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Abstract
We introduce and analyze a method of learning-informed parameter identification for
partial differential equations (PDEs) in an all-at-once framework. The underlying PDE
model is formulated in a rather general setting with three unknowns: physical parame-
ter, state and nonlinearity. Inspired by advances in machine learning, we approximate
the nonlinearity via a neural network, whose parameters are learned from measure-
ment data. The latter is assumed to be given as noisy observations of the unknown
state, and both the state and the physical parameters are identified simultaneously
with the parameters of the neural network. Moreover, diverging from the classical
approach, the proposed all-at-once setting avoids constructing the parameter-to-state
map by explicitly handling the state as additional variable. The practical feasibility of
the proposed method is confirmed with experiments using two different algorithmic
settings: A function-space algorithm based on analytic adjoints as well as a purely
discretized setting using standard machine learning algorithms.
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1 Introduction

We study the problem of determining an unknown nonlinearity f from data in a
parameter-dependent dynamical system

u̇ = F(λ, u)+ f (α, u) in (0, T )×�

u(0) = u0 on �.
(1)

Here, the state u is a function on a finite time interval (0, T ) and a bounded Lipschitz
domain�, and u̇ denotes the first order time derivative. In (1), both F, f are nonlinear
Nemytskii operators in λ, α, u; these Nemytskii operators are induced by nonlin-
ear, time-dependent functions [F(λ, u)](t) := F(t, λ, u(t)) and [ f (α, u)](t, x) :=
f (α, u(t, x)), where we consistently abuse notation in this manner throughout the
paper; see also Lemmas 2 and 4. We assume that F was specified beforehand from
an underlying physical model, that the terms λ, u0 are physical parameters (with
λ = λ(x) depending only on space), and that α is a finite dimensional parameter
arising in the nonlinearity. Furthermore, the model (1) is equipped with Dirichlet or
Neumann boundary conditions.

Some examples of partial differential equations (PDEs) of the from (1) are diffusion
models u̇ = �u + f (α, u) with a nonlinear reaction term f (α, u) as follows [30]:

• f (α, u) = −αu(1 − u): Fisher equation in heat and mass transfer, combustion
theory.

• f (α, u) = −αu(1 − u)(α − u), 0 < α < 1: Fitzhugh–Nagumo equation in
population genetics.

• f (α, u) = −u/(1 + α1u + α2u2), α = (α1, α2), α1 > 0, α2
1 < 4α2: Enzyme

kinetics.
• f (α, u) = f (u) = −u|u|p, p ≥ 1: Irreversible isothermal reaction, temperature
in radiating bodies.

The underlying assumption of this work is that in some cases, the nonlinearity f is
unknown due to simplifications or inaccuracies in the modeling process or due to
undiscovered physical laws. In such situations, our goal is to learn f from data. In
order to realize this in practice, we need to use a parametric representation. For this,
we choose neural networks, which have become widely used in computer science and
applied mathematics due to their excellent representation properties, see for instance
[19] for the classical universal approximation theorem, [27] for recent results indicat-
ing superior approximation properties of neural networks with particular activations
(potentially at the cost of stability) and [3, 9] for general, recent overviews on the
topic. Learning the nonlinearity f thus reduces to identifying parameters θ of a neural
networkNθ such thatNθ ≈ f , rendering the problem of learning a nonlinearity to be
a parameter identification problem of a particular form.

For the majority of this paper, the nonlinearity f will therefore not appear directly;
instead, f will consistently be replaced by its neural network representation Nθ , and
our focus will be on showing the properties of Nθ , rather than those of f .

Amain point in our approach,which ismotivated from feasibility for applications, is
that learning the nonlinearity must be achieved only via indirect, noisy measurements
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of the state yδ ≈ Mu with M a linear measurement operator. More precisely, we
assume to have K different measurements

yk = Muk k = 1, . . . , K (2)

of different states uk available, where the different states correspond to solutions of the
system (1) with different, unknown parameters (λk, αk, uk

0), but the same, unknown
nonlinearity f which is assumed to be part of the ground truth model. The simplest
form of M is a full observation over time and space of the states, i.e. M = Id as in e.g.
(theoretical) population genetics. In other contexts, M could be discrete observations
at time instances of u, i.e. Mu = (u(ti , ·))nT

i=1, ti ∈ (0, T ), as in material science [31],
system biology [4] (see also Corollary 32), or Fourier transform as in MRI acquisition
[2], etc. In most cases, M is linear, as is assumed here.

Our approach to address this problem is to use an all-at-once formulation that
avoids constructing the parameter-to-state map (see for instance [21]). That is, we aim
to identify all unknowns by solving a minimization problem of the form

min
(λk ,αk ,uk

0,u
k )k⊂X×Rm×U0×V

θ∈�

K∑

k=1
‖G(λk, αk, uk

0, uk, θ)− (0, 0, yk)‖2W×H×Y

+R1(λ
k, αk, uk

0, uk)+R2(θ), (3)

wherewe refer toSect. 2 for details on the function spaces involved.Here,G is a forward
operator that incorporates the PDE model, the initial conditions and the measurement
operator via

G(λ, α, u0, u, θ) = (u̇ − F(λ, u)−Nθ (α, u), u(0)− u0, Mu),

and R1, R2 are suitable regularization functionals.
Once a particular parameter θ̂ such that N

θ̂
accurately approximates f in (1) is

learned, one can use the learning informed model in other parameter identification
problems by solving

min
(λ,α,u0,u)∈X×Rm×U0×V

‖G(λ, α, u0, u, θ̂ )−(0, 0, y)‖2W×H×Y+R1(λ, α, u0, u) (4)

for a new measured datum y ≈ Mu.
Existing research towards learning PDEs and all-at-once identification Explor-

ing governing PDEs from data is an active topic in many areas of science and
engineering. With advances in computational power and mathematical tools, there
have been numerous recent studies on data-driven discovery of hidden physical laws.
One novel technique is to construct a rich dictionary of possible functions, such as
polynomials, derivatives etc., and to then use sparse regression to determine candi-
dates that most accurately represent the data [5, 33, 35]. This sparse identification
approach yields a completely explicit form of the differential equation, but requires
an abundant library of basic functions specified beforehand. In this work, we take the
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viewpoint that PDEs are constructed from principal physical laws. As it preserves the
underlying equation and learns only some unknown components of the models, e.g. f
in (1), our suggested approach is capable of refining approximate models by staying
more faithful to the underlying physics.

Besides the machine learning part, the model itself may contain unknown physical
parameters belonging to some function space. This means that if the nonlinearity
f is successfully learned, one can insert it into the model. One thus has a learning-
informed PDE, and can then proceed via a classical parameter identification. The latter
problemwas studied in [11] for stationary PDEs,where f is learned from training pairs
(u, f (u)). This paper emphasizes analysis of the error propagating from the neural
network-based approximation of f to the parameter-to-statemap and the reconstructed
parameter.

In reality, one does not have direct access to the true state u, but only partial or coarse
observations of u under some noise contamination. This factor affects the creation of
training data pairs (u, f (u)) with f (u) = u̇ − F(u) for the process of learning f , e.g
in [11]. Indeed, with a coarse measurement of u, for instance u ∈ L2((0, T ) × �),
one cannot evaluate u̇, nor terms such as �u that may appear in F(u). Moreover, with
discrete observations, e.g. a snapshot y = (u(ti , ·))nT

i=1, ti ∈ (0, T ), one is unable to
compute u̇ for the training data.

For this reason, we propose an all-at-once approach to identify the nonlinearity f ,
state u and physical parameter simultaneously. In comparison to [11], our approach
bypasses the training process for f , and accounts for discrete data measurements.
The all-at-once formulation avoids constructing the parameter-to-state map, which is
nonlinear and often involves restrictive conditions [16, 20, 21, 23, 28]. Additionally,
we here consider time-dependent PDE models.

For discovering nonlinearities in evolutionary PDEs, the work in [7] suggests an
optimal control problem for nonlinearities expressed in terms of neural networks. Note
that the unknown state still needs to be determined through a control-to-state map, i.e.
via the classical reduced approach, as opposed to the new all-at-once approach.

While [7, 11] are the recent publications that are most related to our work, we also
mention the very recent preprint [12] on an extension of [11] that appeared indepen-
dently and after the original submission of our work. Furthermore, there is a wealth of
literature on the topic of deep learning emerging in the last decade; for an authoritative
review on machine learning in the context of inverse problems, we refer to [1]. For
the regularization analysis, we follow the well known theory put forth in [13, 22, 26,
37]. It is worthwhile to note that since this work, to the knowledge of the authors, is
the first attempt at applying an all-at-once approach to learning-informed PDEs, our
focus will be on this novel concept itself, rather than on obtaining minimal regularity
assumptions on the involved functions, in particular on the activation functions. In
subsequent work, we might further improve upon this by considering, e.g., existing
techniques from a classical optimal control setting with non-smooth equations [6] or
techniques to deal with non-smoothness in the context of training neural networks [8].

ContributionsBesides introducing the general setting of identifying nonlinearities
in PDEs via indirect, parameter-dependent measurements, the main contributions of
our work are as follows: Exploiting an all-at-once setting of handling both the state
and the parameters explicitly as unknowns, we provide well-posedness results for the
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resulting learning- and learning-informed parameter identification problems. This is
achieved for rather general, nonlinear PDEs and under local Lipschitz assumptions
on the activation function of the involved neural network. Further, for the learning-
informed parameter identification setting, we ensure the tangential cone condition on
the neural-network part of our model. Together with suitable PDEs, this yields local
uniqueness results as well as local convergence results of iterative solution methods
for the parameter identification problem. We also provide a concrete application of
our framework for parabolic problems, where we motivate our function-space setting
by a unique existence result on the learning-informed PDE. Finally, we consider a
case study in a Hilbert space setting, where we compute function-space derivatives of
our objective functional to implement the Landweber method as solution algorithm.
Using this algorithm, and also a parallel setting based on the ADAM algorithm [25],
we provide numerical results that confirm feasibility of our approach in practice. Code
is made available at https://github.com/hollerm/pde_learning.

Organization of the paper Section2 introduces learning-informed parameter iden-
tification and the abstract setting. Section3 examines existence, stability and solution
methods for the minimization problem. Section4 focuses on the learning-informed
PDE, and analyzes some problem settings. Finally, in Sect. 5 we present a complete
case study, from setup to numerical results.

2 Problem Setting

2.1 Notation and Basic Assertions

Throughout this work, � ⊂ R
d will always be a bounded Lipschitz domain, where

additional smoothness will be required and specified as necessary. We use standard
notation for spaces of continuous, integrable and Sobolev functions with values in
Banach spaces, see for instance [10, 32], in particular [32, Sect. 7.1] for Sobolev-
Bochner spaces and associated concepts such as time-derivatives of Banach-space
valued functions.. For an exponent p ∈ [1,∞], we denote by p∗ the conjugate expo-
nent given as p∗ = p/(p−1) if p ∈ (1,∞), p∗ = ∞ if p = 1 and p∗ = 1 if p = ∞.
For l ∈ N, we denote by

W l,p(�) ↪→ Lq(�)

the continuous embedding of W l,p(�) to Lq(�), which exists for q 
 dp
d−lp , where

the notation
means if lp < d, then q ≤ dp
d−lp , if lp = d, then q <∞, and if lp ≥ d,

then q = ∞ . An example of such an embedding, which will be used frequently in
Sect. 4, is H1(�) ↪→ L6(�) for d = 3. We further denote by CWl,p→Lq the operator
norm of the corresponding continuous embedding operator.

We also use ↪→→ to denote the compact embedding (see [32, Theorem 1.21])

W l,p(�) ↪→→ Lq−ε(�), for ε ∈ (0, q − 1]. (5)
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The notation C indicates generic positive constants. Given any Banach spaces X , Y ,
we denote by ‖ · ‖X→Y the operator norm ‖ · ‖L(X ,Y ), and by 〈·, ·〉X ,X∗ the pairing
between dual spaces X , X∗. We write ClocLip(X , Y ) for the space of locally Lipschitz
continuous functions between X andY . Furthermore, A·B denotes the Frobenius inner
product between generic matrices A, B, while AB stands for matrix multiplication,
and AT stands for the transpose of A. The notation BX

ρ (x†) means a ball of center x†,
radius ρ > 0 in X . For functions mapping between Banach spaces, by the term weak
continuity we will always refer to weak-weak continuity, i.e., continuity w.r.t. weak
convergence in both the domain and the image space.

2.2 The Dynamical System

For the general setting considered in this work, we use the following set of defini-
tions and assumptions. A concrete application where these abstracts assumptions are
satisfied can be found in Sect. 4 below.

Assumption 1 • The space X (parameter space) is a reflexive Banach space. The
spaces V (state space) and W (image space under the model operator), Y (obser-
vation space) and Ṽ are separable, reflexive Banach spaces. In view of initial
conditions, we further require U0 (initial data space) to be a reflexive Banach
space, and H to be a separable, reflexive Banach space.

• We assume the following embeddings:

U0 ↪→ H ↪→ W , V ↪→ H ↪→ Ṽ ,

V ↪→ Y , V ↪→→ L p̂(�) ↪→ W for some p̂ ∈ [1,∞). (6)

Further, Ṽ will always be such that either L p̂(�) ↪→ Ṽ or Ṽ ↪→ L p̂(�).
• The function

F : (0, T )× X × V → W

is such that for any fixed parameter λ ∈ X , F(·, λ, ·) : (0, T ) × V → W meets
the Carathéodory conditions, i.e., F(·, λ, v) is measurable with respect to t for all
v ∈ V and F(t, λ, ·) is continuous with respect to v for almost every t ∈ (0, T ).
Moreover, for almost all t ∈ (0, T ) and all λ ∈ X , v ∈ V , the growth condition

‖F(t, λ, v)‖W ≤ B(‖λ‖X , ‖v‖H )(γ (t)+ ‖v‖V ) (7)

is satisfied for some B : R
2 → R such that b �→ B(a, b) is increasing for each

a ∈ R, and γ ∈ L2(0, T ).
• We define the overall state space and image space including time dependence as

V = L2(0, T ; V ) ∩ H1(0, T ; Ṽ ), W = L2(0, T ;W ), (8)
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respectively with the norms ‖u‖V :=
√∫ T

0 ‖u(t)‖2V + ‖u̇(t)‖2
Ṽ
dt and ‖u‖W :=

√∫ T
0 ‖u(t)‖2W dt .

• We define the overall observation space including time as

Y = L2(0, T ; Y ),

with the norm ‖y‖W :=
√∫ T

0 ‖y(t)‖2Y dt and the corresponding measurement
operator

M ∈ L(V,Y). (9)

• We further assume the following embeddings for the state space:

V ↪→ L∞((0, T )×�), V ↪→ C(0, T ; H).

The embeddings in (6) are very feasible in the context of PDEs. The state space V
usually has some certain smoothness such that its image under some spatial differential
operators belongs to W . For themotivation ofV ↪→ C(0, T ; H), the abstract setting in
[32, Lemma 7.3.] (see Appendix A) is an example. Note that due to V ↪→ C(0, T ; H),
clearly U0 = H is a feasible choice for the initial space; for the sake of generality,
only U0 ↪→ H is assumed in (6).

Under Assumption 1, the function F induces a Nemytskii operator on the overall
spaces.

Lemma 2 Let Assumption 1 hold. Then the function F : (0, T )×X×V → W induces
a well-defined Nemytskii operator F : X × V →W given as

[F(λ, u)](t) = F(t, λ, u(t)). (10)

Proof Under the Carathéodory assumption, t �→ F(t, λ, u(t)) is Bochner measurable
for every λ ∈ X and u ∈ V . For such λ, u, we further estimate

∫ T

0
‖F(t, λ, u(t)‖2W dt ≤ 2

∫ T

0
B(‖λ‖X , ‖u(t)‖H )2(γ (t)2 + ‖u(t)‖2V ) dt

≤ 2B(‖λ‖X , ‖u‖C(0,T ;H))
2(‖γ ‖2L2(0,T )

+ ‖u‖2V ) <∞

by b �→ B(‖λ‖, b) being increasing and by the embedding V ↪→ C(0, T ; H). This
allows to conclude that t �→ F(t, λ, u(t)) is Bochner integrable (see [10, Theorem
II.2.2]) and that the Nemytskii operator F : X × V →W is well-defined. ��

Note that we use the same notation for the function F : (0, T )× X × V → W and
the corresponding Nemytskii operators.
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2.3 Basics of Neural Networks

As outlined in the introduction, the unknown nonlinearity f will be represented by a
neural network. In this work, we use a rather standard, feed-forward form of neural
networks defined as follows.

Definition 3 A neural network Nθ of depth L ∈ N with architecture (ni )
L
i=0 is a

function Nθ : Rn0 → R
nL of the form

Nθ (x) = LθL ◦ . . . ◦ Lθ1(x)

where Lθl : Rnl−1 → R
nl , for z ∈ R

nl−1 is given as

Lθl (z) := σ(ωl z + βl) for l = 1, . . . , L − 1, LθL (z) := ωL z + βL .

Here, ωl ∈ L(Rnl−1 , R
nl ), βl ∈ R

nl , θl = (ωl , βl) summarizes all the parameters of
the l-th layer and σ is a pointwise nonlinearity that is fixed. Given a depth L ∈ N

and architecture (ni )
L
i=0, we also use � to denote the finite dimensional vector space

containing all possible parameters θ1, . . . , θL of neural networkswith this architecture.

In thiswork, neural networkswill be used to approximate the nonlinearity f : Rm+1 →
R. Consequently, we always deal with neural networks Nθ : R

m+1 → R, i.e., n0 =
m + 1 and nL = 1.

As such, rather than showing that f induces a well-defined Nemytskii operator, we
instead show thatNθ does so. A sufficient condition for this to be true is the continuity
of the activation function σ , as the following Lemma shows.

Lemma 4 Assume that σ ∈ C(R, R). Then, with the setting of Assumption 1, Nθ :
R

m × R → R as in Definition 3 induces a well-defined Nemytskii operator Nθ :
R

m × V → L2(0, T ; L p̂(�)) via

[Nθ (α, u)](t)(x) = Nθ (α, u(t, x)),

regarding u ∈ V as u ∈ L∞((0, T )× �) by the embedding V ↪→ L∞((0, T )× �).
Further, using the embedding L2(0, T ; L p̂(�)) ↪→ W , Nθ induces a well-defined
Nemytskii operator Nθ : Rm × V →W .

Proof We first fix α ∈ R
m . By continuity of σ , Nθ is also continuous and, for

u ∈ L∞((0, T ) × �), supt,x |Nθ (α, u(t, x))| < ∞; thus, Nθ (α, u(t, ·)) ∈ L p̂(�)

for almost every t ∈ (0, T ). It then follows by standard measurability argu-
ments that the mapping t �→ ∫

�
Nθ (α, u(t, x))w∗(x) dx is measurable for every

w∗ ∈ L p̂∗(�). Using separability and the Pettis theorem [10, Theorem II.1.2], it
follows that t �→ Nθ (α, u(t, ·)) ∈ L p̂(�) is Bochner measureable. This, together
with supt,x |Nθ (α, u(t, x))| < ∞ as before, implies that the Nemytskii operator

Nθ : R
m × V → L2(0, T ; L p̂(�)) is well defined. The remaining assertions fol-

low immediately from L p̂(�) ↪→ W . ��
We again use the same notation for Nθ : R

m × R → R and the corresponding
Nemytskii operator.
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2.4 The Learning Problem

As the nonlinearity f is represented by a neural networkNθ : Rm+1 → R, we rewrite
the partial-differential-equation (PDE) model (1) into the form

e : X × R
m ×U0 × V ×�→W × H ,

e(λ, α, u0, u, θ) = (u̇ − F(λ, u)−Nθ (α, u), u(0)− u0), (11)

and introduce the forward operator G, which incorporates the observation operator M ,
as

G : X × R
m ×U0 × V ×�→W × H × Y,

G(λ, α, u0, u, θ) = (e(λ, α, u0, u, θ), Mu). (12)

Here, U0 and H are the spaces related to the initial condition and the trace operator,
that is, one has unknown initial data u0 ∈ U0 and trace operator (·)t=0 : V � u �→
u(0) ∈ H . With U0 ↪→ H as assumed in (6), one has u(0)− u0 ∈ H .

The minimization problem for the learning process is then given by

min
(λk ,αk ,uk

0,u
k )k⊂X×Rm×U0×V

θ∈�

K∑

k=1
‖G(λk, αk, uk

0, uk, θ)− (0, 0, yk)‖2W×H×Y

+R1(λ
k, αk, uk

0, uk)+R2(θ), (13)

where R1 : X × R
m × U0 × V → [0,∞] and R2 : � → [0,∞] are suitable

regularization functionals.
Assume now that the particular parameter θ̂ has been learned. As in (4), one can now

solve other parameter identification problems, given new measured datum y ≈ Mu,
by solving

min
(λ,α,u0,u)∈X×Rm×U0×V

‖G(λ, α, u0, u, θ̂ )− (0, 0, y)‖2W×H×Y +R1(λ, α, u0, u).

(14)

3 Learning-Informed Parameter Identification

3.1 Well-Posedness of Minimization Problems

We start our analysis by studying existence theory for the optimization problems (13)
and (14), where the unknown nonlinearity is replaced by a neural network approxima-
tion. To this aim, we first establish weak closedness of the forward operator. In what
follows, the architecture of the network N is considered fixed.
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Lemma 5 Let Assumption 1 hold. Then, if σ ∈ ClocLip(R, R), N : Rm ×V ×�→W
is weakly continuous. Further, if either1

F(t, ·) : X × H → W is weakly continuous for a.e. t ∈ (0, T ) (15)

or
V ↪→→ H , H ↪→ W ∗, (16)

and (−F) is pseudomonotone in the sense that for almost all t ∈ (0, T ),

(uk(t), λk)
H×X
⇀ (u, λ)

lim inf
k→∞ 〈F(t, λk, uk(t)), uk(t)− u(t)〉W ,W ∗ ≥ 0

⎫
⎬

⎭

⇒
⎧
⎨

⎩
∀v ∈ W ∗ : 〈F(t, λ, u(t)), u(t)− v〉W ,W ∗

≥ lim sup
k→∞

〈F(t, λk, uk(t)), uk(t)− v〉W ,W ∗ , (17)

then F is weakly closed. Moreover, if N is weakly continuous and F is weakly closed,
then G as in (12) is weakly closed.

Proof We first consider weak closedness of G. To this aim, recall that G is given as

G(λ, α, u0, u, θ) = (u̇ − F(λ, u)−Nθ (α, u), u(0)− u0, Mu).

First note that M ∈ L(V,Y) by (9). Weak closedness of ((·)t=0, Id) : V × U0 → H
follows from weak continuity of Id : U0 → H as U0 ↪→ H , and from weak-weak
continuity of (·)t=0 : V → H which follows from ‖u(0)‖H ≤ supt∈[0,T ] ‖u(t)‖H ≤
C‖u‖V for C > 0 and V ↪→ C(0, T ; H). Weak continuity of d

dt : V → W results
from the choice of norms in the respective spaces. Thus, weak closedness of G follows
when F is weakly closed and N is weakly continuous.

Weak continuity of N . First, we observe thatN : Rm×R×�→ R, (α, y, θ) �→
Nθ (α, y) is in ClocLip(� × R

m × R, R), since the activation function σ is locally
Lipschitz continuous. For a sequence (αn, un, θn)n converging weakly to (α, u, θ)

in R
m × V × �, we observe that by the embedding V ↪→ L∞((0, T ) × �),

supt,x ‖(αn, un(t, x), θn)‖ < M for some M > 0.

Now the embeddings V ↪→→ L p̂(�) ↪→ W imply in particular that V ↪→→
L2(0, T ; L p̂(�)) (in case Ṽ ↪→ L p̂(�), this follows from V ⊂ L2(0, T ; V ) ∩
H1(0, T ; L p̂(�)) ↪→→ L2(0, T ; L p̂(�)) together with [32, Lemma 7.7] (see
Appendix A), in the other case that L p̂(�) ↪→ Ṽ , this follows directly from [32,
Lemma 7.7]). Based on this, we deduce un → u in L2(0, T ; L p̂(�)). Then

‖N (αn, un, θn)−N (α, u, θ)‖W = sup
w∗∈W∗,
‖w∗‖W∗≤1

〈N (αn, un, θn)−N (α, u, θ), w∗〉W,W∗

1 This somewhat abusive notation in particular implies that for this specific case distinction to hold, F
in (1) must have been well defined for u ∈ H , with Assumption 1 holding for the restriction of F(t, ·) :
X × H → W to X × V .
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= sup
w∗∈W∗,
‖w∗‖W∗≤1

∫ T

0

∫

�

(N (αn, un(t, x), θn)−N (α, u(t, x), θ)) w∗(t, x) dx dt

≤ L(M) sup
w∗∈W∗,
‖w∗‖W∗≤1

∫ T

0

∫

�

(|αn − α| + |un(t, x)− u(t, x)| + |θn − θ |) |w∗(t, x)| dx dt

≤ C L(M) sup
w∗∈W∗,
‖w∗‖W∗≤1

(
‖un − u‖L2(0,T ;L p̂(�)) + |αn − α| + |θn − θ |

)
‖w∗‖

L2(0,T ;L
p̂

p̂−1 (�))

≤ C L(M)
(
‖un − u‖L2(0,T ;L p̂(�)) + |αn − α| + |θn − θ |

)
n→∞→ 0 (18)

as W ∗ ↪→ L
p̂

p̂−1 (�), un
n→∞→ u in L2(0, T ; L p̂(�)), and N (α, un(t, ·), θn)) ∈

L p̂(�), as argued in the proof of Lemma 4. Above L(M) denotes the Lipschitz
constant of (α, y, θ) �→ Nθ (α, y) in the ball with radius M and p̂/( p̂ − 1) = ∞
in case p̂ = 1. This shows that here, we even obtain weak-strong continuity of Nθ ,
which is stronger than weak-weak continuity, as required.

Weak closedness of F . To show weak closedness of the Nemytskii operator F :
X ×V →W , we consider two cases. We first consider the case that F(t, ·) is weakly
continuous. To this aim, take (λn, un)n to be a sequence weakly converging to (λ, u)

in X × V . As V ↪→ C(0, T ; H), we have un
C(0,T ;H)

⇀ u as n → ∞. Now, we show

un(t)
H
⇀u(t) for all t ∈ (0.T ) via the fact that the point-wise evaluation function

(·)(t) : V → H for any t ∈ [0, T ] is linear and bounded, thus weak-weak continuous.
Indeed, its linearity is clear and boundedness follows from

〈(ũ)(t), h∗〉H ,H∗ ≤ max
t̃∈[0,T ]

〈(ũ)(t̃), h∗〉H ,H∗ ≤ ‖ũ‖C(0,T ;H)‖h∗‖H ≤ C‖ũ‖V‖h∗‖H .

From this, we obtain un(t)
H
⇀u(t), thus having (un(t), λn)

H×X
⇀ (u(t), λ)) for all t ∈

(0, T ). Using the growth condition (7), we now estimate

〈F(λn, un)− F(λ, u), w∗〉W,W∗ =
∫ T

0
〈F(λn, un)(t)− F(λ, u)(t), w∗(t)〉W ,W ∗ dt

=:
∫ T

0
εn(t) dt

≤
∫ T

0
(‖F(λn, un)(t)‖W + ‖F(λ, u)(t)‖W )‖w∗(t)‖W ∗ dt

≤
(
B(‖λn‖X , sup

t
‖un(t)‖H )(‖γ ‖L2(0,T ) + ‖un‖V )

+B(‖λ‖X , sup
t
‖u(t)‖H )(‖γ ‖L2(0,T ) + ‖u‖V )

)
‖w∗‖W∗

≤ C(‖λ‖X , ‖u‖V )‖w∗‖W∗ , (19)

123



76 Page 12 of 53 Applied Mathematics & Optimization (2023) 88 :76

where C(‖λ‖X , ‖u‖V ) > 0 can be obtained independently from n due to V ↪→
C(0, T ; H), B being increasing, and boundedness of ((un, λn))n in V × X . Since F
is assumed to be weakly continuous on H × X , when n → ∞ we have εn(t) → 0
pointwise in t . Hence, applying Lebesgue’s Dominated Convergence Theorem yields
convergence of the time integral to 0, thus weak convergence of F(λn, un) to F(λ, u)

in W as claimed. Accordingly, if the condition (15) holds, we obtain weak-weak
continuity of F .

Nowwe consider the second case, i.e. (16)-(17), for weak closedness of F . Assume
that V ↪→→ H as in (16), H ↪→ W ∗ and that−F is pseudomonotone as in (17). Given

(un, λn)
V×X
⇀ (u, λ), F(λn, un)

W
⇀g and V ↪→→ H ↪→ W ∗, H ↪→ Ṽ , it follows that

V ↪→→ L2(0, T ; H) [32, Lemma 7.7] (see Appendix A) and that un → u strongly
in L2(0, T ; H). By the embedding H ↪→ W ∗, it holds also un → u in W∗. With
ξn(t) := |〈F(t, λn, un(t)), un(t)− u(t)〉W ,W ∗ |, we obtain

∫ T

0
|ξn(t)| dt ≤ ‖F(λn, un)‖W‖un − u‖W∗ ≤ C‖un − u‖W∗

n→∞→ 0. (20)

By moving to a subsequence indexed by (nk)k , we thus have ξnk (t) → 0 as k →∞
for almost every t ∈ (0, T ). As lim inf

k→∞ ξnk (t) → 0, pseudomonotonicity (as in (17))

implies that for any v ∈W∗,

〈F(t, u(t), λ), u(t)− v(t)〉W ,W ∗ ≥ lim sup
k→∞

〈F(t, unk (t), λnk ), unk (t)− v(t)〉W ,W ∗ .

Further, from the Fatou–Lebesgue theorem, we get

〈F(λ, u), u − v〉W,W∗ =
∫ T

0
〈F(t, λ, u(t)), u(t)− v(t)〉W ,W ∗ dt

≥
∫ T

0
lim sup

k→∞
〈F(t, λnk , unk (t)), unk (t)− v(t)〉W ,W ∗ dt

≥ lim inf
k→∞

∫ T

0
〈F(t, λnk , unk (t)), unk (t)− v(t)〉W ,W ∗ dt

≥ lim inf
k→∞

∫ T

0
〈F(λnk , unk (t)), unk (t)− u(t)〉W ,W ∗ dt

+ lim inf
k→∞

∫ T

0
〈F(λnk , unk (t)), u(t)− v(t)〉W ,W ∗ dt

= lim
k→∞

∫ T

0
〈F(λnk , unk (t)), unk (t)− u(t)〉W ,W ∗ dt

+ lim
k→∞

∫ T

0
〈F(λnk , unk (t)), u(t)− v(t)〉W ,W ∗ dt

= 0+ 〈g, u − v〉W,W∗ ,
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where the last estimate follows from (20) and from weak convergence of of F(λn, un)

to g in W . As this estimate is valid for any v ∈ W∗, we conclude that F is weakly
closed on X × V , that is,

F(λ, u) = g. ��
Existence of a solution to (13) and (14) now follows from a standard application of

the directmethod [13, 37], usingweak-closedness ofG andweak lower semi-continuity
of the involved quantities.

Proposition 6 (Existence) Let the assumptions of Lemma 5 hold, and assume that
R1,R2 are nonnegative, weakly lower semi-continuous and such that the sublevel
sets of (λ, α, u0, u, θ) �→ R1(λ, α, u0, u)+R2(θ) are weakly precompact. Then the
minimization problems (13) and (14) admit a solution.

Remark 7 (Stability)Wenote that under the assumptions of Proposition 6, also stability
for the minimization problems (13) and (14) follows with standard arguments, see for
instance [17, Theorem 3.2]. Here, stability means that for convergent sequence of data
(yn)n converging to some y, any corresponding sequence of solutions admits a weakly
convergent subsequence, and any limit of such weakly convergent subsequence is a
solution of the original problem with data y.

Next we deal with minimization problem (13) in the limit case where the given data
converges to a noise-free ground truth, and the PDE should be fulfilled exactly. Our
result in this context is a direct extension of classical results as provided for instance in
[17], but since also variants of this result will be of interest, we provide a short proof.

Proposition 8 (Limit case) With the assumption of Proposition 6 and parameters
βe, βM > 0, consider the parametrized learning problem

min
(λk ,αk ,uk

0,u
k )k⊂X×Rm×U0×V

θ∈�

K∑

k=1
βe‖e(λk, αk, uk

0, uk, θ)‖2W×H + βM‖Muk − yk‖2Y

+R1(λ
k, αk, uk

0, uk)+R2(θ), (21)

and assume that, for ((y†)k)k ∈ YK , there exists (λ̂k, α̂k, ûk
0, ûk

)k ∈ X×R
m×U0×V

and θ̂ ∈ � such that e(λ̂k, α̂k, ûk
0, ûk

, θ̂ ) = 0 , Mûk = (y†)k ,R1(λ̂
k, α̂k, ûk

0, ûk
) <∞

for all k and R2(θ̂) <∞.
Then, for any sequence (yn)n = (y1n , . . . , yK

n )n inYK with
∑K

k=1 ‖yk
n−(y†)k‖2Y :=

δ2n → 0 and parameters βe
n, βM

n such that

βe
n →∞, βM

n →∞ and βM
n δ2n → 0

as n →∞, any sequence of solutions ((λk
n, αk

n, (uk
0)n, uk

n)k, θn)n of (21) with param-
eters βe

n, βM
n and data yn admits a weakly convergent subsequence, and any limit of

such a subsequence is a solution to
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min
(λk ,αk ,uk

0,u
k )k⊂X×Rm×U0×V

θ∈�

K∑

k=1
R1(λ

k, αk, uk
0, uk)+R2(θ)

s.t. for all k :
{

e(λk, αk, uk
0, uk, θ) = 0

Muk = (y†)k (22)

If, further, the solution to (22) is unique, then the entire sequence ((λk
n, α

k
n, (uk

0)n, uk
n)k,

θn)n weakly converges to the solution of (22).

Proof With (λ̂k, α̂k, ûk
0, ûk

)k and θ̂ arbitrary such that e(λ̂k, α̂k, ûk
0, ûk

, θ̂ ) = 0 and
Mûk = (y†)k , and ((λk

n, α
k
n, (uk

0)n, uk
n)k, θn)n any sequence of solutions to (21) with

parameters βe
n, βM

n , by optimality it holds that

K∑

k=1
βe

n‖e(λk
n, αk

n, (uk
0)n, uk

n, θn)‖2W×H + βM
n ‖Muk

n − yk
n‖2Y +R1(λ

k
n, αk

n, (uk
0)n, uk

n)

+R2(θn) ≤
K∑

k=1
R1(λ̂

k , α̂k , ûk
0, ûk

)+ βM
n δ2n +R2(θ̂) (23)

By weak precompactness of the sublevel sets ofR1 andR2 and convergence of βM
n δ2n

to zero it thus follows that ((λk
n, α

k
n, (uk

0)n, uk
n)k, θn)n admits a weakly convergent

subsequence in (X × R
m ×U0 × V)K ×�.

Now let ((λk, αk, uk
0, uk)k, θ)be the limit of such aweakly convergent subsequence,

which we again denote by ((λk
n, α

k
n, (uk

0)n, uk
n)k, θn)n . Closedness of G together with

lower semi-continuity of the norm ‖ · ‖W×H and the estimate (23) (possibly moving
to another non-relabeled subsequence) then yields that both

K∑

k=1
‖e(λk, αk, uk

0, uk, θ)‖2W×H

≤ lim inf
n

K∑

k=1
‖e(λk

n, αk
n, (uk

0)n, uk
n, θn)‖2W×H

≤ lim inf
n

K∑

k=1
R1(λ̂

k, α̂k, ûk
0, ûk

)/βe
n + βM

n (δ2n/βe
n)+R2(θ̂)/βe

n = 0

and

‖Muk − (y†)k‖2Y ≤ lim inf
n

‖Muk
n − yk

n‖2Y
≤ lim inf

n
R1(λ̂

k, α̂k, ûk
0, ûk

)/βM
n +R2(θ̂)/βM

n + δ2n = 0. (24)

This shows that e(λk, αk, uk
0, uk, θ) = 0 and Muk = (y†)k for all k. Again using the

estimate (23), now together with weak lower semi-continuity of R1,R2, we further
obtain that
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R1(λ
k, αk, uk

0, uk)+R2(θ) ≤ lim inf
n

R1(λ
k
n, α

k
n, (uk

0)n, uk
n)+R2(θn)

≤ lim inf
n

R1(λ̂
k, α̂k, ûk

0, ûk
)+R2(θ̂)+ βM

n δ2n

= R1(λ̂
k, α̂k, ûk

0, ûk
)+R2(θ̂).

Since (λ̂k, α̂k, ûk
0, ûk

)k and θ̂ were arbitrary solutions of e(λ̂k, α̂k, ûk
0, ûk

, θ̂ ) = 0 and
Mûk = (y†)k , it follows that ((λk, αk, uk

0, uk)k, θ) solves (22) as claimed.
At last, in case the solution to (22) is unique, weak convergence of the entire

sequence follows by a standard argument, using that any subsequence contains another
subsequence that weakly converges to the same limit. ��
Remark 9 (Different limit cases) The above result considers the limit case of both ful-
filling the PDE exactly and matching noise-free ground truth measurements. Variants
can be easily obtained as follows: In case only the PDE should be fulfilled exactly, one
can consider βM fixed and only βe converging to infinity (at an arbitrary rate), such
that the resulting limit solution will be a solution of the reduced setting. Likewise, one
can consider the case that βe is fixed and βM converges to infinity appropriately in
dependence of the noise level δ, in which case the limit solutions solves the all-at-once
setting with the hard constraint Muk = (y†)k , see [18] for some general results in
that direction. The corresponding assumption of existence of ((λ̂k, α̂k, ûk

0, ûk
)k, θ̂ )

such that e(λ̂k, α̂k, ûk
0, ûk

, θ̂ ) = 0 and Mûk = (y†)k can be weakened in both cases
accordingly.

Further, note that the convergence result as well as its variants can be deduced also
for the learning-informed parameter identification problem (14) exactly the same way.

Remark 10 (Uniqueness of minimum-norm solution.) A sufficient condition for
uniqueness of a minimum-norm solution, and thus for convergence of the entire
sequence of minimizers as stated in Proposition 8, is the tangential cone condition
and existence of a solution (λ̂k, ûk

0, ûk) to the PDE such that Muk = (y†)k , see
[22, Proposition 2.1]. In Sect. 3.3 below, we discuss this condition in more detail and
provide a result which, together with Remark 19, ensures this condition to hold for
some particular choices of F and Nθ . Regarding solvability of the PDE, we refer to
Proposition 24 below, where a particular application is considered.

3.2 Differentiability of the Forward Operator

Solution methods for nonlinear optimization problems, like gradient descent or
Newton-type methods, require uniform boundedness of the derivative of G. Differ-
entiability of G is a question of differentiability of F and N , which is discussed in
the following. Note that there, and henceforth, we denote by H ′(a) : A → B the
Gâteaux derivative of a function H : A → B and define Gâteaux differentiability in
the sense of [37, Sect. 2.6], i.e., require H ′(a) to be a bounded linear operator. The
basis for differentiability of the forward operator is the following lemma, which is a
direct extension of [37, Lemma 4.12].
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Lemma 11 Let A, B, S be Banach spaces such that A ↪→ S. For � ⊂ R
N open and

bounded, and r ∈ [1,∞), let A, B be Banach spaces such that A ↪→ Lr (�, A) and
A ↪→ L∞(�, S), and Lr (�, B) ↪→ B. Further, let H : � × A → B be a function
such that H(z, ·) is Gâteaux differentiable for every z ∈ � with derivative H ′(z, ·),
and such that H is locally Lipschitz continuous in the sense that, for any M > 0 there
exists L(M) > 0 such that for every a, ξ ∈ A with max{‖a‖S, ‖ξ‖S} ≤ M

‖H(z, a)− H(z, ξ)‖B ≤ L(M)(‖a − ξ‖A + (max{‖a‖A, ‖ξ‖A} + 1)‖a − ξ‖S).

(25)

Then, if the Nemytskii operators H : A → B given as H(a)(z) = H(z, a(z)) and
H ′ : A → L(A,B) given as H ′(a)(ξ)(z) = H ′(z, a(z))(ξ(z)) are well defined,
then H : A → B is also Gâteaux differentiable with H ′(a) ∈ L(A,B) given as
H ′(a)(ξ)(z) = H ′(z, a(z))(ξ(z)). Further, H ′ is locally bounded in the sense that,
for any bounded set Ã ⊂ A, supa∈ Ã ‖H ′(a)‖ <∞.

Proof Fix M > 0 and z ∈ �. Local Lipschitz continuity implies for any ã, ξ ∈ A
with ‖ã‖S + 1 ≤ M ,

‖H ′(z, ã)ξ‖B = lim
δ→0

∥∥∥∥
H(z, ã + δξ)− H(z, ã)

δ

∥∥∥∥
B
≤ L(M)(‖ξ‖A + (‖ã‖A + 2)‖ξ‖S).

(26)

Next, define h : [0, 1] → B as h(s) = H(z, a + εsξ), for a ∈ A and ε ∈ (0, 1)
such that ‖a‖S + 2 ≤ M , ε‖ξ‖S ≤ 1. We note that h is differentiable and Lipschitz
continuous (hence absolutely continuous), such that by the fundamental theorem of
calculus for Bochner spaces, see [15, Theorem 2.2.17], h(1) − h(0) = ∫ 10 h′(s) ds.
This yields

(
1

ε
‖H(z, a + εξ)− H(z, a)− εH ′(z, a)ξ‖B

)r

= 1

εr

∥∥∥∥
∫ 1

0
εH ′(z, a + sεξ)ξ − εH ′(z, a)ξ ds

∥∥∥∥
r

B

≤
(∫ 1

0

∥∥H ′(z, a + sεξ)ξ
∥∥

B +
∥∥H ′(z, a)ξ

∥∥
B ds

)r

≤
(∫ 1

0
sup

s̃∈[0,1]
2
∥∥H ′(z, a + s̃εξ)ξ

∥∥
B ds

)r

≤ sup
s̃∈[0,1]

2r‖H ′(z, a + s̃εξ)ξ‖r
B ≤ 22r−1L(M)r (‖ξ‖r

A + (‖a‖ + ‖ξ‖A + 2)r‖ξ‖r
S).

Now by A ↪→ L∞(�, S), for a, ξ ∈ A, we can apply the above with M :=
supz∈� ‖a(z)‖S + 2 and ε sufficiently small such that ε supz∈� ‖ξ(z)‖S ≤ 1 and
obtain
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rH (ε) :=
∫

�

(
1

ε
‖H(z, a(z)+ εξ(z))− H(z, a(z))− εH ′(z, a(z))ξ(z)‖B

)r

dz

≤
∫

�

22r−1L(M)r (‖ξ(z)‖r
A + (‖a(z)‖A + ‖ξ(z)‖A + 2)r‖ξ(z)‖r

S)dz

≤ 22r−1L(M)r
(
‖ξ‖r

A + sup
z∈�

‖ξ(z)‖r
S

∫

�

(‖a(z)‖A + ‖ξ(z)‖A + 2)r
)

<∞

Using the Lebesgue’s Dominated Convergence Theorem, we deduce limε→0 rH (ε) =
0, which, by Lr (�, B) ↪→ B, shows Gâteaux differentiability.

Local boundedness as claimed follows direct from choosing M := supa∈Ã
supt∈(0,t) ‖a(t)‖S + 1, and integrating the r th power of (26) over time. ��
Proposition 12 (Differentiability) Let Assumption 1 hold and let σ ∈ C1(R, R).
Assume that for every t ∈ (0, T ), the mapping F(t, ·, ·) : X × V → W is
jointly Gâteaux differentiable with respect to the second and third arguments, with
(t, λ, u, ξ, v) �→ F ′(t, λ, u)(ξ, v) satisfying the Carathéodory conditions.

In addition, assume that F satisfies the following local Lipschitz continuity condi-
tion: For all M ≥ 0 there exists L(M) > 0, such that for all vi ∈ V and λi ∈ X,
i = 1, 2, with max{‖vi‖H , ‖λi‖X } ≤ M and for almost every t ∈ (0, T ),

‖F(t, λ1, v1)− F(t, λ2, v2)‖W ≤ L(M)(‖v1 − v2‖V

+(max{‖v1‖V , ‖v2‖V } + 1)(‖v1 − v2‖H + ‖λ1 − λ2‖X )). (27)

Then G : X × R
m ×U0 × V ×�→W × H × Y is Gâteaux differentiable with

G′(λ, α, u0, u, θ)

=
⎛

⎝
−F ′λ(·, λ, u) −N ′

α(α, u, θ) 0 d
dt − F ′u(·, λ, u)−N ′

u(α, u, θ) −N ′
θ (α, u, θ)

0 0 −Id (·)t=0 0
0 0 0 M 0

⎞

⎠ .

Furthermore, G′(·) is locally bounded in the sense specified in Lemma 11.

Proof First note that it suffices to show corresponding differentiability and local
boundedness assertions for the different components of G given as u �→ u̇, F , N ,
(u, u0) �→ u(0) − u0 and M . For all except F and N , the corresponding assertions
are immediate, hence we focus on the latter two.

Regarding F , this is an immediate consequence of Lemma 11 with A = X × V ,
B = W , S = X×H ,� = (0, T ), r = 2,A = X×V with ‖(λ, v)‖A = ‖λ‖X+‖v‖V ,
B =W and H(t, (λ, v)) = F(t, λ, v).

For N , this is again an immediate consequence of Lemma 11 with A = S =
R

m × R × �, B = R, � = (0, T ) × �, r = max{2, p̂}, A = R
m × V × � with

‖(α, v, θ)‖A = |α| + ‖v‖V + |θ |, B =W and H((t, x), (α, v, θ)) = Nθ (α, v(t, x)).
��

Remark 13 For stronger image spaces W � Lq(�),∀q ∈ [1,∞), differentiability
of F remains valid if (27) holds, while differentiability of N requires a smoother
activation function, e.g., the one suggested in Remark 29 below.
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3.3 Lipschitz Continuity and the Tangential Cone Condition

In this section, we focus on showing a rather strong Lipschitz-type result for the neural
network. This property allows us to apply (finite-dimensional) gradient-based algo-
rithms to learn the neural networks, where the Lipschitz constant and its derivatives are
used to determine the step size. Moreover, by this Lipschitz continuity, the tangential
cone condition on (14) can be verified. This condition, together with solvability of the
learning-informed PDE, answers the important question of uniqueness of a minimizer
to the limit case of (14), as mention in Remark 10.

For ease of notation, we assume in this lemma that the outer layer of the neural
network has activation σ , as in the lower layers. Adapting the proof for σ = Id in the
last layer is straightforward.

Lemma 14 (Lipschitz properties of neural networks) Consider an L-layer neural net-
work N : R

m+1 × � � (z, θ) �→ Nθ ((z1, . . . , zm), zm+1) ∈ R, L ∈ N (z taking
the role of (α, u(t, x)) in Lemma 4). Denote by N i

θ i the i lowest layers of the neural

network, depending only on z and on the i lowest-index pairs of parameters θ i , while
N 0

θ0
(z) := z ∈ R

m+1.

Fix any subsetB ⊆ R
m+1×�. For each 1 ≤ i ≤ L, defineBi := {ωiN i−1

θ i−1(z)+β i |
(z, θ) ∈ B)}, that is, the image of the i-th layer before applying the activation function.
Assume that the activation function σ ∈ C1(R, R) associated to N for all 1 ≤ i ≤ L
satisfies the Lipschitz inequalities

|σ(x)− σ(x̃)| ≤ Cσ |x − x̃ | , ∣∣σ ′(x)− σ ′(x̃)
∣∣ ≤ C ′σ |x − x̃ |

for all x, x̃ ∈ Bi and some positive constants Cσ , C ′σ , and that si := supx∈Bi

∣∣σ ′(x)
∣∣ <

∞.
Fix now a layer l, 1 ≤ l ≤ L, as well as (z̃, θ), (z, θ̄ ), (z, θ̂ ) ∈ B, where θ̄ differs

from θ only in that its l-th weight is replaced by some ω̃l and θ̂ differs from θ only in

that its l-th bias is replaced by some β̃l ; explicitly,

(θ̄ j )k =
{

ω̃l , ( j, k) = (1, l),

(θ j )k otherwise,
(θ̂ j )k =

{
β̃l , ( j, k) = (2, l),

(θ j )k otherwise.

Then N satisfies the Lipschitz estimates

|N (z, θ)−N (z̃, θ)| ≤ (Cσ )L

(
L∏

k=1

∣∣∣ωk
∣∣∣

)
|z − z̃| ,

∣∣N (z, θ)−N (z, θ̄ )
∣∣ ≤ (Cσ )L−l+1

(
L∏

k=l+1

∣∣∣ωk
∣∣∣

) ∣∣∣N l−1
θ l−1(z)

∣∣∣
∣∣∣ωl − ω̃l

∣∣∣ ,

∣∣∣N (z, θ)−N (z, θ̂ )

∣∣∣ ≤ (Cσ )L−l+1
∣∣∣βl − β̃l

∣∣∣ ,

(28)
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while its derivatives with regards to z, ωl and βl , respectively, satisfy the Lipschitz
estimates

∣∣N ′
z(z, θ)−N ′

z(z̃, θ)
∣∣ ≤ Cz

1

∣∣∣ω1
∣∣∣ |z − z̃| , (29)

∣∣N ′
ωl (z, θ)−N ′

ωl (z, θ̄ )
∣∣ ≤ Cωl

l

∣∣∣N l−1
θ l−1(z)

∣∣∣
∣∣∣ωl − ω̃l

∣∣∣ , (30)
∣∣∣N ′

βl (z, θ)−N ′
βl (z, θ̂ )

∣∣∣ ≤ Cβl

l

∣∣∣βl − β̃l
∣∣∣ , (31)

where one defines Cz
L+1 := Cωl

L+1 := Cβl

L+1 := 0 and, by backward recursion for
1 ≤ i ≤ L,

Cz
i := C ′σ (Cσ )i−1

(
L∏

k=i+1
sk

)(
L∏

k=1

∣∣∣ωk
∣∣∣

)
+ Cz

i+1si

∣∣∣ωi+1
∣∣∣ ,

Cωl

i := C ′σ (Cσ )i−l

(
L∏

k=i+1
sk

)(
L∏

k=l+1

∣∣∣ωk
∣∣∣

) ∣∣∣N l−1(z, θ l−1)
∣∣∣+ Cωl

i+1si

∣∣∣ωi+1
∣∣∣ ,

Cβl

i := C ′σ (Cσ )i−l

(
L∏

k=i+1
sk

)(
L∏

k=l+1

∣∣∣ωk
∣∣∣

)
+ Cβl

i+1si

∣∣∣ωi+1
∣∣∣ .

(32)

Proof See Appendix B. ��
Remark 15 If σ ′ is locally Lipschitz continuous on R, the existence of Cσ , C ′σ and the
si is clear whenever B is a bounded set. Thus, it is a direct consequence of Lemma 14
(or follows simply by the properties of the functionsN is composed of) that the map-
ping (z, θ) �→ N (z, θ) restricted to any bounded set is bounded, Lipschitz continuous
and has Lipschitz continuous derivative. This is relevant for gradient-based optimiza-
tion algorithms to solve the learning problem (13), where Lipschitz continuity of the
derivative of the objective function is a key ingredient for (local) convergence, see
for instance [36] for a result in Hilbert spaces. In particular, Lipschitz continuity of
θ �→ N (z, θ) for z fixed is useful for the learning problem (13), where the exact (λ, u)

is known. In this case, one simply learns the finite-dimensional hyperparameter θ , thus
standard convergence results on gradient-based methods in finite dimensional vector
spaces apply, see, e.g., [34, Sect. 5.3].

Based on these Lipschitz estimates, we can study the tangential cone condition for
the problem (14), given a learned Nθ . For this, we assume that Nθ (α, u) = Nθ (u).

Condition 16 (Tangential cone condition [22, Expression (2.4)]) We say that the
tangential cone condition for a mapping G : D(G)(⊆ X) → Y holds in a ball
BX

ρ (x†), if there exists ctc < 1 such that

‖G(x)− G(x̃)− G ′(x)(x − x̃)‖X ≤ ctc‖G(x)− G(x̃)‖Y ∀x, x̃ ∈ Bρ(x†).
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Here, G ′(x)h denotes the directional derivative [24].

Analyzed in the all-at-once setting (14), the tangential cone condition reads as

‖F(λ, u)− F(λ̃, ũ)− F ′λ(λ, u)(λ− λ̃)− F ′u(λ, u)(u − ũ)

+Nθ (u)−Nθ (ũ)−N ′
θ (u)(u − ũ)‖W

≤ ctc

(
‖u̇ − ˙̃u − F(λ, u)+ F(λ̃, ũ)−Nθ (u)+Nθ (ũ)‖2W

+‖u(0)− u†(0)− u0 + ũ0‖2U0
+ ‖M(u − ũ)‖2Y

)1/2
(33)

for all (λ, u0, u), (λ̃, ũ0, ũ) ∈ B X×U0×V
ρ (λ†, u†

0, u†), where F ′ and N ′ are the
Gâteaux derivatives.

The tangential cone condition strongly depends on the PDEmodel F and the archi-
tectures of N . By triangle inequality, a sufficient condition for (33) to hold is that
the tangential cone condition holds for F and for N separately. The tangential cone
condition in combination with solvability of equation G(x) = 0 ensures uniqueness of
a minimum-norm solution [22, Proposition 2.1] (see Appendix A). Solvability of the
operator equation G(x) = 0, according to the all-at-once formulation, is the question
of solvability of the learning-informed PDE and exact measurements, i.e. δ = 0. For
solvability of the learning-informed PDE, we refer to Proposition 24 in Sect. 4. In
the following, we focus on the tangential cone condition for the neural networks by
studying Condition 16 for G := Nθ .

Lemma 17 (Tangential cone condition for neural networks) The tangential cone con-
dition in Condition 16 for G = Nθ : V →W with fixed parameter θ holds in any
ball BV

ρ (u†) if M = Id, Y ↪→ L p̂(�) with p̂ > 0 as in (6), σ ∈ C1(R, R) and ρ,
depending on the Lipschitz constant in Lemma 14 is sufficiently small.

Proof Since V ↪→ L∞((0, T )×�) for u, ũ ∈ BV
ρ (u†), we have for almost all (t, x) ∈

(0, T )×� that u(t, x), ũ(t, x) ∈ B for some B bounded. Thus, we can use Lemma 14
with such a B, and in particular the estimate (62) for z = u(t, x), to obtain

‖Nθ (u)−Nθ (ũ)−N ′
θ (u)(u − ũ)‖W

=
∥∥∥∥
∫ 1

0
N ′

θ (ũ + μ(u − ũ)) dμ(u − ũ)−N ′
θ (u)(u − ũ)

∥∥∥∥W

≤ CL p̂→W

∥∥∥∥
∫ 1

0

(N ′
θ (ũ + μ(u − ũ))−N ′

θ (u)
)

dμ(u − ũ)

∥∥∥∥
L2(0,T ;L p̂(�))

≤ CL p̂→W Cz
1|ω1|

∥∥∥∥
∫ 1

0
(1− μ) dμ|u − ũ|2

∥∥∥∥
L2(0,T ;L p̂(�))

≤ (1/2)CY→L p̂(�)CL p̂→W Cz
1|ω1|‖u − ũ‖L∞((0,T )×�)‖u − ũ‖Y

≤ ρ CV→L∞((0,T )×�)CY→L p̂(�)CL p̂(�)→W Cz
1|ω1|‖u − ũ‖Y =: ctc‖u − ũ‖Y

= ctc‖M(u − ũ)‖Y
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where Cz
1|ω1| is the Lipschitz constant of N ′

u derived in Lemma 14, and ctc < 1 if

ρ < 1/
(

CV→L∞((0,T )×�)CY→L p̂(�)CL p̂(�)→W Cz
1|ω1|

)
.

We note that having full observation, i.e. M = Id, is crucial for establishing the
tangential cone condition, as it allows us to link the estimate from ‖u − ũ‖Y to
‖M(u − ũ)‖Y , yielding the last quantity on the right hand side of (33). The necessity
of full observation has also been mentioned in [24]. ��

Now using [22, Proposition 2.1] together with Lemma 17, a uniqueness result
follows.

Proposition 18 (Uniqueness of minimizer for the limit case of (14)) With ν ≥ 1,
consider the regularizer R1 = ‖ · ‖νX×Rm×U0×V , and assume that the conditions in
Lemma 17 are satisfied. Moreover, suppose that the tangential cone condition for F
holds in BX×U0×V

ρ (λ†, u†
0, u†) and the equation G(λ, u0, u, θ̂ ) = 0 with G in (12) and

θ fixed is solvable in BX×U0×V
ρ (λ†, u†

0, u†). Then the limit case of the parameter iden-

tification problem (14) admits a unique minimizer in the ball BX×U0×V
ρ (λ†, u†

0, u†).

Remark 19 We refer to Section (4) below for solvability of the learning-informed PDE
in an application. We refer to [24] for concrete choices of F and of function space
settings such that the tangential cone condition can be verified.

Note that, while the tangential cone condition for limit case of the of the parameter
identification problem (14) can be confirmed as above, the same question for the
learning problem (13) remains open.

4 Application

In this section, as special case of the dynamical system (1), we examine a class of
general parabolic problems given as

u̇ −∇ · (a∇u)+ cu − f (α, u) = ϕ in �× (0, T ),

u|∂� = 0 in (0, T ),

u(0) = u0 in �, (34)

where � ⊂ R
d is a bounded C2-class domain, with d ∈ {1, 2, 3} being relevant

in practice. The nonlinearity f , which can be replaced by a neural network later, is
assumed to be given as the Nemytskii operator f : R

m × V → W [32, Sect. 1.3] of
a pointwise function f : Rm ×R→ R, making use of the notation [ f (α, u)](t, x) =
f (α, u(t, x)). We initially work with the following parameter spaces

ϕ ∈ Xϕ := H−1(�), c ∈ Xc := L2(�), a ∈ Xa := W 1,Pa(�) u0 ∈ U0 := H2(�), (35)

where Pa > d, and, for existence of a solution, we will require the constraints

0 < a ≤ a(x) ≤ a for a.e. x ∈ �. (36)
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Thus, the overall parameter space X is given as X = (Xϕ, Xc, Xa).

4.1 Unique Existence Results for (34)

Our next goal is to study unique existence of (34). The main purpose of this is to
inspire a relevant choice of function space setting for the all-at-once setting of (13)
and (14), even though unique existence is not required there. Also, a unique existence
result is of interest for studying the reduced setting, where well-definedness of the
parameter-to-state map is needed.

We will proceed in two steps: In the first step, we prove that (34) admits a unique
solution

u ∈ W 1,∞,∞(0, T ; L2(�), L2(�)) ∩W 1,∞,2(0, T ; H1
0 (�), H1

0 (�))

with W 1,p,q(0, T ; V1, V2) := {u ∈ L p(0, T ; V1) : u̇ ∈ Lq(0, T ; V2)}. Then, in the
second step, we lift the regularity of u to the somewhat stronger space

u ∈ L∞((0, T )×�)

to achieve boundedness in time and space of the solution, which will later serve
our purpose of working with a neural network acting pointwise. It is worth noting
that the study for unique existence is carried out first of all for classes of general
nonlinearity f satisfying some specific assumptions, such as pseudomonotonicity and
growth condition, seeLemmas 21 and 23 below.The nonlinearity f as a neural network
will then be considered in Proposition 24, Remark 25.

Before investigating (34), we summarize the unique existence theory as provided
in [32, Theorems 8.18, 8.31] for the autonomous case.

Theorem 20 Let V̂ be a Banach space, Ĥ be a Hilbert spaces and assume that for
F̂ : V̂ → V̂

∗
, u0 ∈ Ĥ and ϕ ∈ V̂

∗
, with the Gelfand triple V̂ ⊆ Ĥ ∼= Ĥ

∗ ⊆ V̂
∗
, the

following holds:

S1. F̂ is pseudomonotone.
S2. F̂ is semi-coercive, i.e,

∀v ∈ V̂ : 〈F̂(v), v〉V̂ ∗,V̂ ≥ c0|v|2V̂ − c1|v|V̂ − c2‖v‖2Ĥ

for some c0 > 0 and some seminorm |.|V̂ > 0 satisfying ∀v ∈ V̂ : ‖v‖V̂ ≤
c|.|(|v|V̂ + ‖v‖Ĥ ).

S3. F̂ , u0 and ϕ satisfy the regularity condition F̂(u0)− ϕ ∈ Ĥ , u0 ∈ V̂ and

〈F̂(u)− F̂(v), u − v〉V̂ ∗,V̂ ≥ C0|u − v|2
V̂
− C2‖u − v‖2

Ĥ

for all u, v ∈ V with some C0 > 0.

123



Applied Mathematics & Optimization (2023) 88 :76 Page 23 of 53 76

Then the abstract Cauchy problem

u̇(t)+ F̂(u(t)) = ϕ u(0) = u0

has a unique solution u ∈ W 1,∞,∞(0, T ; Ĥ , Ĥ) ∩W 1,∞,2(0, T ; V̂ , V̂ ).

By verifying the conditions in Theorem 20, we nowobtain unique existence as follows.

Lemma 21 (Unique existence) Let the nonlinearity f (α, ·) : H1
0 (�) → H1

0 (�)∗
be given as the Nemytskii mapping of a measurable function f (α, ·) : R → R that
satisfies

(− f (α, ·)) : H1
0 (�)→ H1

0 (�)∗ monotone and continuous,

f (α, 0) = 0, | f (α, v)| ≤ Cα(1+ |v|5), for some Cα ≥ 0.
(37)

Then, equation (34) with parameter ϕ, c, a and u0 such that (35), (36) hold, admits a
unique solution

u ∈ W 1,∞,∞(0, T ; L2(�), L2(�)) ∩W 1,∞,2(0, T ; H1
0 (�), H1

0 (�))

Proof We verify the conditions in Theorem 20 for Ĥ = L2(�), V̂ = H1
0 (�) with

‖u‖V̂ = ‖∇u‖Ĥ and F̂(u) := −F(u)− f (α, u), where F : V̂ → V̂
∗
is given as

F(u) = ∇ · (a∇u)− cu.

First, note that due to measurability and the growth constraint, the Nemytskii map-
ping f (α, ·) : V̂ → V̂

∗
, where we set f (α, u)(w) := ∫

�
f (α, u(x))w(x) dx for

w ∈ V̂ , is indeed well-defined since,

‖ f (α, v)‖V̂
∗ = sup

‖w‖V̂≤1

∫

�

f (α, v(x))w(x) dx ≤ sup
‖w‖V̂≤1

Cα(|�|5/6 + ‖v5‖L6/5(�))‖w‖L6(�)

≤ CCH1→L6 (1+ ‖v5‖L6/5(�)) ≤ C(CH1→L6 )6(1+ ‖v‖5H1(�)
).

Since 0 < a ≤ a almost everywhere on � and c ∈ L2(�), the estimate

〈cu, u〉V̂ ∗,V̂ ≤ ‖c‖L2(�)‖u3/2u1/2‖L2(�) ≤ (CH1→L6)3/2‖c‖L2(�)‖u‖3/2V̂
‖u‖1/2

Ĥ

≤ 3

4

(
a3/4‖u‖3/2

V̂

)4/3 + 1

4

(
(CH1→L6)3/2‖c‖L2(�)

a3/4 ‖u‖1/2
Ĥ

)4

= 3a

4
‖u‖2

V̂
+ (CH1→L6)6

4a3 ‖c‖4L2(�)
‖u‖2

Ĥ
(38)
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yields

〈−∇ · (a∇u)+ cu, u〉V̂ ∗,V̂
≥ a‖u‖2

V̂
−
(
3a

4
‖u‖2

V̂
+ (CH1→L6)6

4a3 ‖c‖4L2(�)
‖u‖2

Ĥ

)
= c0‖u‖2V̂ − c2‖u‖2Ĥ ,

with c0 := a/4, c2 := (CH1→L6)6‖c‖4L2(�)
/4a3. Together with monotonicity of

− f (α, ·) and f (α, 0) = 0, one has 〈 f (α, u), u〉V ∗,V = 〈 f (α, u) − f (α, 0), u −
0〉V̂ ∗,V̂ ≥ 0. This implies that semicoercivity as in S2. with c0, c2 as above and
c1 = 0. Also, the second estimate in the regularity condition S3. now follows directly
with

c0 = C0, C2 = c2,

where again, we employ monotonicity of f (α, ·).
In order to verify pseudomonotonicity S1., we first notice that F̂ : V̂ → V̂

∗
is

bounded, i.e., it maps bounded sets to bounded sets, and continuous where the latter
follows from continuity of F , which is immediate, and continuity of f , which holds
by assumption. Using this, one can apply [14, Lemma 6.7] to conclude pseudomono-
tonicity if the following statement is true

[ un
V̂
⇀u and lim sup

n→∞
〈F̂(un)− F̂(u), un − u〉V̂ ∗,V̂ ≤ 0 ] ⇒ un

V̂→ u.

The latter follows since, by V̂ ↪→→ Ĥ , one gets for un
V̂
⇀u that un

Ĥ→ u and

0 ≥ lim sup
n→∞

〈F̂(un)− F̂(u), un − u〉V̂ ∗,V̂
≥ c0 lim sup

n→∞
‖un − u‖2

V̂
− c2 lim

n→∞‖un − u‖2
Ĥ

= c0 lim sup
n→∞

‖un − u‖2
V̂
, (39)

which implies un
V̂→ u as n → ∞. With this, Theorem 20 implies unique existence

of a solution

u ∈ W 1,∞,∞(0, T ; Ĥ , Ĥ) ∩W 1,∞,2(0, T ; V̂ , V̂ ).

��
Note that, by embedding, u ∈ W 1,∞,∞(0, T ; Ĥ , Ĥ)∩W 1,∞,2(0, T ; V̂ , V̂ ) implies

that u ∈ L∞(0, T ; V̂ ) ∩ H1(0, T ; V̂ )). In a second step, we now aim to find suitable
assumptions on the parameter spaces Xϕ , Xc, Xa and U0 such that regularity of the
solution u of (34) as obtained in the previous proposition is lifted to u ∈ L∞((0, T )×
�).
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Remark 22 There are at least two ways to achieve this: One is to enhance space reg-
ularity of u from H1(�) to W k,p(�) with kp > d such that W k,p(�) ↪→ C(�)

and we can ensure u ∈ L∞((0, T ), C(�)) ↪→ L∞((0, T ) × �). The other possible
approach is to ensure a W 2,q(�)-space regularity with q sufficiently large such that
u ∈ L2((0, T ), W 2,q(�)) ∩ H1(0, T ;W 2,q(�)) ↪→ C(0, T ; L∞(�)).

While the first approach might yield weaker condition on kp, it imposes a non-
reflexive state space. The latter choice on the other hand fits better into our setting of
reflexive spaces, thus we proceed with the latter choice.

Now our goal is to determine an exponent q such that, if u ∈ L2(0, T ;W 2,q(�))∩
H1(0, T ; H1(�)), it follows that u ∈ C(0, T ;W 1,2p(�)) with p > d/2 such that
W 1,2p(�) ↪→ L∞(�) and ultimately u ∈ L∞((0, T )×�). To this aim, first note that
for u ∈ L2(0, T ;W 2,q(�)∩H1

0 (�)) ∩ H1(0, T ; H1(�)), by Friedrichs’s inequality,
it follows that u ∈ C(0, T ; L2p(�)) if

|∇u|p ∈ C(0, T ; L2(�)).

To ensure the latter, we use that (∇u)p ∈ L2(0, T ;W 1,q/p(�))∩ H1(0, T ; L2/p(�))

and that

L2(0, T ;W 1,q/p(�)) ∩ H1(0, T ; L2/p(�)) ↪→ C(0, T ; L2(�))

provided that dp > q ≥ dp
d+1 and p

2 ≤ 1− p
q + 1

d . Indeed, in this case it follows that

L
2
p (�) ↪→ L

dq
dq−dp+q (�) ↪→ (W 1, q

p (�))∗

such that the embedding into C(0, T ; L2(�)) follows from [32, Lemma 7.3] (see
Appendix A). Since 2pd/(2d + 2− dp) ≥ dp/(d + 1), it follows that we can ensure
for p > d/2 that u ∈ L∞((0, T )×�) if

dp > q ≥ 2dp

2d + 2− dp
.

This is fulfilled for p = d/2 + ε with ε > 0 if dp > q ≥ (2d2 + 4εd)/(4 + 4d −
d2 − 2εd) and, more concretely, in case d = 2 for p = 1+ ε q = (2+ 2ε)/(2− ε)

and ε ∈ (0, 1) and in case d = 3 for p = 3/2 + ε, q = (18 + 12ε)/(7 − 6ε) and
ε ∈ (0, 1/2).

Let us focus on the latter case of d = 3 and derive suitable assumptions on Xϕ , Xc,
Xa, U0 and f such that the solution u to (34) fulfills

u ∈ L2(0, T ;W 2,q(�)) ∩ H1(0, T ; H1(�)) ↪→ C(0, T ;W 1,2p(�)),

where the embedding holds by our choice of q and p.
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Lemma 23 (Lifted regularity) In addition to the assumptions of Lemma 21, assume
that d = 3 and that, for positive numbers p, ε, q, q̄ and Pa with

p = 3/2+ ε, min{6, 3p} > q ≥ 18+ 12ε

7− 6ε
,

qq̄

2q − q
≤ 2,

q 
 3q

3− q
, Pa > max{3, qq̄

q − q
}

it holds that

c ∈ Lq(�), a ∈ W 1,Pa(�), and 0 < a ≤ a(x) ≤ a for almost all x ∈ �,

ϕ ∈ Lq(�), u0 ∈ H2(�),

| f (α, v)| < Cα(1+ |v|B) with B < 6/q + 1,

Then, the unique solution of (34) fulfills

u ∈ L2(0, T ;W 2,q(�)) ∩ H1(0, T ; H1(�))

↪→ C(0, T ;W 1,2p(�)) ↪→ L∞((0, T )×�) (40)

Proof From (34) we get

a�u = u̇ −∇a · ∇u + cu + f (α, u)− ϕ, (41)

and by q 
 3q
3−q such that W 1,q(�) ↪→ Lq(�)), we estimate the components of the

right hand side of (41), using parameters δ, δ1 > 0 (which will be small later on).
Since q ≤ 6

‖u̇‖Lq (�) ≤ CH1→Lq‖u̇‖H1(�). (42)

By q ≤ 6 and c ∈ Lq(�), using density, we can choose c∞ ∈ L∞(�) such that
‖c − c∞‖Lq (�) ≤ δ and obtain

‖cu‖Lq (�) ≤ ‖c∞u‖Lq (�) + ‖(c − c∞)u‖Lq (�)

≤ ‖c∞‖L∞(�)‖u‖Lq (�) + ‖c − c∞‖Lq (�)‖u‖L∞(�)

≤ CH1→Lq‖c∞‖L∞(�)‖u‖H1(�) + CW 2,q→L∞δ‖u‖W 2,q (�). (43)

Now by the assumption | f (α, v)| ≤ Cα(1 + |v|B) with B < 6/q + 1 (note that
this means also B ≤ 5) then, by possibly increasing B, we can assume that 6/q <

B < 6/q + 1 and select β := B − 6/q ∈ (0, 1), such that q(B − β) = 6. Applying
Young’s inequality with arbitrary positive factor δ1 > 0, we have

‖ f (α, u)‖Lq (�) ≤ Cα(1+ ‖|u|B‖Lq (�)) ≤ Cα

(
1+ ‖u‖βL∞(�)‖u B−β‖Lq (�)

)

≤ Cα

(
1+ βδ

1/β
1 ‖u‖L∞(�) + 1− β

δ
1/(1−β)
1

‖u‖
B−β
1−β

Lq(B−β)(�)

)
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≤ Cα

(
1+ CW 2,q→L∞βδ

1/β
1 ‖u‖W 2,q (�) +

1− β

δ
1/(1−β)
1

CH1→Lq(B−β)‖u‖
B−β
1−β

H1(�)

)

(44)

Using a ∈ W 1,Pa(�) with Pa ≥ qq̄
q−q and qq̄

2q−q ≤ 2, again using density, we can

choose a∞ ∈ W 1,∞(�) such that ‖∇a − ∇a∞‖
L

qq̄
q−q (�)

< δ and obtain

‖∇a · ∇u‖Lq (�) ≤ ‖(∇a −∇a∞) · ∇u‖Lq (�) + ‖∇a∞ · ∇u‖Lq (�)

≤ ‖∇a − ∇a∞‖
L

qq̄
q−q (�)

‖∇u‖Lq (�) + ‖∇a∞‖L∞(�)‖|∇u|1/2|∇u|1/2‖Lq (�)

≤ δ‖∇u‖Lq (�) + ‖∇a∞‖L∞(�)

(
δ1

2
‖∇u‖Lq (�) +

1

2δ1
‖∇u‖

L
qq̄

2q−q (�)

)

≤ CW 2,q→W 1,q

(
δ + δ1

2
‖∇a∞‖L∞(�)

)
‖u‖W 2,q (�) + C

L2→L
qq̄

2q−q

‖∇a∞‖L∞(�)

2δ1
‖u‖H1(�)

(45)

Using that also ϕ ∈ Lq(�), taking the spatial Lq -norm in (41), estimating by the
triangle inequality, raising everything to the second power, we arrive at

a2‖�u‖2L2(0,T ;Lq (�))
≤ ‖a�u‖2L2(0,T ;Lq (�))

≤ 5
(
‖u̇‖2L2(0,T ;Lq (�))

+ ‖∇a · ∇u‖2L2(0,T ;Lq (�))
+ ‖cu‖2L2(0,T ;Lq (�))

+‖ f (α, u)‖2L2(0,T ;Lq (�))
+ ‖ϕ‖2L2(0,T ;Lq (�))

)

≤ 15
(
‖u̇‖2L2(0,T ;Lq (�))

+ Cc,a‖u‖2L2(0,T ;H1(�))
+ T ‖ϕ‖2Lq (�)

+T CB,α,β‖u‖2
B−β
1−β

L∞(0,T ;H1(�))
+ T C2

α + ε̃‖�u‖2L2(0,T ;Lq (�))

)

with

ε̃ :=
[

CW 2,q→L∞δ + CαCW 2,q→L∞βδ
1/β
1 + CW 2,q→W 1,q

(
δ + δ1

2
‖∇a∞‖L∞(�)

)]2
.

For sufficiently small δ, δ1, this leads to

0 <

(
a2

26
− ε̃

)
‖�u‖2L2(0,T ;Lq (�))

≤ Cc,a,ϕ,B,β,T

(
‖u̇‖2

L2(0,T ;H1
0 (�))

+ ‖u‖2
L∞(0,T ;H1

0 (�))

)
<∞. (46)

The fact that ∇u ∈ L2(0, T ; L2(�)) and �u ∈ L2(0, T ; Lq(�)), q ≥ 2 as above
imply ∇u ∈ L2(0, T ; H1(�)) thus ∇u ∈ L2(0, T ; Lq(�)) for q ≤ 6. This and (46)
ensures that u ∈ L2(0, T ;W 2,q(�)). By Lemma 21, u ∈ W 1,∞,∞(0, T ; Ĥ , Ĥ) ∩
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W 1,∞,2(0, T ; V̂ , V̂ ); thus, by embedding, u ∈ H1(0, T ; H1(�)). Consequently,

u ∈ L2(0, T ;W 2,q(�) ∩ H1(0, T ; H1(�)).

This, together with the argumentation after Remark 22 completes the proof. ��
The obtained unique existence result in now summarized in the following proposi-

tion.

Proposition 24 (i) The nonlinear parabolic PDE (34) with d = 3 admits the unique
solution

u ∈ L2(0, T ;W 2,q(�)) ∩ H1(0, T ; H1(�))

↪→ C(0, T ;W 1,2p(�)) ↪→ L∞((0, T )×�) (47)

if the following conditions are fulfilled:

p = 3/2+ ε with ε > 0

min{6, 3p} > q ≥ 18+ 12ε

7− 6ε
, and

qq̄

2q − q
≤ 2 with q such that q 
 3q

3− q

c ∈ Lq (�), a ∈ W 1,Pa(�), Pa > max{3, qq̄

q − q
} and 0

< a ≤ a(x) ≤ a for almost all x ∈ �,

ϕ ∈ Lq (�), u0 ∈ H2(�),

(− f (α, ·)) is monotone and f (α, 0) = 0, | f (α, v)| < Cα(1+ |v|B) with B < 6/q + 1,

(ii) Moreover, the claim in (i) still holds in case f (α, ·) is replaced by neural network
Nθ (α, ·) with σ ∈ CLip(R, R).

Proof (i) Lemma 21 ensures that (34) admits a unique solution

u ∈ W 1,∞,∞(0, T ; L2(�), L2(�)) ∩W 1,∞,2(0, T ; H1(�), H1(�)),

such that in particular u ∈ L∞(0, T ; H1(�)) ∩ H1(0, T ; H1(�)). Proposition 23
ensures the embeddings as in (47) hold true again by our choice of p, q.

ii) Now consider the case that f (α, ·) is replaced byNθ (α, ·) for some known α, θ .
With Lθ,α the Lipschitz constant of Nθ (α, ·) : R → R, we first observe that, for
v ∈ R,

|Nθ (α, v)| ≤ |Nθ (α, 0)| + |Nθ (α, v)−Nθ (α, 0)| ≤ |Nθ (α, 0)| + Lθ,α|v|

such that the growth condition |Nθ (α, v)| < Cα(1 + |v|B) with B < 6/q + 1 and
in particular the growth condition of Proposition 23 holds. This shows in particular
that the induced Nemytskii mapping Nθ (α, ·) : H1(�) → H1(�)∗ is well-defined.
Further, we can observe that, again for u, v ∈ H1(�)

|〈Nθ (α, u), u〉H1(�)∗,H1(�)| ≤ Lθ,α‖u‖2L2(�)
+ |Nθ,α(0)|CH1→L1‖u‖H1(�),

123



Applied Mathematics & Optimization (2023) 88 :76 Page 29 of 53 76

|〈Nθ (α, u)−Nθ (α, v), u − v〉H1(�)∗,H1(�)| ≤ Lθ,α‖u − v‖2L2(�)
.

Using these estimates, it is clear that the conditions S2. and S3. in Theorem 20 can
be shown similarly as in Step 1 without requiring Nθ (α, 0) = 0 or monotonicity of
Nθ (α, ·). This completes the proof. ��
Remark 25 For neural networks, some examples fulfilling the conditions in Propo-
sition 24, i.e. Lipschitz continuous activation functions, are the RELU function
σ(x) = max{0, x}, the tansig function σ(x) = tanh(x), the sigmoid (or soft step)
function σ(x) = 1

1+e−x , the softsign function σ = x
1+|x | or the softplus function

σ(x) = ln(1+ ex ).

4.2 Well-Posedness for the All-at-Once Setting

With the result attained in Proposition 24, we are ready to determine the function
spaces for the minimization problems (13), (14) in the all-at-once setting and explore
further properties discussed in Sect. 3.

Remark 26 For minimization in the reduced setting, we usually invoke monotonicity
in order to handle high nonlinearity (c.f. Proposition 24). The minimization problems
in the all-at-once setting, however, do not require this condition, thus allowing for
more general classes of functions, e.g. by including in F another known nonlinearity
φ as in the following Proposition.

Proposition 27 For d = 3 and ε > 0 sufficiently small, define the spaces

V = W 2,q(�), Ṽ = H1(�), H = W 1,2p(�),

W = Lq(�), p = 3

2
+ ε, q = 18+ 12ε

7− 6ε
,

and Y such that V ↪→ Y , resulting in the following state-, image- and observation
spaces

V = L2(0, T ;W 2,q(�)) ∩ H1(0, T ; H1(�)),

W = L2(0, T ; Lq(�)), Y = L2(0, T ; Y ).

Further, define the corresponding parameter spaces U0 = H2(�), X = Xϕ×Xc×Xa,
where

Xϕ = Xc = Lq(�), Xa = {a ∈ W 1,Pa(�), Pa > 3},

and let M ∈ L(V,Y) be the observation operator.
Consider the minimization problems (13) and (14), with F : (0, T )× X × V → W

given as

F(t, (ϕ, c, a), u):=∇ · (a∇u)− cu + ϕ + φ(u),
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where φ : V → W is an additional known nonlinearity in F (c.f Remark 26); φ is
the induced Nemytskii mapping of a function φ ∈ ClocLip(R, R). The associated PDE
given as,

u̇ −∇ · (a∇u)+ cu + φ(u)+Nθ (α, u) = ϕ in �× (0, T ),

u|∂� = 0 in (0, T ),

u(0) = u0 in �, (48)

with the activation functions σ of Nθ (α, u) satisfying σ ∈ ClocLip(R, R), and with
R1,R2 nonnegative, weakly lower semi-continuous and such that the sublevel sets of
(λ, α, u0, u, θ) �→ R1(λ, α, u0, u) + R2(θ) are weakly precompact. Then, each of
(13) and (14) admits a minimizer.

Proof Our aim is examining the assumptions proposed Lemma 5, which leads to the
result in Proposition 6. At first, we verify Assumption 1. The embeddings

U0 ↪→ H ↪→ W , V ↪→ H , V ↪→ Y , V ↪→→ L p̂(�) = W , Ṽ ↪→ W .

are an immediate consequence of our choice of p and q and standard Sobolev embed-
dings. The embeddings

V ↪→ L∞((0, T )×�), V ↪→ C(0, T ; H)

follow from the discussion in Step 2 above, see also Proposition 24.
Noting that well-definedness of the Nemytskii mappings as well as the growth

condition (7) are consequences of the following arguments on weak continuity. We
focus on weak continuity of F : V × (Xc, Xa, Xϕ) → W, F(λ, u) := ∇ · (a∇u) −
cu+ϕ+φ(u) via weak continuity of the operator inducing it as presented in Lemma 5.
First, for the cu part we see (c, u) �→ cu is weakly continuous on (Xc, H). Indeed,
for cn⇀c in Xc, un⇀u in H = W 1,2p(�) ↪→→ L∞(�) thus un → u in L∞(�), one
has for any w∗ ∈ W ∗ = Lq∗(�),

∫

�

(cu − cnun)w∗ dx =
∫

�

(c − cn)uw∗ dx +
∫

�

cn(u − un)w∗ dx
n→∞→ 0

due to uw∗ ∈ Lq∗(�), ‖cnw∗‖L1(�) ≤ C <∞ for all n and un → u in L∞(�).
For the ∇ · (a∇u) part, H = W 1,2p(�) is not strong enough to enable weak

continuity of (a, u) �→ ∇ · (a∇u) on (Xa, H), we therefore evaluate directly weak
continuity of the Nemytskii operator. So, let (an, un)⇀(a, u) in Xa ×V , taking w∗ ∈
L2(0, T ; Lq∗(�)) we have

∫

�×(0,T )

(∇ · (a∇u)− ∇ · (an∇un))w∗ dx dt

=
∫

�×(0,T )

∇(a − an) · ∇uw∗ dx dt +
∫

�×(0,T )

∇an · ∇(u − un)w∗ dx dt
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+
∫

�×(0,T )

(a − an) ·�unw∗ dx dt

+
∫

�×(0,T )

a�(u − un)w∗ dx dt
n→∞→ 0

due to the following: we have ∇uw∗ ∈ L2(0, T ; L Pa∗(�)),∇an⇀∇a in L Pa(�) in
the first estimate, and un → u in L2(0, T ;W 1,18(�)), ‖∇anw∗‖L2(0,T ;L18/17(�)) ≤
C < ∞ for all n in the second estimate. In the third estimate, one has an → a in
L∞(�) and

‖�unw∗‖L1(0,T ;L1(�))≤ ‖�un‖L2(0,T ;Lq (�))‖w∗‖L2(0,T ;Lq∗ (�)) ≤ C <∞ for all n.

Finally, in in the last estimate it is clear that aw∗ ∈ L2(0, T ; Lq∗(�)), un⇀u in
L2(0, T ;W 2,q(�)) implying �un⇀�u in L2(0, T ; Lq(�)).

For the term φ, by H = W 1,2p(�) ↪→→ L∞(�) we attain weak-strong continuity
of φ on H

‖φ(un)− φ(u)‖W ≤ ‖un − u‖L∞(�)L (‖un‖H , ‖u‖H ) → 0 for un
H
⇀u. (49)

Finally, the fact that activation function σ satisfies σ ∈ ClocLip(R, R) completes the
verification that the result of Proposition 6 holds. ��
For the following results, we set φ = 0.

Lemma 28 (Differentiability) In accordance with Proposition 12 and the frameworks
in Proposition 27, setting φ = 0, the model operator F : X × V → W is Gâteaux
differentiable, as is the neural network Nθ : Rm × V →W with σ ∈ C1(R, R).

Proof With the setting in Proposition 27, we verify local Lipschitz continuity of
F(λ, u) = ∇ · (a∇u)− cu + ϕ with λ = (ϕ, c, a). To this aim, we estimate

‖F(λ1, u1)− F(λ2, u2)‖W

= ‖∇ · (a1∇(u1 − u2))−∇ · ((a2 − a1)∇u2)

− c1(u1 − u2)+ (c2 − c1)u2 + ϕ1 − ϕ2‖Lq (�)

≤ ‖∇a1‖L Pa(�)‖∇(u1 − u2)‖Lq (�)

+ ‖a1 − a2‖L∞(�)‖�u1 −�u2‖Lq (�) + ‖∇(a2 − a1)‖L Pa(�)‖∇u2‖Lq (�)

+ ‖a2 − a1‖L∞(�)‖�u2‖Lq (�) + ‖c1‖Lq (�)‖u1 − u2‖L∞(�)

+ ‖c2 − c1‖Lq (�)‖u2‖L∞(�) + ‖ϕ1 − ϕ2‖Lq (�)

≤ L(‖u1‖H , ‖u2‖H , ‖λ1‖X , ‖λ2‖X )
(‖u1 − u2‖V + ‖u1 − u2‖H

+ (1+ ‖u2‖V )‖λ1 − λ2‖X
)

with qq 
 3q
3−q . Also, Gâteaux differentiability of F : X × V → W as well as

Carathéodory assumptions are clear from this estimate and bilinearity of F with respect
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to λ, u. Differentiability ofNθ with σ ∈ C1(R, R) has been shown in Proposition 12,
the last paragraph of its proof. ��

When the image spaceW is stronger, that is,W � Lq(�),∀q ∈ [1,∞) as discussed
in Remark 13, we require smoother activation functions than what was employed in
Lemma 28 in order to ensure differentiability of Nθ .

Remark 29 (Strong image spaceW and smoother neural network) Consider the case
where the unknown parameter is ϕ, parameters a, c are known, and the neural network
Nθ has smoother activation

σ ∈ C1locLip(R, R), i.e. σ ′ ∈ ClocLip(R, R).

The minimization problems introduced in Proposition 27 have minimizers that belong
to the Hilbert spaces

V = L2(0, T ; H3(�)) ∩ H1(0, T ; H1(�)),

W = L2(0, T ; H1(�)), Y = L2(0, T ; Y ),

V = H3(�)↪→ Y , Ṽ = H1(�), H = H2(�), W = H1(�),

and

Xc = H1(�), Xa = H2(�), Xϕ = H1(�), U0 = H2(�).

Proof For fixed θ, α, let us denote Nθ (α, ·) =: Nθ . It is clear that this setting fulfills
all the embeddings in Assumption 1. Weak-strong continuity of Nθ is derived from

‖Nθ,α(un)−Nθ,α(u)‖2W = ‖Nθ,α(un)−Nθ,α(u)‖2L2(0,T ;L2(�))

+ ‖∇Nθ,α(un)− ∇Nθ,α(u)‖2L2(0,T ;L2(�))

=: A + B
n→∞→ 0,

since with V ↪→ C(0, T ; H2(�)) and σ ∈ C1locLip(R, R), one has

A ≤ C(L ′θ,α(‖u‖V ))2‖un − u‖2L2(0,T ;L2(�))
,

B ≤ 2‖N ′
θ,α(un)(∇un −∇u)‖2L2(0,T ;L2(�))

+ 2‖(N ′
θ,α(un)−N ′

θ,α(u))∇u‖2L2(0,T ;L2(�))

≤ 2‖N ′
θ,α(un)‖2L∞((0,T )×�)‖∇un − ∇u‖2L2(0,T ;L2(�))

+ 2(L ′′θ,α(‖u‖V ))2‖(un − u)∇u‖2L2(0,T ;L2(�))

≤ 2(L ′θ,α(‖u‖V ))2‖∇un −∇u‖2L2(0,T ;L2(�))

+ 2(L ′′θ,α(‖u‖V ))2‖∇u‖2C(0,T ;L6(�))
‖un − u‖2L2(0,T ;L3(�))

,
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implying A + B → 0 for un
V
⇀u,V ↪→→ L2(0, T ; H1(�)) and Lipschitz constants

L ′, L ′′. This shows continuity ofN inu; continuity ofN in (α, θ) canbedone similarly.
For F , when c, a are known and fixed, it is just a linear operator on u. Weak continuity
of F hence can be explained through its boundedness, which can be confirmed in the
same fashion as A, B above. ��

To conclude this section, we consider a Hilbert space setting that will be relevant
for our subsequent applications.

Remark 30 (Hilbert space framework for application) Another possible Hilbert space
framework where the all-at-once setting is applicable is

V = H1(0, T ; H2(�)) ↪→ C(0, T ; H2(�)),

W = L2(0, T ; L2(�)), Y = L2(0, T ; Y ),

V = Ṽ = H = H2(�)↪→ Y , W = L2(�)

where Y is a Hilbert space, and

Xc = L2(�), Xa = H2(�), Xϕ = L2(�), U0 = H2(�).

Verification of weak continuity and the growth condition for F can be carried out
similarly as in Proposition 27; moreover, weak continuity of (Xa × H) � (a, u) �→
∇ · (a∇) ∈ W can be confirmed like the part (c, u) �→ cu, without the need of
evaluating directly the Nemytskii operator. This is the setting in which we will study
in detail the application (34).

5 Case Studies in Hilbert Space Framework

5.1 Setup for Case Studies

In this section, for the sake of simplicity of implementation, we carry out case studies
for some minimization examples in a Hilbert space framework, where we drop the
unknown α and use the regularizers R1 = ‖ · ‖2X×U0×V , R2 = ‖ · ‖2�.
Proposition 31 Consider the minimization problem (13) (or (14)) associated with the
learning informed PDE

u̇ −∇ · (a∇u)+ cu − ϕ −Nθ (u) =: u̇ − F(λ, u)−N (u, θ) = 0 in �× (0, T )

u(0) = u0 in �

for σ ∈ C1(R, R), M = Id in the Hilbert spaces

V = H1(0, T ; H2(�) ∩ H1
0 (�)) ↪→ C(0, T ; H2(�)), W = Y = L2(0, T ; L2(�)),

V = Ṽ = H = H2(�) ∩ H1
0 (�), W = Y = L2(�),
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Xc = L2(�), Xa = H2(�), Xϕ = L2(�), U0 = H2(�).

The following statements are true:

(i) The minimization problem admits minimizers.
(ii) The corresponding model operator G is Gâteaux differentiable with locally

bounded G′.
(iii) The adjoint of the derivative operator is given by

G′(λ, u, θ)∗ :W × H × Y → X × V ×�

G′(λ, u, θ)∗ =
⎛

⎝
−F ′λ(λ, u)∗ 0 0( d

dt − F ′u(λ, u)−N ′
u(u, θ)

)∗
(·)∗t=0 M∗

−N ′
θ (u, θ)∗ 0 0

⎞

⎠ =: (gi, j )
3
i, j=1

with

F ′λ(λ, u)∗ :W → X , F ′u(λ, u)∗ :W → V, (·)∗t=0 : H → V
N ′

θ (u, θ)∗ :W → �, N ′
u(u, θ)∗ :W → V, M∗ : Y → V.

By defining (−�)−1(−�+ Id)−1 : L2(�) � kz �→ z̃ ∈ H2(�) ∩ H1
0 (�) such that z̃

solves

{
−�̃z = z1 in �

z̃ = 0 on ∂�
,

{
−�z1 + z1 = kz in �

z1 = 0 on ∂�,
(50)

we can write explicitly

g2,2 : (·)∗t=0h = h, (51)

g2,3 : M∗z(t) =
∫ T

0
(t + 1)(−�)−1(−�+ Id)−1z(t) dt

−
∫ t

0
(t − s)(−�)−1(−�+ Id)−1z(s) ds, (52)

g2,1 :
(

d

dt
− F ′u(λ, u)−N ′

u(u, θ)

)∗
z(t)

=
∫ T

0
(t + 1)(−�)−1(−�+ Id)−1 K̃ z(t) dt

−
∫ t

0
(−�)−1(−�+ Id)−1[(t − s)K̃ z(s)− z(s)] ds

with K̃ = −∇ · (a∇·)+ c −N ′
u(u, θ) and N ′

u is computed as in Lemma 14, (53)

g1,1 : −F ′λ(λ, u)∗z =

⎧
⎪⎨

⎪⎩

∫ T
0 z(t)u(t) dt for λ = c∫ T
0 −z(t) dt for λ = ϕ∫ T
0 (−�)−1(−�+ Id)−1(−∇ · (z∇u))(t) dt for λ = a,

(54)
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g3,1: one has the recursive procedure

δL := 1, δl−1 := a′Tl−1ωT
l δl , l = L . . . 2,

∇ωl−1N (u, θ)∗z =
∫ T

0

∫

�

δl−1aT
l−2 z dx dt,

∇βl−1N (u, θ)∗z =
∫ T

0

∫

�

δl−1 z dx dt, (55)

with al , a′l detailed in the proof.

Proof Assertion (i) follows from Remark 30. Using Proposition 12, Assertion (ii)
can be shown similarly as in Lemma 28. The proof for Assertion (iii) is presented in
Appendix B. ��

Corollary 32 (Discrete measurements) In case of discrete measurements Mi : V →
Y , Mi (u) = u(ti ), ti ∈ (0, T ), where the pointwise time evaluation is well-defined as
V ↪→ C(0, T ; H2(�)), the adjoint g2,3 is modified as follows. For h ∈ Y ,

(h, v(ti ))L2(�) = (h̃, v(ti ))H2(�)

=
∫ ti

0
(−üh(t), v(t))H2(�) dt + (h̃, v(ti ))H2(�)

=
∫ ti

0
(u̇h(t), v̇(t))H2(�) dt + (uh(0), v(0))H2(�)

− (u̇h(ti )− h̃(t), v(ti ))H2(�) + (u̇h(0)− uh(0), v(0))H2(�)

= (uh, v)H1(0,ti ;H2(�)) = (uh, v)V ,

provided that uh = const in [ti , T ] in order to form the integral of the full time line
(0, T ) in the last line. Above, h, h̃ are respectively in place of kz and z̃ in (50); besides,
uh solves

üh(t) = 0 t ∈ (0, ti )

u̇h(ti ) = h̃, u̇z(0)− uz(0) = 0.
(56)

Thus we arrive at

(Mi )
∗h = uh(t) =

{
(−�)−1(−�+ Id)−1h(t + 1) 0 < t ≤ ti
(−�)−1(−�+ Id)−1h(ti + 1) ti < t ≤ T .

(57)

This shows a numerical advantage of processing discrete observations in an Kaczmarz
scheme, for instance in deterministic or stochastic optimization. To be specific, for each
data point in the forward propagation, thanks to the all-at-one approach, no nonlinear
model needs to be solved; in the backward propagation, by the same reason and (57),
one needs to compute the corresponding adjoint only for small time intervals.
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5.2 Numerical Results

This section is dedicated to a range of numerical experiments carried out in two parallel
settings: by way of analytic adjoints in Sect. 5.2.1, and with Pytorch in Sect. 5.2.2.
While, in our experiments, we evaluate and compare the proposedmethod for different
settings, such as varying the number of time measurements or noise, we highlight that
the main purpose of these experiments is to show numerical feasibility of the proposed
approach in principle, rather than providing highly optimized results. In particular, a
tailored optimization of, e.g., regularization parameters and initialization strategies
involved in our method might still be able to improve results significantly.

For both settings (analytic adjoints and Pytorch), we use the following learning-
informed PDE as special case of the one considered in Proposition 31:

u̇ −�u − ϕ −Nθ (u) = 0 in �× (0, T )

u(0) = u0 = 0 in �,
(58)

We deal with time-discrete measurements as in Corollary 32, i.e., we use a time-
discrete measurement operator M : V → L2(�)nT , with nT ∈ N, given as M(u)ti =
u(ti ) for t0 = 0 and ti ∈ (0, T ) with i = 1, . . . , nT − 1. We further let a noisy
measurement of the initial state u0 be given at timepoint t = 0. Further, we consider
two situations:

1. The source ϕ in (58) is fixed; we estimate the state u and the nonlinearity
Nθ only, yielding a model operator Gϕ : H1(0, T ; H2(�) ∩ H1

0 (�)) × � →
L2(0, T ; L2(�))× L2(0, T ; L2(�)) given as

Gϕ(u, θ) =
(

u̇ −�u − ϕ −Nθ (u)

Mu

)
.

2. The source ϕ in (58) is unknown, and we estimate the state u, the source ϕ and the
nonlinearityNθ . This results in a model operator G : L2(�)× H1(0, T ; H2(�)∩
H1
0 (�))×�→ L2(0, T ; L2(�))× L2(0, T ; L2(�)) given as

G(ϕ, u, θ) =
(

u̇ −�u − ϕ −Nθ (u)

Mu

)
.

For these two settings, the special case of the learning problem (13) we consider here
is given as

min
(uk )k∈V

θ∈�

K∑

k=1

(
‖Gϕ(uk, θ)− (0, yk)‖2W×Y + ‖uk‖2V

)
+ ‖θ‖22, (59)
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for state- and nonlinearity identification and

min
(ϕk ,uk )k∈L2(�)×V

θ∈�

K∑

k=1

(
‖G(ϕk, uk, θ)− (0, yk)‖2W×Y + ‖uk‖2V + ‖ϕ‖2L2(�)

)
+ ‖θ‖22

(60)
for state-, parameter and nonlinearity identification.

It is clear that identifying both the nonlinearity and the state introduces some ambi-
guities, since the PDE is for instance invariant under a constant offset in both terms
(with flipped signs). To account for that, we always correct such a constant offset in
the evaluation of our results. As the following remark shows, at least if the state u is
fixed appropriately, a constant shift is the only ambiguity that can occur.

Remark 33 (Offsets) With �y := u(� × (0, T )) the range of u for all x ∈ �, t ∈
(0, T ), and given that ∂

∂t u(x, t) �= 0, consider any solutions f : �y → R, ϕ : �→ R

of (34). Then all solutions of (34) are on the form

f̃ (y) := f (y)+ c, ϕ̃(x) := ϕ(x)− c, c ∈ R.

Indeed, assume f̃ , ϕ̃ are solutions, and define g(y) := f̃ (y)− f (y), �(x) := ϕ̃(x)−
ϕ(x). Since these are solutions, one has 0 = g(u(x, t))+�(x) for all (x, t) such that

0 = − ∂

∂t
�(x) = ∂

∂t
g(u(x, t)) = g′(u(x, t))

∂

∂t
u(x, t).

As ∂
∂t u(x, t) �= 0 on �× (0, T ), it follows that g′(y) ≡ 0 on u(�× (0, T )), that is,

there is some c ∈ R such that c = g(u(x, t)) = −�(x) for all (x, t) ∈ �× (0, T ).
Moreover, finding any solutions f , ϕ and setting

c :=
∫
�

ϕ(x) dx − ∫
�y

f (y) dy

|�| + |�y |

yields solutions f̃ (y) := f (y) + c, ϕ̃(x) := ϕ(x) − c, minimizing ‖ϕ‖2
L2(�)

+
‖ f ‖2

L2(�y)
.

Remark 34 (Different measurement operators) In our experiments, we use a time-
discrete measurement operator, and at times where data was measured, we assume
measurements to be available in all of the domain. As will be seen in the next two
subsections, reconstruction of the nonlinearity is possible in this case even with rather
few time measurements. A further extension of the measurement setup could be to use
partial measurements also in space. While we expect similar results for approximately
uniformly distributed partial measurements in space, highly localized measurements
such as boundarymeasurements andmeasurements on subdomains aremore challeng-
ing. In this case, we expect the reconstruction quality of the nonlinearity to strongly
depend on the range of values the state u admits in the observed points, but given the
analytical focus of our paper, we leave this topic to future research.
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Discretization In all but one experiment (in which we test different spatial and tem-
poral resolutions), we consider a time interval T = [0, 0.1], uniformly discretized
with 50 time steps, and a space domain� = (0, 1), uniformly discretized with 51 grid
points. The time-derivative as well as the Laplace operator was discretized with central
differences. For the neural network Nθ , we consider a fully-connected network with
tanh activation functions, and three single-channel hidden layers of width [2, 4, 2]
for all experiments. Note that this network architecture was chosen empirically by
evaluating the approximation capacity of different architectures with respect to differ-
ent nonlinear functions. For the sake of simplicity, we choose a simple, rather small
architecture (satisfying the assumptions of our theory) for all experiments considered
in this paper. In general, the architecture (together with regularization of the network
parameters) must be chosen such that a balance between expressivity and overfitting
may be reached (see for instance [3, Sects. 1.2.2 and 3]), but a detailed evaluation of
different architectures is not within the scope of our work.

5.2.1 Implementation with Analytic Adjoints

Set up In what follows, we apply Landweber iteration to solve the minimization
problem (13). The Landweber algorithm is implemented with the analytic adjoints
computed in Proposition 31 and Corollary 32, ensuring that the backward propagation
maps to the correct spaces.

PDE and adjoints. We employed finite difference methods to numerically compute
the derivatives in the PDE model, as well as in the adjoints outlined in Proposition 31
and Corollary 32. In particular, central difference quotients were used to approxi-
mate time and space derivatives. For numerical integration, we applied the trapezoidal
rule. The inverse operator (−�)−1(−�+ Id)−1 constructed in (50) is called in each
Landweber iteration.

Neural network. In the examples considered, f : u(x) �→ f (u(x)) is a real-
valued smooth function, hence the suggested simple architecture with 3 hidden layers
of [2, 4, 2] neurons is appropriate. As the reconstruction is carried out in the all-at-
once setting, the hyperparameters were estimated simultaneously with the state. The
iterative update of the hyperparameters is done in the recursive fashion (55).

Data measurement. We work with measured data y as limited snapshots of u (see
Corollary 32) and evaluated examples in the case of no noise and δ = 3% relative
noise. Noise ε is sampled from a Gaussian distribution N (0, 1), and the measured
data is y = u + δε(‖u‖2/‖ε‖2).

Error. Error between the reconstruction and the ground truth was measured in the
corresponding norms, i.e. Xϕ-norm for ϕ and W-norm for the PDE residual and the
error of f . For u, V-norm is the recommended measure; for simplicity, we displayed
L2-error.

Minimization problem. The regularization parameters are Ru = Rϕ and Mi (u) =
10 u(ti ) (c.f Corollary 32). We implement an adaptive Landweber step size scheme,
i.e. if the PDE residual in the current step decreases, the step size is accepted, otherwise
it is bisected. For noisy data, the iterations are terminated after a stopping rule via a
discrepancy principle (c.f. [22]) is reached.
Numerical results
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Fig. 1 Numerical identification of state u and ground-truth nonlinearity f (u) = u2 − 1 in (58) for three
different values of the source term ϕ. In each case, three noise-free observations are given (nT = 3). Plots
1-3 and 4-6 in the top line show the given data and the ground truth state for the three equations, respectively.
The content of the remaining plots is described in the titles

Figure 1 discusses the example where only a few snapshots of u are measured;
explicitly, we here have three measurements y j = u(t j ), j = 1, 25, 50, nT = 3.
We test the performance using three datasets of differing source terms and states (i.e.
K = 3 in (59)), but identical nonlinearity f . The top left panel (we denote by panel
(1, 1)) displays three measurements of dataset u1, each line here represents a plot of
u1(ti ). The same plotting style applies for dataset 2 (panel (1, 2)) and dataset 3 (panel
(1, 3)). The exact source ϕi , i = 1, 2, 3 in three equations are given in panel (2, 1).
In panel (3, 2), the nonlinearity f is expressed via a network of 3 hidden layers with
[2, 4, 2] neurons. In this example, we identify ui , i = 1, 2, 3 (panels (2, 3−6)) and f
(see Sect. 5.2.2 for more experiments, including recovering physical parameters). The
output errors in f (panel (3, 3)), u (panels (3, 4 − 6)) and PDE (panel (2, 3)) hint at
the convergence of the cost functional to a minimizer. The noisy case is presented in
Fig. 2.

5.2.2 Implementation with Pytorch

The experiments of this section were carried out using the Pytorch [29] package to
numerically solve (59) and (60). More specifically, we used the pre-implemented
ADAM [25] algorithm with automatic differentiation, a learning rate of 0.01 and 104

iterations for all experiments. In case noise is added to the data, we use Gaussian noise
with zero mean and different standard deviations denoted by σ . The code is available
at https://github.com/hollerm/pde_learning.
Solving for state and nonlinearity In this paragraph we provide experiments for the
learning problemwith a single datum, where we solve for the state and the nonlinearity
and test with increasing noise levels and reducing the number of observations.We refer
to Fig. 3 for the visualization of selected results, and to Table 1 (top) for error measures
for all tested parameter combinations.
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Fig. 2 Numerical identification of state u and ground-truth nonlinearity f (u) = u2 − 1 in (58) for three
different values of the source term ϕ. In each case, three observations (nT = 3) with 3% noise are given.
Plots 1-3 and 4-6 in the top line show the given data and the ground truth state for the three equations,
respectively. The content of the remaining plots is described in the titles

It can be observed that reconstruction of the nonlinearity works reasonable well
even up to a rather low number of measurements together with a rather high noise
level: The shape of the nonlinearity is reconstructed correctly in all cases except the
one with three time measurements and a noise level of σ = 0.1.
Solving for parameter, state and nonlinearity In this section, we provide experi-
ments for the learning problem with a single datum, where we solve for the parameter,
the state and the nonlinearity and test with increasing noise levels and decreasing of
observations. We refer to Fig. 4 for the visualization of selected results and to Table 1
(bottom) for error measures for all tested parameter combinations.

It can again be observed that the reconstruction works rather well, in this case for
both the nonlinearity and the parameter. Nevertheless, due to the additional degrees
of freedom, the reconstruction breaks down earlier than in the case of identifying just
the state and the nonlinearity.
Varying the discretization level In this paragraph,we test the result of different spatial
and temporal resolution levels of the state. To this aim, we reproduce the experiment
as in line 3 of Fig. 4 (6 time measurements, δ = 0.03, quadratic nonlinearity, solving
for nonlinearity and state) for 501× 500 and 5001× 5000 gridpoints in space× time
(instead of 51 as in the original example).

The result can be found in Fig. 5. As can be observed there, changing the resolution
level has only a minor effect on result, possibly slightly decreasing the reconstruction
quality for the nonlinearity. We attribute this to the fact that the number of spatial grid
points for themeasurement was equally increased, see also Remark 34 for a discussion
of localized measurements.
Reconstructing the nonlinearity from multiple samples In this paragraph we show
numerically the effect of having different numbers of datapoints available, i.e., the
effect of different numbers K ∈ N in (60). We again consider the identification of
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Fig. 3 Numerical identification of state u and ground-truth nonlinearity f (u) = u2−1 in (58) for decreasing
numbers of discrete observations (lines 1-2, 3-4 and 5-6) and increasing noise levels (even lines versus odd
lines). Left: Given data, center: recovered state, right: recovered nonlinearity (orange) compared to ground
truth (blue) (Color figure online)
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Table 1 Summary of errors in recovering nonlinearity and state (top) and in recovering nonlinearity, state
and parameter (bottom) for different noise levels and different numbers of discrete measurements (denoted
by tmeas)

Recovering nonlinearity and state
σ = 0.01 σ = 0.03 σ = 0.05 σ = 0.1 σ = 0.2

Nonlinearity error

tmeas = 50 (= full) 1.94e−06 7.08e−06 1.22e−05 1.06e−05 1.91e−05
tmeas =6 2.33e−06 1.89e−06 5.20e−06 4.07e−05 7.14e−05
tmeas = 3 3.58e−06 1.28e−05 6.03e−05 1.24e−03 1.51e−02
State error

tmeas = 50 (= full) 7.09e−06 1.68e−05 2.75e−05 4.53e−05 2.76e−05
tmeas = 6 7.45e−06 2.71e−05 2.04e−05 1.20e−04 1.52e−03
tmeas = 3 8.04e−06 2.40e−05 1.20e−04 7.70e−03 2.21e−02
Recovering nonlinearity, state and parameter

σ = 0.01 σ = 0.03 σ = 0.05 σ = 0.08 σ = 0.1

Nonlinearity error

tmeas = 50 (= full) 1.38e−06 3.97e−06 4.05e−06 1.85e−05 3.36e−05
tmeas =10 1.98e−06 8.25e−06 1.62e−05 1.22e−04 7.12e−01
tmeas = 6 4.22e−06 1.54e−05 3.86e−04 5.47e−04 5.33e−01
Parameter error

tmeas = 50 (= full) 6.11e−05 1.15e−04 2.04e−04 3.59e−04 4.79e−04
tmeas = 10 1.44e−04 5.15e−04 9.13e−04 2.08e−03 4.89e−01
tmeas = 6 2.38e−04 7.23e−04 2.29e−03 4.36e−03 4.26e−01
State error

tmeas = 50 (= full) 1.73e−05 6.23e−05 1.63e−04 2.47e−04 3.24e−04
tmeas = 10 6.46e−05 1.91e−04 3.48e−04 8.45e−04 1.82e−02
tmeas = 6 2.30e−04 4.44e−04 2.35e−03 3.48e−03 1.73e−02

state, parameter and nonlinearity and use three time measurements and a noise level
of 0.08; a setting where the identification of the nonlinearity breaks downwhen having
only a single datum available.

As can be observed in Fig. 6, having multiple data samples improves reconstruction
quality as expected. It is worth noting that here, even though each single parameter
is reconstructed rather imperfectly with strong oscillations, the nonlinearity is recov-
ered reasonable well already for three data samples. This is to be expected, as the
nonlinearity is shared among the different measurements, while the parameter differs.
Comparison of different approximation methods Here we evaluate the benefit
of approximating the nonlinearity with a neural network, as compared to classical
approximation methods. As test example, we consider the identification of the state
and the nonlinearity only, using a noise level of 0.03 and 10 discrete time measure-
ments. We consider four different ground-truth nonlinearities: f (u) = 2− u (linear),
f (u) = u2 − 1 (square), f (u) = (u − 0.1)(u − 0.5)(141.6u − 30) (polynomial) and
f (u) = cos(3πu) (cosine).
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Fig. 4 Numerical identification of state u, ground-truth nonlinearity f (u) = u2 − 1 and the parameter
ϕ in (58) for decreasing numbers of discrete observations (lines 1–2, 3–4 and 5–6) and increasing noise
levels (even lines versus odd lines). From left to right: Given data, recovered state, recovered nonlinearity
(orange) compared to ground truth (blue), recovered parameter (orange) compared to ground truth (blue)
and initialization (green) (Color figure online)
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Fig. 5 Identical setting as in line 3 of Fig. 4 (6 timemeasurements, δ = 0.03, quadratic nonlinearity, solving
for nonlinearity and state), but with different spatial × temporal resolution levels. Left to right: Plots 1 and
3: Approximate state obtained with 501 × 500 and 5001 × 5000 grid points, respectively. Plots 2 and 4:
Recovered nonlinearity (orange) compared to ground truth (blue) for 501 × 500 and 5001 × 5000 grid
points, respectively. The error in the nonlinearity is 3.60e−06 for 501× 500 gridpoints and 5.74e−06 for
5001× 5000 gridpoints (compare Table 1) (Color figure online)

Fig. 6 Numerical identification of state u, ground-truth nonlinearity f (u) = u2 − 1 and the parameter ϕ

in (58) for an increasing number of measurement data. Top to bottom: 1,3 and 5 measurements. Left to
right: recovered nonlinearity (orange) compared to ground truth (blue), ground truth parameters, recovered
parameters (Color figure online)

As approximation methods we use polynomials as well as trigonometric polyno-
mials, where in both settings we allow for the same number (= 29) of degrees of
freedom as with the neural network approximation. For all methods, the same algo-
rithm (ADAM) was used, and the regularization parameters for the state and the
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Fig. 7 Comparison of different approximation methods. From top to bottom: Neural network, polynomial,
trigonometric polynomial. From left to right: ground-truth nonlinearity f (u) = 2 − u, f (u) = u2 − 1,
f (u) = (u − 0.1)(u − 0.5)(141.6u − 30) and f (u) = cos(3πu)

parameters of the nonlinearity were optimized by gridsearch to achieve the best per-
formance.

The results can be seen in Fig. 7. While each methods yields a good approxima-
tion in some cases, it can be observed that the polynomial approximation performs
poorly both for the cosine-nonlinearity and the polynomial-nonlinearity (even tough
the degrees of freedom would be sufficient to represent the later exactly). The trigono-
metric polynomial approximation on the other hand performs generally better, but
produces some oscillations when approximating the square nonlinearity. The neural
network approximation performs rather well for all types of nonlinearity, which might
be interpreted as such that neural-network approximation is preferable when no struc-
tural information on the ground-truth nonlinearity is available. It should be noted,
however, that due to non-convexity of the problem, this result depends many factors
such as the choice of initialization and numerical algorithm.

6 Conclusion

Wehave considered the problemof learning a partially unknownPDEmodel fromdata,
in a situation where access to the state is possible only indirectly via incomplete, noisy
observations of a parameter-dependent systemwith unknownphysical parameters. The
unknownpart of the PDEmodelwas assumed to be a nonlinearity acting pointwise, and
was approximated via a neural network. Using an all-at-once formulation, the resulting
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minimization problem was analyzed and well-posedness was obtained for a general
setting as well a concrete application. Furthermore, a tangential cone condition was
ensured for the neural network part of a resulting learning-informed parameter iden-
tification problem, thereby providing the basis for local uniqueness and convergence
results. Finally, numerical experiments using two different types of implementation
strategies have confirmed practical feasibility of the proposed approach.
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Appendices

A Auxiliary Results

In this appendix, for convenience of the reader, we provide some definitions and results
of [32] and [22] that are relevant for our work.

For V1 a Banach space and V2 a locally convex space, V1 ⊆ V2, we define

W 1,p,q ([0, T ]; V1, V2) := {u ∈ L p([0, T ]; V1) | u̇ ∈ Lq ([0, T ]; V2)} 1 ≤ p, q ≤ +∞.

Lemma [32, Lemma 7.3.] Let V ⊆ H ∼= H∗ ⊆ V ∗, and p′ = p/(p − 1) be the
conjugate exponent to p ∈ [1,+∞]. Then W 1,p,p′([0, T ]; V , V ∗) ↪→ C([0, T ]; H)

(a continuous embedding), and the following integration-by-parts formula holds for
any u, v ∈ W 1,p,p′([0, T ]; V , V ∗) and any 0 ≤ t1 ≤ t2 ≤ T :

(u(t2), v(t2))− (u(t1), v(t1)) =
∫ t2

t1
〈u̇(t), v(t)〉V ∗,V + 〈u(t), v̇(t)〉V ,V ∗ dt .
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Lemma [32, Lemma 7.7 (Aubin and Lions)] Let V1, V2 be Banach spaces, V3 a
metrizable Hausdorff locally convex space, such that V1 is separable and reflexive,
V1 ↪→→ V2 (a compact embedding) and V2 ↪→ V3 (a continuous embedding), and fix
1 < p < +∞, 1 ≤ q ≤ +∞. Then

W 1,p,q([0, T ]; V1, V3) ↪→→ L p(I ; V2).

Proposition [22, Proposition 2.1, (ii)] Let ρ, ε > 0 be such that

‖G(x)− G(x̃)− G ′(x)(x − x̃)‖ ≤ c(x, x̃)‖G(x)− G(x̃)‖, x, x̃ ∈ Bρ(x0) ⊆ D(G)

for some c(x, x̃) ≥ 0, where c(x, x̃) < 1 if ‖x − x̃‖ ≤ ε.
If G(x) = y is solvable in Bρ(x0), then a unique x0-minimum-norm solution exists.

It is characterized as the solution x† of G(x) = y in Bρ(x0) satisfying the condition

x† − x0 ∈ N (G ′(x†))⊥.

Note that in this proposition, the claim does not change if the statement is made for
the ball Bρ(x†) with x0 ∈ Bρ(x†).

B Proofs

Proof of Lemma 14 Observe that for any z, z̃, ω, ω̃, β and β̃, the inequalities

|σ(ωz + β)− σ(ωz̃ + β)| ≤ Cσ |ω||z − z̃|, |σ ′(ωz + β)− σ ′(ωz̃ + β)| ≤ C ′σ |ω||z − z̃|,
|σ(ωz + β)− σ(ω̃z + β)| ≤ Cσ |z||ω − ω̃|, |σ ′(ωz + β)− σ ′(ω̃z + β)| ≤ C ′σ |z||ω − ω̃|,
|σ(ωz + β)− σ(ωz + β̃)| ≤ Cσ |β − β̃|, |σ ′(ωz + β)− σ ′(ωz + β̃)| ≤ C ′σ |β − β̃|

(61)

lead to straightforward computations showing that for every layer i , 1 ≤ i ≤ L , one
has

∣∣∣N i
θ i (z)−N i

θ i (z̃)
∣∣∣ ≤ (Cσ )i

(
i∏

k=1

∣∣∣ωk
∣∣∣

)
|z − z̃| , (62)

∣∣∣N i
θ i (z)−N i

θ̄ i (z)
∣∣∣ ≤ (Cσ )i−l+1

(
i∏

k=l+1

∣∣∣ωk
∣∣∣

) ∣∣∣N l−1
θ l−1 (z)

∣∣∣
∣∣∣ωl − ω̃l

∣∣∣ for i ≥ l, 0 otherwise,

(63)
∣∣∣N i

θ i (z)−N i
θ̂ i (z)

∣∣∣ ≤ (Cσ )i−l+1
(

i∏

k=l+1

∣∣∣ωk
∣∣∣

) ∣∣∣βl − β̃l
∣∣∣ for i ≥ l, 0 otherwise, (64)

which yields (28) when i = L . Here, one recalls that l is the fixed layer with regards
to which we aim to compute derivatives and associated Lipschitz estimates.

More care must be taken regarding the Lipschitz estimates (29) for the derivatives.
Recursively writing out the chain rule, define AL(z, θ) := σ ′(ωLN L−1

θ L−1(z)+βL) ∈ R
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and

Ai (z, θ) := Ai+1(z, θ)ωi+1σ ′(ωiN i−1(z, θ i−1)+ β i ) ∈ R
1×ni for 1 ≤ i < L

(understanding σ ′(ωiN i−1(z, θ i−1) + β i ) as a diagonal matrix in R
ni×ni ), which

satisfies the estimate sup(z,θ)∈B |Ai (z, θ)| ≤
(∏L

k=i+1 sk
∣∣ωk
∣∣
)

si . Due to the chain

rule, it is not difficult to see that

N ′
z(z, θ) = A1(z, θ)ω1 ∈ R, N ′

βl (z, θ) = Al(z, θ) ∈ L(Rnl , R)

N ′
ωl (z, θ) = [Rnl×nl−1 � w �→ Al(z, θ)wN l−1(z, θ l−1) ∈ R

]
.

(65)

The estimate (29) will now be shown via backwards induction, with the various con-
stants defined in (32) acting as the Lipschitz constants of the Ai . Begin by noting

|AL (z, θ)− AL (z̃, θ)| =
∣∣∣σ ′(ωLN L−1(z, θ L−1)+ βL )− σ ′(ωLN L−1(z̃, θ L−1)+ βL )

∣∣∣

≤ C ′σ
∣∣∣ωL
∣∣∣
∣∣∣N L−1(z, θ L−1)−N L−1(z̃, θ L−1)

∣∣∣

≤ C ′σ
∣∣∣ωL
∣∣∣ (Cσ )L−1

(
L−1∏

k=1

∣∣∣ωk
∣∣∣

)
|z − z̃| = Cz

L |z − z̃| ,

where the first inequality is immediate from (61) and the second follows from (62)
with i = L − 1.

Let now1 ≤ i < L be arbitrary.Assume |Ai+1(z, θ)− Ai+1(z̃, θ)| ≤ Cz
i+1 |z − z̃|,

and observe

|Ai (z, θ)− Ai (z̃, θ)|
=
∣∣∣Ai+1(z, θ)ωi+1σ ′(ωiN i−1(z, θ i−1)+ β i )− Ai+1(z̃, θ)ωi+1σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

≤
∣∣∣Ai+1(z, θ)ωi+1σ ′(ωiN i−1(z, θ i−1)+ β i )− Ai+1(z, θ)ωi+1σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

+
∣∣∣Ai+1(z, θ)ωi+1σ ′(ωiN i−1(z̃, θ i−1)+ β i )− Ai+1(z̃, θ)ωi+1σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

= |Ai+1(z, θ)|
∣∣∣ωi+1

∣∣∣
∣∣∣σ ′(ωiN i−1(z, θ i−1)− β i )− σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

+ |Ai+1(z, θ)− Ai+1(z̃, θ)|
∣∣∣ωi+1

∣∣∣
∣∣∣σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣ .

We apply (61), then (62) and the bound on Ai+1 to the first line, while we apply the
induction assumption together with the definition of si to the second line to obtain

|Ai (z, θ)− Ai (z̃, θ)|
≤ |Ai+1(z, θ)|

∣∣∣ωi+1
∣∣∣
∣∣∣σ ′(ωiN i−1(z, θ i−1)− β i )− σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

+ |Ai+1(z, θ)− Ai+1(z̃, θ)|
∣∣∣ωi+1

∣∣∣
∣∣∣σ ′(ωiN i−1(z̃, θ i−1)+ β i )

∣∣∣

≤ |Ai+1(z, θ)|
∣∣∣ωi+1

∣∣∣C ′σ
∣∣∣ωi
∣∣∣
∣∣∣N i−1(z, θ i−1)−N i−1(z̃, θ i−1)

∣∣∣+ Cz
i+1 |z − z̃|

∣∣∣ωi+1
∣∣∣ si

≤
[(

L∏

k=i+2
sk

∣∣∣ωk
∣∣∣

)
si+1

∣∣∣ωi+1
∣∣∣C ′σ

∣∣∣ωi
∣∣∣ (Cσ )i−1

(
i−1∏

k=1

∣∣∣ωk
∣∣∣

)
+ Cz

i+1si

∣∣∣ωi+1
∣∣∣

]
|z − z̃| = Cz

i |z − z̃| .
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(29) now follows immediately from (65) and the fact that |N ′z(z)| = 1, since this is a
matrix with a single entry 1 and otherwise consisting of zeros.

Completely analogous computations, employing (63) and (64), respectively, in
place of (62), similarly yield (30) and (31), concluding the proof. ��
Proof of Proposition 31, iii) OnV = H1(0, T ; V ) ↪→ C(0, T ; V ),we impose the norm
‖ · ‖V via the inner product

(u, v)V =
∫ T

0
(u̇(t), v̇(t))V dt + (u(0), v(0))V ,

since it induces an equivalent norm to the standard norm ‖u‖H1(0,T ;V ) =√∫ T
0 ‖u̇(t)‖2V + ‖u(t)‖2V dt . Indeed, from the estimates (c.f. [32, Lemma 7.1])

‖u(t)‖V ≤ ‖u(0)‖V +
∫ T

0
‖u̇(t)‖V dt

≤ max{√2,
√
2T }‖u‖V ⇒ ‖u‖L2(0,T ;V ) ≤

√
2max{√T , T }‖u‖V ,

such that ‖u‖H1(0,T ;V ) ≤ c‖u‖V for c > 0, and

‖u(0)‖V ≤ ‖u(t0)‖V +
∫ t0

0
‖u̇(t)‖V dt

≤
∫ T

0

‖u(t)‖V

T
+ ‖u̇(t)‖V dt ≤ √2max{ 1√

T
,
√

T }‖u‖H1(0,T ;V ).

for some t0 ∈ (0, T ) such that ‖u‖V ≤ C‖u‖H1(0,T ;V ) for C > 0. Here, we have

used ‖u‖V = ‖u‖H2(�)∩H1
0 (�) :=

√
‖�u‖2

L2(�)
+ ‖∇u‖2

L2(�)
, which is an equivalent

norm on H2(�) ∩ H1
0 (�) as a consequence of the Poincaré-Friedrichs inequality.

At first, we carry out some general computations. First note that L2(�) � kz �→
z̃ ∈ H2(�) ∩ H1

0 (�) is well-defined due to unique existence of the solution to the
linear auxiliary problems (50). Thus, with kz(t) ∈ L2(�) and z̃(t) ∈ H2(�) as in
(50), for any v(t) ∈ H2(�), we can write the identity

(v, z̃)H2(�) =
∫

�

�v�̃z +∇v · ∇ z̃ dx

=
∫

�

∇v · ∇z1 + vz1 dx =
∫

�

v(−�z1 + z1) dx = (v, kz)L2(�).

Given z̃ ∈ L2(0, T ; H2(�)), let uz ∈ H1(0, T ; H2(�)) = V be the solution of the
ordinary equation

üz(t) = −̃z(t) t ∈ (0, T )

u̇z(T ) = 0, u̇z(0)− uz(0) = 0,
(66)
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Now let K : V → L2(0, T ; L2(�)) be any bounded, linear operator. For z ∈
L2(0, T ; L2(�)), v ∈ V , let kz ∈ L2(0, T ; L2(�)) be such that

(z, Kv)L2(0,T ;L2(�)) = (kz, v)L2(0,T ;L2(�)) then define K̃ z := kz .

Then

(z, Kv)L2(0,T ;L2(�)) =:
∫ T

0
(kz(t), v(t))L2(�) dt =

∫ T

0
(̃z(t), v(t))H2(�) dt

=:
∫ T

0
(−üz(t), v(t))H2(�) dt

=
∫ T

0
(u̇z(t), v̇(t))H2(�) dt + (uz(0), v(0))H2(�)

− (u̇z(T ), v(T ))H2(�) + (u̇z(0)− uz(0), v(0))H2(�)

= (uz, v)V .

Using the fact that uz ∈ V in (66) can be computed analytically, we obtain K ∗ :
L2(0, T ; L2(�))→ V via

K ∗z = uz =
∫ T

0
(t + 1)̃z(t) dt −

∫ t

0
(t − s )̃z(s) ds

=
∫ T

0
(t + 1)(−�)−1(−�+ Id)−1 K̃ z(t) dt

−
∫ t

0
(t − s)(−�)−1(−�+ Id)−1 K̃ z(s) ds.

With this derivation, g2,3 = M∗z with M = Id : V → Y = L2(0, T ; L2(�)) can be
obtained by setting K = M , thus K̃ = Id, yielding the adjoint as in (52).

We then compute g2,1. For d
dt + K := d

dt − F ′u(λ, u) − N ′
u(u, θ) : V → W =

L2(0, T ; L2(�)), one has, for z ∈W, v ∈ V,

(
z,

(
d

dt
+ K

)
v

)

W
=
∫ T

0
(z(t), Kv(t))L2(�) dt +

∫ T

0
(z(t), v̇(t))L2(�) dt

=
∫ T

0
(K̃ z(t), v(t))L2(�) dt +

∫ T

0

(
d

dt

(∫ t

0
z(s) ds

)
, v̇(t)

)

L2(�)

dt

=:
∫ T

0
(kz(t), v(t))L2(�) dt +

∫ T

0
(ḣz(t), v̇(t))L2(�) dt

=
∫ T

0
(̃z(t), v(t))H2(�) dt +

∫ T

0
(

d

dt
≈
z(t), v̇(t))H2(�) dt

=:
∫ T

0
(−üz(t), v(t))H2(�) + (

d

dt
≈
z(t), v̇(t))H2(�) dt
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=
∫ T

0
(u̇z(t), v̇(t))H2(�) dt + (uz(0), v(0))H2(�)

+
∫ T

0
(

d

dt
≈
z(t), v̇(t))H2(�) dt + (

≈
z(0), v(0))H2(�)

= (uz + ≈
z, v)V ,

where kz, z̃ are the same as before, and
≈
z solves (50) with hz := ∫ t

0 z(s) ds in place
of kz . Above, we notice that

≈
z(0) = 0 since hz(0) = 0 and unique existence result

of linear PDEs in (50). uz is still, as defined earlier, the solution to (66). For K =
−F ′u(λ, u)−N ′

u(u, θ), we deduce

K̃ z = −∇ · (a∇z)+ c −N ′
u(u, θ)z

yielding g2,1 as in (53).
The next adjoint g1,1 = −F ′λ(λ, u)∗ is computed as follows. For z ∈W, ξ ∈ X ,

(z, K ξ)W =
∫ T

0
(z(t), K ξ)L2(�) dt

=
⎧
⎨

⎩

(∫ T
0 K̃ z(t) dt, ξ

)

L2(�)
if λ = c or λ = ϕ

(∫ T
0 z̃(t) dt, ξ

)

H2(�)
if λ = a

= (K ∗z, ξ)X ,

where K̃ is the L2(�)-adjoint of K = −F ′λ(λ, u); and z̃ solves (50) for kz := K̃ z.
(54) follows by

λ = c : K̃ z = zu, λ = ϕ : K̃ z = −z,

λ = a : z̃ = (−�)−1(−�+ Id)−1(−∇ · (z∇u)).

The adjoint for g2,2 = (·)∗t=0 can be derived in a similar manner.
We now compute the last adjoint g3,1 = −N ′

θ (u, θ)∗ involving the neural network
with weights ω, biases β and the fixed activation σ . With the architecture mentioned
at the beginning of this section, we define by al the output of the l-th layer

al = σ(ωlal−1 + βl), a0 = input data u l = 1 . . . L,

and introduce

a′l = σ ′(ωlal−1 + βl), a′0 = input data u l = 1 . . . L,

with σ = Id in the L-th (output) layer, and σ ′ is the derivative of σ .
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In each layer, one searches for the unknown θl = (ωl , βl) ∈ R
nl×nl−1 × R

nl . For
any Q ∈ R

nl×nl−1, z ∈W ,

(∇ωlN (u, θ)Q, z
)
W =

∫ T

0

∫

�

ωLa′L−1 . . . ωl+1a′l Qal−1 z dx dt

= Q ·
∫ T

0

∫

�

(al−1ωLa′L−1 . . . ωl+1a′l)T z dx dt

= Q ·
∫ T

0

∫

�

a′Tl ωT
l+1 . . . a′TL−1ωT

L aT
l−1 z dx dt

=: Q ·
∫ T

0

∫

�

δla
T
l−1 z dx dt =: Q · K ∗l z,

where K ∗l is indeed the desirable adjoint ∇ωlN (u, θ)∗ in layer l-th. With the use of δl ,
one can perform a recursive routine for computing the adjoints in all layers, starting
from the last layer

δL = 1, δl−1 = a′Tl−1ωT
l δl , l = L . . . 2

∇ωl−1N (u, θ)∗z =
∫ T

0

∫

�

δl−1aT
l−2 z dx dt .

A similar derivation yields ∇βl−1N (u, θ)∗z, completing (55). ��
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