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Abstract
In a Hilbert framework, we introduce a new class of second-order dynamical systems
that combine viscous and geometric damping but also a time rescaling process for
nonsmooth convex minimization. A main feature of these systems is to produce tra-
jectories that lie in the graph of the Fenchel subdifferential of the objective. Moreover,
they do not incorporate any regularization or smoothing processes. This new class
originates from some combination of a continuous Nesterov-like dynamic and the
Minty representation of subdifferentials. These models are investigated through first-
order reformulations that amount to dynamics involving three variables: two solution
trajectories (including an auxiliary one) and another one associated with subgradients.
We prove the weak convergence towards equilibria for the solution trajectories, as well
as properties of fast convergence to zero for their velocities. Remarkable convergence
rates (possibly of exponential-type) are also established for the function values. We
additionally state notable properties of fast convergence to zero for the subgradients
trajectory and for its velocity. Some numerical experiments are performed so as to
illustrate the efficiency of our approach. The proposed models offer a new and well-
adapted framework for discrete counterparts, especially for structured minimization
problems. Inertial algorithms with a correction term are then suggested relative to this
latter context.
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1 Introduction

LetH be a real Hilbert spacewith inner product and induced norm denoted by 〈., .〉 and
‖.‖, respectively. This paper aims at proposing fast continuous Newton-like dynamics
for solving the nonsmooth minimization problem

inf
x∈H

f (x), (1.1)

where f : H → IR ∪ {+∞} is a proper convex and lower semi-continuous func-
tion such that S := argmin f 	= ∅. This issue was particularly discussed this last
decade through second-order dissipative dynamical models with asymptotic vanish-
ing (isotropic linear) damping (see, e.g., [12–14, 23, 24, 31, 38]), possibly coupled
with geometric damping [3, 7, 9, 10, 16, 19]. Note that these afore-mentioned dynam-
ics can also incorporate a time rescaling process for acceleration purposes [13–16,
19]. Nevertheless, these studies (in which the two kinds of damping occur) are mostly
concerned with the case when the objective f is smooth. Some related strategies
were recently proposed to face the nonsmooth case by replacing the objective with an
appropriate smooth regularization (see, e.g., [7, 19]).

It is our purpose here to propose and investigate a different but simpler approach
to the issue under consideration. Our methodology is inspired by the recent models
in [30] (for computing zeroes of a maximally monotone operator) whose discrete
counterparts gave rise to very efficient forward-backward algorithms with a correction
term (see [26, 29]). Specifically, based on the work [30], we discuss fast continuous
models that generate dynamics {x(·), ξ(·)} lying in the graph of ∂ f (the Fenchel
subdifferential of f ). It is worthwhile noticing that similar dynamics can be deduced
from the systems studied in [30] (relative to the special case of the potential operator
∂ f ) with nice features such as ‖ẋ(t)‖ = o(t−1) and ‖ξ(t)‖ = o(t−1) (as t → +∞)
among others. However, in absence of time rescaling process, the typical convergence
rate f (x(t)) − min f = o(t−2) (as t → +∞) is not shown, which is somewhat
restrictive for numerical purposes regarding structured minimization. This drawback
can be overcome with our new models which are nothing but slight modifications of
the latter ones issued from [30] (with regard to the special case of potential operators).
This approach additionally leads us to noteworthy convergence rates related to the
trajectories. As discrete counterparts of our models in view of solving structured
minimization problems, we also suggest new forward-backward algorithms with a
correction term (besides the momentum term).

Notations In what follows, for any given function u : [0,∞) → H, we will

sometimes use the notations
(
u(·))(1) and

(
u(·))(2) as the first and second derivatives

in time (respectively) of u.
Furthermore, given two time-dependent functions a : IR → IR and b : IR → IR

we recall the notation a(t) ∼ b(t) as t → +∞, which means that there exists a
real mapping h : IR → IR for which a(·) = h(·)b(·) and limt→+∞ h(t) = 1. In
particular, if b(·) = b∗ is a nonzero constant, a(t) ∼ b∗ as t → +∞ is equivalent to
limt→+∞ a(t) = b∗.
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1.1 A Second-Order Dynamical System

As a particular case of the second-order model initiated in [30], we intend here to
exploit the dynamics (x, ξ) : [0,∞) → H2 generated by

ξ(t) ∈ ∂ f (x(t)), (1.2a)
(
x(·) + σ(·)ξ(·))(2)

(t) + α(t)ẋ(t) + β(t)
(
σ(·)ξ(·))(1)

(t) + b(t)σ (t)ξ(t) = 0,

(1.2b)

where {α(·), β(·), b(·), σ (·)} are positive functions from IR to IR. Recall that this sys-
temwas inspired by theMinty representation ofmaximallymonotone operators and the

approach due to Attouch–Chbani–Fadili–Riahi [16]. The term
(
x(·) + σ(·)ξ(·))(2)

(t)
acts as a singular perturbation of the possibly degenerated classical Newton continuous
dynamical system (see, e.g., [3]) inwhich a time scaling parameterσ(·) is incorporated.
In addition to the time scaling parameter σ(·), system (1.2) embeds some geometric
damping (through the terms ξ̇ (·)), but also an isotropic damping coefficient α(·) that
can be intended to vanish asymptotically.

1.2 An Equivalent First-Order System

Amain step in our methodology is to rewrite (1.2) as an equivalent first-order dynami-
cal system, by means of a phase-space lifting method. This was done in [30] only
for sufficiently regular pairs {x(·), ξ(·)} verifying (1.2) together with parameters
{α(·), β(·), b(·)} of the form

α(t) = − θ̇ (t)

θ(t)
+ κ − θ(t), β(t) = − θ̇ (t)

θ(t)
+ κ + ω(t),

b(t) = ω(t)

(
κ + ω̇(t)

ω(t)
− θ̇ (t)

θ(t)

)
, (1.3)

where κ is some positive constant, while {θ(·), ω(·)} are positive mappings of class
C1. Let us stress that we will prove that (1.2)–(1.3) can be alternatively formulated in
some sense (even for a nonregular pair {x(·), ξ(·)}) as the first-order dynamical system
(see Propositions 2.1):

ξ(t) ∈ ∂ f (x(t)), (1.4a)

ẋ(t) + σ(t)ξ̇ (t) + θ(t) (y(t) − x(t)) + (
σ̇ (t) + σ(t)ω(t)

)
ξ(t) = 0, (1.4b)

ẏ(t) + κ(y(t) − x(t)) = 0. (1.4c)

Observe that the simplicity of the latter model makes it particularly interesting with
regards to numerical developments. In the sequel of this work, we consider the above
system with a particular choice of parameters {θ(·), σ (·), ω(·)} taken such that
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θ(t) = κν(t) − ν̇(t)

ν(t) + e∗
, (1.5a)

σ(t) = σ0e
δ
∫ t
0

1
ν(s)+e∗ ds

( ⇒ σ̇ (t)

σ (t)
= δ

ν(t) + e∗
)
, (1.5b)

ω(t) =
(

κ − ν̇(t)

ν(t)

)
ϑ(t) − δ

ν(t) + e∗

(
⇒ ω(t) + σ̇ (t)

σ (t)
=

(
κ − ν̇(t)

ν(t)

)
ϑ(t)

)
,

(1.5c)

where δ is a nonnegative constant, {e∗, σ0} are positive constants and {ν(·), ϑ(·)} are
positive mappings of class C1 that play crucial roles.

Note that the mapping ϑ(·) will be assumed to be nonincreasing and such that
ϑ(t) ∼ ϑ∞ (as t → ∞) for some positive value ϑ∞.

Remark 1.1 The coefficients used here are different from that used in [30] relative
to the computation of zeroes of an arbitrary maximally monotone operator. We also
stress that ϑ(·) could be chosen as a constant, but such a choice would be restrictive
with regard to the numerical purposes (see Sect. 5.2).

1.3 Connection with the State-of-the-Art

Many of the inertial approaches to minimizing a smooth convex function f enter the
following model

ẍ(t) + ᾱ(t)ẋ(t) + β̄(t)
d

dt
∇ f (x(t)) + b̄(t)∇ f (x(t)) = 0, (1.6)

where ᾱ(t) (viscous damping coefficient) and b̄(·) (time scale parameter) are posi-
tive mappings, while β̄(·) is nonnegative. The parameter b̄(·) plays a key role in the
acceleration of the asymptotic convergence properties of the trajectories x(·) when-
ever b(t) → +∞ (as t → ∞). Nonetheless, it is worthwhile underlining that the use
of a bounded scale parameter b̄(·) is up until now of great importance with regard to
numerical purposes for structured minimization problems (by means of proximal-like
algorithms). In addition, this model originates from two important classes of second-
order systems (depending on the presence or not of the geometric damping) that follow
the seminal works on inertial dynamics initiated by Polyak [34], Su–Boyd–Candès
[38] and Attouch–Peypouquet–Redont [11].

1.3.1 A First Class with Only Viscous Damping

The first class (which only involves a viscous damping) enters (1.6) with β̄ ≡ 0 and
writes

ẍ(t) + ᾱ(t)ẋ(t) + b̄(t)∇ f (x(t)) = 0, (1.7)

where f is of class C1 and {ᾱ(·), b̄(·)} are positive mappings. The special case of
(1.7) when ᾱ(t) ≡ ᾱ > 0 and b̄(t) ≡ 1 corresponds to the (classical) heavy ball with
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frictionmethod (initiated byPolyak [34]). The special case of (1.7)when ᾱ(t) = α∗t−1

(for α∗ ≥ 3) were discussed by Attouch–Chbani–Riahi [13, 14] as the time re-scaled
(AVD) (whose terminology stands for Asymptotic Vanishing Damping) given by

ẍ(t) + α∗
t
ẋ(t) + b̄(t)∇ f (x(t)) = 0, for t ≥ t0 > 0. (1.8)

The special case of (1.8) when b̄(t) ≡ 1 is nothing but the classical system (AVD),
which is the dynamic version of the popular Nesterov’s method introduced by
Su–Boyd–Candès [38] (see, also, Apidopoulos–Aujol–Dossal [4], Attouch–Chbani–
Peypouquet–Redont [12]). Let us underline that the asymptotic convergence rate of
the function value O(t−1) as t → +∞ (for the heavy ball with friction method)
was improved to o(t−2) (for the classical (AVD)). Moreover, the trajectories of
(1.8) were shown to verify (see [14, Corollary 5]), under the growth condition
lim supt→∞ t

b̄(t)
d
dt b̄(t) < α∗ − 3, the fast convergence rates (for some t0 ≥ 0):

f (x(t)) − min f = o
( 1∫ t

t0
sb̄(s)ds

)
and ‖ẋ(t)‖2 = o

( b̄(t)∫ t
t0
sb̄(s)ds

)
as t → +∞. So, for

the polynomial time scaling function b̄(t) = t p together with α∗ > p + 3, these rates
writes: f (x(t)) − min f = o

(
t−(p+2)

)
and ‖ẋ(t)‖ = o

(
t−1

)
(as t → +∞).

Continuous approaches to nonsmooth convexminimization based uponmodel (1.8)
were furthermore addressed by means of either Moreau-Yosida regularizations (see
Attouch-Cabot [5]) or smoothing techniques (see Qu-Bian [35]). A nonsmooth set-
ting based on the more general model (1.7) was also investigated by Luo [28] by
means of the concept of energy-conserving solution, leading to additional substantial
convergence results such as a rate of O(e−t ) as t → +∞ for the function values.

1.3.2 A Second Class with Both Viscous and Geometric Damping

The second class (linked with Newton’s method by combining both viscous and geo-
metric damping) writes as system (1.6) in which f is of class C2 and {ᾱ(·), β̄(·), b̄(·)}
are positive mappings. The special case of (1.6) when ᾱ(t) = α∗t−1 (for some con-
stant α∗ ≥ 1) was introduced by Attouch–Chbani–Fadili–Riahi [16, 17] (see also,
Attouch–Peypouquet–Redont [11] and Shi–Du–Jordan–Su [36]) so as to neutralize
the oscillations observed for system (1.8). This modification of (1.8) gave rise to the
time re-scaled (DIN-AVD) that equivalently writes

ẍ(t) + α∗
t
ẋ(t) + β̄(t)

d

dt
∇ f (x(t)) + b̄(t)∇ f (x(t)) = 0, for t ≥ t0 > 0. (1.9)

It has been shown in [16] (under appropriate conditions on the parameters) that the
convergence properties of (AVD) regarding the function values are preserved, besides
having proved the strong convergence to zero of ∇ f (x(·)) and other estimates on this
last term. The authors also established among others the asymptotic properties below
(see [17, Section 2.4]):

-If α∗ > 3, β̄(t) ≡ β (for some constant β > 0) and b̄(t) ≡ 1, then

the trajectories of (1.9) satisfy f (x(t)) − min f = o
(

1
t2

)
as t → +∞,
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together with
∫ +∞
t0

t2‖∇ f (x(t))‖2dt < ∞ (property of fast decaying gradient) and
∫ +∞
t0

t‖ẋ(t)‖2dt < ∞.

- If β̄(t) = tβ and b̄(t) = ctβ−1 (for some positive constants β and c), along
with β < c − 1 and β ≤ α∗ − 2, then the trajectories of (1.9) satisfy the rate

f (x(t)) − min f = o
(

1
tβ+1

)
as t → +∞.

Later on, the nonsmooth setting of f based upon (1.9) was addressed by Attouch-
László [7] and Boţ-Karapetyants [19]. Their approaches consist in replacing f in (1.9)
with itsMoreau envelope fλ(·) of some time-dependent parameter λ(·). Such a strategy
was first considered in [7] relative to constants {β̄, b̄} ⊂ (0,∞), and then extended in
[19] to the case of positive mappings {β̄(·), b̄(·)} through the model

ẍ(t) + α∗
t
ẋ(t) + β̄(t)

d

dt
∇ fλ(t)(x(t)) + b̄(t)∇ fλ(t)(x(t)) = 0, for t ≥ t0 > 0.

(1.10)

It was stated (see [19, Theorems 2, 4 and 5]), under appropriate assumptions including
α∗ > 1 and lim supt→∞ t

b̄(t)
d
dt b̄(t) < ∞, that x(·) converges weakly to a minimizer

of f together with the following convergence rates as t → +∞ (in which proxλ(·) f
denotes the proximal operator of f ):

– fλ(t)
(
x(t)

) − min f = o
(

1
t2b̄(t)

)
, f

(
proxλ(t) f

(
x(t)

)) − min f = o
(

1
t2b̄(t)

)
,

– ‖∇ fλ(t)
(
x(t)

)‖ = o

(
1

t
√

b̄(t)λ(t)

)
, ‖ẋ(t)‖ = o

( 1
t

)
,

–
∫ ∞
t0

t‖ẋ(t)‖2dt < ∞,
∫ ∞
t0

t b̄(t)
(
fλ(t)(x(t)) − min f

)
dt < ∞.

More recently, Boţ, Csetnek and László proposed in [20] a slightlymodified version
of system (1.10) which incorporates a Tikhonov regularization term, in order to get
strong convergence for the trajectories.

Unlike the methodology proposed in [7, 18–20], our new model (1.2) (which is
also linked with Newton’s method) incoporates the same types of damping terms
(even relative to the nonsmooth setting) without resorting to any regularization of the
objective.

1.4 Overview of theMain Results

Weprove existence and uniqueness of a strong (global) solution (x, ξ, y) to (1.4)–(1.5)
(see Propositions 2.2 and 2.3), for which (x, ξ) equivalently solves (1.2)–(1.3)–(1.5).
Next, focusing on (1.4)–(1.5), we put out some important asymptotic features of its
trajectories with respect to ν(·) (see Theorems 4.1, 4.2, 4.3 and 4.4). Theorems 4.1 and
4.2 are concernedwith the general setting of ν(·). They establish theweak convergence
of x(·) and y(·) towards the same equilibria, but also the strong convergence to zero
of both ξ(·) and ξ̇ (·), with fast decaying properties. Theorems 4.3 and 4.4 deal with
the particular case ν(t) = ν

1−γ
0 (t + ν0)

γ for t ≥ 0 (with ν0 > 0 and γ ∈ [0, 1])
for which the parameters in (1.3) satisfy as t → ∞ (see Proposition 4.3): α(t) ∼
α∗t−γ , β(t) ∼ β∗ and b(t) ∼ b∗ (for some {α∗, β∗, b∗} ⊂ (0,∞)). It is particularly
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established (among others) remarkable convergence rates relative to γ and the involved
parameters {δ, κ, σ0, ν0, ϑ∞, e∗} as described below:
- Case γ = 1(ν(t) = t + ν0). For any δ ≥ 0 and {κ, σ0, ν0} ⊂ (0,∞), together with
e∗ > κ−1(δ + 2) and ϑ∞ ≥ 1, we obtain for some t0 ≥ 0, and as t → +∞:

f (x(t)) − min f = o

(
1

tδ+2

)
, ‖ẋ(t)‖ = o

(
t−1

)
,

∫ ∞

t0
t‖ẋ(t)‖2dt < ∞,

(1.11a)

‖ξ(t)‖ = o

(
1

tδ+1

)
,

∫ ∞

t0
t2δ+2‖ξ(t)‖2dt < ∞, (1.11b)

‖ξ̇ (t)‖ = o

(
1

tδ+1

)
,

∫ ∞

t0
t2δ+2‖ξ̇ (t)‖2dt < ∞. (1.11c)

- Case γ ∈ [0, 1). For any δ ≥ 0 and {κ, σ0, ν0} ⊂ (0,∞), together with e∗ =
λκ−1δ (for some λ > 1) and ϑ∞ ≥ 1, we get for c := ( ν

γ
0

(1−γ )(ν0+λ)

)
δκ

max{δ,κ} and for
some t0 ≥ 0 and as t → +∞:

f (x(t)) − inf f = o
( 1

t2γ ect1−γ

)
, ‖ẋ(t)‖ = o

(
t−γ

)
,

∫ ∞

t0
tγ ‖ẋ(t)‖2dt < ∞,

(1.12a)

‖ξ(t)‖ = o
( 1

tγ ect1−γ

)
,

∫ ∞

t0
t2γ e2ct

1−γ ‖ξ(t)‖2dt < ∞, (1.12b)

‖ξ̇ (t)‖ = o
( 1

tγ ect1−γ

)
,

∫ ∞

t0
t2γ e2ct

1−γ ‖ξ̇ (t)‖2dt < ∞. (1.12c)

Remark 1.2 As a consequence of the latter case, we deduce (see corollary 4.1) that,
for any {δ, σ0, ν0} ⊂ (0,∞) together with κ = δ, e∗ > 1 and ϑ∞ ≥ 1, the rates in

(1.12) still hold with c := ( ν
γ
0

(1−γ )(ν0+e∗)
)
δ.

Note that when γ = 1, our results in terms of convergence rates are as good as those of
[19] (regarding model (1.10)), despite the simplicity of model (1.4)–(1.5). Moreover,
we observe that, in absence of time rescaling process (namely δ = 0), better theoretical
convergence rates are obtained for the case γ = 1, while our model can be easily
adapted to solve structured minimization problems. Concerning the case γ ∈ [0, 1)
in presence of time rescaling process (namely δ > 0), we get better convergence rates
than for γ = 1, excluding the two rates for ‖ẋ(·)‖. In particular, through a certain
trade-off regarding the specific case when γ = 0, together with the choice e∗ > 1
and κ = δ, we can reach the following exponential-like rates as t → +∞ (for the
sub-gradient and the function values):

f (x(t)) − inf f = o

(
e
− δ

ν0+e∗ t
)

, ‖ξ(t)‖ = o

(
e
− δ

ν0+e∗ t
)

, ‖ξ̇ (t)‖ = o

(
e
− δ

ν0+e∗ t
)

,

(1.13)
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where the parameter δ can be arbitrarily chosen.
The proofs of our results rely on Lyapunov properties of functionalsLs,q(·) (related

to (1.4)–(1.5)) defined for (s, q) ∈ (0,∞) × S and t ≥ 0, by

Ls,q(t) = 1
2‖s(q − x(t)) + ν(t)(y(t) − x(t))‖2 + sσ(t)(e∗ + ν(t))〈ξ(t), x(t) − q〉

+ 1
2 s(e∗ − s)‖x(t) − q‖2 + σ(t)(e∗ + ν(t))

(
(e∗ + ν(t))ϑ(t) − s

)(
f (x(t)) − f (q)

)
.

Main assumptions Throughout this paper, we assume the condition

(CF) f : H → IR ∪ {+∞} is a proper convex l.s.c function such that S

:= argminH f 	= ∅. (1.14)

The other assumptions required on the parameters are detailed below. Given a
positive constant κ and positive mappings {ν(·), ϑ(·)} we set ρ(·) := κ − ν̇(·)

ν(·) while
assuming the following conditions:

ν(·) and ϑ(·) are positive, of class C1, and ν(·) is nondecreasing on [0,∞), (1.15a)
ν̇(·)
ν(·) is nonincreasing and

ν̇(·)
ν(·) < κ on [0,∞), (hence ρ(·) is positive and nondecreasing),

(1.15b)
ν̇(t)

ν(t)
→ 0 as t → ∞, (1.15c)

sup
t≥0

|ν̇(t)| ≤ M (for some positive constant M). (1.15d)

We also consider the following additional condition on ϑ(·):

ϑ(·) is nonincreasing on [0,∞) and ϑ(t) ∼ ϑ∞ as t → ∞ (for some ϑ∞ > 0).

(1.16)

1.5 Organization of the Paper

An outline of this paper is as follows: In §2, we show some equivalence between
systems (1.2) and (1.4) as well as the well-posedness of (1.4). In §3, we exhibit some
Lyapunov functional associatedwith (1.4). §4 is devoted to the convergence analysis of
(1.4)–(1.5). §5 is concerned with numerical experiments and suggestions for discrete
models. The last section is an Appendix that contains several proofs.

2 Equivalency andWell-Posedness of the ConsideredModels

In this section,we establish some equivalence between absolutely continuous solutions
to (1.2) and (1.4).On the basis of this approach,we introduce a notion of strong solution
relative to each of these systems, for which we also state existence and uniqueness
results.
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2.1 Reminders on the Notion of Absolute Continuity

Let us recall some notions concerning vector-valued functions of a real variable (see,
e.g., [2]).

Definition 2.1 Given c̄ ∈ [0,∞), a function z : [0, c̄] → H is said to be absolutely
continuous if one of the following equivalent properties (i1)-(i3) holds:

(i1) There exists an integrable function g : [0, c̄] → H such that
z(t) = z(0) + ∫ t

0 g(s)ds, ∀t ∈ [0, c̄];
(i2) z is continuous, and its distributional derivative is Lebesgue integrable on [0, c̄];
(i3) ∀ε > 0, ∃η > 0 such that, for finitely many intervals Ik = (ak, bk) ⊂ [0, c̄],
(Ik ∩ I j = ∅ (for k 	= j) and

∑
k |bk − ak | ≤ η) ⇒ ∑

k ‖z(bk) − z(ak)‖ ≤ ε.

For simplicity, we say that a function z : [0,∞) → H is absolutely continuous
whenever it is so on every bounded interval, and we denote by Ac the set of such
mappings, that is

Ac := {z : [0,∞) → H | z(·) is absolutely continuous on [0, c̄] for any 0 < c̄ < ∞}.
(2.1)

Remark 2.1 Recall that z belongs to Ac whenever it is Lipschitz continuous on every
bounded interval. It is also well-known that any element ofAc is differentiable almost
everywhere and that its derivative coincides with its distributional derivative almost
everywhere.

2.2 Notions of Strong Solutions

We introduce here two notions of strong solutions (through the next definitions) regard-
ing (1.2) and (1.4). Let us begin by defining a notion of strong solution for the first-order
system (1.2).

Definition 2.2 We say that (x, ξ) : [0,∞) → H2 is a strong (global) solution to
(1.2), for initial data (x0, ξ0, q0) ∈ H3 such that ξ0 ∈ ∂ f (x0), if {x(·), ξ(·)} are
two elements of Ac such that, (for ζ(·) := σ(·)ξ(·)), x(·) + ζ(·) is of class C1 and(
x(·) + ζ(·))(1) ∈ Ac, and if:

ξ(t) ∈ ∂ f ((x(t)), for all t ≥ 0, (2.2a)

(x(·) + ζ(·))(2)(t) + α(t)ẋ(t) + β(t)ζ (1)(t) + b(t)ζ(t) = 0, for a.e. t ≥ 0,

(2.2b)

(x(0), ξ(0)) = (x0, ξ0) and (x(·) + ζ(·))(1)(0) = q0. (2.2c)

We proceed with a notion of strong solution for system (1.4).

Definition 2.3 We say that the triplet (x, ξ, y) : [0,∞) → H3 is a strong (global)
solution to (1.4), for some Cauchy data (x0, ξ0, y0) ∈ H3 such that ξ0 ∈ ∂ f (x0), if
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the functions {x(·), ξ(·), y(·)} ⊂ Ac and if they satisfy the following properties:

ξ(t) ∈ ∂ f ((x(t)), for all t ≥ 0, (2.3a)

ẋ(t) + σ(t)ξ̇ (t) + θ(t) (y(t) − x(t)) + (
σ̇ (t) + σ(t)ω(t)

)
ξ(t) = 0, for a.e. t ∈ [0,∞),

(2.3b)

ẏ(t) + κ(y(t) − x(t)) = 0, for a.e. t ∈ [0,∞), (2.3c)

(x(0), ξ(0), y(0)) = (x0, ξ0, y0). (2.3d)

The previous two definitions will be shown farther to be equivalent in a certain way.

2.3 From a Second to a First Order System

Let us prove some equivalence regarding the second-order system (1.2) and the first-
order system (1.4).

Proposition 2.1 Let (CF) hold, let κ > 0, let {θ(·), ω(·), σ (·)} be positive mappings
of class C1 and suppose that {α(·), β(·), b(·)} are given by (1.3).

Then, for (x0, ξ0, q0) ∈ H3, the statements (i1) and (i2) below are equivalent:
(i1) (x, ξ) : [0,∞) → H2 is a strong (global) solution to (1.2) with initial data

(x0, ξ0, q0);
(i2) (x, ξ, y) : [0,∞) → H3, for some auxiliary variable y(·), is an element of

Ac ×Ac ×Ac that satisfies (when denoting ζ(·) := σ(·)ξ(·)) the first-order system

ξ(t) ∈ ∂ f (x(t)), for all t ≥ 0, (2.4a)
(
x(·) + ζ(·))(1)

(t) + θ(t) (y(t) − x(t)) + ω(t)ζ(t) = 0, for all t ≥ 0, (2.4b)

ẏ(t) + κ(y(t) − x(t)) = 0, for a.e. t ≥ 0, (2.4c)

with : x(0) = x0, ξ(0) = ξ0 and y(0) = x0 − 1

θ(0)
(q0 + σ(0)ω(0)ξ0) .

(2.4d)

Proof See Appendix A.1. ��
At first sight, any triplet (x, ξ, y) satisfying (i2) is nothing but a strong solution to
(1.4) with Cauchy data (x0, ξ0, y0) where y0 = x0 − 1

θ(0) (q0 + σ(0)ω(0)ξ0). It will
be also proved (see Proposition 2.3) that, under some additional condition on σ(·),
such a strong solution to (1.4) is uniquely defined.

2.4 Existence and Uniqueness of Strong Solutions

Fromnowon,we denote by J ∂ f
σ and

(
∂ f

)
σ
the resolvent and theYosida approximation

of ∂ f (with index σ ). Existence and uniqueness of strong solutions to (1.4) and (1.2)
are established through the next proposition under the following assumption:

(CG) {ω(·), θ(·), σ (·)} ⊂ C1([0,∞), IR+) and inf
t≥0

σ(t) > 0.
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Proposition 2.2 Let (CF) and (CG)hold, and let κ > 0. Then, for any Cauchy
data (x0, ξ0, y0) ∈ H3, with ξ0 ∈ ∂ f (x0), there exists a unique strong solution
(x(·), ξ(·), y(·)) to (1.4). Moreover, we have

x(·) = J ∂ f
σ(·)v(·) and ξ(·) = 1

σ(·)
(
v(·) − x(·)), (2.5)

where v(·) is obtained from the unique C1 × C1 couple
(
v(·), y(·)) satisfying, for

t ≥ 0,

v̇(t) + θ(t)
(
y(t) − J ∂ f

σ(t)v(t)
)

+ ω(t)(∂ f )σ(t)v(t) = 0, (2.6a)

ẏ(t) + κ(y(t) − J ∂ f
σ(t)v(t)) = 0,

with the initial conditions : y(0) = y0 and v(0) = x0 + σ(0)ξ0. (2.6b)

Furthermore,
(
v(·), y(·)) is the unique strong solution to (2.6) (namely, there is no

other couple of mappings belonging to Ac × Ac that satisfies (2.6) for almost every
t ≥ 0).

Proof See Appendix A.2. ��
Proposition 2.3 Let (CF) and (CG) hold, let κ > 0, and let {α(·), β(·), b(·)} given by
(1.3).

Then, there exists a unique strong solution (x(·), ξ(·)) to (1.2) for any initial
data (x0, ξ0, q0) ∈ H3, with ξ0 ∈ ∂ f (x0). Moreover, the trajectories {x(·), ξ(·)}
are obtained from the unique strong solution (x(·), ξ(·), y(·)) to (1.4) with Cauchy
data (x0, ξ0, y0) such that y0 = x0 − 1

θ(0) (q0 + ω(0)σ (0)ξ0), where q0 = (
x(·) +

σ(·)ξ(·))(1)
(0).

Proof Observe from Proposition 2.1 that a strong solution (x(·), ξ(·)) to (1.2) equiv-
alently solves system (1.4) (for some auxiliary variable y(·) ∈ Ac with y0 =
x0− 1

θ(0) (q0+ω(0)σ (0)ξ0)). It is not difficult to see fromProposition 2.2 that this latter
system (1.4) admits a unique solution given by (2.5)–(2.6). Combining these previous
two observations yields existence and uniqueness of a strong solution to (1.2) ��

3 Preparatory Results for a Lyapunov Analysis

In this section, we set up estimations by exhibiting some energy-like functional asso-
ciated with model (1.4)–(1.5).

3.1 Exhibiting a Lyapunov Functional

Consider {e∗, κ} ⊂ (0,∞) and positive mappings {σ(·), ν(·), ϑ(·)}, as parameters
involved in (1.5), and denote ρ(·) := κ − ν̇(·)

ν(·) (as a recurrent term in our analysis).
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With the trajectories {x(·), ξ(·), y(·)} produced by the system (1.4)–(1.5), we associate
the functionals Ls,q(·) and Ts(·) defined with (s, q) ∈ [0,∞) × S and t ≥ 0 by

Ls,q (t) = 1

2
‖s(q − x(t)) + ν(t)(y(t) − x(t))‖2 + sσ(t)

(
e∗ + ν(t)

)〈ξ(t), x(t) − q〉

+1

2
s(e∗ − s)‖x(t) − q‖2 + σ(t)(e∗ + ν(t))

(
ϑ(t)(e∗ + ν(t)) − s

)
(
f (x(t)) − f (q)

)
,

(3.1)

Ts(t) = ρ(t)

∥∥
∥
∥y(t) − x(t) + 1

θ(t)

(
1 − e∗ − s

2(e∗ + ν(t))

)
ẋ(t)

∥∥
∥
∥

2

+( e∗ − s

4ρ(t)ν(t)

)( s + 3e∗
ν(t)

+ 4
)‖ẋ(t)‖2. (3.2)

The following result will serve as a basis for establishing Lyapunov properties for
Ls,q(·).
Proposition 3.1 Consider {κ, e∗, σ0} ⊂ (0,∞), δ ≥ 0, positive mappings {ν(·), ϑ(·)}
of class C1, and let {ω(·), σ (·), θ(·)} be given by (1.5). Suppose also that
(x(·), ξ(·), y(·)) is a strong solution to (1.4)–(1.5), along with parameters satisfying:

ν̇(t) < κν(t), for t ≥ 0, (3.3a)

δ + ν̇(t) ≤ ϑ(t)

(
κ − ν̇(t)

ν(t)

)
(
ν(t) + e∗), for t ≥ t0 ( for some positive time t0).

(3.3b)

Then, for (s, q) ∈ [0,∞) × H and for a.e. t ∈ [t0,∞), we have

L(1)
s,q(t) + ν2(t)Ts(t) + σ(t) (e∗+ν(t))2

ρ(t) 〈ξ̇ (t), ẋ(t)〉 + ψ1(s, t)
(
f (x(t)) − min f

) ≤ 0,

(3.4)

where ρ(·) := κ − ν̇(·)
ν(·) , Ls,q(·) and Ts(·) are given by (3.1)–(3.2), and ψ1(s, t) is

defined by

ψ1(s, t) = σ(t)

(
(
ν(t) + e∗

)
ϑ(t)

(
sρ(t) − δ

) −
(
(ν2(·) + e∗)ϑ(·)

)(1)
(t)

)
.

(3.5)

The above proposition will be proved in the next section.

3.2 Proof of Proposition 3.1

3.2.1 Preliminaries

Before proving Proposition 3.1, we recall three results of great importance that will
be helpful regarding our methodology. The first one is a key result established in [30].
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Proposition 3.2 [30, Proposition 3.1]. Let {κ, e∗} ⊂ (0,∞), let {ν(·), ω(·), σ (·)}
be positive mappings of class C1 such that ν(·) satisfies (3.3), and suppose that(
x(·), ξ(·), y(·)) is a strong solution to (1.4), along with θ(·) given by (1.5a). Then,
for any (s, q) ∈ [0,∞) × H, we have, for a.e. t ≥ 0,

E (1)
s,q (t) + σ(t) (e∗+ν(t))2

ρ(t) 〈ξ̇ (t), ẋ(t)〉
+sσ(t)

(
ω(t)(e∗ + ν(t)) − ν̇(t)

)
〈ξ(t), x(t) − q〉

+σ(t) (e∗+ν(t))2

ρ(t)

(
ω(t) + σ̇ (t)

σ (t) − s ρ(t)
e∗+ν(t)

)
〈ξ(t), ẋ(t)〉 = −ν2(t)Ts(t),

(3.6)

where ρ(t) = κ − ν̇(t)
ν(t) , Ts(·) is given by (3.2), while Es,q(·) is defined by

Es,q(t) = 1
2‖s(q − x(t)) + ν(t)(y(t) − x(t))‖2
+ 1

2 s(e∗ − s)‖x(t) − q‖2 + sσ(t)
(
e∗ + ν(t)

)〈ξ(t), x(t) − q〉.
(3.7)

The second result states some derivation chain rules for the convex lsc (lower
semicontinuous) objective, which was explicitly stated in [1, Lemma 1.9].

Lemma 3.1 [21, Lemma 3.3] Let (CF) hold, let c̄ > 0, and let {x, ξ} : [0, c̄] → H
satisfy the following conditions (i1)–(i3):

(i1) ξ(t) ∈ ∂ f (x(t)), for a.e. t ∈ [0, c̄]; (i2) ξ(·) ∈ L2([0, c̄];H);
(i3) ẋ(·) ∈ L2([0, c̄];H).

Then, f (x(·)) is absolutely continuous on [0, c̄] and we have

( f (x(·))(1)(t) = 〈ξ(t), ẋ(t)〉, for a.e. t ∈ [0, c̄]. (3.8)

Next, a useful property of the considered dynamics is given through the following
lemma in which gra(∂ f ) denotes the graph of ∂ f , that is gra(∂ f ) = {(x, x∗) ∈
H2; x∗ ∈ ∂ f (x)}.
Lemma 3.2 [30, Lemma 4.1] Let f : H → IR ∪ {+∞} be a proper convex function.
For any couple of absolutely continuous functions (x, ξ) : [0,∞) → gra(∂ f ), we
have 〈ξ̇ (t), ẋ(t)〉 ≥ 0, for a.e. t ≥ 0.

Proof See Appendix A.3. ��

3.2.2 Proving the Main Inequality (3.4)

For simplification we set τ(·) := e∗ + ν(·). Clearly, given (s, q) ∈ [0,∞) × S, by
applying Proposition 3.2 we obtain, for a.e. t ∈ [0,∞),

− ν2(t)Ts(t) − σ(t)
τ 2(t)

ρ(t)
〈ξ̇ (t), ẋ(t)〉 = E (1)

s,q (t) + sa1(t)〈ξ(t), x(t) − q〉
+a2(t)〈ξ(t), ẋ(t)〉, (3.9)
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where a1(t) and a2(t) are defined by

a1(t) = σ(t)
(
ω(t)τ (t) − ν̇(t)

)
and a2(t) = σ(t)

τ 2(t)

ρ(t)

(
ω(t) + σ̇ (t)

σ (t)
− s

ρ(t)

τ (t)

)
.

(3.10)

In order to estimate the right side of (3.9), we observe that (1.5b)–(1.5c) also give
us σ̇ (t)

σ (t) = δ
τ(t) andω(t) = ρ(t)ϑ(t)− δ

τ(t) (as ρ(·) := κ− ν̇(·)
ν(·) ), whence (3.10) reduces

to

a1(t) = σ(t)
(
ρ(t)ϑ(t)τ (t) − δ − ν̇(t)

)
and a2(t) = σ(t)

(
τ 2(t)ϑ(t) − sτ(t)

)
.

(3.11)

So, it is readily checked from condition (3.3b) that a1(·) is nonnegative on [t0,∞).
Moreover, setting f̄ := f − min f , by the well-known convex inequality we have

〈ξ(t), x(t) − q〉 ≥ f̄ (x(t)). (3.12)

It can also be set up a derivation chain rule regarding f̄ (x(·)) by verifying the assump-
tions (i1) to (i3) of Lemma 3.1. Indeed, given c̄ > 0, (i1) is obvious, while (i2) is
also satisfied by ξ(·) because of its continuity on [0, c̄] (from (x(·), ξ(·), y(·)) ∈ A3

c ,
as a strong solution to (1.4)). Regarding (i3), by (2.3b) we equivalently have, for a.e.
t ∈ [0,∞),

ẋ(t) + ζ̇ (t) + θ(t)u(t) + ω(t)ζ(t) = 0, (where u(·) = y(·) − x(·) and ζ(·) =
σ(·)ξ(·)).

This, by 〈ẋ(t), ξ̇ (t)〉 ≥ 0 (from Lemma 3.2), readily yields
‖ẋ(t)‖2 ≤ ‖ẋ(t) + ζ̇ (t)‖2 = ‖θ(t)u(t) + ω(t)ζ(t)‖2,
which clearly ensures (i3). Then, applying Lemma 3.1 entails, for a.e. t ≥ 0,

〈ξ(t), ẋ(t)〉 = (
f̄ (x)

)(1)
(t). (3.13)

Consequently, by (3.9) along with (3.12)–(3.13), while noticing that Ls,q(·) =
Es,q(·) + a2(·) f̄ (x(·)), we infer that, for a.e. t ≥ t0,

−ν2(t)Ts(t) − σ(t) τ 2(t)
ρ(t) 〈ξ̇ (t), ẋ(t)〉 ≥ E(1)

s,q (t) + sa1(t) f̄ (x(t)) + a2(t)
(
f̄ (x)

)(1)
(t)

= L(1)
s,q (t) + (

sa1(t) − ȧ2(t)
)
f̄ (x(t)).

(3.14)

Regarding the second term in the right side of the above inequality, by σ̇ (t)
σ (t) = δ

τ(t)
(from (1.5b)) and τ̇ (t) = ν̇(t) (as τ(·) := ν(·) + e∗), while using (3.11), we simply
get (omitting the variable t to shorten the equations)

sa1 − ȧ2 = sσ(ρϑτ − δ) − sσ τ̇ − σ̇ (τ 2ϑ − sτ) − σ(τ 2ϑ)(1) + sσ τ̇

= sσ(ρϑτ − δ) − σ
(

σ̇
σ
(τ 2ϑ − sτ) + (τ 2ϑ)(1)

)

= sσρϑτ − σ
(
δτϑ + (

τ 2ϑ
)(1)) = σ

(
τϑ

(
sρ − δ

) − (τ 2ϑ)(1)
)
.
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Then, combining (3.14) and the previous argument leads us to (3.4) ��

3.3 Specificities on the Parameters and the Dynamics

In viewof our next computations,wemake someobservations regarding the parameters
and the dynamics.

Remark 3.1 The following arguments (j0)–(j2) will be very useful in our study:
(j0) Observe from (1.2) and ρ(·) := κ − ν̇(·)

ν(·) that θ(·) can be rewritten as θ(·) =
ν(·)ρ(·)
ν(·)+e∗ .

(j1) From (j0) we have θ(t) = ρ(t)
(
1+ e∗

ν(t)

)−1. Then, as ν(·) and ρ(·) are positive
(from (1.15a)–(1.15b)), and e∗ > 0, we infer that θ(·) is positive. Moreover, observing
that ρ(·) and (1 + e∗

ν(·) )
−1 are nondecreasing entails that θ(·) is nondecreasing. In

addition, we obviously have ρ(t) ∈ (0, κ] for t ≥ 0 and ρ(t) → κ as t → ∞ (from
(1.15b)–(1.15c))). So, by (j0) we obtain θ(t) ∈ [

θ(0), κ
)
for t ≥ 0. If, in addition,

ν(t) → ∞, we get θ(t) → κ (as t → ∞).
(j2) From (1.15d) and the positivity of ν(·) we have 0 < ν(t) ≤ Mt + ν(0) for

t ∈ [0,∞). This simply yields
∫ +∞
0

1
ν(t)dt = +∞ (hence

∫ +∞
0

1
e∗+ν(t)dt = +∞).

4 Convergence Analysis and Estimations

This section is devoted to the asymptotic behavior of the strong solution to (1.4)–(1.5).
As standing assumptions we suppose that f : H → IR∪{+∞} is a proper convex and
l.s.c. function such that S := argminH f 	= ∅, and we denote f̄ (·) := f (·) − min f .
Estimations are established first in the general case of parameters (under somewhat
theoretical conditions) and then in interesting specific cases of parameters (under
classical conditions).

4.1 Intermediate Results by a Lyapunov Analysis

For the sake of simplicity and legibility, we start by assuming that {δ, e∗, ν(·), ϑ(·)}
(occurring in (1.5)) are such that:

(CP)δ ≥ 0, {κ, e∗, σ0} ⊂ (0,∞), and {ν(·), ϑ(·)} are positive mappings of class C1.

Another useful condition on the parameters is needed for our methodology. Let us
recall the definitions of a1(·) and ψ1(., .)(used in (3.11) and (3.5), respectively) and,
denoting ρ(·) := κ − ν̇(·)

ν(·) , let us introduce a new mapping ψ2(., .). These mappings
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are given for s ≥ 0 and t ≥ 0 by:

a1(t) = σ(t)
(
ρ(t)ϑ(t)(e∗ + ν(t)) − δ − ν̇(t)

)
, (4.1a)

ψ1(s, t) = σ(t)
(
ϑ(t)(e∗ + ν(t))

(
sρ(t) − δ

) − (
(e∗ + ν(·))2ϑ(·))(1)

(t)
)

,

(4.1b)

ψ2(s, t) = σ(t)(e∗ + ν(t))
(
ϑ(t)(e∗ + ν(t)) − s

)
. (4.1c)

We focus here on a full study of (1.4)–(1.5) along with parameters satisfying (CP)and
the additional theoretical conditions which consist of assuming for some s0 ∈ (0, e∗)
and some t0 ≥ 0 that:

a1(·) ≥ 0, ψ1(s0, .) ≥ 0, ψ2(e∗, .) ≥ 0, on [t0,∞), (4.2)

ω(·) := ρ(·)ϑ(·) − δ

e∗ + ν(·) is bounded away from zero, on [t0,∞). (4.3)

At once, showing Lyapunov properties for the functionalLs0,q(·) allows us to derive
two series of estimations (through the next Propositions 4.1 and 4.2).

Proposition 4.1 Let {δ, κ, e∗, σ0, ν(·), ϑ(·)} satisfy (CP) and (1.15a)–(1.15b), let
{ω(·), θ(·), σ (·)} be given by (1.5), and suppose that (x(·), ξ(·), y(·)) is a strong
solution to (1.4)–(1.5). Assume furthermore that {a1(·), ψ1(., .), ψ2(., .)} (introduced
in (4.1)) satisfy (4.2) for some t0 > 0 and s0 ∈ (0, e∗). Then, for any q ∈ S, Ls0,q(·)
is nonincreasing on [t0,∞), convergent, and we have

sup
t≥t0

‖x(t)‖ < ∞, sup
t≥t0

ν(t)‖ẏ(t)‖ < ∞, (4.4)

together with the following integral estimates:

∫ ∞

t0
ψ1(s0, t) f̄ (x(t))dt ≤ Ls0,q(t0), (4.5a)

∫ ∞

t0
σ(t)ν2(t)〈ξ̇ (t), ẋ(t)〉dt ≤ κLs0,q(t0), (4.5b)

(e∗ − s0)
∫ ∞

t0
ν(t)‖ẋ(t)‖2dt ≤ κLs0,q(t0), (4.5c)

∫ ∞

t0
ν(t)‖x(t) − y(t)‖2dt < ∞,

∫ ∞

t0
ν(t)‖ẏ(t)‖2dt < ∞, (4.5d)

∫ ∞

t0
ν2(t)‖ẋ(t) + θ(t)(y(t) − x(t))‖2dt < ∞, (4.5e)

∫ ∞

t0
ν2(t)‖(σ(·)ξ(·))(1)

(t) + ω(t)
(
σ(t)ξ(t)

)‖2dt < ∞, (4.5f)

(
κ − ν̇(t0)

ν(t0)

)
(e∗ − s0)

∫ ∞

t0
σ(t)ν(t)ϑ(t) f̄ (x(t))dt ≤ Le∗,q(t0). (4.5g)
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Proof With a view to applying Proposition 3.1, we first check that (1.15a)–(1.15b) and
(4.2) altogether guarantee the two conditions in (3.3). This is obvious regarding (3.3a).
In addition, for t ≥ t0, denoting τ(t) = e∗+ν(t) and ρ(t) = κ− ν̇(t)

ν(t) , by (4.2) we have

a1(t) := σ(t)
(
ρ(t)ϑ(t)τ (t)− δ − ν̇(t)

) ≥ 0, or equivalently ρ(t)ϑ(t)τ (t) ≥ δ + ν̇(t)
(as σ(·) is assumed to be positive), that is (3.3b). Thus, condition (3.3) is fulfilled.
Next, given q ∈ S, we prove that Ls0,q(·) is nonincreasing on [t0,∞) and convergent.
Indeed, denoting f̄ = f − min f and u(·) := y(·) − x(·), by Proposition 3.1 with
s = s0 ∈ (0, e∗), we get, for a.e. t ≥ t0,

−ν2(t)Ts0(t) ≥ L(1)
s0,q(t) + ψ1(s0, t) f̄ (x(t)) + σ(t)

τ 2(t)

ρ(t)
〈ξ̇ (t), ẋ(t)〉, (4.6)

where ψ1(., .) is given by (4.1b), while Ls0,q(·) and Ts0(·) are given (from (3.1) and
(3.2)) by

Ls0,q(t) = 1
2‖s0(q − x(t)) + ν(t)u(t)‖2 + 1

2 s0(e∗ − s0)‖x(t) − q‖2
+s0σ(t)τ (t)〈ξ(t), x(t) − q〉 + ψ2(s0, t) f̄ (x(t))

(4.7a)

Ts0(t) = ρ(t)

θ2(t)
‖θ(t)u(t) +

(
1 − e∗ − s0

2τ(t)

)
ẋ(t)‖2

+
(

e∗ − s0
4ρ(t)ν(t)

) (
s0 + 3e∗

ν(t)
+ 4

)
‖ẋ(t)‖2. (4.7b)

Concerning the terms appearing in the above formulations of Ts0(t) and Ls0,q(t), we
have 〈ξ(t), x(t) − q〉 ≥ 0 (as ∂ f is monotone), ψ2(s0, t) f̄ (x(t)) ≥ 0 (by (4.2) which
guarantees that ψ2(e∗, t) ≥ 0, while noticing from the expression of ψ2(·, ·) given
in (4.1c) together with e∗ > s0 that ψ2(s0, t) ≥ ψ2(e∗, t)). Hence, it is immediately
observed that Ts0(·) and Ls0,q(·) are nonnegative. Moreover, regarding the last two
terms in the right side of (4.6), we have 〈ξ̇ (t), ẋ(t)〉 ≥ 0 (from Lemma 3.2) and
ψ1(s0, t) ≥ 0 (from (4.2)). So, from (4.6) and the previous arguments, we classically
deduce that Ls0,q(·) is nonincreasing and bounded below on [t0,∞), which implies
that Ls0,q(t) is convergent as t → +∞.

We proceed by proving the other estimates separately:
- Let us prove (4.4). As Ls0,q(·) is nonincreasing and nonnegative on [t0,∞), we

clearly have (for t ≥ t0) 0 ≤ Ls0,q(t) ≤ Ls0,q(t0). We also recall that the four terms
arising in the definition of Ls0,q(·) (given by (4.7a)) are nonnegative. Consequently,
each of these terms is bounded byLs0,q(t0). So, we deduce (by the boundedness of the
second term) the boundedness of x(·), namely the first part of item (4.4)), which (by
the boundedness of the first term) guarantees that ν(·)‖u(·)‖ is also bounded. This, in
light of ẏ(t) = −κu(t) (from (2.3c)), proves the second part of item (4.4).
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- Let us prove (4.5a)–(4.5b)–(4.5c)–(4.5d). Integrating inequality (4.6) between t0
and t ≥ t0, in light of the nonnegativity of Ls0,q(·), entails

∫ t
t0

ψ1(s0, r) f̄ (x(r))dr + ∫ t
t0

σ(r) τ 2(r)
ρ(r) 〈ξ̇ (r), ẋ(r)〉dr + ∫ t

t0
ν2(r)Ts0(r)dr

≤ Ls0,q(t0).
(4.8)

Then, remembering that the terms in the above integrands are nonnegative, we classi-
cally deduce that

∫ ∞
t0

ψ1(s0, t) f̄
(
x(t)

)
dt ≤ Ls0,q(t0) (that is (4.5a)) and the following

estimates:

∫ ∞

t0
σ(r)

τ 2(r)

ρ(r)
〈ξ̇ (r), ẋ(r)〉dr ≤ Ls0,q(t0), (4.9a)

∫ ∞

t0
ν2(r)Ts0(r)dr ≤ Ls0,q(t0). (4.9b)

We also recall from Remark 3.1 that conditions (1.15a)–(1.15b) imply that

0 < ρ(0) ≤ ρ(·) ≤ κ on [0,∞). (4.10)

So, (4.9a), (4.10) and τ(·) ≥ ν(·) yield ∫ ∞
t0

σ(r) ν2(r)
κ

〈ξ̇ (r), ẋ(r)〉dr ≤ Ls0,q(t0) (that
is (4.5b)). Furthermore, using the formulation of Ts0(·) (from (4.7b)) and noticing that
1
4 (

s0+3e∗
ϑ(t) + 4) ≥ 1, by (4.9b) we obtain

(e∗ − s0)
∫ ∞

t0

ν(r)

ρ(r)
‖ẋ(r)‖2 dr ≤ Ls0,q(t0), (4.11a)

∫ ∞

t0
ν2(r)

ρ(r)

θ2(r)

∥
∥∥∥θ(r)u(r) + (

1 − e∗ − s0
2τ(r)

)
ẋ(r)

∥
∥∥∥

2

dr ≤ Ls0,q(t0).

(4.11b)

Combining (4.11a) and (4.10) amounts to (e∗−s0)
κ

∫ ∞
t0

ν(r)‖ẋ(r)‖2dr ≤ Ls0,q(t0) (that
is (4.5c)). In addition, for t ≥ 0, by Remark 3.1 we have 0 < θ(0) ≤ θ(t) ≤ ρ(t) ≤ κ ,
which implies that ρ(t)

θ2(t)
≥ 1

θ(t) ≥ 1
κ
. Therefore, inequality (4.11b) immediately yields

∫ ∞

t0
ν2(r)‖θ(r)u(r) + g(r)ẋ(r)‖2dr ≤ κLs0,q(t0), (4.12)

where g(t) := 1 − e∗−s0
2τ(t) . It is not difficult to check (for t ≥ 0) that 0 ≤ g(t) ≤ 1 (as

s0 ≤ e∗), hence, using the obvious decomposition
‖u(t)‖2 = 4

θ2(t)
‖ 1
2 (θ(t)u(t) + g(t)ẋ(t)) − 1

2g(t)ẋ(t)‖2,
besides the convexity of the square norm, together with 0 < θ(0) ≤ θ(t), we obtain

ν(t)‖u(t)‖2 ≤ 2

θ2(0)

(
ν(t)‖θ(t)u(t) + g(t)ẋ(t)‖2 + ν(t)‖ẋ(t)‖2). (4.13)
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Then, by
∫ ∞
t0

ν(r)‖θ(r)u(r) + g(r)ẋ(r)‖2dr < ∞ (from (4.12) and ν(·) ≥
ν(0) > 0) together with

∫ ∞
t0

ν(r)‖ẋ(r)‖2dr < ∞ (from (4.5c)), we deduce that
∫ ∞
t0

ν(t)‖u(t)‖2dt < ∞, that is the first inequality of item (4.5d). The second one
follows in light of ẏ(·) = −κu(·).

- Let us prove (4.5e). For t ≥ 0, using the notation g(t) := 1 − e∗−s0
2τ(t) obviously

yields
θ(t)u(t)+ ẋ(t) = θ(t)u(t)+g(t)ẋ(t)+ e∗−s0

2τ(t) ẋ(t), hence, noticing that ν(t) ≤ τ(t),
we deduce that

ν2(t)‖θ(t)u(t) + ẋ(t)‖2 ≤ 2ν2(t)‖θ(t)u(t) + g(t)ẋ(t)‖2 + (e∗−s0)2

2 ‖ẋ(t)‖2.

This, by
∫ ∞
t0

ν2(r)‖θ(r)u(r)+g(r)ẋ(r)‖2dr < ∞ (from (4.12)) and
∫ ∞
t0

‖ẋ(r)‖2dr
< ∞ (from (4.5c) and ν(·) ≥ ν(0) > 0), amounts to

∫ ∞
t0

ν2(r)‖θ(r)u(r)+ẋ(r)‖2dr <

∞, that is (4.5e).
- Let us prove (4.5f). From a quick computation and using (2.4b) we have(
σ(·)ξ(·))(1)

(t) + ω(t)
(
σ(t)ξ(t)

) = σ(t)ξ̇ (t) + (σ̇ (t) + ω(t)σ (t))ξ(t)
= −ẋ(t) − θ(t)u(t),

which yields ‖(σ(·)ξ(·))(1)
(t) + ω(t)

(
σ(t)ξ(t)

)‖2 = ‖ẋ(t) + θ(t)u(t)‖2,
thus, item (4.5f) follows from this last inequality and (4.5e).
- It remains to prove (4.5g). Applying Proposition 3.1 with s = e∗, in light of the

definition of Te∗(·) (given in (3.2)) and 〈ξ̇ (t), ẋ(t)〉 ≥ 0 (from Lemma 3.2), implies
that, for a.e. t ≥ t0,

−L(1)
e∗,q(t) ≥ ψ1(e∗, t) f̄ (x(t)). (4.14)

Moreover, byψ1(s0, t) ≥ 0 (from (4.2)) and the definition ofψ1(., .) (given in (4.1b)),
we get

ψ1(e∗, t) = ψ1(s0, t) + (e∗ − s0)σ (t)τ (t)ϑ(t)ρ(t) ≥ (e∗ − s0)σ (t)τ (t)ϑ(t)ρ(t).

(4.15)

Therefore, using (4.14), in light of (4.15), entails

−L(1)
e∗,q(t) ≥ (e∗ − s0)σ (t)τ (t)ϑ(t)ρ(t) f̄ (x(t)). (4.16)

Clearly,Le∗,q(·) and the term in the right side of (4.16) are nonnegative. Consequently,
integrating (4.16) between t0 and t ≥ t0, in light of the nonnegativity of Le∗,q(·),
while recalling that ρ(·) is positive and nondecreasing (from Remark 3.1) and that
ν(·) ≤ τ(·), yields (e∗−s0)ρ(t0)

∫ t
t0
(σνϑ)(r) f̄ (x(r))dr ≤ Le∗,q(t0),whichobviously

leads us to (4.5g) ��
The next proposition establishes general convergence results, besides other estima-

tions.
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Proposition 4.2 Let {δ, κ, e∗, σ0, ν(·), ϑ(·)} satisfy (CP) and (1.15), and let {ω(·), θ
(·), σ (·)} be given by (1.5). Assume furthermore that (x(·), ξ(·), y(·)) is a strong solu-
tion to (1.4)–(1.5)and that conditions (4.2)–(4.3)hold for some t0 > 0and s0 ∈ (0, e∗).
Then the following estimates are reached:

lim
t→∞ ν(t)‖u(t)‖ = 0, lim

t→∞ ν(t)‖ẏ(t)‖ = 0, (4.17a)

lim
t→∞ σ(t)ν2(t)ϑ(t)( f (x(t)) − min f ) = 0, (4.17b)
∫ ∞

t0
σ 2(t)ν2(t)‖ξ(t)‖2dt < ∞, lim

t→∞ σ 2(t)ν2(t)‖ξ(t)‖2 = 0, (4.17c)

∫ ∞

t0
σ 2(t)ν2(t)‖ξ̇ (t)‖2dt < ∞, lim

t→∞ σ(t)ν(t)‖ξ̇ (t)‖ = 0, (4.17d)

lim
t→∞ ν(t)‖ẋ(t)‖ = 0. (4.17e)

Proof For simplificationwe set f̄ = f −min f , u(·) = y(·)−x(·) and τ(·) = e∗+ν(·).
The proof will be divided into several steps:

- Let us prove (4.17a) and (4.17b). Given q ∈ S, by Proposition 3.1 with s = 0,
and recalling that 〈ξ̇ (t), ẋ(t)〉 ≥ 0, we have, for a.e. t ≥ t0,

L(1)
0,q(t) − σ(t)

(
δτ(t)ϑ(t) + (

τ 2(·)ϑ(·))(1)
(t)

)
f̄ (x(t)) + ν2(t)T0(t) ≤ 0,

(4.18)

where L0,q(·) and T0(·) are given (from (3.1) and (3.2)) by

L0,q(t) = 1

2
ν2(t)‖u(t)‖2 + σ(t)τ 2(t)ϑ(t) f̄ (x(t)), (4.19a)

T0(t) = ρ(t)‖u(t) + 1

θ(t)

(
1 − e∗

2(e∗ + ν(t))

)
ẋ(t)‖2

+
(

e∗
4ρ(t)ν(t)

) (
3e∗
ν(t)

+ 4

)
‖ẋ(t)‖2. (4.19b)

It can be also checked that condition ψ1(s0, t) ≥ 0 (from 4.2)) can be rewritten as

σ(t)
(
τ(t)ϑ(t)δ + (

τ 2(·)ϑ(·))(1)
(t)

)
≤ s0σ(t)τ (t)ϑ(t)ρ(t).

Hence, by (4.18) and this last inequality, while noticing that T0(·) is nonnegative
(in light of (4.19b)) and that ρ(t) ≤ κ (from Remark 3.1), we obtain

L(1)
0,q(t) ≤ s0κσ(t)τ (t)ϑ(t) f̄ (x(t)).

Therefore, by
∫ ∞
t0

(στϑ)(r) f̄ (x(r))dr < ∞ (from (4.5g)), together with the nonneg-
ativity of L0,q(t), we classically deduce that L0,q(t) is convergent as t → ∞. Thus,
there exists l ≥ 0 such that limt→∞ L0,q(t) = l. Let us prove by contradiction that
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l = 0. Indeed, using the above definition ofL0,q(·)while noticing that ν(t)
τ (t) ≤ 1 yields

1

τ(t)
L0,q(t) ≤ 1

2
ν(t)‖u(t)‖2 + σ(t)τ (t)ϑ(t) f̄ (x(t)), (4.20)

which, by
∫ ∞
0 ν(t)‖u(t)‖2dt < ∞ (from (4.5d)) and

∫ ∞
t0

(στϑ)(t) f̄ (x(t))dt < ∞
(from (4.5g)), entails that

∫ ∞
0

1
τ(t)L0,q(t)dt < ∞. Then it is immediate that assuming

that l > 0 would give us 1
τ(t)L0,q(t) ∼ l

τ(t) as t → ∞, which is absurd since
∫ ∞
0

1
τ(t)dt = ∞ (from Remark 3.1). We infer that limt→∞ L0,q(t) = 0, which, by the

definition of L0,q(·), amounts to limt→∞ ν2(t)‖u(t)‖2 = 0 (that is the first estimate
of (4.17a)) together with

lim
t→∞ σ(t)τ 2(t)ϑ(t) f̄ (x(t)) = 0. (4.21)

The second part of item (4.17a) is a direct consequence of the first one in light of
ẏ(t) = −κu(t), while item (4.17b) clearly follows from (4.21) in light of τ(t) ≥ ν(t).

- Next, we prove items (4.17c). We denote ζ(t) := σ(t)ξ(t) and �(t) :=
ζ̇ (t) + ω(t)ζ(t). From the definition of �(·) and noticing that 〈ζ̇ (t), ζ(t)〉 =
1
2

(‖ζ(·)‖2)(1)
(t), we have

ν2(t)〈�(t), ζ(t)〉 = ν2(t)〈ζ̇ (t), ζ(t)〉 + ν2(t)ω(t)‖ζ(t)‖2

= 1

2
ν2(t)

(
‖ζ(·)‖2

)(1)
(t) + ν2(t)ω(t)‖ζ(t)‖2. (4.22)

A direct computation also gives us
(
ν2(·)‖ζ(·)‖2)(1)

(t) = 2ν(t)ν̇(t)‖ζ(t)‖2 +
ν2(t)

(‖ζ(·)‖2)(1)
(t),

which combined with (4.22) amounts to

ν2(t)〈�(t), ζ(t)〉 = 1

2

(
ν2(·)‖ζ(·)‖2)(1)

(t) − ν(t)ν̇(t)‖ζ(t)‖2 + ν2(t)ω(t)‖ζ(t)‖2

= 1

2

(
ν2(·)‖ζ(·)‖2)(1)

(t) + ν2(t)

(
ω(t) − ν̇(t)

ν(t)

)
‖ζ(t)‖2.

(4.23)

Observe that ω(t) (introduced in (1.5c)) can be rewritten as ω(t) := ρ(t)ϑ(t) − δ
τ(t) ,

while by condition (4.3)we assume (for somepositive constantω0) thatω(·) ≥ ω0 > 0
on [t0,∞). By condition (1.15c), we also know that ν̇(t)

ν(t) → 0 as t → ∞. So, given
any constant h ∈ (0, 1), we can see without any difficulty, for some existing ε > 0,

that there exists t1 ≥ t0 such that t ≥ t1 yields ω(t) ≥ 1
1−h

(
ε
2 + ν̇(t)

ν(t)

)
,

which can be equivalently written as

ω(t) − ε

2
− ν̇(t)

ν(t)
≥ hω(t). (4.24)
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Moreover, by the Peter-Paul inequality, we classically obtain

ν2(t)〈�(t), ζ(t)〉 ≤ ν2(t)|〈�(t), ζ(t)〉| ≤ ν2(t)
ε

2
‖ζ(t)‖2 + ν2(t)

2ε
‖�(t)‖2.

(4.25)

Hence, by (4.25), in light of (4.23) and (4.24), we infer that

ν2(t)
2ε ‖�(t)‖2 ≥ ν2(t)〈�(t), ζ(t)〉 − ν2(t) ε

2‖ζ(t)‖2
= 1

2

(
ν2(·)‖ζ(·)‖2)(1)

(t) + ν2(t)
(
ω(t) − ε

2 − ν̇(t)
ν(t)

)
‖ζ(t)‖2

≥ 1
2

(
ν2(·)‖ζ(·)‖2)(1)

(t) + hω(t)ν2(t)‖ζ(t)‖2.
(4.26)

Whence, recalling that ω(·) ≥ ω0 > 0 (from condition (4.3)), (4.26) entails

ν2(t)

2ε
‖�(t)‖2 ≥ 1

2

(
ν2(·)‖ζ(·)‖2

)(1)
(t) + hω0ν

2(t)‖ζ(t)‖2. (4.27)

Then, by this last inequality together with
∫ ∞
t1

ν2(t)‖�(t)‖2dt < ∞ (from (4.5f)), we
classically deduce that

∫ ∞

t1
ν2(t)‖ζ(t)‖2dt < ∞ and lim

t→∞ ν2(t)‖ζ(t)‖2 = l (for some l ≥ 0).

(4.28)

Clearly, the first estimate in (4.28) yields
∫ ∞
t0

ν2(t)‖ζ(t)‖2dt < ∞ (because of the
continuities of ν(·), σ(·) and ξ(·) on [t0, t1]), namely the first estimate in (4.17c). It is
also obviously checked from the two arguments in (4.28) that l = 0, which proves the
second result in item (4.17c).

- Let us prove (4.17d) and (4.17e). Noticing that ω(t) + σ̇ (t)
σ (t) = ρ(t)ϑ(t) (from

(1.5c)) yields

σ̇ (t) + σ(t)ω(t) = σ(t)ρ(t)ϑ(t) for t ≥ 0. (4.29)

So, in light of (4.29), a quick computation gives us

σ(t)ξ̇ (t) = (
σ(·)ξ(·))(1)

(t) + ω(t)σ (t)ξ(t) − (
σ̇ (t) + σ(t)ω(t)

)
ξ(t)

= (
σ(·)ξ(·))(1)

(t) + ω(t)σ (t)ξ(t) − σ(t)ρ(t)ϑ(t)ξ(t). (4.30)

Therefore, according to (4.30), using the Young inequality yields

‖σ(t)ξ̇ (t)‖2 ≤ 2‖(σ(·)ξ(·))(1)
(t) + ω(t)σ (t)ξ(t)‖2 + 2σ 2(t)ρ2(t)ϑ2(t)‖ξ(t)‖2.

(4.31)
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Wealsounderline thatρ(·) is bounded (fromRemark3.1) and so isϑ(·) (fromcondition
(1.16)). So, by

∫ ∞
t0

ν2(t)‖(σ(·)ξ(·))(1)
(t) + ω(t)

(
σ(t)ξ(t)

)‖2dt < ∞ (from (4.5f))

together with
∫ ∞
t0

σ 2(t)ν2(t)‖ξ(t)‖2dt < ∞ (from (4.17c)), we deduce from these

last arguments that
∫ ∞
t0

σ 2(t)ν2(t)‖ξ̇ (t)‖2dt < ∞, that is the first estimate in item
(4.17d).

Furthermore, from (1.4b) together with σ̇ (t) + σ(t)ω(t) = σ(t)ρ(t)ϑ(t) (from
(4.29)) and ω(t) + σ̇ (t)

σ (t) = ρ(t)ϑ(t) (from (1.5c)) we obtain

ẋ(t) + σ(t)ξ̇ (t) = −θ(t)u(t) − (σ̇ (t) + σ(t)ω(t))ξ(t)

= −θ(t)u(t) − σ(t)ρ(t)ϑ(t)ξ(t),

from which we immediately derive that

ν(t)‖(ẋ(t) + σ(t)ξ̇ (t))‖ ≤ ν(t)θ(t)‖u(t)‖ + ν(t)σ (t)ρ(t)ϑ(t)‖ξ(t)‖.
(4.32)

We also know that lim
t→∞ ν(t)‖u(t)‖ = lim

t→∞ ν(t)σ (t)‖ξ(t)‖ = 0 (from (4.17a) and

(4.17c)). So, by the boundedness of {θ(·), ρ(·)} (from Remark 3.1) and that of ϑ(·)
(from (1.16)), we infer that

lim
t→∞ ν(t)‖ẋ(t) + σ(t)ξ̇ (t)‖ = 0. (4.33)

Moreover, by 〈ẋ(t), ξ̇ (t)〉 ≥ 0 (from Lemma 3.2), we obviously have
‖ẋ(t)‖2 + σ 2(t)‖ξ̇ (t)‖2 ≤ ‖ẋ(t) + σ(t)ξ̇ (t)‖2. This, together with (4.33), yields

limt→∞ ν(t)‖ẋ(t)‖ = limt→∞ ν(t)σ (t)‖ξ̇ (t)‖ = 0, namely the second result in item
(4.17d) and item (4.17e), respectively ��

Now we claim the main result of this section regarding our model (1.4)–(1.5).

Theorem 4.1 Let δ ≥ 0 and {κ, e∗, σ0} ⊂ (0,∞), let {ν(·), ϑ(·)} be positive mappings
of class C1 satisfying conditions (1.15), and suppose that (4.2)–(4.3) hold for some
t0 > 0 and s0 ∈ (0, e∗). Then, for any strong solution (x, ξ, y) : [0,∞) → H3 to
(1.4)–(1.5), we have the following properties:

∫ ∞

t0
σ(t)ν(t)ϑ(t)( f (x(t)) − min f )dt < ∞, (4.34a)

lim
t→∞ σ(t)ν2(t)ϑ(t)( f (x(t)) − min f ) = 0, (4.34b)

‖ẏ(t)‖ = o
(
ν−1(t)

)
,

∫ ∞

t0
ν(t)‖ẏ(t)‖2dt < ∞, (4.34c)

‖ẋ(t)‖ = o
(
ν−1(t)

)
,

∫ ∞

t0
ν(t)‖ẋ(t)‖2dt < ∞, (4.34d)

lim
t→∞ σ(t)ν(t)‖ξ(t)‖ = 0,

∫ ∞

t0
ν2(t)σ 2(t)‖ξ(t)‖2dt < ∞, (4.34e)
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lim
t→∞ ν(t)σ (t)‖ξ̇ (t)‖ = 0,

∫ ∞

t0
σ 2(t)ν2(t)‖ξ̇ (t)‖2dt < ∞, (4.34f)

∃x̄ ∈ S s.t . x(·)⇀x̄ weakly inH. (4.34g)

Proof Items (4.34a) to (4.34f) are direct consequences of Propositions 4.1 and 4.2
whose hypotheses are fulfilled under the assumptions of Theorem 4.1:

– Items (4.34a) and (4.34b) are given by (4.5g) and (4.17b), respectively.
– The two results in item (4.34c) are given by (4.17a) and (4.5d), respectively.
– The two results in item (4.34d) are given by (4.17e) and (4.5c), respectively.
– (4.34e) is derived from (4.17c) and item (4.34f) follows from (4.17d).

It remains to prove (4.34g), that is the weak convergence of the trajectories. For
simplification we set τ(·) = e∗ + ν(·), u(·) = y(·) − x(·) and f̄ (·) = f (·) − min f .
Given q ∈ S, by definition of Ls0,q(·) (given in (3.1)) we have, for t ∈ [0,∞),

Ls0,q (t) = 1
2‖s0

(
q − x(t)

) + ν(t)
(
y(t) − x(t)

)‖2 + 1
2 s0(e∗ − s0)‖x(t) − q‖2

+s0σ(t)τ (t)〈ξ(t), x(t) − q〉 + σ(t)τ (t) (τ (t)ϑ(t) − s) f̄ (x(t)).
(4.35)

The above equality can be equivalently written as

1
2

(
s20 + s0(e∗ − s0)

)‖x(t) − q‖2 = Ls0,q(t)
−ν2(t)‖y(t) − x(t)‖2 − s0ν(t)〈q − x(t), y(t) − x(t)〉
−s0σ(t)τ (t)〈ξ(t), x(t) − q〉 − σ(t)τ (t) (τ (t)ϑ(t) − s) f̄ (x(t)).

(4.36)

Let us analyze separately the behavior as t → ∞ of each term in the right side of
(4.36). Regarding the first term, we know that limt→+∞ Ls0,q(t) exists (from Proposi-
tion 4.1). Next, we show that the other terms converge to zero. Concerning the second
term, we simply have limt→+∞ ν2(t)‖y(t) − x(t)‖2 = 0 (from (4.17a)). In order to
estimate the third term, using the Cauchy–Schwarz inequality yields

s0ν(t)|〈q − x(t), y(t) − x(t)〉| ≤ s0ν(t)‖q − x(t)‖‖y(t) − x(t)‖,
which, by the boundedness of x(·) and limt→∞ ν(t)‖y(t) − x(t)‖ = 0 (from

(4.17a)), entails that
limt→∞ s0ν(t)〈q − x(t), y(t) − x(t)〉 = 0.
Regarding now the fourth term, by themonotonicity of ∂ f and theCauchy–Schwarz

inequality we have
0 ≤ σ(t)τ (t)〈ξ(t), x(t) − q〉 ≤ σ(t)τ (t)‖ξ(t)‖ × ‖x(t) − q‖.
Hence, by remembering that (as t → ∞) σ(t)ν(t)‖ξ(t)‖ → 0 (from (4.17c))

(thus σ(t)τ (t)‖ξ(t)‖ → 0 since τ(·) = e∗ + ν(·) and since ν(·) is nondecreasing), we
deduce from the boundedness of x(·) that

limt→+∞ σ(t)τ (t)〈ξ(t), x(t) − q〉 = 0. Concerning the last term, recalling that
τ(·) = e∗ + ν(·), we observe that

σ(t)τ (t)|τ(t)ϑ(t) − s| f̄ (x(t)) = σ(t)τ 2(t)|ϑ(t) − s

τ(t)
| f̄ (x(t))

= σ(t)ν2(t)
(
1 + e∗

ν(t)

)2|ϑ(t) − s

τ(t)
| f̄ (x(t)).
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Furthermore, we have limt→∞ σ(t)ν2(t)ϑ(t) f̄ (x(t)) = 0 (from (4.17b)), hence
recalling thatϑ(·) is bounded away fromzero,we readily get limt→∞ σ(t)ν2(t) f̄ (x(t))
= 0. Thus, by noticing that the quantity (1+ e∗

ν(t) )
2|ϑ(t)− s

τ(t) | is bounded (since τ(·)
is nondecreasing and since ϑ(·) is bounded as a positive and nonincreasing mapping),
we infer that

limt→∞ σ(t)τ (t)
(
τ(t)ϑ(t) − s

)
f̄ (x(t)) = 0. So equality (4.36) in light of the

previous arguments gives us

s0e∗
2

lim
t→+∞ ‖x(t) − q‖2 = lim

t→+∞Ls0,q(t),

which implies that limt→+∞ ‖x(t) − q‖ exists.
Now, let x̄ be aweak sequential cluster point of x(·), namely, there exists a sequence

(tn)n≥0 ⊂ (0,∞) such that limn→+∞ tn = +∞ and forwhich the sequence (x(tn))n≥0
weakly converges to x̄ as n → +∞. Then, for n ≥ 0, we readily have

ξ(tn) ∈ ∂ f
(
x(tn)

)
. (4.37)

Observe that ξ(tn) → 0 strongly inH as n → +∞, since limt→+∞ σ(t)ν(t)‖ξ(t)‖ =
0 (from (4.17c)) and since σ(t) ≥ σ(0) > 0 and ν(t) ≥ ν(0) > 0 (from (1.5b) and
(1.15a)). Therefore, passing to the limit in (4.37) as n → +∞ and using the fact that
∂ f is sequentially semi-closed (as ∂ f is maximally monotone), we obtain 0 ∈ ∂ f (x̄),
that is x̄ ∈ (∂ f )−1(0). Thus, we conclude by means of the well-known Opial’s lemma
[33], which completes the proof ��

4.2 Main Estimates and Asymptotic Convergence Results

4.2.1 The General Setting of Parameters

The next result can be regarded as Theorem 4.1 in which conditions (4.2)–(4.3) are
simplified.

Theorem 4.2 Let δ ≥ 0, {e∗, κ, σ0} ⊂ (0,∞), let {ν, ϑ} : [0,∞) → (0,∞) satisfy
(1.15)–(1.16) (for some ϑ∞ > 0). Assume that (x, ξ, y) : [0,∞) → H3 is a strong
solution to (1.4)–(1.5) and that the following conditions (a) and (b) are satisfied:

(a) e∗ >
1

κ

(
δ + 2 lim sup

t→+∞
ν̇(t)

)
, (b) ν(t∗) ≥ ( 1

ϑ∞ − 1
)
e∗ ( for some t∗ ≥ 0).

(4.38)

Then the conclusions of Theorem 4.1 are still valid.

Proof In light of Theorem 4.1, we just prove that there exist two constants s0 ∈ (0, e∗)
and t0 ≥ 0 for which (4.2)–(4.3) hold. For simplification, we set τ(·) := e∗ + ν(·) and
ρ(·) := κ − ν̇(·)

ν(·) . From the definitions of ψ1(., .), ψ2(., .) and a1(·) (given in (4.1)) we
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readily have

ψ1(s0, t) = σ(t)

(
τ(t)ϑ(t)(sρ(t) − δ) − (τ 2(·)ϑ(·))(1)(t)

)
,

ψ2(e∗, t) = σ(t)τ (t)
(
τ(t)ϑ(t) − e∗

)
,

a1(t) = σ(t)τ (t)
(
ρ(t)ϑ(t) − δ

τ(t) − ν̇(t)
τ (t)

)
.

The rest of the proof can be divided into the following steps (i1)- (i4):
(i1): Let us prove (for t large enough) that ψ1(s0, t) ≥ 0 for some s0 ∈ (0, e∗).

Indeed, (4.38)-(a) writes e∗ > δ+2M
κ

, where M := lim supt→+∞ ν̇(t) is well-defined
(from 1.15d). So, we can take s0 ∈ ( δ+2M

κ
, e∗). Moreover, for t ≥ 0, by the definition

of ψ1(s0, t) and by ϑ̇(·) ≤ 0 (from 1.16) we successively obtain

ψ1(s0, t) = σ(t)τ (t)ϑ(t)
(
s0ρ(t) − δ − 2τ̇ (t) − τ(t) ϑ̇(t)

ϑ(t)

)

≥ σ(t)τ (t)ϑ(t) (s0ρ(t) − δ − 2ν̇(t)) (since ϑ̇(t) ≤ 0 and τ̇ (t) = ν̇(t)).

(4.39)

In order to estimate the right side of this last inequality, we recall that limt→∞ ρ(t) = κ

(from Remark 3.1). It is then immediately observed that lim inf t→∞
(
s0ρ(t) − δ −

2ν̇(t)
) = s0κ − δ − 2M > 0 (since s0 ∈ ( δ+2M

κ
, e∗)).

Thus, by σ(t) ≥ σ0 > 0, τ(t) ≥ e∗ > 0 and ϑ(t) ≥ ϑ∞ > 0 (from (1.16)) for all
t ≥ 0, we readily infer that lim inf t→∞ ψ1(s0, t) > 0. Whence, for t1 large enough,
t ≥ t1 yields ψ1(s0, t) > 0.

(i2): Setting ω0 := 1
2 (κϑ∞ − δ

τ(t∗) ), we prove (for t large enough) that ω(t) ≥ ω0.
Indeed, by definition of ω(·) (given in (4.3)) and by ϑ(·) ≥ ϑ∞ > 0 (from (1.16)),
we obtain, for t ≥ t∗ (t∗ being the constant arising in condition (4.38)-(b)), ω(t) =
ρ(t)ϑ(t) − δ

τ(t) ≥ ρ(t)ϑ∞ − δ
τ(t∗) . Recall that limt→∞ ρ(t) = κ (from Remark

3.1). Moreover, by τ(t∗) ≥ e∗
ϑ∞ (from (4.38)-(b)) and e∗ > δ

κ
(from (4.38)-(a)), we

additionally have τ(t∗) > δ
κϑ∞ (hence ω0 > 0). It follows that lim inf t→+∞ ω(t) ≥

κϑ∞ − δ
τ(t∗) = 2ω0 > 0. So we readily deduce for some t2 ≥ t∗ that t ≥ t2 implies

ω(t) ≥ ω0 > 0.
(i3): Let us prove (for t large enough) that ψ2(e∗, t) ≥ 0 and a1(t) ≥ 0. Indeed, we

have ϑ(·) ≥ ϑ∞ > 0 (from (1.16)) and τ(t∗) ≥ e∗
ϑ∞ (from (4.38)-(b)), hence t ≥ t∗

yieldsψ2(e∗, t) ≥ σ(t)τ (t)
(
τ(t∗)ϑ∞−e∗

) ≥ 0. In addition, by inf t≥t2 ω(t) ≥ ω0 > 0

(from item (i2)), we can observe for t ≥ t2 that a1(t) ≥ σ(t)τ (t)
(
ω0 − ν̇(t)

τ (t)

)
. Note

that limt→∞ ν̇(t)
τ (t) = 0 (from (1.15)). So, we classically deduce for some t3 ≥ t∗ that

t ≥ t3 yields ψ2(e∗, t) ≥ 0 and a1(t) ≥ 0.
(i4): The desired result follows from (i1), (i2) and (i3) altogether ��
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4.3 Specific Cases of Parameters

Let us start by stressing, under appropriate conditions on the parameters, some prop-
erties regarding the isotropic damping coefficient α(·) that occurs in the equivalent
second-order formulation (1.2)–(1.3) of system (1.4)–(1.5).

Proposition 4.3 Let δ ≥ 0, {κ, e∗, } ⊂ (0,∞), let {ν(·), ϑ(·)} be positive mappings of
class C2 satisfying (1.15) and for which ϑ(t) ∼ ϑ∞ as t → ∞ (for some ϑ∞ > 0),
and suppose that (as t → ∞):

ν(t) → +∞, ν̇(t) → l (for some l ≥ 0), ν̈(t) → 0. (4.40)

Then the parameters {α(·), β(·), b(·)} defined by (1.3) (depending on θ(·) and ω(·)
given in (1.5)) satisfy (as t → ∞):

α(t) ∼ l + κe∗
ν(t)

;β(t) ∼ κ(1 + ϑ∞); (
if ϑ̇(·) is Lipschitz continuous) b(t) ∼ κ2ϑ∞.

(4.41)

In particular, for ν(t) = ν
1−γ
0 (t + ν0)

γ with ν0 > 0 and γ ∈ (0, 1], we get (as
t → ∞)

α(t) ∼ 1 + κe∗
t

if γ = 1, α(t) ∼ κe∗
ν
1−γ
0 tγ

otherwise. (4.42)

Proof See Appendix A.4.
At once, we specialize Theorem 4.1 to two particular cases of ν(·) through the next

two results (Theorems 4.3 and 4.4).

Theorem 4.3 (Case ν(t) = t + ν0). Let δ ≥ 0, {κ, e∗, ν0, σ0} ⊂ (0,∞), set ν(t) =
t +ν0 and let ϑ(·) be any positive mapping of class C1 satisfying (1.16). Suppose also
that (x, ξ, y) : [0,∞) → H3 is a strong solution to (1.4)–(1.5) with parameters such
that

e∗ >
2 + δ

κ
. (4.43)

Then there exists x̄ ∈ S such that x(·)⇀x̄ weakly in H, and, for some t0 ≥ 0, we
obtain:

∫ ∞

t0
tδ+1( f (x(t)) − min f

)
dt < ∞, f (x(t)) − min f = o

(
t−(δ+2)

)
, (4.44a)

‖ẏ(t)‖ = o
(
t−1) ,

∫ ∞

t0
t‖ẏ(t)‖2dt < ∞, (4.44b)

‖ẋ(t)‖ = o
(
t−1) ,

∫ ∞

t0
t‖ẋ(t)‖2dt < ∞, (4.44c)
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‖ξ(t)‖ = o
(
t−(δ+1)

)
,

∫ ∞

t0
t2δ+2‖ξ(t)‖2dt < ∞, (4.44d)

‖ξ̇ (t)‖ = o
(
t−(δ+1)

)
,

∫ ∞

t0
t2δ+2‖ξ̇ (t)‖2dt < ∞. (4.44e)

Proof Let σ(·) be defined by (1.5b), along with ν(t) = t + ν0. A simple computation

yields σ(t) = σ0

[
e∗+ν0+t
e∗+ν0

]δ

, so that σ(t) ∼ σ0
(e∗+ν0)δ

tδ as t → ∞. Regarding this

situation in which ν̇(·) = 1, (4.38)-(a) reduces to (4.43), while (4.38)-(b) is obviously
satisfied (since ν(t) → ∞ as t → ∞). Hence, Theorem 4.3 follows directly from
Theorem 4.1 and σ(t) ∼ σ0

(e∗+ν0)δ
tδ as t → ∞

��
Theorem 4.4 (Case ν(t) = ν

1−γ
0 (t + ν0)

γ with γ ∈ [0, 1)). Let δ ≥ 0, {κ, e∗, ν0,
σ0} ⊂ (0,∞), γ ∈ [0, 1), set ν(t) = ν

1−γ
0 (t + ν0)

γ and let ϑ(·) be any positive
mapping of class C1 satisfying (1.16). Suppose furthermore that (x, ξ, y) : [0,∞) →
H3 is a strong solution to (1.4)–(1.5) with parameters such that:

(a) e∗ >
δ

κ
, (b) (if γ = 0) ν0 ≥

(
1

ϑ∞
− 1

)
e∗. (4.45)

Then there exists x̄ ∈ S such that x(·)⇀x̄ weakly in H. Moreover, denoting ᾱ :=
δν

γ
0

(1−γ )(ν0+e∗) , we have the following properties (for some t0 ≥ 0):

∫ ∞

t0
tγ eᾱt1−γ (

f (x(t)) − min f
)
dt < ∞, f (x(t)) − min f = o

(
t−2γ e−ᾱt1−γ

)
,

(4.46a)

‖ẏ(t)‖ = o
(
t−γ

)
,

∫ ∞

t0
tγ ‖ẏ(t)‖2dt < ∞, (4.46b)

‖ẋ(t)‖ = o
(
t−γ

)
,

∫ ∞

t0
tγ ‖ẋ(t)‖2dt < ∞, (4.46c)

‖ξ(t)‖ = o
(
t−γ e−ᾱt1−γ

)
,

∫ ∞

t0
t2γ e2ᾱt

1−γ ‖ξ(t)‖2dt < ∞, (4.46d)

‖ξ̇ (t)‖ = o
(
t−γ e−ᾱt1−γ

)
,

∫ ∞

t0
t2γ e2ᾱt

1−γ ‖ξ̇ (t)‖2dt < ∞. (4.46e)

Proof Let σ(·) be defined by (1.5b) with ν(t) = ν
1−γ
0 (t + ν0)

γ , where ν0 > 0 and

γ ∈ [0, 1). Then, denoting ᾱ := δν
γ
0

(1−γ )(ν0+e∗) , a simple computation yields, for s ≥ 0,
δ

ν
1−γ
0 (s+ν0)γ +e∗

≥ δ

(s+ν0)γ
(
ν
1−γ
0 + e∗

ν
γ
0

) = (1 − γ )ᾱ(s + ν0)
−γ .

Consequently, by σ(t) = σ0e
δ
∫ t
0

1

ν
1−γ
0 (s+ν0)γ +e∗

ds
we immediately deduce that

σ(t) ≥ σ0e
ᾱ
(
(t+ν0)

1−γ −ν
1−γ
0

)
≥ σ0e

−ᾱν
1−γ
0 eᾱt1−γ

. (4.47)
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Concerning this situation inwhich ν̇(t) = γ ν
1−γ
0

(t+ν0)1−γ , we have lim supt→∞ ν̇(t) = 0.
Hence, (4.38)-(a) reduces to (4.45)-(a).Moreover, if γ ∈ (0, 1), (4.38)-(b) is obviously
satisfied (since ν(t) → ∞ as t → ∞), while, otherwise (if γ = 0), (4.38)-(b)
follows from (4.45)-(b). Thus, Theorem 4.4 follows directly from Theorem 4.1 and

σ(t) ≥ σ0e−ᾱν
1−γ
0 eᾱt1−γ ��

The next result can be regarded as an important consequence of the previous theo-
rem that enlightens the possible effects of the parameters {δ, κ} on the estimates and
convergence rates in (1.12).

Corollary 4.1 Let {κ, e∗, ν0, σ0} ⊂ (0,∞), δ ≥ 0, γ ∈ [0, 1), set ν(t) = ν
1−γ
0 (t+ν0)

γ

and letϑ(·) be any positivemapping of classC1 satisfying (1.16). Suppose furthermore
that (x, ξ, y) : [0,∞) → H3 is a strong solution to (1.4)–(1.5) with parameters such
that:

(a) e∗ = λ

κ
δ (for some λ > 1), (b) (if γ = 0) ν0 ≥

(
1

ϑ∞
− 1

)
e∗. (4.48)

Then the conclusions of Theorem 4.4 still hold when replacing ᾱ with c :=
( ν

γ
0

(1−γ )(ν0+λ)

)
δκ

max{δ,κ} . Furthermore, in the special case when κ = δ > 0, (4.48)

(a) reduces to the condition e∗ > 1 and we get c = ν
γ
0

(1−γ )(ν0+e∗) δ.

Proof Clearly, under condition (4.48), the conclusions of Theorem 4.4 (including the

estimates and rates in (1.12)) hold with ᾱ := κδν
γ
0

(1−γ )(κν0+λδ)
(since e∗ = λ

κ
δ). Hence

we readily deduce that ᾱ ≥ ( ν
γ
0

(1−γ )(ν0+λ)

)
δκ

max{δ,κ} . This leads us immediately to the
two claims of Corollary 4.1 ��

5 Numerical Experiments and Discrete Perspectives

5.1 Numerical Experiments

We carry out some numerical experiments regarding the dynamics {x(·), ξ(·)} gener-
ated by our models, relative to three examples of problem (1.1) when H = IR2. The
first one (which deals with a smooth objective) is intended to compare our model with
DIN-AVD. The last two examples deal with nonsmooth objectives (one is strongly
convex and the other is not), so as to provide insight into the influence and relevance
of the parameters. For the sake of legibility, we make the following observations.

Remark 5.1 Recall from Proposition 2.2 that existence and uniqueness of a strong
solution (x, ξ) to (1.2) require initial conditions:

(x(0), ξ(0)) = (x0, ξ0) and
(
x(·) + σ(·)ξ(·))(1)

(0) = q0, such that ξ0 ∈ ∂ f (x0).
As suggested by Proposition 2.3, we know that (x, ξ) uniquely solves (for some

auxiliary variable y) system (1.4) with Cauchy data: x(0) = x0, ξ(0) = ξ0 and
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y(0) = x0− 1
θ(0) (q0 + σ(0)ω(0)ξ0). So, fromProposition 2.2,we focus on computing

(x, ξ) through the unique solution (x, ξ, y) given (for t ≥ 0) by

x(t) = J ∂ f
σ(t)v(t) and ξ(t) = 1

σ(t)

(
v(t) − x(t)

)
, (5.1)

(v(·), y(·)) being the unique classical solution to (2.6) that can be alternatively written
as

v̇(t) + ω(t)

σ (t)
v(t) −

(
ω(t)

σ (t)
+ θ(t)

)
J ∂ f
σ(t)v(t) + θ(t)y(t) = 0, (5.2a)

ẏ(t) − κ J ∂ f
σ(t)v(t) + κ y(t) = 0, (5.2b)

along with: y(0) = x0 − 1
θ(0) (q0 + σ(0)ω(0)ξ0) and v(0) = x0 + σ(0)ξ0. In our

forthcoming experiments, we compute the trajectories produced by DIN-AVD and
(5.2) by using Matlab.

In all the following examples, we denote f̄ = f − min f and we consider our
model with ν(t) = ν

1−γ
0 (t + ν0)

γ for some γ ∈ [0, 1] and ν0 > 0, together with
ϑ(t) ≡ ϑ∞ (for some ϑ∞ > 0). Our experiments will be mainly focused on the two
special cases: (i) δ = 0 (useful for numerical purposes); (ii) δ > 0 and γ = 0 (which
ensures exponential convergence rates).

5.1.1 Example 1 (Comparing Our Model with DIN-AVD)

Our first example aims at comparing the classical DIN-AVD [11] (namely, (1.9) where
b̄(t) ≡ β∗ for some constant β∗ > 0) with our model in the special case when δ = 0
(namely, in absence of time rescaling process) and γ = 1 (for which α(t) ∼ 1+κe∗

t
as t → ∞, from Proposition 4.3). Toward that end, we consider the smooth objective
used in [11] (for illustrating the former dynamic) and defined for x = (x1, x2) ∈ IR2

by f (x) = 1
2 (x

2
1 + 1000x22 ). This function is quadratic but somewhat ill-conditioned.

From its separable form (so as to use (5.2)), we classically obtain, for σ > 0 and
v = (v1, v2) ∈ IR2,

J ∂ f
σ (v1, v2) =

(
1

1 + σ
v1,

1

1 + 1000σ
v2

)
. (5.3)

As in [11], concerning DIN-AVD, we use the near-optimal parameters α∗ = 3.1
and β∗ = 1, with x0 = (1, 1) and ẋ0 = (0, 0). Concerning our model we set x0 =
y0 = (1, 1) and ξ0 = (1, 1000) (so ξ0 ∈ ∂ f (x0)), and we highlight the influence
of the parameters κ and ϑ∞ on its trajectories. It appears on Figs. 1 and 2 that our
model outperforms DIN-AVD as soon as κ and ϑ∞ are large enough. In addition, its
performances are all the better as the values of κ andϑ∞ are large. Further experiments
(not reported here) suggest that increasing e∗ tends to slightly damp the oscillations.
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Fig. 1 Profiles of x1(·) (left), x2(·) (center) and t → (t2 − 1) f̄ (x1(t), x2(t)) (right) for several values of
κ . The other parameters are δ = 0, σ0 = 1, γ = 1, e∗ = 100, ν0 = 10 and ϑ∞ = 1

Fig. 2 Profiles of x1(·) (left), x2(·) (center) and t → (t2 − 1) f̄ (x1(t), x2(t)) (right) for several values of
ϑ∞. The other parameters are δ = 0, σ0 = 1, γ = 1, e∗ = 100, ν0 = 10 and κ = 2

5.1.2 Example 2 (Influence of the Parameters on the Trajectories)

We aim here at illustrating the influence of the parameters {δ, γ, κ, ϑ∞} on the trajec-
tories {x(·), ξ(·)} produced by ourmodel. For this purpose, we consider the nonsmooth
objective defined for x ∈ IR2 by f (x) = 1

2‖x − b‖22 + ‖x‖1 for some b ∈ IR2, which
is linked to the Lasso problem. In our experiments, we set b = (0, 10). So it can
be checked that the minimum of f is reached at x∗ = (0, 9). As a typical result for
solving (5.2), we have, for σ > 0 and v ∈ IR2,

J ∂ f
σ v = prox σ

σ+1 ‖.‖1
(

1

1 + σ
x + σ

1 + σ
b

)
. (5.4)

We also choose the initial conditions x0 = y0 = (10, 10), ξ0 = (11, 1) (so ξ0 ∈
∂ f (x0)).

On figures 3-5, we illustrate the influence of {γ, κ, ϑ∞} relative to the useful context
of no time rescaling. Figure3 shows us that, when δ = 0 (absence of time rescaling),
the convergence is slightly better for γ = 1 (as it would be anticipated from Theorems
4.3 and 4.4).

Figures 4 and 5 are concerned with the influence of κ and ϑ∞ on our model, in the
special case when δ = 0 and γ = 1. It can be observed on these figures (as in example
1) the effectiveness of the model for sufficiently large values of κ and ϑ∞.
Now, we focus on the influence of {γ, κ, ϑ∞} relative to the context of time rescaling.
In this context, the effectiveness of the model for sufficiently large values of κ and ϑ∞
can be also observed on additional experiments (not reported here for conciseness).
Figure6 suggests that, when δ > 0 (in presence of a time rescaling process), a fastest
convergence holds for γ = 0 (which, once again, is consistent with our theoretical
results). Figures 7 and 8 show us, under particular choices of parameters entering
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Fig. 3 Profiles (in logarithmic scale) of ‖x(·) − x∗‖2 (left), t → t‖ξ(t)‖2 (center) and t → t2 f̄ (x(t))
(right) for various values γ . The other parameters are δ = 0, ν0 = 1, σ0 = 1, e∗ = 2.5, ϑ∞ = 5 and κ = 3

Fig. 4 Profiles of ‖x(·) − x∗‖2 (left), t → t‖ξ(t)‖2 (center) and t → t2 f̄ (x(t)) (right) for several values
κ . The other parameters are δ = 0, σ0 = 1, γ = 1, e∗ = 2.5, ν0 = 1 and ϑ∞ = 5

Fig. 5 Profiles of ‖x(·) − x∗‖2 (left), t → t‖ξ(t)‖2 (center) and t → t2 f̄ (x(t)) (right) for several values
ϑ∞. The other parameters are δ = 0, σ0 = 1, γ = 1, e∗ = 2.5, ν0 = 1 and κ = 1

Fig. 6 Profiles (in logarithmic scale) of f̄ (x(·)) for δ = 0 and various values γ (left), for δ = 30 and
various values γ (center) and for δ = 40 and various values γ (right). The other parameters are σ0 = 1,
e∗ = 10, ϑ∞ = 1. and κ = 4.04

Theorem 4.3 (see Fig. 7) and Corollary 4.1 (see Fig. 8), that the convergence is all the
better as δ increases.

On Fig. 8 we observe that, after an initial transient phase, the profiles stabilize to
straight lines relative to a semi-logarithmic scale. This clearly indicates an exponential
convergence rate of the form O

(
e−At

)
for γ = 0. Let us recall that in this specific case,

Theorem 4.4 states the rate f̄ (x(t)) = o
(
e−ᾱt

)
with ᾱ := δ

ν0+e∗ . Through a linear

regression of ln f̄ (x(·)) with respect to time (by means of a classical least squares
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Fig. 7 Profiles (in logarithmic
scale) of f̄ (x(·)) for γ = 1,
κ = 1.1 δ+2

e∗ and various δ. The
others parameters are unchanged
from Fig. 6

Fig. 8 Profiles (in logarithmic
scale) of f̄ (x(·)) for γ = 0,
κ = 1.1 δ

e∗ and various δ. The
others parameters are unchanged
from Fig. 6

Fig. 9 Comparison of A and ᾱ

(related to Fig. 8) for several
values δ

method), we can easily estimate the values of A so as to compare it with ᾱ (see Fig. 9).
For all considered values δ, we get A > ᾱ. This confirms the decaying rate o

(
e−ᾱt

)
.

5.1.3 Example 3 (Influence of � for a Non Strongly Convex Objective)

In this last example, we consider the nonsmooth objective defined for x ∈ IR2 by
f (x) = ‖x‖1. Even though this is a very simple problem, it has the advantage of
addressing the case of a convex objective function which is not strongly convex (as in
the two previous examples). We assess the trajectories generated by the dynamics for
various values of γ and the following setting of parameters: δ = 0, e∗ = 2.5, ν0 = 1
and ϑ∞ = 5. The experiment was conducted for x0 = (200, 200) (which is a starting
point away from the minimizer of f ), ξ0 = y0 = (1, 1). It can be easily checked that
ξ0 ∈ ∂ f (x0).

It can be seen on Fig. 10 that the convergence is better for γ = 1, which is in
accordance with the results of Theorems 4.3 and 4.4.

The last Fig. 11 shows off (through a zoom relative to the special case of the previous
figure when γ = 0.5) regularity properties regarding the solution (x(·), ξ(·)), in which
x(·) = (

x1(·), x2(·)
)
and ξ(·) = (

ξ1(·), ξ2(·)
)
. It can be noticed that x1(·) behaves as

an (absolutely) continuous function that reaches the minimizer of f (around the time
t = 8), while ξ1(·) appears to be differentiable almost everywhere together with
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Fig. 10 Profiles of ‖x(·) − x∗‖2 (left), t → t‖ξ(t)‖2 (center) and t → t2 f̄ (x(t)) (right) for several values
κ . The other parameters are δ = 0, e∗ = 2.5, ν0 = 1 and ϑ∞ = 5

Fig. 11 Profiles of the real-valued functions t → x1(t) (left), t → ξ1(t) (center) and t → x1(t)+σ(t)ξ1(t)
(right). The parameters are δ = 0, e∗ = 2.5, ν0 = 1, ϑ∞ = 5 and γ = 0.5

x1(·)+σ(·)ξ1(·) that seems to be twice differentiable, in accordance with Proposition
2.3.

5.2 Perspectives on Discrete Variants

Inspired by system (1.4)–(1.5), and following the methodology of [30], we suggest
a new inertial and corrected proximal algorithm for solving the structured convex
minimization problem:

min{�(x) := f (x) + g(x) : x ∈ H}, (5.5)

where f : H → (−∞,∞] is proper convex and l.s.c. while g : H → (−∞,∞) is
convex and continuously differentiable.

However, the study of this algorithm is out of the scope of this study and will be
carried out in a future work.

In what follows, given some positive mappings ν(·) and ϑ(·), we set tn = hn (for
some positive value h), νn = ν(tn), ϑn = ϑ(tn), θn = θ(tn) and ρn = ρ(tn) for all
n ≥ 0.

We also introduce the operator Mμ defined for any μ > 0 and for any x ∈ H by
Mμ(x) := μ−1(x− Jμ∂ f (x−μ∇g(x)). It is well-known that Mμ satisfies M−1

μ (0) =
(∂ f +∇g)−1(0) = S and that it has co-coercive properties, whenever∇g is Lipschitz
continuous and μ is small enough (see, e.g. [6]). For this reason, the algorithms based
on the computation of zeroes of Mμn (for some (μn) ⊂ (0,∞)) generally require to
use bounded indexes (μn), which excludes the benefit of time rescaling process in
structured minimization (see, e.g., Boţ-Hulett [18]).
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In order to solve (5.5), without time rescaling process, we consider the discrete
model which consists of the sequences ((zn, xn, yn)) ⊂ H3 generated by the following
numerical scheme.

A discrete model Let μ and t be positive constants and consider any starting
elements {z−1, x0, y0} ⊂ H. For n ≥ 0, given elements {zn−1, xn, yn}, we compute
the updates by:

zn = xn − hθn(yn − xn) + ηn(zn−1 − xn), (5.6a)

xn+1 = zn − tMμ(zn), (5.6b)

yn+1 = (1 − hκ)yn + hκxn, (5.6c)

where “ηn(zn−1 − xn)” is a correction term with coefficient ηn := 1 − hωn .

Remark 5.2 From an easy computation (noticing for δ = 0 that ωn = ρnϑn) we get
ηn = 1 − hϑnρn , or equivalently ϑn = 1−ηn

ρn
. This suggests conversely that we can

consider (5.6) with any nondecreasing sequence (ηn) ⊂ [0, ε] (for some ε ∈ [0, 1) ),
just by taking ϑn = 1−ηn

ρn
, since (ρn) is positive and nondecreasing. So, (ηn) is indeed

a nondecreasing sequence that is bounded away from zero.

Remark 5.3 The specificity of this scheme lies in the fact that the inertial corrected
algorithms studied in the literature generally involve a correction coefficient such that
ηn → 0 as n → ∞ (see, e.g. [26, 29, 30]), contrary to the case of model (5.6) for
which ηn → 1 − hκϑ∞.

The next result shows us that (5.6) can be regarded as a discrete counterpart of
(1.4)–(1.5) in which δ = 0 and f is replaced with f + g (with a multiplicative factor).

Proposition 5.1 Let ((zn, xn, yn)) be any sequence generated by (5.6) For n ≥ 1, and
setting ξn := zn−1 − xn, we have

ξn ∈ t(∂ f (xn) + ∇g(zn)), (5.7a)
1

h
(xn+1 − xn) + 1

h
(ξn+1 − ξn) + θn(yn − xn) + ωn−1ξn = 0, (5.7b)

1

h
(yn+1 − yn) + κ(yn − xn) = 0. (5.7c)

Proof For n ≥ 1, by (5.6b) we have ξn = tMμ(zn−1), while it is easily checked that
Mμ(zn−1) ∈ ∂ f (xn) + ∇g(zn), which leads us to (5.7a). In addition, (5.6) readily
yields zn = xn − hθn(yn − xn) + (1 − hωn)ξn , which, by zn = ξn+1 + xn+1, entails

xn+1 − xn + hθn(yn − xn) − (1 − hωn−1)ξn + ξn+1 = 0. (5.8)

It follows immediately (5.7b), while (5.7c) is obvious from (5.6c) ��

Funding The authors declare that no funds, grants, or other support were received during the preparation
of this manuscript.

123



1 Page 36 of 45 Applied Mathematics & Optimization (2024) 89 :1

Data Availibility We do not analyse or generate any datasets, because our work proceeds within a theoretical
and mathematical approach. One can obtain the relevant materials from the references below.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

A Appendix

A.1 Proof of Proposition 2.1

Let us prove that (i1)⇒ (i2). Consider a solution (x, ξ) ∈ Ac×Ac to (2.2). Set ζ(·) =
σ(·)ξ(·) and suppose that x(·) + ζ(·) is of class C1 and that (x(·) + ζ(·))(1) ∈ Ac.
Clearly, for t ≥ 0, as ẋ , ζ̇ and ζ are integrable on [0, t] (since x and ζ belong to Ac),
we can set as a well-defined quantity

z(t) =
∫ t

0

(
α(r)ẋ(r) + β(r)ζ̇ (r) + b(r)ζ(r)

)
dr − q0. (1.9)

Hence, z ∈ Ac, and by differentiating (1.9) we obtain

ż(t) = α(t)ẋ(t) + β(t)ζ̇ (t) + b(t)ζ(t), for a.e. t ≥ 0. (1.10)

Therefore, by (2.2b) together with the above equality, we get

(
x(·) + ζ(·))(2)

(t) + ż(t) = 0, for a.e. t ≥ 0. (1.11)

Moreover, recalling that
(
x(·) + ζ(·))(1) ∈ Ac and z ∈ Ac, we get

d
dt

((
x(·) + ζ(·))(1) + z(·)

)
(t) = (

x(·) + ζ(·))(2)
(t) + ż(t), for a.e. t ≥ 0. Hence,

we straightforwardly deduce

d

dt

((
x(·) + ζ(·))(1)

(t) + z(·)
)

(t) = 0, for a.e. t ≥ 0. (1.12)

It follows immediately that

(
x(·) + ζ(·))(1)

(t) + z(t) = (
x(·) + ζ(·))(1)

(0) + z(0) for t ≥ 0, (1.13)

which, by the initial condition
(
x(·) + σ(·)ξ(·))(1)

(0) = q0, yields

(
x(·) + ζ(·))(1)

(t) + z(t) = 0 for t ≥ 0, (1.14)
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which readily implies that

ẋ(t) + ζ̇ (t) + z(t) = 0 for a.e t ≥ 0. (1.15)

Multiplying (1.15) by β(t) and adding the resulting equality to (1.10) give us

(
β(t) − α(t)

)
ẋ(t) + ż(t) + β(t)z(t) − b(t)ζ(t) = 0 for a.e t ≥ 0. (1.16)

Now, since θ(·) is positive, we introduce the function y(·) defined for t ≥ 0 by

y(t) := 1

θ(t)
z(t) + x(t) − ω(t)

θ(t)
ζ(t). (1.17)

For simplification we also set u(t) = y(t) − x(t). Observe from (1.17) that we equiv-
alently have

z(t) = θ(t)u(t) + ω(t)ζ(t). (1.18)

Thus, for t ≥ 0, (1.14) in light of the above equality entails

(
x(·) + ζ(·))(1)

(t) + θ(t)u(t) + ω(t)ζ(t) = 0, (1.19)

that is (2.4b). We now prove (2.4c). Differentiating (1.18), while noticing that
{x, ξ, u} ⊂ Ac, readily implies, for a.e. t ≥ 0,

ż(t) = θ̇ (t)u(t) + θ(t)u̇(t) + ω̇(t)ζ(t) + ω(t)ζ̇ (t). (1.20)

Moreover, using the definitions of α(·), β(·) and b(·) given by (1.3), namely α(t) =
− θ̇ (t)

θ(t) +κ − θ(t), β(t) = − θ̇ (t)
θ(t) +κ +ω(t) and b(t) = ω(t)

(
κ + ω̇(t)

ω(t) − θ̇ (t)
θ(t)

)
, yields

β(t) − α(t) − θ(t) = ω(t), (1.21a)

β(t)θ(t) + θ̇ (t) = κθ(t) + ω(t)θ(t), (1.21b)

β(t) + ω̇(t)

ω(t)
− b(t)

ω(t)
= ω(t). (1.21c)

Hence, by (1.16) and using (1.20), (1.18), u̇ = ẏ − ẋ and (1.21a), successively, we
get, for a.e. t ≥ 0,

0 = (
β(t) − α(t)

)
ẋ(t) + ż(t) + β(t)z(t) − b(t)ζ(t)

= (
β(t) − α(t)

)
ẋ(t) + θ̇ (t)u(t) + θ(t)u̇(t) + ω̇(t)ζ(t) + ω(t)ζ̇ (t)

+β(t)θ(t)u(t) + β(t)ω(t)ζ(t) − b(t)ζ(t)
= (

β(t) − α(t) − θ(t)
)
ẋ(t) + θ(t)ẏ(t) + (

β(t)θ(t) + θ̇ (t)
)
u(t)

+ω(t)
(
ζ̇ (t) +

(
ω̇(t)
ω(t) + β(t) − b(t)

ω(t)

)
ζ(t)

)
,

(1.22)
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namely

0 = ω(t)ẋ(t) + θ(t)ẏ(t) + (
κθ(t) + ω(t)θ(t)

)
u(t) + ω(t)

(
ζ̇ (t) + ω(t)ζ(t)

)

= ω(t)
(
ẋ(t) + ζ̇ (t) + θ(t)u(t) + ω(t)ζ(t)

) + θ(t)
(
ẏ(t) + κu(t)

)
.

In addition, by (1.19), while recalling that {x, ξ} ⊂ Ac, we obtain

ẋ(t) + ζ̇ (t) + θ(t)u(t) + ω(t)ζ(t) = 0, for a.e. t ≥ 0. (1.23)

Thus, combining (1.22) and (1.23), in light of θ 	= 0, yields
ẏ(t) + κ(u(t)) = 0 for a.e. t ≥ 0,
that is (2.4c).
Finally, regarding the initial conditions, we have (x(0), ξ(0)) = (x0, ξ0) and

(
x(·)+

ζ(·))(0) = q0 (according to (i1)) while (2.4b) at time t = 0 ensures that
(
x(·) + ζ(·))(1)

(0) + θ(0) (y(0) − x(0)) + ω(0)ζ(0) = 0.
Hence, we deduce that y(0) = x0 − 1

θ(0) (q0 + σ(0)ω(0)ξ0).

Let us prove that (i2) ⇒ (i1). Consider a solution (x, ξ, y) ∈ Ac × Ac × C1 to
(2.4). For simplification, we set again u(·) = y(·)− x(·) and ζ(·) = σ(·)ξ(·). Clearly,
by (2.4b), we have, for t ≥ 0,

(
x(·) + ζ(·))(1)

(t) + θ(t)u(t) + ω(t)ζ(t) = 0. (1.24)

This, by (x, ξ, y) ∈ Ac × Ac × C1 and by {ω(·), θ(·), σ(·)} ⊂ C1([0,∞]), entails
that x(·)+ ζ(·) is of class C1 and that

(
x(·)+ σ(·)ξ(·))(1) ∈ Ac. Then, differentiating

(1.24) gives us, for a.e t ≥ 0,

(x(·) + ζ(·))(2)(t) + θ̇ (t)u(t) + θ(t)u̇(t) + ω(t)ζ̇ (t) + ω̇(t)ζ(t) = 0, (1.25)

while we know from (2.4c) that ẏ(t) = −κu(t). Consequently, we readily obtain, for
a.e t ≥ 0,

(x(·) + ζ(·))(2)(t) + θ̇ (t)u(t) + θ(t)
( − κu(t) − ẋ(t)

) + ω(t)ζ̇ (t) + ω̇(t)ζ(t) = 0.

(1.26)

Furthermore, for a.e. t ≥ 0, by (1.24) we readily have
u(t) = − 1

θ(t)

(
(x(·) + ζ(·))(1) + ω(t)ζ(t)

)
, which, by (1.26), entails

(x(·) + ζ(·))(2)(t)
= θ̇ (t)

θ(t)

(
ẋ(t) + ζ̇ (t) + ω(t)ζ(t)

) − θ(t)
(

κ
θ(t)

(
ẋ(t) + ζ̇ (t) + ω(t)ζ(t)

) − ẋ(t)
)

−ω(t)ζ̇ (t) − ω̇(t)ζ(t)

= −(
κ − θ(t) − θ̇ (t)

θ(t)

)
ẋ(t) −

(
κ + ω(t) − θ̇ (t)

θ(t)

)
ζ̇ (t) − ω(t)

(
κ + ω̇(t)

ω(t) − θ̇ (t)
θ(t)

)
ζ(t).

Hence the expressions of α(·), β(·) and b(·) defined in (1.3) amounts to (2.2b).
In addition, from the initial conditions in (i2), we have x(0) = x0, ξ(0) = ξ0
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and y(0) = x0 − 1
θ(0) (q0 + σ(0)ω(0)ξ0). This implies that y(0) = x(0) −

1
θ(0) (q0 + σ(0)ω(0)ξ(0)), while (2.4b) at time t = 0 yields

(
x(·) + ζ(·))(1)

(0) + θ(0) (y(0) − x(0)) + ω(0)ζ(0) = 0.
Hence, regarding the last two equalities, substituting the former in the latter gives

us
(
x(·) + ζ(·))(1)

(0) = q0.

A.2 Proof of Proposition 2.2

A.2.1 The Yosida Regularization

Some useful properties of the Yosida regularization are recalled through the lemma
below established in [27] (see also [8, 21, 22]).

Lemma 1.1 Let A : H ⇒ H be a maximally monotone operator such that S :=
A−1(0) 	= ∅. Let γ, δ > 0 and x, y ∈ H. Then for z ∈ A−1({0}), we have

‖γ Aγ x − δAδ y‖ ≤ 2‖x − y‖ + 2
|γ − δ|

γ
‖x − z‖, (1.27)

‖Aγ x − Aδ y‖ ≤
(
3
|δ − γ |

δγ
× ‖x − z‖ + 2

δ
‖x − y‖

)
. (1.28)

Proof The proof of (1.27) can be found in [8]. For proving (1.28), we simply observe
that Aγ x − Aδ y = 1

δ

(
δAγ x − δAδ y

) = 1
δ

(
(δ − γ )Aγ x + (γ Aγ x − δAδ y

)
, from

which we get ‖Aγ x − Aδ y‖ ≤ 1
δ

(|δ − γ | × ‖Aγ x‖ + ‖γ Aγ x − δAδ y‖
)
.

Consequently, by ‖Aγ x‖ ≤ 1
γ
‖x − z‖ and using (1.27), we obtain (1.28) ��

A.2.2 Main Proof of the Proposition

The proof follows the same lines as in [30] (see, also, [1, 2]), but it is developed through
the following steps (s1)- (s3) with full details:

(s1) We begin by reformulating the (possibly) existing strong global solutions
to (1.4)) (that are supposed to satisfy (2.3)) by means of the Minty representation
of the maximal monotone operator ∂ f (see [32]). Set J ∂ f

σ(·) = (
I + σ(·)∂ f

)−1 and

(∂ f )σ(·) = 1
σ(·)

(
I − J ∂ f

σ(·)
)
, namely the resolvent and the Yosida approximation of

∂ f (with index σ(·)), respectively, which are well-known to be single-valued and
everywhere defined. Associated with any strong global solution (x(·), ξ(·), y(·)) to
(1.4), we introduce the new unknown function

v(·) = x(·) + σ(·)ξ(·). (1.29)

It is readily seen that v(·) belongs to Ac (the set of absolutely continuous functions)
and that

v(0) = x0 + σ(0)ξ0.
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Moreover, for t ≥ 0, by ξ(t) ∈ ∂ f (x(t)) we obtain v(t) ∈ x(t) + σ(t)∂ f (x(t))
and ξ(t) = 1

σ(t) (v(t) − x(t)), hence, by Minty’s representation we simply have

x(t) = J ∂ f
σ(t)v(t) and ξ(t) = 1

σ(t)

(
v(t) − J ∂ f

σ(t)v(t)
) = (∂ f )σ(t)v(t). (1.30)

Differentiating (1.29), in light of (2.3b), gives us, for a.e. t ≥ 0,
v̇(t) = ẋ(t) + (σ (·)ξ(·))(1)(t) = −θ(t)(y(t) − x(t)) − ω(t)σ (t)ξ(t), hence, by

(1.30), we obtain

v̇(t) + θ(t)
(
y(t) − J ∂ f

σ(t)v(t)
) + ω(t)σ (t)(∂ f )σ(t)v(t) = 0.

Hence, from (2.3), we deduce that (v(·), y(·)) are implicitly given, for a.e. t ∈ [0,∞),
by

v̇(t) + θ(t)
(
y(t) − J ∂ f

σ(t)v(t)
)

+ ω(t)σ (t)(∂ f )σ(t)v(t) = 0, (1.31a)

ẏ(t) + κ(y(t) − J ∂ f
σ(t)v(t)) = 0, (1.31b)

together with y(0) = y0 and v(0) = x0 + σ(0)ξ0.
This shows us that any strong global solution (x(·), ξ(·), y(·)) to (1.4) is entirely

determined (thanks to the two formulas in (1.30)) by some (strong) solution (v(·), y(·))
to (1.31). So, for proving existence and uniqueness of a strong global solution to
(1.4), we just state (as argued below) the existence and uniqueness of a (strong)
global solution (v(·), y(·)) to (1.31), but also the existence of a strong global solution
(x(·), ξ(·), y(·)) to (1.4).

(s2) Existence, uniqueness and regularity of a (strong) global solution (v(·), y(·))
to (1.31). First, we show that (1.31) is relevant to the Cauchy–Lipschitz theorem.
Indeed, (1.31) can be expressed as

U̇ (t) = F(t,U (t)), (1.32)

where U (·) = (v(·), y(·)) and F(t, .) : H2 → H2 is defined for any t ≥ 0 and
(v̄, ȳ) ∈ H2 by F(t, (v̄, ȳ)) = (

φ1(t, (v̄, ȳ)), φ2(t, (v̄, ȳ))
)
, together with

φ1(t, (v̄, ȳ)) = −θ(t)
(
ȳ − J ∂ f

σ(t)v̄
)

− ω(t)σ (t)(∂ f )σ(t)v̄, (1.33a)

φ2(t, (v̄, ȳ)) = −κ
(
ȳ − J ∂ f

σ(t)v̄
)

. (1.33b)

In view of applying the global Cauchy–Lipschitz theorem, we establish two main
properties on F(., .) through the following items (a) and (b):

(a) Given (v̄, ȳ) ∈ H2, we prove that F(., (v̄, ȳ)) is continuous on [0,∞). Indeed,
let z ∈ (∂ f )−1(0) and (t1, t2) ∈ [0,∞)2. By Lemma 1.1 with A = ∂ f and σ(·) ≥
σ0 > 0 (from (1.5b)), we obtain ‖(∂ f )σ(t1) ȳ − (∂ f )σ(t2) ȳ‖ ≤ 3 |σ(t1)−σ(t2)|

σ 2
0

‖ȳ − z‖.
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Then, the continuity of σ(·) on [0,∞) yields that the mappings t → (∂ f )σ(t) ȳ and

t → J ∂ f
σ(t)v̄ (given by J ∂ f

σ(t)v̄ := v̄ − σ(t)(∂ f )σ(t)v̄) are also continuous on [0,∞).
So, in light of the definition of φ1(., .) and φ2(., .), together with the continuity of
{θ(·), ω(·)}, we infer that F(., (v̄, ȳ)) is continuous on [0,∞) (as are φ1(., .) and
φ2(., .)).

(b) Given t ≥ 0, we prove that F(t, .) is ι(t)-Lipschitz continuous onH2, for some
continuous mapping ι : [0,∞) → [0,∞). Indeed, for (vi , yi ) ∈ H2 (for i = 1, 2),
while noticing that J ∂ f

σ(t) and
1
2σ(t)(∂ f )σ(t) are nonexpansive on H, by (1.33) we get

‖φ1(t, (v1, y1)) − φ1(t, (v2, y2))‖
≤ θ(t)‖y1 − y2‖ + θ(t)‖J ∂ f

σ(t)v1 − J ∂ f
σ(t)v2‖ + ω(t)‖σ(t)(∂ f )σ(t)v1 − σ(t)(∂ f )σ(t)v2‖

≤ (θ(t) + 2ω(t))(‖v1 − v2‖ + ‖y1 − y2‖),

while an easy computation gives us

‖φ2(t, v1, y1) − φ2(t, v2, y2)‖ ≤ κ (‖v1 − v2‖ + ‖y1 − y2‖) .

It follows from the previous arguments that F(t, .) satisfies

‖F(t, (v1, y1)) − F(t, (v2, y2))‖ ≤ (
θ(t) + 2ω(t) + κ

)‖(v1, y1) − (v2, y2)‖,
(1.34)

hence F(t ., .) is ι(t)-Lipschitz continuous onH2 along with ι(·) = θ(·) + 2ω(·) + κ

which is continuous (by the continuity of θ(·) and ω(·)).
Thus, for any given (x0, y0, ξ0) ∈ H3, applying the global Cauchy–Lipschitz theo-

rem yields existence and uniqueness of a global classical solution (v(·), y(·)) to (1.31)
(namely, y(·) and v(·) are of class C1) such that y(0) = y0 and v(0) = x0 + σ(0)ξ0.
Furthermore, the previous arguments (a) and (b) guarantee existence and uniqueness
of a strong global solution (v(·), y(·)) to the same problem (1.31), by invoking the
version of the Cauchy–Lipschitz theorem involving absolutely continuous trajectories,
see for example [25, Proposition 6.2.1.], [37, Theorem 54].

(s3)Existenceof a strongglobal solution (x(·), ξ(·), y(·)) to (1.4). Let (x0, ξ0, y0) ∈
H3 be such that ξ0 ∈ ∂ f (x0). Given a global classical solution (v(·), y(·)) to (1.31)
such that y(0) = y0 and v(0) = x0 + σ(0)ξ0, we consider the functions x(·) and
ξ(·) defined by (1.30), and we show through the following items (s3-a)–(s3-b) that
(x(·), ξ(·), y(·)) is a strong global solution to (1.4):

(s3-a) Let us prove the absolute continuity of x(·) and ξ(·) on any bounded subset
of [0,∞). As v(·) is of class C1 on [0,∞), we immediately see that v(·) is absolutely
continuous from the characterization (i1) of Definition 2.1. Hence, given ε > 0 and
finitely many intervals Ik = (ak, bk) such that Ik ∩ I j = ∅ (for k 	= j), by using
Definition 2.1-(i3) we know for some η > 0 that

∑
k |bk − ak | ≤ η implies that

∑
k ‖v(bk) − v(ak)‖ ≤ min(ε, 2ε

σ0
). So, invoking the non-expansiveness of J ∂ f

σ(·) and
1
2σ(·)(∂ f )σ(·) while recalling that σ(·) ≥ σ0 > 0 entails that

∑
k ‖J ∂ f

σ(t)v(bk) − J ∂ f
σ(t)v(ak)‖ ≤ ∑

k ‖v(bk) − v(ak)‖ ≤ ε

and that
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∑
k ‖(∂ f )σ(t)v(bk)−(∂ f )σ(t)v(ak)‖ ≤ ∑

k
2

σ(t)‖v(bk)−v(ak)‖ ≤ 2
σ0

∑
k ‖v(bk)−

v(ak)‖ ≤ ε.
Consequently, the mappings x(·) = J ∂ f

σ(·)v(·) and ξ(·) = (∂ f )σ(·)v(·) also com-
ply with characterization (i3) of Definition 2.1, which proves that x(·) and ξ(·) are
absolutely continuous on [0,∞).

(s3-b) Let us show that the triplet (x(·), y(·), ξ(·)) satisfies system (2.3). Indeed,
by x(·) = J ∂ f

σ(·)v(·) (from (1.30)), and σ(·)ξ(·) = v(·) − x(·), we readily deduce
that σ(·)ξ(·) ∈ (σ (·)∂ f ) (x(·)) (because v(·) ∈ x(·) + σ(·)∂ f (x(·))), which by
the positivity of σ(·) proves (2.3a). Moreover, in (1.31), substituting v(·), J ∂ f

σ(·)v(·)
and σ(·)(∂ f )σ(·)v(·), by x(·) + σ(·)ξ(·), x(·) and σ(·)ξ(·), respectively, gives us
immediately (2.3b) and (2.3c). In addition, regarding the initial conditions we obtain
x(0) = J ∂ f

σ(0)v(0) = x0 (since v(0) = x0 + σ(0)ξ0 and ξ0 ∈ ∂ f (x0)), y(0) = y0 and
σ(0)ξ(0) = v(0) − x(0) = σ(0)ξ0.

Consequently, by items (s3-a)– (s3-b), we get the existence of a strong global
solution to (1.4) ��

A.3 Proof of Lemma 3.2

(See [30, Lemma 4.1]). Given t ∈ [0,∞) and h ∈ (0,∞), we have ξ(t) ∈ ∂ f x(t)
and ξ(t + h) ∈ ∂ f x(t + h) hence, by monotonicity of ∂ f , we simply have

〈 1
h

(
ξ(t + h) − ξ(t)

)
, 1
h

(
x(t + h) − x(t)

)〉 ≥ 0. (1.35)

Clearly, assuming that x(·) and ξ(·) are absolutely continuous on [0,∞), yields that,
for a.e. t ∈ [0,∞), and as h → 0+, we have

‖1
h

(
x(t + h) − x(t)

)− ẋ(t)‖ → 0 and ‖1
h

(
ξ(t + h) − ξ(t)

)−ξ̇ (t)‖ → 0. (1.36)

Thus, letting h tend to 0+ in (1.35), implies 〈ξ̇ (t), ẋ(t)〉 ≥ 0, that is the desired result
��

A.4 Proof of Proposition 4.3

By Remark 3.1, we know under condition (1.15) that θ(·) is well-defined and positive
on [0,∞). Moreover, by ν(·) ∈ C2 and θ(·) = κν(·)−ν̇(·)

ν(·)+e∗ (hence θ(·) = κ − ν̇(·)+κe∗
ν(·)+e∗ ),

we can see that θ(·) ∈ C1([0,∞)) and (omitting the variable t) we readily get

θ(κ − θ) = (κν − ν̇)(ν̇ + κe∗)
(ν + e∗)2

and θ̇ = ν̇(ν̇ + κe∗) − (ν + e∗)ν̈
(ν + e∗)2

(hence
θ̇

θ
= ν̇(ν̇ + κe∗) − (ν + e∗)ν̈

(ν + e∗)(κν − ν̇)
). (1.37)
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Let us recall (from (1.3)) that α := θ̇
θ

+ κ − θ . Consequently, by the previous
arguments we obtain

α := 1
θ
(θ(κ − θ) − θ̇ ) = 1

κν−ν̇

(
(ν̇ + κe∗) κν−2ν̇

ν+e∗ + ν̈
)
.

So, as t → ∞, by ν(t) → +∞, ν̇(t) → l ∈ [0,∞) and ν̈(t) → 0 (from
(4.40)), we immediately obtain that α(t) ∼ l+κe∗

ν(t)+e∗ . We also recall (from (1.3)) that

β := − θ̇
θ

+ κ + ω, hence by the definition of α we equivalently have β = α + θ + ω.
Moreover, as t → ∞, by ω := (

κ − ν̇
ν

)
ϑ − δ

ν+e∗ (from (1.5c)), by ν(t) → ∞,
ν̇(t) → l and ϑ(t) → ϑ∞, we readily deduce that ω(t) → κϑ∞. Then, as t → ∞, by
the latter formulation of β, and remembering that (as t → ∞) θ(t) → κ , α(t) → 0
and that ω(t) → κϑ∞, we get β(t) → κ(1+ ϑ∞). Again from (1.3) we simply have

b(t) := ω(t)
(
κ + ω̇(t)

ω(t) − θ̇ (t)
θ(t)

)
= ω(t)

(
κ − θ̇ (t)

θ(t)

)
+ ω̇(t).

In addition, we obviously see from its expression that ω(·) is of class C1, and we
have

ω̇(t) =
(
κ − ν̇(t)

ν(t)

)
ϑ̇(t) − ν̈(t)ν(t)−ν̇(t)ν̇(t)

ν2(t)
ϑ(t) + δν̇(t)

(ν(t)+e∗)2 . (1.38)

It is also classically deduced from the convergence of ϑ and the Lipschitz continuity of
ϑ̇ that ˙ϑ(t) → 0 (as t → ∞). This, in light of condition (4.40) and limt→∞ ϑ(t) = ϑ∞
entails that ω̇(t) → κϑ∞ (as t → ∞). Consequently, as t → ∞, by the previous

formulation of b together with θ̇ (t)
θ(t) → 0, ω(t) → κϑ∞ and ω̇(t) → 0, we deduce

that b(t) → κ2ϑ∞
��
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