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Abstract

We consider two uncoupled wave equations with potentials on an interval; they both
have the same Dirichlet boundary control at the left endpoint. First, we discuss the
conservative case, and by transmutation, we obtain a simultaneous null controllability
for the corresponding uncoupled heat equations. Afterward, in the nonconservative
case, we prove global Carleman estimates for the adjoint system; the proof relies on the
introduction of new variables, and the construction of appropriate weight functions.
Finally, using the Hilbert uniqueness method of Lions, we solve the simultaneous
boundary controllability problem. The paper ends with some final remarks and open
problems.
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1 Introduction

The exact controllability of wave equations has a history that stretches back to the late
sixties. The early progress on the topic mostly due to Russell and his collaborators is
quite slow, e.g. [8-10, 15, 40—46] but a steady development follows which reaches a
culminating point in the nineties thanks to the introduction by Lions of the famous
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Hilbert uniqueness method aka H.U.M [33-35] in the mid-eighties. H.U.M reduces
the controllability problem for a given distributed system to obtaining an inverse or
observability estimate for the corresponding adjoint system. Within that period of
development, several methods were proposed in the literature to tackle exact control-
lability problems for wave equations; the prominent ones are listed below, and the
interested reader is referred to the introduction of [52].

Those methods include:

e The multipliers method: it was introduced in control theory by Russell [45], and
this was later exemplified in many works, e.g. [1, 2, 8-10, 17, 18, 20-22, 24-26,
33, 35, 38, 55, 59, 60]. This technique is very flexible as long as the system is
conservative, free of lower order terms, and involves only constant coefficients.
It becomes cumbersome when either the coefficients are nonconstant or there are
general lower order terms in the system; in this case, sharp constraints must be
imposed on the coefficients and lower order terms.

e The microlocal analysis method: this method was developed by Bardos-Lebeau-

Rauch [4] to tackle control issues for hyperbolic equations. They gave a general
sufficient and almost necessary geometric condition for exact controllability:
(GCCO): The set w is an admissible region for exact controllability in time T if
every ray of geometric optics enters w x (0, T') in a time less than T .
This method describes the optimal control region for exact controllability of hyper-
bolic equations with time-independent C*° coefficients in general C° domains.
The C*° requirements in [4] for both the domain and coefficients was later relaxed
in [7] to C3 for the domain and C? for the coefficients.

e Carleman estimates method: The Carleman estimate technique for global con-
trollability was initiated by Fursikov and Imanuvilov [14] in the framework of
parabolic equations. Its counterpart for hyperbolic equations was devised by Zhang
[57, 58] for the ordinary wave equation. Subsequently, Fu-Yong-Zhang [13] and
Duyckaerts-Zhang-Zuazua [12] adapted it to general hyperbolic equations. It is
fair to state here that the first precise Carleman estimate for the wave equation was
established by Ruiz [39] in the context of unique continuation for weak solutions
of the wave equation with a potential. It is worth noting that the introduction of
precise Carleman estimates made it possible to study control problems not only for
wave equations involving general lower order terms, but also for semilinear wave
equations, including the case of nonlinearities with superlinear growth, e.g. [5, 13,
19, 31, 48, 50, 57]. Other Carleman estimates for hyperbolic equations were devel-
oped by Beaudouin-De Buhan-Ervedoza [5], Imanuvilov [19], Lasiecka-Triggiani
[26], Lasiecka-Triggiani-Zhang [31], Triggiani-Yao [53], etc.

e The Riemannian geometry approach: This method was developed by Yao [56]
for hyperbolic equations with C* coefficients and was subsequently relaxed
to account for C! coefficients and energy level first order terms by Lasiecka-
Triggiani-Yao [29, 30].

Though for single wave-like systems much progress has been made as far as con-
trollability is concerned, it cannot be said the same for systems of wave equations.
In the case of systems of wave equations, the notions of controllability that have
gained some traction are: the notion of indirect controllability and the notion of simul-
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taneous controllability. In the case of indirect controllability, one wants to control
a multi-component system using a smaller number of controls than the number of
differential equations involved, while simultaneous controllability involves multi-
component systems where the same control mechanism appears in each equation.
Several contributions exist in the literature about the indirect controllability of wave
equations, e.g. [1, 3, 11, 36, 48, 50].

The notion of simultaneous controllability was introduced in the literature by Rus-
sell in his study of the boundary controllability of Maxwell equations in rectangular
domains [47]. To solve that problem, he transformed it into a controllability problem
for a system of two uncoupled wave equations, one having the Dirichlet boundary
conditions while the other one had the Neumann boundary conditions. That simulta-
neous controllability result was later generalized by Lions [33, Chapter 5] to a larger
class of domains, and to uncoupled plate equations. As for the simultaneous internal
controllability of uncoupled wave equations (two or more equations), Haraux initiated
that work in [16], where he established some unique continuation results leading to
approximate controllability in all space dimensions. He also proved an exact control-
lability result in one space dimension where the control region was an arbitrary open
subinterval of the interval under consideration, and he proved another one in higher
space dimensions where the control region was the whole domain under considera-
tion. The one-dimensional controllability result of Haraux was later generalized to
all space dimensions and under the Bardos-Lebeau-Rauch geometric control condi-
tion [4, 7] by the second author of the present contribution [49, 52]. A simultaneous
controllability result for uncoupled wave and plate equation was derived in [51]. One
may also mention the work by Zuazua [62] where the author discusses partial observ-
ability inequality for uncoupled dynamical systems; in his work, the author considers
two uncoupled dynamical systems having commuting principal operators, viewing the
second system as a perturbation of the first one. He also proves a simultaneous con-
trollability result provided that the final states of the adjoint system are suitably related
(see [62, p. 25]). The authors of the present work are unaware of simultaneous bound-
ary controllability results for uncoupled wave equations other than those of Russell
and Lions mentioned above. The controllability problem that we shall tackle seems
new even in the conservative case. This explains why we start by providing the proof
of the observability estimate in that simpler situation, where multipliers technique can
be used, before tackling the more technically involved nonconservative case. Other
than the obvious pedagogical benefits, doing this has the extra benefits:

e it enables us to cover the analogous problem for the heat equations,
e it gives us some insight into tackling the nonconservative case of interest to us.

Now, we are going to formulate our controllability problem. First, we introduce some
useful notations.

LetT > 0.SetV ={u € HY0, 1); u(0) = 0}, and denote by V'’ the topological
dual of V. Set Q = (0, 1) x (0, T), and let a in L*°(Q).

Consider the following boundary controllability problem:
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Given (y°, y!)in L2(0, 1) x H~1(0, 1) and (z°, z') in L2(0, 1) x V’, find a control

function & in L2(0, T) such the solution couple (y, z) of the following system

Vit — Yex +a(x,t)y =0in Q,

Ztt — Zxx +a(x, 1)z =0in Q, (D)
v(0,1) = h(t), z(0,1) = h(r), y(1,1) =0, z(1,1) =0in (0, 7),
v, 0 =y 3,0 =yl 2(,0) =2 z(,0) =z,

satisfies

y,T)=0, y(,T)=0, z(.,T)=0, z(,T)=0. (1.2)

Remark 1.1 Some comments are in order.

Notice that, for all (y°, y!) in L2(0, 1) x H~1(0, 1), (z°, z") in L2(0,1) x V’
and h in L%(0, T), System (1.1) is well-posed; this can be established using the
method of transposition as described in Lions-Magenes [32, Vol. 1]. More on this
in Section 4.

Returning to the controllability problem, we point out that if such a control exists,
we say that System (1.1) is exactly controllable in time 7. Note that given the time
reversibility of the wave equation, null controllability and exact controllability are
equivalent; this means that if a control exists that steers the system to equilibrium
in time 7', then there exists a control that can steer it to any desired state in time
T.

Given that the speed of propagation is finite, the controllability time must be large
enough; in the present problem, the controllability time 7 is greater than 4, which is
the double of the time needed to control from one endpoint a single wave equation
with speed of propagation one. This controllability time is in agreement with the
controllability time for an uncoupled system of two wave equations discussed in
[33, Chaper 5].

The fact that the control is at the left endpoint is not important; provided we
switch the boundary conditions, the boundary control may be placed at the right
endpoint. However, notice that if we use the Dirichlet boundary conditions at the
left endpoint, and place the control at the right endpoint, then this is similar to
what is done in Lions’ book in the conservative case (@ = 0 in Q) [33, Chapter 5].
This latter controllability problem in the nonconservative case requires a different
approach than the one that we will develop to solve the problem at hand, and will
be dealt with in a subsequent contribution.

An attentive reader should have noticed that we are using the same potential func-
tion in both equations. This is due to the fact that we are unable to establish
Carleman estimates for the adjoint system in the case of two different potential
functions. In the latter situation, there are lower order terms that appear on the
right side and that cannot be absorbed by the left side, given the structure of the
weight functions. More on this later on.

Remark 1.2 One may fairly wonder why we choose to use different boundary con-
ditions at the right endpoint. In other words, can we solve the simultaneous control
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problem for the system (1.1) if both y and z satisfy homogeneous Dirichlet boundary
conditions at x = 1, or both satisfy homogeneous Neumann boundary conditions at
x = 1? This is not possible. To help the reader understand our answer, we find it useful
to expound on the method for solving this simultaneous controllability problem. To
solve the simultaneous controllability problem at hand, we implicitly transform it to
an indirect controllability problem for the new variables S =y +zand D =y — z.
We say, implicitly, because we do not do this on the primal problem, but rather on the
dual one. Now, it is easy to check that the S-system is controlled while the D-system
is uncontrolled. When the boundary conditions at the right endpoint are distinct, the
(S, D)-system is coupled at the right endpoint, so the effect of the control is transmit-
ted to the D-system through the coupling; this enables us to control the (S, D)-system
and finally the initial system (1.1). If the boundary conditions at the right endpoint
were the same, the (S, D)-system would be uncoupled; in particular, the D-system
would be conservative, precluding us to control either the (S, D)-system or the original
(v, z)-system.

We can now state our first result:

Theorem 1.3 Let T > 4. Ler (°,y") in L%(0,1) x H~'(0,1) and (°,z") in
L20,1) x V. Let a in L*°(Q). There exists a control function h in L%0, T) such
that the solution couple (y, z) of System (1.1) satisfies (5.5).

Furthermore there exists a positive constant Cy, that depends on T and ||al|L>(p)
only, such that

Al 20,y = Co {13221y + 1 10,0 + 1201220 + 11 v} (13)

To prove this theorem, we shall rely on the Hilbert uniqueness method (H.U.M) of
Lions [33], which reduces solving the controllability problem to establishing an inverse
inequality for the adjoint system corresponding to System (1.1). The rest of the paper
goes as follows: In Sect. 2, we introduce the adjoint system and prove the observability
estimate in the conservative case. Section 3 is devoted to proving Carleman estimates
for the nonconservative adjoint system; this is where the main contribution of the paper
appears. In Sect.4, we discuss the well-posedness of a system like (1.1), and prove
Theorem 1.3. Section 5 deals with some final remarks and open problems.

2 The Adjoint System and an Observability Inequality

Consider the following adjoint system

Uy —Uyx +alx,)u =0in Q,
Vi — Uy +a(x,t)v=0in Q,
u0,1) =0=v(0,1), u(l,1)=0, vy(1,£) =01in (0, T),
u(,T)=u®, u, (., T) =u', v(,T)=2° v(,T) =",

2.1)

where
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o u’ e H}(O0, 1), eV,
o ul,v' € L%(0, 1).

It is well known that System (2.1) is well posed, namely, for every 7 > 0 and all
@, u")in HJ (0, 1) x L*(0, 1) and (v°, v!) in V x L?(0, 1), this system has a unique
solution couple (u, v) with

(u,v) € C([0, TT; Hy (0, 1) x V)N CL([0, T1; L*(0, 1) x L*(0, 1)).

Introduce the energy functional E defined by

1 1
E(t)=§/ e 0P + (e 0P + 1o D + oG, 0P} e, vee (0,71,
0

For the conservative adjoint system (a = 0 in Q), we have the following observability
result:

Proposition 2.1 Let T > 4. Assume that a = 0 in Q. There exists a positive constant
Co, that depends on T only, such that for all (uo, ul) in HO1 0,1) x L2(O, 1) and
%, v in V x L0, 1), the solution couple (u, v) of System (2.1) satisfies

T
E@0) = E(T) = Cof | (0, 1) + v, (0, )|* dt. (2.2)
0

To prove this result or the Carleman estimate in the nonconservative case, an important
step, in the opinion of the authors of this work, is to introduce appropriate new variables.
For this purpose, the couple (u, v) being any solution of System (2.1), set

p:u—’—'l), q:U_M.

One readily checks that the functions p and g satisfy the following system involving
Kirchhoff boundary conditions at the right endpoint

Ptt — Pxx +a(x, t)p =0in 0,

Gt — qxx +a(x,t)g =01in Q,

p0,1) =0=4¢q(0,1),

p(l, 1) =v(l, 1) = q(1,1), px(1,1) = ux(1, 1) (2.3)
= —qx(I,0)or px(1,1) + gx(1,1) = 0in (0, T),

p(.,T) = u® 40, p:(., T) = ol +ul,

q(.,T) = 00 — 0, q:(.,T) = vl —ul,

Proof of Proposition 2.1 One proves the proposition for data

@0, ul) e <H2(0, 1) N H (. 1)) x HL(0,1) and

@0, 1) € (HZ(O, HN V) <V, (2.4)
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and one derives the proposition by using a density argument. Under the latter assump-
tion on the data, it is known that the corresponding solution couple (u, v) of (2.1) with
a = 0in Q satisfies

(u,v) € C([0, T1; (H>(0, 1) N H (0, 1)) x (H*(0, H N V)N C'([0, T1; Hi (0, 1) x V),

so that all the computations that follow are justified.

Let the data satisfy (2.4), and let (p, g) be the corresponding solution couple for
System (2.3).

Multiply the first equation in (2.3) by 2(x — 1) p, and the second equation by 2xg,,
and integrate by parts to derive

1 T T 1
2/ (x—l)ptpxdx] —f f(x—l)(p3+p§)xdxdt=o, 2.5)
0 0 o Jo

and

1 T T pl
2 / xq,qxdxi| - / [ x(q? +¢>)c dxdt = 0. (2.6)
0 0 0 Jo

Reintegrating by parts yields

T

1 T pl T
2/0 (x = Dpipx dx] +/0 /0 (P} + py) dxdt =/O pe(0.0%dt,  (27)
0

and

T

1 T 1 T
2/0 xqthdx] +/0 /O<q3+q§)dxdr=/0 (@ (1,0 +gx(1, %) dt
0

T
= [ o2+ petoiyar
0
(2.8)
where in the last equality, we have used the boundary conditions at the right endpoint
in (2.3).

Now, we need to eliminate the boundary integral at x = 1. To this end, multiply
the first equation in (2.3) by 2xp, and proceed as above to derive

T

1 T 1 T
2/ xptpxdx} +/ /(p?+p§>dxdr=/ (e (1, 0% + pe(L, ) .
0 o Jo Jo 0
2.9)
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The combination of (2.8) and (2.9) yields

T T

1 T 1 1
2/ Xqtqx dx] + / / (%2 + qf) dxdt = 2/ XDt Px dxi|
0 o Jo Jo 0 0

T 1
+/ /(p,2+p§)dxdz. (2.10)
0 0

Multiplying (2.7) by 2, and adding the resulting equation to (2.10), we find

1 T T pl
2 / ((x—2)psz+xqth)dX} + f f (p? + g} + p? +q?) dxdt
0 0 0o Jo
T
:2/ px(0, 1) dt, 2.11)
0

By the Cauchy-Schwarz inequality, it follows, for every ¢ in [0, T']:

1
2/0 ((x = 2)pr Px + Xquqe) (x, 1) dx
! 2 2 2 2
5/0 (@ =) (P? + D)+ x(@2 + a2 (x, 1) dx
1
52/0 (p7 + 47 + pr+ g (x, ) dx (2.12)
1
< 4/ W? 4+ v? +u? +vH)(x, 1) dx < 8E(1) = 8E(T).
0

One then readily derives

T
<8(E(T) + E(0)) = 16E(T).  (2.13)

1
2[0 ((x =2)pipx +xqqu)dx}

0

Gathering (2.11) and (2.13), and using the fact that

T pl T ,l
/ / (PE+q> + PP+ gH dxdr = 2f / W? 4 v? +u? + v} dxdt = ATE(T),
o Jo 0o Jo
it follows
T
MT — DET) <2 / P20, 1) dt,
0
hence the claimed observability estimate, for every T > 4. O
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Remark 2.2 Thanks to Lions H.U.M., the observability estimate of Proposition 2.1
leads to the existence of a boundary control 4 in L?(0, T') for System (1.1) with
a=0.

Using the transmutation method of Miller [37], one derives that there exists a control
g in L2(0, T) for the following parabolic system

Xt — Xxx =0in Qv

& — Cxx =0in o,

x(0,1) = g(t), £(0,1) = g(t) in (0, T), (2.14)
x(1,t) =0, ¢,(1,1) =0in (0, T),

x(,0)=x%eL*0,1), ¢(,0)=¢"€eL?0,D),

such that x(.,7) =0and ¢(., T) = 0.
Indeed, let L > 4 and introduce the following function p, solution of the one-
dimensional heat equation

(2.15)

{ pr — pss = 0in R x (0, 00),
p(.,0) =36, p(.,T) =0,

where § denotes the Dirac mass at t = 0 and p(x; ) = 0in Rz\[(—L; L) x (0; T)].
Now we have the existence of a control & in LZ(0, L) such that the solution couple
(v, z) of the following system

Yss — Yox = 0in Qp = (0,1) x (0, L),

Zss —Zxx =0in Qp,

(0, s) = h(s), z(0,s) = h(s) in (0, L), (2.16)
y(1,5) =0, zx(1,s) =01in (0, L),

¥ 0) = x" y(.0) =0, z(,0)=1¢" z(.,0) =0,

satisfies

vy, L)y=0, y(,L)=0, z(,L)=0, z3(.,,L) =0. (2.17)

Define the extension £ of y by reflection about s = 0, so that £(x, s) = y(x,s) =
£(x, —s) forall (x,s) in (0, 1) x (0, L). Simillarly, define the reflection m of z. Set

X(x,t):/p(s,t)ﬁ(x,s)ds, g‘(x,t):/p(s,t)m(x,s)ds,
R R
and
g(l)Z/,O(S,t)h(S)dS-
R

One readily checks that the couple (x, ¢) solves (2.14) and satisfies x (., ) = 0 and
¢(.,, T) =0, as claimed above.
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3 Carleman Estimates

In this section, we are going to state our main result, which is a Carleman estimate for
System (2.1), and to prove it, we will need two Carleman estimates for System (2.3).
The first Carleman estimate for System (2.3) is established under the condition that
all initial and final displacements be zero. The second one deals with the case where
the null displacements constraint is dropped.

Carleman estimates always depend on appropriate weight functions. We are going
to introduce the weight functions to be used in our Carleman estimates now.

3.1 Weight Functions and Statement of the Main Result

For every j =1, 2, set

T 2
Vjx, 1) =l’j(x)—ﬂ(t_ 5) +K

where > 0 and K > 0O are constants. The constant K is chosen large enough so
that ¥ (x, ) > 1, forall (x,¢) € [0, 1] x [0, T]. The functions rj, (j = 1, 2), are
quadratic polynomials satisfying:

() =r(), ri()=-ry1), rf(1)=ri), (3.1
ri(x) < 0and rj(x) > 0 forall x € [0, 1]. (3.2)

A basic class of functions r; and r, satisfying all those requirements is given by

ri(x) = mx? — Am+n)x +4m+2n and r(x) = mx? + nx, Vxe]0,1],
(3.3)

where m > 0 and n > 0 are arbitrary constants.

Those two functions may be used in the proof of our first Carleman estimate given
in the Subsect. 3.2, and which is valid for all 7 > 0. Notice that this time relaxation is
possible because the null displacements constraint is enforced at the initial and final
time. When the null displacements constraint at the initial and final time is dropped,
the time 7" must be large enough, and a refined set of functions r and r, will be used
in that case.

An attentive reader may wonder why we introduce these new weight functions
2

instead of using the standard one (x — 1)% — [ 7 — 7)) To answer this question,

we recall the conservative case. In that case, we rely, not only, on the usual multiplier
(x — 1), but also on this one x. This was already an indication that, for the Carleman
estimate, the standard weight might not work for both components p and g of the
modified adjoint system (3.7). When proving our first Carleman estimate below, we
encounter unwanted boundary terms that must be discarded. Using the two functions
r1 and r; satisfying the constraints (3.1) and (3.2) enables us to achieve that goal (see

@ Springer



Applied Mathematics & Optimization (2023) 88:49 Page 11 0f47 49

J; to J{, in pp 22-24). Notice that we may pick fixed values for both constants m
and n, for instance, we may set m = 1 = n, but we want to emphasize that there is
an infinite family of functions that meet our constraints (3.1) and (3.2). In particular,
having such a family handy enables us to select the appropriate constants m and n to
meet our need (see Sect. 3.3 about our improved Carleman estimate).

Let & > 0. Define for every j = 1, 2,

@j(x, 1) = ViD,

Leta in L®(Q). Set & = {(u, v) € (H'(Q))" s try — thex +au =0, vy — vyx +
av =0, u(0,t) =v(0,t) =0, u(l,¢) =0 and v,(1,7) = 01in (0, T)}. Notice that
one can readily check, using a density argument, and the multipliers technique that for
each each T > 0 and each couple (u, v) in &, one has uy (1, .), u, (0, .) and v, (0, .)
all lie in L2(0, T).

Letr € C%([0, T]) be a suitable cutoff function. Our main result in this work is the
following

Theorem 3.1 Ler T > 4. Assume that a lies in L°°(Q).
There exist two constants C > 0 and s1 > 1, such that for every s > s1, any couple
(u, v) in &, satisfies the Carleman estimate

s / (u? + u? + v} + v})e™dxdt + s° / (u? + v?)e*2dxdt
0 0
T 2
+s f 20200, ) (v (0, 1) — ux (0, 1)) “e*¥200qy (3.4)
0
4 2
< Cs / 100, 1) (u(0, 1) + 0,0, 1)) "> @y,
0

Remark 3.2 The following unique continuation result readily follows from Theo-
rem 3.1:

Y(u,v) €&, ux(0,1)+v,(0,1)=0, ae.t€(0,T)=u=0, v=0in Q.
As our proof of the Carleman estimate in the following section will show, provided

one switches ¢ and ¢; in the definition of p; and p» in the proof of Proposition 3.4,
one can obtain the following result:

Theorem 3.3 Let T > 4. Assume that a lies in L*°(Q).
There exist two constants C > 0 and s1 > 1, such that for every s > s1, any couple
(u, v) in &, satisfies the Carleman estimate

s / (u? + u? + v} + v})e™ 2 dxdt + 5° / (u* + v?)e*P2dxdt
0 Q
’ 2
+s / 2020, 1) (vx(0, 1) + ux (0, 1)) "> 200 gy (3.5)
0
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T
= CS/ ¢1(0, l)(btx(o, 1) — vy (0, t))ze%(/)l((),l)dt.
0

3.2 A Global Carleman Inequality

Set 8 = {(u,v) € (H'(Q))* s urr — ttex € L2(Q), Vit — vox € LA(Q), u(0, 1) =
v(0,1) =0, u(1,£) =0 and v, (1,7) =0in (0, T), u(x,0) = u(x, T) = v(x,0) =
v(x,T) =0in (0, D}.

Proposition 3.4 Let the weight functions v and ¢; be defined as above for every
Jj = 1, 2. Then there exist three constants Lo > 1, so > 0 and C > 0, such that for
A > Ao, s > 5o and for all (u, v) € S, the following inequality holds

sh /Q o1 (v + 1) + (vx + uz)*]e> dxds (3.6)
+ sk /Q o[ (v — )’ + (vx — ux)* ] dxds
+ 5723 /Q 03 (v + 1) > dxdr + 5723 fQ 03 (v — u) > dxdr
+ 5k /0 ' ©2(0, ) (vx (0, 1) — 1, (0, 1)) > 0D gy

< C(/ erzs‘p'dxdt+/ G?*e>%dxdt
Q 0
r 2
+ 52 / @10, 1)(0:(0, 1) + w0, ) %24 ),
0

where F = u;r — gy + Uy — Uy and G = vy — Uy — (ut, — uxx).

Proof Let (u,v)inS. Set p = u + v and ¢ = v — u. Then the couple (p, q) satisfies
the system

P — pxx = Fin Q,
4 — qxx = Gin Q,
p0,1) =0=4¢q(0,1), (3.7)
pLt)=q(,1), px(1,1) + q<(1,7) =01in (0, T),
p(,O)ZO, p(,T) =O, L](,O) =0, q(,T) :0,
Set
p = pie Y and g = pre %2, (3.8)

Using (3.8), we are going to write (3.7); in terms of pj and (3.7); in terms of ps.
Elementary calculus shows that

Plit — Plxx — 25491 (Wltplt - Iplxplx)
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— 5% W = Yo erpr =32 (V=91 ) e (3.9)

+522g (] — wi )1 = ¢ F in 0,1 x 0,7,
and similarly

[Pzn — P2xx — 25A@2 (1/f2zP2z — Yox sz)
— sk (Y2ur — Vaxx) p2p2 — A (szt - w%x) P

+ 52222 (1//2% - 1/[22x)p2 =¢"2Gin (0, 1) x (0, T).
Now, we write (3.9) as

Mip1 + Mapy = Fe'# + Rpyin (0,1) x (0, T) (3.10)
where

Mip1 = pus — Prax + szkzwf(vfﬁ — fo)pl,
Map1 = (1= Dsr(Vi = Viax g1

— 2201 (vl — vl )m

— 2511 (lﬁlzplz - %xplx),

Rp1 = =05 (Vi = Vi )1,

1 being a positive constant to be determined later on. Taking the LZ—norm of each
side of (3.10), we find

/ |M1p1|2dxdt+/ |M> p1|>dxdt +2f M p1M>pidxdt
(@) 0 0
=f |Fe'?' + Rpi|*dxdr. (3.11)

o
One checks that
Zf MipiMyprdxdt = 2sh(n — 1)/ Pl (I/fm - Ilflxx)wlmdxdt

0 0
— 2527 /.Q @1 (%2; - lex)Pmpldxdt

- 45}‘/ Pl @1 (Wltplt - 1ﬂlxl’lx)dJCdl‘
0
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=200 = 1) [ pras (Y1 = viss onprdas
0
2 2 2
+ 254 / ?1 (%; - wlx)plxxpldx‘h
0
w4t [ a(Wupn = s prasdds
Qo
+260230= 1) [ 93 (= i) (v, — v ) phaxar
0
2

—25% [ 6i(v = i) phdxar

Q
- 483)»3/ w?(lﬂlzplz - Wlxplx>(¢12t - 1/f12x)171dxdt.

Q

The main idea is to bound from below the cross-product term by positive quantities,

and pass negative quantities that cannot be absorbed to the right side.
T

Now, we set 2 Mip1M>pidxdt = I1+- - -+ Iy. Using elementary calculus,

0 Jo
we are going to find all the terms I;s.

Iy = 2sA(n — 1)/ Pl (1/[11[ - 1//1xx)(p1p1dxdt
0
_ 2
= —2sA(n — 1)/ 1 (1/f1tt - I/flxx)pltdx‘it
0

— 2503 (n — 1)/ ¢11ﬁ1z(1ﬂ1n - l/flxx)l?lzpldxdf
0

=11 + 112,

since Y (x, 1) = Yixn (X, 1) = 0and pi(x,0) = pi1(x, T) = 0.
Computing /1>. We have

I, = —s)»z(n -1 /; QDIWIt(Wltt - wlx)()(p%),dxdt
= sA3(n — 1)[ (lelzt (Vflzt - I/flxx)P%dXdI
0

+ 522 — 1)/ 1¥in (1/f1n - 1/f1xx>pfdxdt.
0
Consequently, we can write

I =-2sA(n—1) /Q ¥1 (llfm - Wlxx)l’%tdxdt
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+ 523 — 1)/ o1y, (lﬁm - Iﬁlxx)pfdxdt
o

+ skz(ﬂ — 1)/ O1V1 (Wltt - lﬁlxx)p%dxdt.
o

Similarly, we have

L= —2s)»2/ <p1<1ﬁ12, - I/’12x)1l’1n171dxdl
0
_ 2sk2/Q<p1<l/f12; — wfx)pidxdf
+4sk2/ ©1 Y11 p1eprdxdt
&

+2s?»3/Q<p1 1#1z<l/f121 - lﬁfx)mzpldxdt

=Dhi+1n+1x

since (7,);(x, 1) = 0 and p; (x,0) = pi(x, T) = 0.
Computing 1> and I>3. We have

I, = ZSAZ/QWWln‘/flt(P%)thdf

(3.12)

= —25)° /Q o1¥1 i, prdxdt — 2537 /Q o1y}, prdxde

since Y1y (x, 1) = 0.
Similarly,

R R RN G

Y fQ o2, (3 — 3, pldxds

— skaf Q1Y (wlzt - wlzx)p%dxdt - 25)\3/ wlwlnlﬂﬁp%dmf
0 0

= —s)»4/ (plwf,p%dxdt —3s)»3/ <p11p1,,¢12tp%dxdt
o 0
+s)»4/ wllﬁlzzlhzxp%dxdtJrsf/ @11V, prdxdt.
o o
We can now write I as

I, = 25)\.2 /Q ®1 (1/f121 - 1/’12X>P%thdt
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—5sk3/ o110Vt prdxde —2sk2/ o1yl prdxde
(0] (0]
—sA4/ golwftp%dxdt—i-s)fl/ (plwlztl/flzxp%dxdt
o (0]
+ 523 / o1 Wi, pldxdt.
0
Iz = —48?»/ @1 (llfnpn - I/flxplx)l?mdxdt
0
= —257»/ ¢11/f1t(pf,)zdxdt+4sk/ Q1Y1xPLx Plrdxdt
(0] 0o
_ ! 2 T 2 2 2
= —2sA (@11 P (x5 ) de+2sk w1y, py,dxdt
0 0
+2S/\/ @1 V1 pT,dxdt —4S)»/ O1Y1x PLxe P1edxdt
o 0

—4sk2/ Q1Y 1Y ix PLx predxdt
o

=131+ Isp + [33 + 134 + I35. (3.13)

since piy(x,0) = pix(x, T) = 0. Computing /34 gives
_4S)‘/ ©1¥1x P1xr P1edxdt = _2S)”/ fﬂll/flx(P%;)dedl
o o

T
= —25)»/ [wll/flxpi](l,f)dt
0

+2s)»2/Q<p11ﬁ12xp%tdxdt+2sA/Q(p1¢1”p%tdxdt,

since p1;(0, t) = 0. Thus, we have

1 T T
Iy = 25k /0 [t ] dx =25 /0 [ervnpt 1 de
2 2.2 2
+ 2sA /(plwltpltdxdt—l-Zs)»/ ©1V11 1 dxdt
Q 0
2 2 .2 2
+ 25X /golllflxpltdxdt+2sk/ ©1V1xx 1 dxdt
Q Q
—4S7~2/ Q1YY 1xPixpredxdr.
Q
Iy = =2sh(n — 1)/ Plxx (I/f]tt - Iﬁl)cx)(ﬁlpla'xa’t
Q

=2sA(n — 1)/ ] (1/fln - Iﬂlxx)P%dedt
0

@ Springer



Applied Mathematics & Optimization (2023) 88:49 Page 17 of 47 49

+ 2522 — 1) /Q o1 (Vi = Vi ) proprdxds

25201 = 1) /0 o (1 = 9102 ) pran (1.

= I41 + Iao + I3.
since p1(0, t) = 0. Computing I42, we get
Lip = s3*(n — 1)/ P1¥1x <I/f1n - Iﬂlxx)(P%)xdxdt
9
T
=522 =1 [ [orpe(vs = v | 0t
0
_ S)\,3(n - 1)/ §01¢12x (1//1[[ — Iﬁlxx)pfdxdt
0
=520 = 1) [ ninas (v = i) i
o
since Yisy (X, 1) = Yixxx (x, 1) = 0. Thus, we obtain
2
=220 = 1) [ o1 = v )
o
—sA3(n — 1)/ Q1T (wm - Wlxx)p%dxa't
9]
- Skz(ﬂ -1 /.Q @1V 1xx (‘/fltt - 1/ﬂx}c)[’%dx{h
T
#5320 =1 [ [orvna (s = i) i ] 1.0
0
T
=200 =1 [ [or(1 = v )prapr |1 v
0

Is = ZSAZf <P1<1ﬁ12; - 1//12X>P1xxmdxdt
0

202 [ o1(v, — v ) phavar
— 2523 2yt dxd
1Y 1x %, 1pl)c Pixpirdxadt
0]
+4S)‘2/ O1V1xxVix P1x prdxdt
o

+ 2522 /OT [(ﬂl (1/f12z - lex)l?lxpl](l, t)dt

= I51 + Isp + Is3 + Is4

(3.14)

(3.15)
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since (wlzt)x (x,1) =0and p;(0, t) = 0. Computing /5, and Is3, we have

15 == [ onine(9, — 3. s
— 4 2 (w2 — w2 \p2dxd
=S eV |\ Vi — Vix ) pidxdt
[¢)
87 [ owiea (v~ v )planar 2927 [ ornuaviopiasas
3 T 2 2 2
— 2 /0 [orvna (vl = v ) pt] . nar
= —s)»4f (plwfxp%dxdt—3sk3/ (pll/flxxl,//lzxp%dxdl‘
0 0
+ 50 / oY Ui pidxdt + si° / QW Ui pldxdt
0 0
3 T 2 2 2
—S)L/O [(PI‘/flx(I/’lz—1/f1x)171](17f)df,
and

Is3 = 2537 / P11 Vrix (p])adxdt
0
= —2s)»3/Qg011//1xx1ﬁ12xp%dxdt—2sk2/Q(p1w12xxp%dxdt

T
+202 [ [ovnaavneri]atnar

since Y¥1yxx(x, 1) = 0. Hence,

Is = —2522 /Q o1 (wft - wfx) p3.dxdt
—s)»4/ ¢1wfxp%dxdt—5sk3/ wlwlxxwlzxp%dxdt
o o
+S)\4/ §01¢12XW12,p%dxdt+sk3/ </)11/f1xx1ﬂ12zP%dde
o o
—2s)»2/;2(p1w12xxp%dxdt
T
=i [ o (v = v pi]ct.
T
#2002 [ oyt nar
0
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T
+2sA2/ [Sol (%2; - lﬁfx)mxpl](l, tydt.
0
ts =453 [ o1 (Vupre = a1 prssdxdr
0
T
=4S)»/ [wlwltpltplx](lst)d[
0
—4S)»2/ QLY1x Pl predxdt
o
—4S)x/ @11 PLxe Plxdxdt
o

—2s,\f 11 (p3 ) rdxdt
0
= Ig1 + Iz + I3 + Ig4. (3.16)

since ¥y (x, 1) = 0, p1;(0,1) = 0 and pi1,(x,0) = p1x(x, T) = 0. We can write
that

Iz = —2s5A / @1V (pr)edxdt
0

= 2522 / o1y ptodxdr + 25\ / o114 p3 dxdt,
0 0

and

T ) 1
Ios = —252 /0 [@rvrptoc.n] a

+2sk2/Q¢11//12xp%xdxdt+2sA/Qg011//1xxp%xdxdt.

Consequently,

T

T 1
Ig = 4sh f [erviepipi ] (1. 0de = 250 / [@rvptoc.n] ar
0 0
—45)»2f O1¥1x P11 predxdt
0
+2sk2f (plwftp%xdxdt—i—%)\/ (plwmpfxdxdt
o o

+ 2522 /Q o1} pt.dxdt + 2sh /Q Q1 Y1xx P dxdt. (3.17)
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No computations needed for the next two terms.
=201 [ 6 (v = v1ar) (01, — v2.) R
Q
2
Is = —25334 / 03 (wf, - wfx) pidxdt. (3.18)
Q
For the last term, proceeding as above, we find
Iy = —4573 /Q o1 (v = viepie) (W — v ) prdds
= 2553 /Q o (vl - vl ) (pDiddr 425733 /Q ot (v = v, ) (pDadds
=65t [ bk (v — v avd + 25752 [ (w3, - vR.)phdxar
Q Q
+ 45323 /Q gofx//ml//lztp%dxdt — 65224 /Q (/)131[/12X (1//12, - wlzx)p%dxdt
—25%° fQ v (v - vi ) plaxde
3,3 3 2 2 3,3 (17 3 2 2,2
+ 457N /QW] Yix Ui prdxdt + 257\ /0 [‘ﬂi Yix (‘ﬁl, - ‘/’1x>171:|(1, t)dt

since (Y2);(x, 1) = (W) (x,1) = 0, p1(x,0) = pi(x, T) = 0 and p;(0,1) = 0.
Hence

2
Iy = 65°x / o (v — vi) pldxar
0
=+ 2S3)L3 / (ﬂ:l}’ (1//1tl - wlxx> (1/[121 - wlzx)p%dxa't
o
=+ 4S3)\3 / (ﬂ% (wlttl/flzz + I;[fl)c)c1//12)()p%dth
o
3,3 T 3 2 2 2
+ 257X ) (01¢1x w“ Iplx P1 (l’t)dt' (3'19)
Combining (3.12)—(3.19), we get
) 2
2/ Mllezpldxd[ =45 / 1 (1//1tl’1r - v’lxplx) dxdt
0 o]
=+ 23‘)»/ ®1 [21//1n - n(l//ltt - lfllxx)]P%,dxdz
Qo

+ 254 /Q ®1 [n(l//m - 1//1xx) - (I/Jm - 1//1xx) + <I/J1n + 1//1xx>:|P%ded’

2
+ 45t /Q o1 (] — vi) phdxdr +45%° /Q o (W1, + vrvd, ) phaxar
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#2000 [ (e = ) (v, = 92, ) e
Q
+s230 = 1) f o0, (Ve = ) phdxdr + 532 = 1)
Q
f (Pll/fltt<1//1tz - Wlxx)P%dth
Q
ot [ ok (v — vk phavas 5922 [ gy plavas
+523 f o Y1yt pldxdr — 252 f o1y}, pldxde
Q Q
— 523 =3) / ¥ (Vi — Vi ) pRdxds — 5320 — 1)
Q
/ ?1 1/’1)6,{ (djltt - Wlxx)p%dxa't
[
+ 52 /Q ‘/’1‘//12): (1//12, - tlflzx)p%dxdt — 4523 /Q (pll//uxl/flzxp%dxdl
+ sAS/ 1Y 1xx (1//12, - 1//12X>p%dxdt — 25A2/ (pu//lzxxp%dxdl
0 0
1 T T
=2 [ [wmnetowo ] dx =25 [ [t ]
0 0 0
T
45200 = 1) [ v (w1 = vas )]s
0
T
=200 =1 [ [ (9 = 1) pram 1.
0
T T
=52 [ orwn (v = w2 ) o]t ndr + 202 [ [t ] nas
0 0
T T 1
+ast [ [orpum]and =29 [ [@mrtocn] e
0 0 0
T T
#2000 [ ot (v - i) |aunde+ 2602 [ [on (v = 2 prorn (1. 1.
0 0
(3.20)
Denote by Jy, ..., Jig, the first eighteen integrals appearing in the right side of (3.20).
At this stage, we find it useful to recall the example of functions r; and r, given in

(3.3).

ri(x) = mx? — Am +n)x +4m+2n and ry(x) = mx? + nx, VYxe]l0,1],
(3.21)

where m > 0 and n > 0 are arbitrary constants.
We observe that for every j =1, 2,

T
Vji(x, 1) = =2p (l - 5) s Yin(x,t) = 2u,
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Vire, 1) = 15, Wi, ) = 1 (x) = 2m.
We want the integrals J, and J3 to be nonnegative. For that to happen, we need
20100 = (V10 = 1) 010 = —4i = (=20 = 2m) > 0
and
[1(vire = Ve + 20100 | ) = (=20 = 2m) +4m > 0,

from which we deduce

21 2m
<n< .
M +m M +m

(3.22)

Consequently, there exist n in (2u /(i +m), 2m /(0 +m)) and a constant C > 0 such
that

J > Csh / p1pldxdt, J3 > Csh / @1 p} dxdt. (3.23)
0 0

Henceforth, C denotes a generic positive constant that may vary from line to line or
even in the same line, but is always independent of the parameters s and A.
We want the sum J4 + Js 4+ Jg to be positive. We have

2
Jat Js+ Jg = 45724 /Q of (vh —vi.) plaxar
+ 4S3)»3/ (P? (lﬁmlﬁlzt + WIXlezx)p%d-th
Q
+ 2S3)»377/ §0? (%zz - w1xx) (V’lzt - wlzx)p%dx‘h
o
2
— 25323 / o3 [u(ufﬁ - w%x) + 2(wm1/f%, + wlxxxlf%x)
0
+ n(Wllt - wlxx> (1#12[ - wlzx)]p%dx‘lt'

2
set Z = |20(vE = v3) + 2(vinvd + vl ) + n(vie - v (vE -
¥3,) .00, By seting ¢ = (W, — ¥)(x. 1), we find
z=(2n(vd - v + (i = v) W — v

+ 201 (W] = v ) + (Vi + V)] )0
=20 = 2[2u + n(p + m)|¢ + 40m — WY, (x, 1).
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We obtain a polynomial in ¢ whose discriminant must be negative, in other words
D :=2u+ U(M + m)]2 —8A(m — pr; ()c)2 < 0 for every x € [0, 1].

It follows from (3.22) that u < m. Similarly, (3.2) shows that ri()c)2 > 0 for every
x € [0, 1]. Thus we may choose A large enough so that D < 0. We adopt such a choice
throughout the rest of this section. As a consequence, there exists a constant C > 0
such that

Ja+Js+ Jg = Cs323 / @3 pldxdr. (3.24)
0

Moreover, given that for each j = 1, 2, the function /; lies in C4(Q), there exists a
constant C > 0 such that for all A large in the sense stated above, and all s > 0, the
internal lower order terms satisfy

|4+ il < Csk“/ ¢ipidxds, (3.25)
0

where we have also used the fact that ¥ (x, r) > 0 for all (x, 7) in Q
As for the right side of (3.11), we have for some positice constant Cy

/ |Fe'! +Rp1|2dxdt§C0( [ F2e9 dxdr + 5222 / <p§p%dxdt), (3.26)
0 0

Q

since ¢(x,1) > 1 forall (x, 1) in Q.
Choosing s > A, it readily follows from (3.24)—(3.26)

Jo+JIs+Jg— |7+ -+ Jigl — Cos2A2/ (p?p%dxdt > CS3A3/ go%p%dxdt,
o o

(3.27)

for some positive constant C, and for all s and X large enough.
Reporting the estimates (3.23) and (3.27) in (3.20), we derive

sk/ 01 p%,dxdt—i—sk/‘ golp%xdxdt—l—s3)»3/ (pfp%dxdt
0 [ Q
1 T T
+C(—2sx f [rvptoee, ] dx =252 f [erviapt [ nae
0 0 0
T T
4520 = 1) [ orvn (w1 = vase )] 0d +2602 [ [orinssvnep?]ctnar
0 0
T
=200 =1 [ [ (1 = 1) pram 1. (3.28)
0

- [ o (v - v ) o]t + 2593 / et (v - )]
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T T 1
wast [ [owpupi]and =29 [ [@ntocn]
0 0 0
2 r 2 2 2 259
+ 25X o1\ Vi, — Vi )ppt |(L,)dt | < C | Fe”%'dxdt.
0 Q

An estimate similar to (3.28) will be satisfied by p»; more precisely, we have

s)»/ gpzp%,dxdt—i-s)»f gozp%xdxdt+s3k3/ (pgp%dxdt
0 o 0
1 T T
+c(—zsx f [2v2pd ] dx =252 /0 (20203 |1, 0)de
+522(7 = 1) / o202 (Varr = Ve ) 3] (1 1 4 2632

f [e20200203] 1. 1)t

25301 = ) f (o1 (Vaur = V2 ) p2ep2 | (1 Dt = 53

/O [W%x (szt - wzzx)pﬁ](l, 1)dr
T

T 1

s [ [ovapupa]ndr =20 [ [@avacdon ] ar

0 0 0

T
425 [ [ (v = v3.) p3] 1,
2 [T 2 2 2 2502

1252 / [<p2<¢2, sz)pZsz](l,z)dt> <cC f G2e*?dxdr. (3.29)

0 0

Before analyzing the boundary terms, we shall add the boundary terms for both p;
and p;. To this end, we shall add the two estimations corresponding to p; and p».
Denote by J{, ..., J{, all the ten boundary integrals which will appear in the sum, we
find

1
= —ZSAf ((pllﬂltpn + §02¢2tl72t)(x )]

0

(=}

1
= =25} / [ = 1T @iph + 020300 1) = uT @103, + 203 (3, 0) |
1
= 25T /0 [@1ph, + 020300 1)+ (@10F, + @203 (x, 0) |dx. (330)
T
JZ/ = _2S)‘/0. [Qﬂl’ﬁlxl?%, + f/)zlﬁle?%;](], t)dt

T
= 254 (rf (1) +r§(1))/O o1(1, ) p1(1,0)%dt =0, (3.31)
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since 71 (1) = ra(1), r5(1) = —r{(1) and p1(1, 1) = pa(1, 1) for every 7 in [0, T].

T
5y =532 = 1) [ [enwne (e = v1ee) oF + o (s = v2es) 3|1 1
T
= 5320 = ({0 @a+{ (D) =D e+ D)) [t 0picr o ar
T
= —s22(n — Dri)(r} (D) —rg’(l))fo o1 (1, ) p1(1,0)%dt =0, (3.32)

since 5 (1) = r{(1).

T
I = =250 — 1) /0 [01(Wie = 1) prept + 02 (b2 = V2 p2ep2 |1, 10
T
= —2sh(n — 1)/0 (=20 =) = (=2 =) )@ PP, )1
T
= 25301 = D(r{ (D) = 5 (1) fo o1(L D1, 0pi(1,0di =0 (333)
T
J5 = —s2? /0 [ervia (W = v ot + 2va (93, — w3 P31, e

T
= —sk3ri(1)/0 (Va1 0% = H{ (% = (V11,02 = (D) ) 1D (1, Dt = 0.

(3.34)
T
Jg =253 fo [e1avept + e2vanvaipd (1, 0dr
T
= ZSAZri(l)(rf(l) — ré/(l))/ o1 (1,0 pi(1,0)%dt = 0. (3.35)
0
T
I = 45)»/0 [(ﬂl Yupiepix + wzlﬁzrpzzpzx](l, ndt
T
= 4sA/0 Y1 (L D1 (1, ) (p1 (1, 1) — par (1, 1) prx (1, 1)dt = 0, (3.36)

since p1,(1,1) = pa(1,1).

T 1
sy =251 [ [@apt + eavapdoc. ]
0 0
T
=—2sx(r;(1)+r§(1))/0 o1 (1, D pic(1, 0)2dt
T
+ 251 fo (1 )01 0, 1)1 (0. 1% + 75(0)@2 (0. 1) py (0. 1)) dt
T T
zzsx(r;(O) /0 0100, 1) p1 (0, 1)2d1 + r(0) /0 <p2(0,t)p2X(0,t)2dt). (3.37)
T
Jg =257 /0 [ofvn (v, = v) ot + 3vc (3, — w3, p3] 1. yar
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T
= 25723 (r{ (1) + r5(D)) / U1 (1,021 (1,03 pi(1, 1)2dt
0
T
— 2533 (r{ (1) +r5(1)?) / o1 (1,03 p1(1, 1)%dr = 0. (3.38)
0
T
Jio =232 /0 [o1(v3 = v pept + 0203 — v ) pacp2] (1 0t

T
= ZsAZ/O (V11,07 = H{ (2 = (Y11, D? = (D) ) (@1 prepn (1, D =0,
(3.39)

Adding (3.30)—(3.39), we obtain, for some positive constants C1 and C»:

1
J4- o+ Ty = 2MMT/ (¢1(x, T)p1e(x, T + @a(x, T) pay (x, T)?)dx
0
1
+25AuT f (¢1(x, 0) 1 (x, 0)* + 2 (x, 0) pay (x, 0)%)dx
0

T T
+252(r{ (0) A 910, 0)p1c(0, dt +15(0) A 92(0.1)p2x(0.1)dr).

T

T
> sh (—C1f 9100, 1. (0, )*dt + Cz/ 920, 1) p2x (0, I)zdl~>
0 0

(3.40)
Gathering (3.28), (3.29) and (3.40), we derive
s)»/ o1 pldxdt + sk/ @1t dxdt + 5323 / @3 pldxdt
0 0 0
+ sk/ pap3,dxdt +sk/ @25, dxdt
0 0
T
+ 5323 f @3 pidxdt + sk/ ©2(0, 1) par (0, 1)%d1t (3.41)
0 0

T
< Cf (erml +G262“"2) dxdt+C/ 010, 1) p1x(0, 1)2dr.
0 0

Now, we must go back to the functions p and ¢. Since p(x,t) = pi(x, 1)e 5910
and g(x, 1) = pa(x, 1)e 920D it then follows

pi = (p1r — sA¥@1p1)e”*?, and py = (p1x — sAyic@1p1)e .
Using the inequality (a — b)? < 2(a® + b?), we find

P <2, + PRI, P <2, + W), (D)
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Multiplying (3.42) by sA¢1, then integrating over Q and adding the results, we obtain
the following inequality

SA
> Q(ﬂl(pt2 + pr)e* ¥ dxdt < sk/Qw(pi +P%x)dxdf+MS3/\3fQ¢?pfdxdh
(3.43)

where M:= max (¥ (t) + ¢ ().
(x.NeQ
Similarly, one derives

SA
E/Qm(qur%%)ez“”dxdt < sk/ng(p% +P§x)dxdf+MS3X3/Q¢SP§dxdf,
(3.44)

As for the boundary terms, we notice that since both p;(0, ¢) and p2(0, , ¢) are null
for every ¢ in [0, T'], it follows that

P10, 1) = py(0,1)e’?" and pa,(0, 1) = qx(0,1)e*, Vi € [0, T].

Thus, multiplying (3.41) by M + 1 and adding (3.41)—(3.44) side by side, we find

2
(M + 1)sh Z/ 9;(pl, + pio)dxdt + s3k3f (@f’pzez‘“”' + wngez‘w) dxdt
— Jo 0
j=1

T
+ sh f 02(0, 1) pax (0, 1)2e>92 00 gy (3.45)
0

T
< C/ (FZeZS(Pl + G2625¢2> dxdt + C/ 901(0’ t)Px(O, t)ZeZS(pl(O’[)dt
Q 0

2
+ Ms3)3 Z/ ¢jp§dxdt.
j=17¢
It then follows
S?»/Q {fpl (p,2 - pf) ™+ g (q,z + qf) > } dxdt + 5333

/ ((pfpzez‘“’l n ¢3q2€2s¢2> dxdt
0
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T
+ sh / ©2(0, 1) pax (0, 1) 2> Dy (3.46)
0

T
=< C/ (FZezsgm + G2e2s<p2) dxdt + Cf 01(0, 1) p (0, t)2623(p](0,[)dt’
Q 0
which is the claimed Carleman inequality, given the definition of p and ¢. O

3.3 An Improved Carleman Estimate

For this new Carleman estimate, a more refined set of functions r{ and r» will be needed
as the null displacements constraint is now removed. The time 7 must be large. So, as
in the conservative case discussed in Sect.2, let T > 4. Then, there exists &g in (0, 1)
such that 607 > 4. Setag = T (1 — §p). Set

a—o)x2 + a—ox.

a 3a
rl(x):(l+§0)x2—(4+ao)x+4+70 and rz()c):(l—i—8 >

Notice that these two functions are obtained by choosing m = 1 + ¢ and n = % in

(3.21); so they satisfy all the required constraints in (3.1) and (3.2).

Now, we are going to introduce a cut-off function that will be useful in the proof of
our new and improved Carleman estimate. To this end, let ¢ € (0, 1/2), with ¢ close
to zero, and introduce the function r € C2([0, T']) with 7(T) =0 = r(0) and r = 1
onl[eT, (1 —¢&)T].

Proposition 3.5 Leta in L*°(Q). Assume that T > 4. Let (p, q) be a solution of (2.3).
Then there exist two constants C > 0 and s1 > 1, such that for every s > sy,

s/ (Pzz +P§)e2s<pldxdt +s/ (%2 +q§)ezs¢2dxdt o
’ o
+s3/ p2e2x<p1dxdt+s3/ 2P dxdi
; 9
T
—i—s/ r202(0, 1)y (0, 1)2e2920 4
0
T
=C / 9100, 1) px (0, 1)2e250100.0 g4
0

Proof Let (u, v) be a solution of (2.1). Consider the operator P defined by Py =
Ytr — Yxx- Set

w =ruand z = rv. (3.48)
Then
Pw = rPu+2r'u; + r'"u and Pz = rPv +2r'v; + r'v.
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Now (w, z) € S, so, we can apply Proposition 3.4. We find by taking A = Aq, that

there exist so > 0 and C > 0 such that for every s > s,

) /Q o1[(wr +2)° + (wy + 2:)° ] dxdr

+5 [ of(z — )’ + (20 — we)*]>*dxdr

(3.49)

0
+s3/ g1 (w +2) > dxdr +S3/ 03 (z —w)’ e dxd
0 0

T
+ sf ¢2(0, t)(zx(O, 1) — wy (0, t))262wz(0,r)dt
0
< C(/ (r'Pp + Zr/p, + r”P)zez‘w'dxdt
0
+/ (rPq +2r'q; + r”q)zezwzdxdt
Q

T
+5 / r?@1(0, 1) (wy (0, 1) + 2, (0, t))2ezs‘/"(0”)dt>.
0

Replacing w and z by their expressions given by (3.48), we get

S/ r2¢l(P;2+P)ZC)eZS¢1dxdt+s/ 72§02(61,2+qf)e23"/)2dxdt
¢ 0
+s3/ Vchfpzezs‘/”dxdt+s3/ r2¢§q2e2w2dxd,
° o
T
+ S/ rz‘PZ(O, 1)gx (0, t)zezwz(o,t)dt
0
EC(/ rz(Pp)zezw)ldxdt—i-/‘ rZ(Pq)ZeZSWded[
¢ 0
+/ y’2ptze2s<p|dxdt+f "/2%262”"2dxdt
o 0
+/ r//2p2625(ﬂ1dxdt+/ V//2612€2S“’2dxd;
¢ 0
T
+ s/ 2010, 1) px (0, 1)?e>91 0D g
0

+s/ @1 pre® P dxdt +s/
0

r/2<p2q2ezs‘p2dxdt).
Q

We have used in the left hand side of (3.50) the following estimate

2
.
'y + vl = Sy =%y

(3.50)
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We deduce from (3.50) that there exist so > 0 and C > 0 such that for every s > s,

’ /Q rzg)l(plz - pi)ezwldx‘h +s /Q r2</’2(61;2 + Q,%)ez&ﬂzdxdt (3.51)
+s3/ rzgo%pzezs‘pldxdt+s3/ r2¢§q262"‘”2dxdt
0 0
T
+ S/ rz(pz(O, g, (0, I)Zezs(pz(o’,)dt
0
< C(/ ('Pp)282s‘»01dxdt+/ (pq)2625<p2dxdt
© 0

+/Qp,262S¢’dxdt+/thzez“"2dxdt—i—s/szezW]dxdt

T
+ s / q*e* 2 dxdr + s/ 010, 1) px (0, 1)2e>9 (O’t)dt>.
0 0

It remains to get rid of the function r from the left hand side of (3.51), and absorb the
undesired terms from the right hand side to get the claimed estimate. For this purpose,
introduce for all ¢ € [0, T'] the following weighted energy:

1! 1!
Eg(1) = 3 /0 (P?(x, 1)+ p2(x,0))e® "1 Ddx + 5/0 (g2 (x, 1) + g2 (x, 0))e* D dx.

Differentiating E in ¢, we find for every ¢ € [0, T],

1 1
El(t)=s /0 (p? + pH e dx + s /0 (¢ + q2)pre®P2dx (3.52)

1 1
+ / (Pnp, + pxrpx)ezwldx + / (qttCIt + C]xz‘]x)ezs%dx.
0 0

Integrating by parts the terms in p,, p, and gyq, in (3.52), it follows from the fact
that, for every r € [0, T, p:(0,¢) = ¢:(0,¢) =0, p(1,t) = g(1,¢) and g, (1,1) =
_Px(L t),

1 1
B = S/ (P7 + p)pre™ ¥ dx + S/ (@2 + D)pue®2dx  (3.53)
0 0
: 2
+/ (plt — Pxx — 2pr(p1x)p,e S dx
0

1
+ / (g1 — Gxx — 25G2@2c)qre™ P dx
0

+ pe(1. ) pr(1 1) (2920 — 20,

@ Springer



Applied Mathematics & Optimization (2023) 88:49 Page310f47 49

Using (2.3) and @1 (1, 1) = ¢2(1, t) for every ¢ € [0, T'], we get

1 1
E(0) =s f (P2 + pY)oue®?1dx + s / (a2 + q2) g e™?dx (3.54)
0 0
1 1
- / (atx,0)p + zspxwlx)Ptez‘vwldx - / (alx, g + 2sqx<p2x)qtezs‘p2dx.
0 0

Using the Cauchy-Schwarz inequality, we derive, (keeping in mind that ¢, < 0 and
@2 > 0on [0, 1] x [0, T]):

1 1
’—ZS f Solxptpxezs(mdx‘ <-—s / (p? + P g™ dx (3.55)
0 0

and

1 1
\ —2s f quthez‘*mdx\ <s / (a7 + 47)p2ce™dx. (3.56)
0 0
Inserting the two preceding inequalities into (3.54), we obtain
! 2 2 2 ! 2 2 2
Eé(t) = S/ (pt + px)((plt - §01x)€ Wldx +S/ (qt +qx)((p2t + (p2x)e‘ S92 Jx
0 0
(3.57)

1 1
+f |‘1(xvt)l’l7t|€2swldx+/ la(x, 1)qq|e**dx.
0 0
Forall (x, 1) € [0, 1] x [(1 — &)T, T], we have
T /
=1 (6, 1)+ @1, 1) = ho(2(t = ) + 11 (0)) 1 (x, 1)
= 2o(RT (1= 2¢) + minr{)gr(x. 1)

> ho(T (u(1 —2&) — 1+ 80) —4)g1(x, 1)
since by the definition of r1, we have ming 17 7| (x) = r{(0) = —4 — T (1 — &p).

Given that §oT > 4, there exist i in (1, 1 + (ag/8)) close to one, and ¢ in (0, 1/2)
close to zero, such that

T (u(l—28)—14+38)) —4=>0. (3.58)
Similarly, with @ and ¢ as in (3.58), we have
—p2 (. 0) = @2, 1) = ho(u(1 — 26)T — max r5(x))@2(x, 1)

3
= ho(i(1 = 26)T =2 = 2(1 = 80)T)ga(x. 1.
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and thanks to (3.58), we derive that the constant w(1 — 28)T — 2 — %(1 —60)T is
positive.
Consequently, there exists a constant k& > 0 such that for all (x, ) € [0, 1] x [(1 —
)T, T],
—@1(x, 1) + @ix(x, 1) > kand — @2 (x, 1) — @ax(x, 1) > k. (3.59)

Now it follows from the Young inequality

1 sk 1 C 1
f la(x, 1) pp;|e¥Pdx < —/ pre¥¥dx + —/ pre¥¥dx
0 4 Jo sk Jo

k c (!
<ZEm+—= / P2y, (3.60)
2 sk 0
Similarly, one shows
! 2 sk C ("1
/ la(x, )gq:le”*Pdx < —E(t) + —/ q e~ Pdx. (3.61)
0 2 sk 0

We derive from (3.57)—(3.61) that

C 1 1
E[(t) + skEs(1) < —(f pre¥¥dx +/ qzezwzdx).
sk 0 0

The preceding inequality leads to

skt

(Es(t)e'™) < "

1 1
(/ pre*?dx +/ qzezs‘pzdx). (3.62)
0 0
Now, set T = (1 — &)T. Integrating (3.62) over [f, t] foreveryt € [T, T1] yields,
Es(t) < E(T)e T (3.63)

t 1 t 1
+ £ [ﬁ esk(r—t) (/ p262w}1dx>dr + /; esk(r—l) <f quZSgazdx)dr].
skLJ7 0 7 0

Integrating (3.63) over [T, T], we get the existence of a constant C > 0 such that

T 1 .~ , ,
s / E (t)dt < —ES(T)—i—C( / P2V dxdt + / qzez“"zdxdt>. (3.64)
7 k 0 0

On the interval [0, ¢T], first, one multiplies (3.54) by minus one, then one proceeds
exactly as above to derive the inequality

eT 1
s / Eg(0)dt < Ey(eT) +C( / p2e® dxdt + / qzez‘wzdxdt). (3.65)
0 0

Q
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Gathering (3.64) and (3.65), we find

T eT
s/; E,(t)dt —l—s/ Es(t)dt < % (Es(T) + Es(eT))
T 0

+C</ p2€25¢1dxdt+/ q2e23‘p2dxdt). (3.66)
0 Q

We shall now estimate the first two terms in the right hamd~ side of (3.60).
Proceeding as we have just done above in the interval [T, T], we readily check that
forallt € [0, T],

1
g0 =cs [0+ )evan
0
1
+Cs / (¢} + q7)e™*dx (3.67)
0
C 1 1
+sEg(t) + —(/ pze%‘“dx —l—/ qzezwzdx).
s \Jo 0

C 1 1
< CsE;(t) + —(/ pre¥¥idx +f qzez‘w’zdx).
s 0 0

Now, we are going to estimate E(¢7). We deduce from (3.67) that there exists a
constant C > 0 such that for all r € [0, T],

1 1 1
—Elr) < C[sEs(t) + —( / 2P dx + / qzeQ-de)]. (3.68)
s 0 0

Letr € [eT, f]. Integrating (3.68) over [¢T, ¢] yields

t 1 t 1
E(eT) < C[s/ Es(t)dT + —/ / (pzezs‘p‘ + q2e2“/’2) dxdr].
T S JeT JO

&

Integrating the last inequality over [T, T, it follows that there exists a constant C >0
such that for all s > 1 large enough, one has, (keeping in mind that» = 1 on [eT, T]):

7
Es(eT) §C(s / P2E,(t)drt + / (pzez‘wl +q2e2m) dxdt). (3.69)
eT ]

Simlilarly, one derives from (3.67) that for every ¢ in [0, T'], one has the following
inequality

1 1 1
E\(t) < C[sEs(t) + -( / P2 dx + / qzezs‘pzdxﬂ. (3.70)
S

0 0
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Letr € [eT, f]. Integrating (3.70) over [z, T] yields

- T 1 T 1
E (T) < E,(t) + C[s / Ey(v)dt + f / (pzezs“” + qzeZWZ) dxdt].
t 0

t

Proceeding as in the derivation of (3.69), one gets

7
Es(T) §C(s / P2E,(t)dt + / (p2e2~“/)1+q2e2w2) dxdt). 3.71)
T 0

&

Combining (3.66), (3.69) and (3.71), and using the fact thatr = lin[eT, f], it follows
that there is a constant C > 0 such that for every s > 1 large enough,

T T
s/ Es(t)dt < C(s/ rzEx(t)dt—f—f pze2s‘p‘dxdt+f qze2s‘p2dxdt).
0 0 0 0

(3.72)
The following inequality readily follows from (3.51):
T
s/ rzES(t)dt+s3/ r2p262‘w‘dxdt+s3/ r2g*e* 2 dxdt (3.73)
0 o] Q
T
+s / r?92(0, 1)gx (0, 1)?e*#2ODdy
0
= ¢( / (Pp)e™* dxdt + / (Pq)’e>#dxdi
0 0
—+—/ p,ze%‘/”dxdt—i—/ qtzezs‘”dxdt—i—s/ pre¥¥ dxdt
0 Q

o

T
+s / qe* P2 dxdr + s/ 1(0, 1) px (0, t)zezs‘/"(o’t)dt>.
0 0

Gathering (3.72) and (3.73), one derives that there exists a constant C > 0 such that
for every s > 1 large enough,

T
s f E,(H)dt + s° f r2p*e® 9 dxdt + s3 / rrq*e® P dxdt (3.74)
0 0 0
T
+s / r202(0, 1)q (0, 1)2e>2 0D gy
0
2 2s 2 s
< c(/ (Pp)’e ‘”‘dxdt—i—/ (Pg)*e**dxdt
0 0

+'/Qp,zez‘w‘dxa't+/th262‘wzdxclt+S/Qp2e2‘“”1dxdt
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T
+ s/ q>e** P dxdr + s/ ©1(0, 1) py (0, t)Zezs‘p'(O’l)dt).
0 0

The third and fourth integrals in the right hand side of (3.74) can be absorbed in the
left hand side by the first integral. Then there exists a constant C > 0 such that for
every s > 1 large enough,

T
s/ Es(t)dt+s3/ rzpzezs‘pldxdt+s3/ r2qe* 2 dxdt
0 0 o

T
T / r292(0, 1)qx (0, 1)?e* 20D dy
0
< C(/ (’Pp)262s</’ldxdt+/ (Pq)zezwzdxd;
¢ Q

+s/ pzezs‘pldxdt-i—s/ g’ > dxdt
0 0

T
+s / @1(0,1)p (0, t)2e2”’1(°”)dt). (3.75)
0

In order to absorb the lower order terms in the right hand side of (3.75), we shall
rely on the following result, which is the analog of [5, Lemma 2.4]:

Lemma 3.6 There exist constants C > 0 and s1 > 1 such that for every s > sy,

1 1 1 1
s2/ pre¥dx + s2/ g’ dx < C(/ pre®?dx +/ qfek‘pzdx).
0 0 0 0

(3.76)

Proof Differentiating ¢;,e>*% with respect to x, we find for every i = 1, 2,
((pixezw)i)x = (¢ixx + zswizx)ezsw'

Multiplying that identity by p2, then by ¢ and integrating the results by parts over
(0, 1), we successively get

1 1
25/ p2(p%x625<ﬂ1dx = _/ p2(p1xerX(p1dx
0 0

1
-2 / prp@1ee™?dx + @i (1,0 p(1, 1)@ o 0,
0
3.77)

and
1 1

25/ qup%er&‘tpzdx = _/ q2§02xx625(p2dx
0 0
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1
-2 / Gxqeace® P dx + ¢a (1, 0)q(1, 1)?e*2 (1D (3.78)
0

Adding (3.77) and (3.78), it follows from the fact that 1, (1,1) = —@2,(1,¢) and
e1(1,1) = @2(1,1):

1 1
2 / (p2§012x62xg01 + q2§0%xe2s¢2)dx — _ / (pz(p]xxezswl + q2(p2xxe2x(p2)dx
0 0

1
-2 / (PxPP1:™ " + qrqpaxe™??)dx.
0
(3.79)

Note that for eachi = 1, 2, goizx > o > 0. We derive from (3.79) and the Young
inequality, that there exists a constant C > 0 such that

1 1 1
2sm)/ (p2e2“"/’1 + qzez“‘/’z)dx < C/ pre®¥dx + ,uosf pPe®¥dx
0 0 0

1 1 1 1
C ' C
+ C/ q2e®dx + /,L()S/ g*e¥dx + — / pre®dx + —/ g’ dx.
0 0 Hos Jo - Hos Jo
(3.80)

Then choosing s sufficiently large, the first four integrals in the right hand side of
(3.80) can be absorbed in the left hand side, which gives the following estimate

1 1
C
S/O (pzez“p' +q2e23‘p2)dx < ?‘/0 (p)zcestldx+q362srp2)dx.

This completes the proof of Lemma 3.6 since s > 1. O

It follows from (3.75) and (3.76) that
s3/ pre®¥dxdt +s3/ qe*Pdxdr < Cs/ (p)zcezs‘p1 —{-q%ezxm)dxdt
0 0 0

T
< Cs/ E(t)dt
0

< C</;2 (Pp)zezs‘/"dxdt+/Q(Pq)zezs‘pzdxdt+s/;p2e23¢'dxdt
T
+5 / q*e¥dxdt + s / 010, 1) px (0, z)%zm(o*”dz). (3.81)
o 0

Combining (3.75) and (3.81), we get
T
s / E,(t)dt + s° / p2e¥¥dxdt + s° / g*e*Pdxdt
0 0 0
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T
+ s/ r2¢)2(0, t)(vx (0,1) — ux(0, t))Zezstpz(O,t)dt
0
SC([ (Pp)zezsw]dXdl‘-Ff (Pq)Zezwdedt+s/ pzezswldxdt
Q Q 0

T
+5 / g ¥ dxdt + s / 010, 1) px (0, t)2e25‘p1(0")dt). (3.82)
0 0

The third and fourth integrals in the right hand side of (3.82) can now be absorbed in
the left hand side. Moreover, since (p, g) solves (2.3), we have Pp = —a(x, t)p and
Pqg = —a(x, t)gq, it follows that

T
s / Es(t)dt + s° / pre¥¥dxdt + 53 / g’ dxdr
0 0 0
T 2
+5 / 2020, 1) (vx(0, 1) — ux (0, 1)) "> 200 gy
0
< C(/ pze2“"1dxdt+/ q*e¥ P dxdt
0 0
T
+s/ 91(0, 1) px (0, t)zez“‘"(o*”dt). (3.83)
0

Therefore, the first two integrals in the right hand side of (3.83) can also be absorbed
in the left hand side, which ends the proof of Proposition 3.5. O

Corollary 3.7 (Main Theorem) Let T > 4. Let (u, v) be a solution of (2.1). Assume
that a lies in L*°(Q).
There exist two constants C > 0 and s1 > 1, such that for every s > s,

s / (u? + u? + v} + v})e*2dxdt + s° / (u? + v?)e*2dxdt
0 0
T 2
+s / 2020, 1) (020, 1) — ux (0, 1)) "e**20D gy
0
r 2
<Cs / @10, 1) (ux (0, 1) + v:(0, 1)) "> @D qr. (3.84)
0

Proof Let (1, v) be a solution of (2.1). Recall that (p, g) = (u + v, v — u) satisfies
(2.3). Replacing p and g by their expression in (3.47), we find that there exist C > 0
and s1 > 0 such that for every s > 1,

s/.Q [(Mt + vt)2 + (ux + vx)z]ez‘“”‘dxdt

+ s/ [(vr — ut)2 + (vx — ux)z]ezs‘”zdxdt
o
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+ 53 / (u + v)zezs‘/’] dxdt + s> / (v — u)ze%‘pzdxdt
o o

T
+S/ r202(0, 1) (vx (0, ) — ux (0, ;))Ze2s<pz<0,t>dt
0
' 2
= CS/ 910,01 (0,1) + (v:(0, 1)) "> 1. (3.85)
0

We get (3.84) by using the fact that ¢» < @ in the left hand side of (3.85). O

4 Exact Boundary Controllability

Set H := HO1 (0, 1) x V and denote by H’ its topological dual. Given a € L*°(Q),
', v € H and @° %) e (L?(0, 1))2. Consider the boundary controllability
problem: Find a function g € L?(0, T) such that if the pair (o, p) is solution of the
system

oy —0xx +alx,t)o =0 in Q,
Pt — pxx +alx,t)p =0 in Q,
0(0,1) = p(0,1) = g(1) in (0, 7), 41
o(l,t) =0, py(1,1) =0 in (0, T), @.1)
o(x,0) =ux), p(x,0) =v"(x) in (0, 1),
0y (x,0) = u'(x), p;(x,0) =v'(x) in(0, D),
then
(o(x, T),p(x,T),0:(x,T), ps(x, T)) =1(0,0,0,0) in (0, ™. 4.2)
Let (f1, f>) € L*>(Q) and consider the backward system
Wi — Wyy +alx,Hw = fi inQ,
i —Zxx talx,n)z=fr  inQ,
w(0,1) =0, z(0,¢) =0 in (0, T), 43)

w(l,t) =0, z;(1,1) =0 in (0, 7),
wkx, T)=zx,T)=0 in (0, 1),
wix, T)=2z:(x,T) =0 in (0, 1).

The solution of (4.1) can be given by transposition (see [32, Theorem 9.1, Chapter 3])
in this sense:

fofldxdt+/ p frdxdt = ((u', vh), (w(.,0), z(., 0)))
0 0

1 1
—/ uo(x)w,(x,O)dx—/ vo(x)zt(x,O)dx
0 0
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T
- / 8@ (wx (0, 1) +2x(0, 1))dt,
0

where (-, -) stands for the duality product between H and its topological dual H’. It
can be proved in view of [23] that there is a solution pair of (4.1) satisfying

(0, p) € C([0, T1; (L*(0, 1)*) N C' ([0, T1; H).
Thanks to the Hilbert Uniqueness Method developed by Lions in [33], to solve the

exact controllability problem, it is enough to prove an observability inequality for the
following adjoint system

Wy — Wy +alx,Hw =0 in Q,

2t — Zxx ta(x, )z =0 in Q,

w(0,1) =0, z(0,1) =0 in (0, T),

w(l, 1) =0, z(1,1) = 0 in0,7), ©¥

(w(x, T), z(x, 7)) = (w'(x), 2°(x)) € H,

(w,(x, T), 2:(x, T)) = (w' (x), 21 (1)) € (L2(0, 1)),

The preceding system has a unique weak solution satisfying:
(w,2) € C([0, T]; H) N C' ([0, T]; (L*(0, 1)?).

Proposition 4.1 (Observability inequality) Let T > 4. Let (w, z) be a solution of (4.4).
Consider the following energy:

1
Ey.(1) = %/o (W7 1)+ w0+ 27 (1) +22(, 1))dx.

Then there exists a constant C > 0 independent of the data (w°, z°) and (w', z') such
that the following inequality holds

T
Ew.(0)<C / (. (0, 1) + 2,.(0, ) dr. 4.5)
0

Proof Proving (4.5) is a two-step process. First, one establishes an energy estimate,
then one uses the energy estimate and the Carleman estimate of Corollary 3.7 to derive
the claimed observability estimate.

Step 1: Energy estimate. Multiplying the first equation in (4.4) by w;, the second
equation by z;, integrating over (0, 1) and adding the results, yield

1
E:u,z(l‘) = —/(; a(., t)(wwt + zzt)dx, (4.6)

Using the Cauchy-Schwarz and Poincaré inequalities, it follows from (4.6) that there
exists a constant C > 0 such that for every ¢ € [0, T],

@ Springer



49 Page 40 of 47 Applied Mathematics & Optimization (2023) 88:49

E, (D) < Cfol (Jwwr] + [zz:)dx
<o ([ o) ([ wtan)! ([ 2ar)! ([ )
SAUEDIVEDRIVEDRIEDY

<CE, ;(1). 4.7)

Bl—

We now let s and ¢ be in [0, T]. If s < ¢, we observe that (4.7) implies that for every
te[0,T],

(Eyp (e ") <.

We find after integrating this inequality over [s, ¢],

Ey () < Ey(5)eCU™. (4.8)
On the other hand, there exists a constant C > 0 such that for every ¢ € [0, T,

_El/y,z(t) S CEw,Z(t)s

that we obtain by multiplying (4.6) by (—1) and then by estimating the result as
previously. Now if s > #, proceeding as before, we find that there exists a constant
C > 0 such that

Ey (1) < Ey . (5)e€C™, (4.9)

Hence, we derive from (4.8) and (4.9) that there exists a constant C > 0 such that for
all s, tin [0, T'],

Ey (1) < Ey(s)eC1 (4.10)

Step 2: Observability estimate. It follows from Corollary 3.7:

T T
/ Ew,z(t)drgcf 0100, 1) (wy (0, 1) + 2,0, ) 2> ODgr. (4.11)
0 0

Therefore, combining (4.10) and (4.11), we derive the claimed observability estimate.
m}

Theorem 4.2 Let T > 4. Leta € L®(Q), (u°,v°) € (L2(0, 1))* and (u",v") € H'.
There exists a unique control g of minimal norm in L*(0, T) such that the pair (o, p)
solution of (4.1) satisfies (4.2).

Furthermore there exists a positive constant Co, that depends on T and ||a|| > (@)
only, such that
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I8llzz0.) = Co{Iellzz 0.1y + a1, + 10011120y + ' llve} . @12)
Proof Introduce the following functional defined by
J:H x (L*0,1)> > R (4.13)
1 T
((woa ZO)’ (wlvzl)) = 5/ (wx(Ov t)+zx(07 t))zdt
0

1 1
+/ uowt(.,0>dx+f V02 (., 0)dx — ((u', v, (w(.,0),z(., 0))),
0 0

where the pair (w, z) is the corresponding solution of (4.4). The quadratic functional
J is continuous and strictly convex. Moreover, J is coercive. Indeed, using Proposi-
tion 4.1, one checks that there exists a constant C > 0 such that

T (@, 2%, ', zh) = CE, - (0) +/01u0wt(.,0)dx +f01 107, (., 0)dx
— (@', vh, (w(., 0),z(, 0)).
It follows from the Cauchy-Schwarz inequality
T (W29, ', 2h) = CEyz0) = ! vhlrllw(. 0), 2(. 0Dl m
— 16, 0D 22012 1 we (00, 20 (L OD 20,192
One then deduces

T (@, 2, ', 2hH) = Cl@®, 2%, ', 213, 12012

— Ml 2%, @', 2D 120012

where the constant M depends on the initial conditions («°, v°) and (u!, v!) only.
Consequently, the functional 7 has a unique minimizer ((2°, 2°), (!, 21)), solu-
tion of the Euler equation

T 1
/ (ti)x(O,t)+2x(0,t))(wx(0,t)—i—zx(O,t))dt—i-/ WOw, (L 0)dx  (4.14)
0 0
1
+/ 02,0 0)dx — (@', v, (., 0), 2, 0))) = 0,
0

for every solution pair (w, z) of (4.4).
Note that in (4.14), (W, z) is the solution of (4.4) corresponding to the minimizer
of J. Setting g(¢) = wy (0, 1) + Zx (0, t), then the following duality identity holds

T 1
/ (0x(0, 1) + 2¢(0, 1)) (wx (0, 1) + 2 (0, 1))dt +/ wWPw; (., 0)dx  (4.15)
0 0
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1

1
+/ voz,(.,O)dx—((ul,vl),(w(.,O),z(.,O)))—/ o(., Tw'dx
0 0

1
- /0 p(. T)z'dx + ((0:(. T). pr (.. T)), (w°, %)) =0,

for every solution pair (w, z) of (4.4).
Thanks to the Euler equation, it readily follows from (4.15)

1 1
—/ a(.,T>w1dx—/ p( T2 dx + (@, 20, (01 T, o1 (. T))) = 04.16)
0 0

Taking (w°(x), z%(x)) = (0, 0) in (0, 1) then we find (o (x, T), p(x, T)) = (0, 0)
in (0, 1)2. We deduce that (4.16) reduces

(01, T), pi(, TY), (w°, 2% =0, vw?, %) € H.

Therefore (o;(., T), p:(., T)) = (0,0) in H', and (4.2) holds as claimed.
Finally, using the Euler equation (4.14), the inequality (4.12) follows at once, which
completes the proof of Theorem 4.2. O

5 Final Comments and Open Problems

The Carleman estimate in our main result, that is Theorem 3.1 has several applications,
one of which is the controllability problem discussed in the preceding section. We are
going to provide another application below, and also comment on the case of two
different potentials.

5.1 Indirect Boundary Controllability of a System of Wave Equations Involving the
Kirchhoff Boundary Conditions

When solving the simultaneous boundary controllability problem for System (1.1), we
solved two controllability problems in one shot; namely, the one of interest, and the
following indirect controllability problem Let T > 0.SetV = {u € HY(0, 1); u(0) =
0}, and denote by V' the topological dual of V. Set Q = (0, 1) x (0, T), and let a in
L*(Q).

Consider the following boundary controllability problem:

Given (y°, y')in L?(0, 1) x V' and (z°, z!) in L(0, 1) x V", find a control function
h in L2(0, T) such that the solution couple (y, z) of the following system

Yir — Yxx +a(x,t)y =0in Q,

Zrt — Zxx +a(x7t)z =0in Q?

v(0,1) = h(t), z(0,t) =0, y(,t)=z(,1), y:(1,t) +2,(1,1) =0in (0, T),
¥y, 0) =y »(, 0=y, z(,0)=2% z(.,0) =z,

6D
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satisfies
y(vT) :Ov yl(vT) =Ov Z('s T) :05 Zl('vT) =O (52)
Indeed the adjoint system to (5.1) is given by

Pt — Pxx +a(x,t)p =01in Q,

qit — qxx +alx,t)g =01in Q,

p0,1) =0=4(0,1),

p(l,t) =q(1,1), px(1,1) +qx(1,t) =0in (0, T),
p(.T)=p eV, p(,T)=p' e L?0, D),
g(.T)=q¢"eV, ¢.(.,T)=q" € L*0, 1).

(5.3)

With the help of Proposition 3.5, one readily derives the needed observability inequality
for System (5.3). Then, invoking Lions H.U.M, one deduces the desired controllability
of (5.1).

5.2 The Case of Two Different Potentials

Let a and b both lie in L*°(Q) with @ # b. The following boundary controllability
problem is open: Let (y°, y') in L2(0, 1) x H~1(0, 1) and (z°, z') in L2(0, 1) x V'.
Find a control function & in L2(0, T) such that the solution couple (y, z) of the
following system

Yir — Yxx +a(x, 1)y =0in Q,
Tt — Zxx +b(x, t)Z = Oln Q,

(0, 1) = h(r), 200, 1) = h(t), y(1,1) =0, z¢(1.1) = 0in (0, T), O
v, 0 =" (.0 =y", 2(,0)=2% z(,0) =z,
satisfies
y(,T)=0, y(,T)=0, z(.,T)=0, z,(.,T) = 0. (5.5)

The adjoint to this system is given by

Uy — Uy +alx,)u =0in Q,

Vi — Uyx +b(x, 1) v =01in Q,

u@,1) =0=v(0,1), u(l,t)=0=v,(1,¢)in (0, 7), (5.6)
u(., Ty =u" e H} (O, 1), u, (., T) =u' € L*(0, 1),

v(,T)=" eV, v, T)=0veL?0,1).

If we want to use the change of variables that proved to be essential in establishing
the observability inequality in both the conservative and nonconservative cases in the
preceding sections, then, elementary algebra leads us to the new (p, g)-system, (keep
inmindthat p =u+vandg = v — u):
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pu— pxx +y(x,Hp+3d(x,0)g=0in Q,
Gt — qxx + Y (X, 1)g +3(x, 1) p =0in Q,
p0,1)=0=¢q0,1), p(l,1)=q(,1), px(1,1) +q«(1,1) =0in (0, T),
p(.T)=u’+0 eV, p,(,T)=u' +v' € L0, 1),
g, T) =10 —ul eV, ¢;(,T) =v' —u' € L%0, 1),
(5.7

where y (x,t) = (a + b)(x,t)/2and 6(x, 1) = (b — a)(x,1)/2.
Applying the improved Carleman inequality to this system (see Proposition 3.5, we
find

s/Q (p? + p2)e® ¥ dxdt + s/Q (g7 + q?)e™“dxdt (5.8)

+s3/ pzezs‘p'dxdt+s3/ q*e>Pdxdt
0 0
T
+s / r202(0, 1)y (0, 1)2e>920D g
0

T
<Cs / 010, ) px(0,1)2e*91 0D 4 C f
0 0

82 (pzem"2 + q2925‘p1) dxdt.
Now, we have by definition: g2 (x, t) < ¢1(x, t) for all (x, ¢) in Q; therefore, we are
able to absorb the lower order term in p in the right hand side of (5.8), but we cannot
do the same for the corresponding term in ¢g. A similar technical difficulty was already
observed by the authors of [6] when dealing with a system like (5.7) in the parabolic
equations framework. Therefore a different approach is needed in the case of different
potentials. This seems to be an interesting open problem.
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