T ], it is easy to check that (P∗
3 (t),L ∗

3 (t)) := (G2(t), 0),

(P∗
1 (t),L ∗

1 (t)) := (G1(t)e
g(t)r(t), ρg(t)G1(t)e

g(t)r(t)),

(P∗
2 (t),L ∗

2 (t)) := (−γ G1(t)e
g(t)r(t), γρg(t)G1(t)e

g(t)r(t))
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satisfy the BSDE system (3.37). Based on these (P∗
i ,L ∗

i ), we know that

⎧
⎨

⎩

(
P∗
2 ,∗

2

) := (
P∗

1 ,L ∗
1

)
,
(
P∗
3 ,∗

3

) := (
P∗

3 ,L ∗
3

)
,(

P∗
4 ,∗

4

) := (
2P∗

1P
∗
3 + P∗

2 ,L ∗
2 + 2L ∗

1 P
∗
3 + 2L ∗

3 P
∗
1

)
,(

P∗
1 ,∗

1

) := (2|P∗
1 |2, 4P∗

1L
∗
1 ),

(3.46)

is furthermore a solution to (3.9) with

�∗(t) := −ρg(t)

σ (t)
, ϕ∗(t) = γ

β(t) + σ(t)ρg(t)

2σ 2(t)G1(t)
e−g(t)r(t). (3.47)

Here P∗
3 (·) ∈ C([0, T ];R), (P∗

i (·),∗
i (·)) ∈ L p

F
(�; C([0, T ];R2)), i = 1, 2, 4. By

the explicit form of ∗
2 in (3.46), the above (H2) is not needed anymore.

We observe that the stochastic interest rate r(·) given by (3.45) violates the
boundedness assumption given in (H0). As a result, we need to check the pre-
vious arguments point by point. Notice that �∗(·) is bounded, and for any p >

1, ϕ∗(·) ∈ L p
F
(0, T ;R) ([7, Lemma 4.1]). It is direct calculation that (H1) is

satisfied with the above (�∗(·), ϕ∗(·)), where X∗(·) ∈ L p
F
(�; C([0, T ];R)),

∀p > 1, u∗(·) := �∗(·)X∗(·) + ϕ∗(·) ∈ L p
F
(0, T ;R). For any p > 1, one

has Xv,ε
1 (·) ∈ L p

F
(�; C([0, T ];R)), (Y ∗(·, t), Z∗(·, t)) ∈ L p

F
(�; C([t, T ];R)) ×

L p
F
(�; L2(t, T ;R)). Even though (P∗

1 (·), P∗
2 (·), P∗

3 (·)) do not have the bounded-
ness as in (3.13), the above Theorem 3.1 is still valid. To sum up the above arguments,
we present the following conclusion.

Lemma 3.2 Suppose (H0) holds with bounded assumption of r(·) replaced by (3.45),
and (�∗, ϕ∗) is defined in (3.47). Then u∗ := �∗ X∗ + ϕ∗ is the a closed-loop
equilibrium strategy.

Remark 3.6 There are references on closed-loop equilibrium strategies for mean-
variance problems under stochastic interest rate model. In [12, Subsection 3.3], the
mean-variance criterion is explored over terminal wealth in units of bond price, and
thus the equilibrium strategy is independent of wealth. However, the strategy given by
Lemma 3.2 is a linear feedback of wealth. In this respect, our result is in line with [26],
which considers a mean-variance reinsurance and investment problem under stochas-
tic interest rate and inflation risk. But the two results do not include each other since
the formualtion of financial markets considered in both papers is different.

4 Some Numerical Study via Deep LearningMethod

This section devotes to explaining the interesting facts in the Sects. 3.3 and 3.4 in the
numerical way. More precisely, we numerically solve the backward stochastic Riccati
systems (3.37), (3.42), that characterize the closed-loop and open-loop equilibrium
strategies, respectively, and use the deep neural network as function approximator (
[27]) for these two equilibrium strategies. The time interval from 0 to T is discretized
into 20 time steps. At each time step, we approximate the solution L ∗

i , L̄ j , i =
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Fig. 1 Simulated sample paths of two equilibrium strategies with random interest rate, deterministic interest
rate, respectively. OL and CL stands for open-loop and closed-loop equilibrium strategy, respectively. Black
dashed lines, blue dashed lines show the case of closed-loop, open-loop equilibrium strategy with random
r(·), respectively. Here the interest rate is described by the OU process (4.1) with κ = 8, σr = 0.05 and
r̄ = 0.03, and initial condition r(0) = 0.03. The red dashed lines show the benchmark case for these two
equilibrium strategies with deterministic interest rate r(·) = 0.03 (Color figure online)

1, 2, 3, j = 1, 2, 3, 4 of the Riccati system by a residual network (ResNet) [28] of 6
layers with 2048 hidden units for each layer. Each neural network takes the Brownian
path history as input, and outputsL ∗ = (L ∗

i )i∈{1,2,3} in case of closed-loop strategy,
and L̄ = (L̄ j ) j∈{1,2,3,4} in case of open-loop strategy. The initial value of P(0) is
treated as a learnable variable in the optimization scheme to minimize the empirical
L2 loss between the simulated and the target terminal condition for the Riccati system.

In the following, let the interest rate r(·) be described by the following Ornstein-
Uhlenbeck (OU) process,

{
dr(t) = −κ(r(t) − r̄)dt + σdW (t), t ∈ [0, T ]
r(0) = r0.

(4.1)

Apparently, it is special case of (3.45) with r̄ = ζ
ξ
, κ = ξ, σ = ρ. We compute

the closed-loop equilibrium operator and open-loop equilibrium operator, denoted by
(�c, ϕc) and (�o, ϕo), respectively, and then represent the corresponding equilibrium
strategies as uc = �c Xc + ϕc, uo = �o Xo + ϕo, where Xc, Xo are the closed-
loop, open-loop equilibrium wealth, respectively. In the following, let b = 0.09, σ =
0.2, γ = 0.5 with b, σ being the expected return, volatility of the risky asset, and
the investor’s risk aversion, respectively. The investment horizon is supposed to be
T = 0.5 year.

Figure 1 shows three sample paths of closed-loop, open-loop equilibrium (invest-
ment) strategy when the initial wealth is supposed to be 1, and the interest rate is
random, deterministic, respectively. From the figures, we find that with random r(·),
these two equilibrium strategy are different from each other, while with deterministic
interest rate, they coincide with each other. This point was mentioned in the Fact 5),
Fact 7) of Sect. 3.4.

Figure 2 exhibits the hypothetical closed-loop equilibrium strategies. In the left
panel, the interest rate is constant, in which case �c = 0 and the strategy uc is
independent of wealth. This is consistent with Fact 1) in Sect. 3.3. We also find
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Fig. 2 Closed-loop equilibrium strategy as a linear function of current wealth X(·) at four different times.
The left panel shows the case of deterministic r(·) = 0.03, while the right panel represents the case when
r(·) is described by OU process with κ = 8, σ = 0.05, r̄ = 0.03, and the initial condition r(0) = 0.03

that the investment strategy is increasing in time, which is consistent with the above
conclusion (3.47) with ρ = 0, β, σ being positive constants. Right panel exhibits
the strategy u(t, ω) = �(t, ω)x + ϕ(t, ω) for a random Brownian sample ω with
x ∈ [0, 10] at time t = 0.1, 0.2, 0.3 and 0.4, respectively. These figures indicates that
the closed-loop equilibrium strategy is a linear function of the equilibriumwealth with
slopes �(·) and intercepts ϕ(·). Moreover, the slopes do not reduce to zero, and both
slopes and intercepts depend on time variable. These conclusions are consistent with
Fact 1) in Sect. 3.3. Even though the risk aversion γ = 0.5, the equilibrium strategy
still depends on the wealth process or initial wealth. Such conclusion was pointed out
in Fact 3) of Sect. 3.3.

Figure 3 describes the sample paths of equilibrium investment strategies and the
corresponding wealth processes under closed-loop and open-loop framework respec-
tively. The rightmost figure at the top (resp. bottom) row, numerically demonstrate the
result that at any given time t , the difference of equilibrium wealth processes (resp.
the two equilibrium strategies) does not depend on the initial wealth. It is shown by
the figures that they are almost the same among initial wealth level 1, 10 and 20 for
two simulations of Brownian sample paths. Recall that both the wealth processes and
equilibrium strategies are linear functions of initial wealth X0, these two independence
of the difference on the initial wealth indicates that the closed-loop, and open-loop
equilibrium strategy/wealth processes have the same dependence on initial wealth.
These conclusions are consistent with Fact 6) of Sect. 3.4.

In the above, the decoupled structure of the Riccati system facilitates the numerical
solution by the deep neural network. Next, we investigate the distribution of terminal
wealth of two equilibrium strategies with different levels of initial wealth by numerical
simulation. We choose to focus on the terminal wealth because it closely relates to the
mean-variance criterion corresponding to the equilibrium strategies. Figure 4 shows
the distribution of terminal wealth X(T ) by simulation. Let the initial wealth level vary
from 1, 10, 20 and 100 as shown from the left to right panel on each row. For each level
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Fig. 3 Sample paths of equilibrium strategies and the corresponding wealth process on the top and bottom
row, respectively. The interest rate follows OU process with the same parameter as Figure 1. Initial wealth
X0 is supposed to be 1, 10, 20 for the first, second and third figure from the left. In the top row, the red lines,
and the blue lines show the equilibrium wealth processes generated from Brownian sample 1, Brownian
sample 2, respectively. Dashed line represents the sample path for the closed-loop equilibrium strategy,
while the dotted line shows the analogue case for the open-loop equilibrium strategy. The fourth figure on
the right shows the differences of the two equilibrium wealth processes for both Brownian samples. In the
bottome row, the red lines, the blue lines, the dashed line, the dotted line has the similar meanings associated
with equilibrium strategies (Color figure online)

Fig. 4 Distribution of the terminal wealth associated with equilibrium strategies. The top row, the bottom
row, shows distribution for the closed-loop equilibrium strategy, open-loop equilibrium strategy, respec-
tively. On each row, the initial wealth level is supposed to be 1, 10, 20 and 100 from the left to right
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of initial wealth, we generate 2048 Brownian paths and compute the terminal wealth
under the closed-loop case (top row) and the open-loop case (bottom row) respectively.
The red vertical line in each figure shows the average of simulated terminal wealth in
each sub-figures. By the previous theoretical discussion, the difference of equilibrium
terminal wealths Xc(T )− Xo(T ) is independent of the initial wealth X(0), even when
the interest rate is random. Therefore, the ratio Xc(T )−Xo(T )

X(0) shrinks to zero as X(0)
increases. This phenomenon can be demonstrated from Fig. 4. Comparing the top and
bottom rows, we can see both the mean of the terminal wealth and the distributions
become indifferent of the control type (i.e., open-loop or closed-loop) as the initial
wealth level increases.

5 Concluding Remark

In this study, we discussed the dynamic mean-variance portfolio selection problem
with random coefficients, and a class of systems of backward stochastic Riccati equa-
tions was introduced and discussed for the first time. As a result of the non-Markovian
setting, several interesting phenomena, which are absent in existing literature with
deterministic coefficients, have been shown here for the first time. Without further
essential difficulties, our investigation also works when investment strategies, as well
asBrownianmotion, aremultidimensional. The uniqueness of closed-loop equilibrium
strategies is left for future research.
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