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Abstract
In this work we are concerned with the study of the strong order of convergence
in the averaging principle for slow-fast systems of stochastic evolution equations in
Hilbert spaceswith additive noise. In particular the stochastic perturbations are general
Wiener processes, i.e their covariance operators are allowed to be not trace class. We
prove that the slow component converges strongly to the averaged one with order
of convergence 1/2 which is known to be optimal. Moreover we apply this result to
a slow-fast stochastic reaction diffusion system where the stochastic perturbation is
given by a white noise both in time and space.

Keywords Averaging principle · Order of convergence · Slow fast stochastic
differential equations · SPDE’s · Stochastic reaction diffusion system

1 Introduction

Consider the following slow-fast system of abstract stochastic evolution equations
with additive noise

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dU ε
t = A1U ε

t dt + F(U ε
t , V ε

t )dt + dWQ1
t ,

U ε
0 = u ∈ H ,

dV ε
t = ε−1A2V ε

t dt + ε−1G(V ε
t )dt + ε−1/2dWQ2

t ,

V ε
0 = v ∈ K ,

(1)

where ε > 0 is a small parameter representing the ratio of time scales beween the
slow component of the systemU ε and the fast one V ε . Here H , K are Hilbert spaces,
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A1, A2 are unbounded linear operators on H , K respectively and WQ1 ,WQ2 are
Wiener processes on H , K respectively.

Slow-fast systems are very used in applications since it is very natural for real-world
systems to present very different time-scales. We refer the reader for example to [23]
for applications to physics, [32] to chemistry, [34] to neurophysiology, [1, 13, 21, 22]
to mathematical finance (see also [12] for a slightly different financial model) and the
references therein.

A natural idea is then to study the behaviour of the systemwhen ε → 0. In particular
under certain hypotheses it is known that the slow component U ε converges to the
solution U of the so called averaged equation

{
dUt = A1Utdt + F(Ut )dt + dWQ1

t ,

U0 = u,

where

F(u) =
∫

K
F(u, v)μ(dv),

and μ is the invariant measure related to the fast motion, i.e.

{
dvv

t = A2v
v
t dt + G(vv

t )dt + dw
Q2
t ,

vv
0 = v ∈ K .

Note that the equation for U is uncoupled from V ε . This fact is known as averaging
principle and it is fundamental in applications sinceU captures the effective dynamic
of U ε (which is usually the most interesting variable in applications) and it is then a
rigorous dimensionality reduction of the original system.

The first general result for the averaging principle for finite-dimensional stochastic
differential equations can be found in [27]. For generalizations and improvements see
[13, 17, 18, 23, 31, 40, 41] and the references therein. It is important to mention that
the drift of the fast equation is allowed to depend also on the slow component (i.e.
fully coupled system) and the stochastic perturbations of the slow and fast equations
are allowed to be multiplicative, i.e. the diffusion coefficient of the slow equation can
depend on both the slow and fast variables. Moreover when the diffusion coefficient
of the slow equation is independent of the fast variable then a strong convergence in
probability is obtained. Otherwise only a weak convergence can be proved.

The averaging principle for infinite dimensional systems follows more delicated
arguments: for this we refer to [5, 6, 8, 9, 14, 15, 24, 39] and the references therein.
Also for infinite dimensional systems the previous comment about the dependence of
the diffusion coefficients holds. See also [19, 20, 38] for optimal control problems of
slow-fast systems in infinite dimension.

However for numerical applications it is very important to know the speed of con-
vergence for whichU ε → U , e.g. see [3, 29]. For the study of the order of convergence
for finite dimensional systemswe refer to [16, 25, 28, 30, 35] and the references therein.
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It is important to mention that the order of convergence can be studied in two ways:
in the strong sense and in the weak sense. Moreover the optimal order for the strong
and weak convergence are known to be 1/2 and 1 respectively.

Recently the problem of estimating the order of convergence in the averaging prin-
ciple for infinite dimensional systems systems is being addressed by researchers:

in [4] the author (generalizing his previouswork [2]) considers a slow-fast stochastic
reaction diffusion system with additive noise. Both the weak and strong orders of
convergence are obtained: in particular under strong regularity of the noise (it is for
example assumed that the covarianceoperator is trace class but for the precise statement
see [4]) it is proved that the strong order of convergence is 1/2 and the weak order
is 1 with both orders being optimal. Instead under more general assumptions on the
noise only weaker orders of convergence are obtained for both the strong and weak
convergence.

In [34] a 1-dimensional fully coupled reaction-diffusion system is considered and
the strong order of convergence is proved to be 1/2 under very strong assumptions
on the covariance operators of the noises, i.e. Tr(�1/2Qi ) < ∞, where � is the
Laplacian.

In [36] the strong order of convergence for a fully coupled slow-fast stochastic
system is studied. Here it is assumed that the the covariance operators of the noises
are trace-class and moreover that Tr(−A1Q1) < ∞.

See also [26] where the weak order of convergence for a stochastic wave equation
with fast oscillation given by a fast reaction-diffusion stochastic system is proved to
be 1. Also here it assumed Tr(Qi ) < ∞.

Indeed in all these papers the case Tr(Qi ) = ∞, which is very important for
applications as it happens very naturally for example when the stochastic perturbation
is a white noise i.e. Qi = I , can’t be treated.

In this manuscript we are then interested in studying the strong order of conver-
gence for the slow-fast infinite-dimensional system of stochastic evolution equations
(1) whereWQ1 ,WQ2 are general Wiener processes on H , K respectively with covari-
ance operators Q1, Q2 with Tr(Q1) = +∞, Tr(Q2) = +∞ possibly. Under some
hypotheses, see Hypotheses 1, 2, 3, 4, 5 below, we prove that the strong order of con-
vergence is 1/2 which is known to be optimal. In particular we show in Theorem 1
that

E

[

sup
t∈[0,T ]

∣
∣U ε

t −Ut
∣
∣2

]

≤ Cε

where Ut is the solution of the averaged equation. Notice that this result is much
stronger than [4, 36] where supt∈[0,T ] is outside the expectation.

The key tool in the proof of Theorem1 is Proposition 3. The proof of this proposition
is based on a technical result, i.e. Lemma 6.3, which is inspired by [7], and it is a
consequence of the mixing properties of the fast motion, i.e. Lemmas 4.5, 4.6, 4.7. We
recall that [7] studies the normal deviations, i.e. the weak convergence of Z ε := (U ε −
U )/

√
ε, when the equation for the slow component has no stochastic perturbation

(Q1 = 0).
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Finallywe discuss an application of our theory to a 1-dimensional slow-fast stochas-
tic reaction diffusion systemwhere the stochastic perturbation is given by awhite noise
both in time and space which to the best of our knowledge, as said before, can not be
treated by the existing literature.

The paper is organized as follows: in Sect. 2 we introduce the problem in a formal
way and we state the assumptions that we will use. In Sect. 3 we prove some a-priori
estimates. In Sect. 4 we prove some results related to the fast motion. In Sect. 5
we study the well posedness of the averaged equation. In Sect. 6 we prove some
preliminary results. In Sect. 7 we prove that the order of convergence is 1/2 and we
give an application of our theory.

2 Setup and Assumptions

In this section we define the notation and the assumptions for the rest of the paper.
H , K will be Hilbert spaces with scalar products 〈·, ·〉H , 〈·, ·〉K and | · |H , | · |K the

induced norms.
BB(H) will denote the space of bounded functions φ : H → R with the sup norm

| · |H ,∞.
Lip(H) will denote the set of Lipschitz functions φ : H → R and set

[φ]H,Lip = sup
x 	=y

|φ(x) − φ(y)|
|x − y|H .

L(H) will denote the space of linear bounded operators from H to H , endowed with
the operator norm

‖L‖H = sup
|x |H=1

|Lx |H .

Next denote byL2(H) the space of Hilbert-Schmidt operators endowedwith the norm

‖L‖L2(H) = (Tr(L∗L))1/2.

The analogous spaces BB(K ), Lip(K ),L(K ),L2(K ) are defined for theHilbert space
K with the corresponding norms | · |K ,∞, [·]K,Lip , ‖·‖K , ‖·‖L2(K ).

In order to simplify the notation we will omit the subscripts K and H in the various
norms when no confusion is possible.

B(H) and B(K ) will denote the Borel sigma-algebra in H and K respectively.
Consider now the following infinite dimensional system for 0 ≤ t ≤ T < ∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dU ε
t = A1U ε

t dt + F(U ε
t , V ε

t )dt + dWQ1
t ,

U ε
0 = u ∈ H ,

dV ε
t = ε−1A2V ε

t dt + ε−1G(V ε
t )dt + ε−1/2dWQ2

t ,

V ε
0 = v ∈ K ,

(2)
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where

• ε > 0 is a parameter,
• A1 : D(A1) ⊂ H → H , A2 : D(A2) ⊂ K → K are linear operators,
• F : H × K → H , G : K → K ,
• WQ1 ,WQ2 are independent cylindrical Wiener processes on H , K respectively
with covariance operator Q1, Q2 respectively and they are defined on some prob-
ability space (�,F ,P) with a normal filtration Ft , t ≥ 0.

We now state the assumptions that we will use throughout the work:

Hypothesis 1 A1 : D(A1) ⊂ H → H is a linear operator generator of an analytical
semigroup eA1t on H, t ≥ 0.

Moreover there exist an orthonormal basis {ek}k∈N of H and {αk}k∈N ⊂ (0,+∞)

such that

A1ek = −αkek .

Moreover we assume that there exist ζ > 0, n ≥ 2 integer and 1/(2n) < β < 1/3
such that

∞∑

k=1

α
−ζ
k < +∞

and

∞∑

k=1

α
n(ζ+2β−1)−ζ
k < +∞.

Remark 2.1 Hypothesis 1 is necessary in the proof of Proposition 3. It holds for exam-
ple when A1 = � is the Laplacian on [0, L]. Indeed in this case it is well known that
αk = Ck2 and then the two series converge for example by choosing ζ = 3

5 , n = 3,
β = 1

5 .

From Hypothesis 1 we have the following spectral representation:

eAt x =
∞∑

k=1

e−αk t 〈x, ek〉ek, ∀t > 0. (3)

Moreover we can define the fractional powers of −A1 denoted by (−A1)
θ for θ ≥ 0

with domain D((−A1)
θ ). We will denote by | · |θ the norm | · |D((−A1)θ ) = |(−A1)

θ · |.
The following standard results holds, e.g. see [33, Chapter 2, Theorem 6.13],

‖(−A1)
θeAt‖ ≤ Cθ t

−θe−νt , ∀θ ≥ 0, t > 0, (4)

for some ν > 0 and

|eA1t x − x | ≤ Cθ t
θ |x |θ , ∀x ∈ D

(
(−A1)

θ
)
, 0 < θ ≤ 1, t ≥ 0. (5)
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Hypothesis 2 A2 : D(A2) ⊂ K → K is a linear operator generator of aC0-semigroup
eA2t on K , t ≥ 0.
Moreover there exists λ > 0 such that

∥
∥
∥eA2t
∥
∥
∥ ≤ e−λt , (6)

for every t ≥ 0.

Hypothesis 3 There exist LF , LG > 0 such that

|F(x2, y2) − F(x1, y1)| ≤ LF (|x2 − x1| + |y2 − y1|),
|G(y2) − G(y1)| ≤ LG |y2 − y1|,

for every x1, x2 ∈ H , y1, y2 ∈ K.
Moreover we assume that

LG < λ.

We remark that this implies that A2 + G(·) is strongly dissipative, i.e. set

δ = λ − LG

2
> 0, (7)

then it holds:

〈A2(y2 − y1) + G(y2) − G(y1), y2 − y1〉 ≤ −2δ|y2 − y1|2, (8)

for every y1, y2 ∈ D(A2).

Hypothesis 4 There exist C > 0, γ ∈ (0, 1/2) such that

∥
∥
∥eA1t Q1/2

1

∥
∥
∥L2

≤ C(t ∧ 1)−γ ,

∥
∥
∥eA2t Q1/2

2

∥
∥
∥L2

≤ C(t ∧ 1)−γ ,

for every t > 0.

Hypothesis 5 Assume that Q2 is invertible (with inverse Q−1
2 ∈ L(K )).

Remark 2.2 Hypotheses 4, 5 hold for example choosing A1 = A2 = A to be the
Laplacian on [0, L] and Q1 = Q2 = Q = I .

Indeed Hypothesis 5 is immediately satisfied. Moreover by setting H = K =
L2([0, L]), we have that Aek = −Ck2ek for some orthonormal basis {ek} of eigen-
vectors of A. Thus, by the spectral representation (3) with αk = Ck2, we have:

∥
∥
∥eAt Q1/2

∥
∥
∥
2

L2
=
∥
∥
∥eAt
∥
∥
∥
2

L2
=

∞∑

h=1

|eAt eh |2 =
∞∑

h=1

e−2Ch2t ≤
∫ ∞

0
e−2Ch2t dh
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= 1√
2Ct

∫ ∞

0
e−y2dy = Ct−1/2,

where the inequality follows since ∀t > 0 the function h �→ e−Ch2t is non-increasing.
This shows that Hypothesis 4 holds with γ = 1/4.

Proposition 1 Let u ∈ H , v ∈ K, under Hypotheses 1, 2, 3, 4, 5 there exists a unique
mild solution of (2) given by

{
U ε
t = eA1t u + ∫ t0 eA1(t−s)F(U ε

s , V ε
s )ds + ∫ t0 eA1(t−s)dWQ1

s ,

V ε
t = eA1tv + ∫ t0 eA2(t−s)G(V ε

s )ds + ∫ t0 eA2(t−s)dWQ2
s ,

(9)

for every t ∈ [0, T ].

Proof See e.g. [10]. ��

In the sequel we will always assume that Hypotheses 1, 2, 3, 4, 5 hold. Moreover
C > 0 will denote a generic constant independent of ε which may change from line
to line.

3 A Priori Estimates

In this section we prove some classical a-priori estimates for the slow and fast com-
ponents.

In the following for every t ≥ 0 denote by

�1
t =
∫ t

0
eA1(t−s)dWQ1

s

and

�2ε
t = 1√

ε

∫ t

0
eA2(t−s)/εdWQ2

s

the stochastic convolutions.
First we prove some estimates related to �1

t and �2ε
t .

Lemma 3.1

E

[

sup
t∈[0,T ]

∣
∣
∣�

1
t

∣
∣
∣
p

θ

]

< +∞,

for every 0 ≤ θ < 1/2 − γ , p ≥ 1.
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Proof Fix 0 < η < 1/2, by the factorization method, e.g. see [10, Chapter 5, Section
3], we have:

�1
t = C

∫ t

0
eA1(t−ρ)(t − ρ)η−1Yρdρ

where

Yρ =
∫ ρ

0
eA1(ρ−s)(ρ − s)−ηdWQ1

s .

Now fix 0 ≤ θ < 1/2 − γ , then by Holder’s inequality:

E

[

sup
t≤T

∣
∣
∣�

1
t

∣
∣
∣
p

θ

]

≤ C
∫ T

0
E|Yρ |pθ dρ, (10)

for every p > 1/η > 2.
Nowwe estimateE|Yρ |pθ ; since Yρ is a Gaussian random variable, by Ito’s isometry,

(4) and Hypothesis 4 we have:

E|Yρ |pθ ≤ C
(
E|Yρ |2θ

)p/2 =C

(∫ ρ

0

∥
∥
∥(−A1)

θeA1(ρ−s)(ρ − s)−ηQ1/2
1

∥
∥
∥
2

L2
ds

)p/2

≤ C

(∫ ρ

0
(ρ − s)−2η

∥
∥
∥(−A1)

θeA1(ρ−s)/2
∥
∥
∥
2 ∥∥
∥eA1(ρ−s)/2Q1/2

1

∥
∥
∥
2

L2
ds

)p/2

≤ C

(∫ ρ

0
(ρ − s)−2(η+θ+γ )ds

)p/2

< C,

for every ρ ≤ T and θ, η such that 0 ≤ θ + η < 1/2 − γ .
Next inserting the last inequality in (10) and recalling that p > 1/η, which yields

p > (1/2 − γ − θ)−1 we obtain the thesis of the Lemma for 0 ≤ θ < 1/2 − γ ,
p > (1/2 − γ − θ)−1 > 2.

Finally by Holder’s inequality we have the thesis of the Lemma. ��
Lemma 3.2 Let p ≥ 2, then there exists C = C(p) > 0 such that

sup
t>0

E

[∣
∣
∣�

2ε
t

∣
∣
∣
p] ≤ C,

for every ε > 0.

Proof For t > 0, by [10, Theorem 4.36] and by our hypotheses we have

E

[∣
∣
∣�

2ε
t

∣
∣
∣
p] ≤ C

(∫ t

0

1

ε

∥
∥
∥eA2(t−s)/εQ1/2

2

∥
∥
∥
2

L2
ds

)p/2

= C

(∫ t/ε

0

∥
∥
∥eA2ρQ1/2

2

∥
∥
∥
2

L2
dρ

)p/2
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≤ C

(∫ t/ε

0

∥
∥
∥eA2ρ/2

∥
∥
∥
2 ∥∥
∥eA2ρ/2Q1/2

2

∥
∥
∥
2

L2
dρ

)p/2

≤ C

(∫ t/ε

0
e−λρ
(ρ

2
∧ 1
)−2γ

dρ

)p/2

≤ C

(∫ ∞

0
e−λρ
(ρ

2
∧ 1
)−2γ

dρ

)p/2

≤ C,

so that the thesis is proved. ��
Lemma 3.3 Let p ≥ 2 then there exists C = C(T , p) > 0 such that

E

[

sup
t∈[0,T ]

∣
∣U ε

t

∣
∣p

]

≤ C(1 + |u|p + |v|p) (11)

and

sup
t∈[0,T ]

E
[∣
∣V ε

t

∣
∣p
] ≤ C(1 + |u|p + |v|p), (12)

for every ε > 0.

Proof Define

�1ε
t = U ε

t − �1
t ,

so that

d�1ε
t = A1�

1ε
t dt + F(�1ε

t + �1
t , V

ε
t )dt .

By Young’s inequality and Hypotheses 1, 3 we have:

1

p

d

dt

∣
∣
∣�

1ε
t

∣
∣
∣
p = 〈A1�

1ε
t ,�1ε

t 〉
∣
∣
∣�

1ε
t

∣
∣
∣
p−2 + 〈F(�1ε

t + �1
t , V

ε
t ),�1ε

t 〉
∣
∣
∣�

1ε
t

∣
∣
∣
p−2

≤ C
∣
∣
∣�

1ε
t

∣
∣
∣
p + C

∣
∣
∣F(�1ε

t + �1
t , V

ε
t )

∣
∣
∣
p

≤ C
∣
∣
∣�

1ε
t

∣
∣
∣
p + C

(
1 +
∣
∣
∣�

1
t

∣
∣
∣
p + ∣∣V ε

t

∣
∣p
)

,

for every t ≤ T .
Then by the comparison Theorem we have

∣
∣
∣�

1ε
t

∣
∣
∣
p ≤ C |u|p + C

∫ t

0

(
1 +
∣
∣
∣�

1
s

∣
∣
∣
p + ∣∣V ε

s

∣
∣p
)
ds, (13)

for every t ≤ T .
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Then by the definition of �1ε and this last inequality it follows

∣
∣U ε

t

∣
∣p ≤C

(

1 + |u|p +
∫ t

0

(∣
∣
∣�

1
s

∣
∣
∣
p + ∣∣V ε

s

∣
∣p
)
ds +
∣
∣
∣�

1
t

∣
∣
∣
p
)

, (14)

for every t ≤ T .
Now by Lemma 3.1 we have:

E

[

sup
t≤τ

∣
∣U ε

t

∣
∣p
]

≤ C

(

1 + |u|p +
∫ τ

0
E
∣
∣V ε

r

∣
∣p dr

)

, (15)

for every τ ≤ T .
Now we proceed in a similar way to [19, proof of Lemma 3.10], i.e. set

�2ε
t = e

2δ
ε
t
(
V ε
t − �2ε

t

)
,

so that

d�2ε
t = 2δ

ε
�2ε

t dt + 1

ε
A2�

2ε
t dt + 1

ε
e
2δ
ε
tG(e− 2δ

ε �2ε
t + �2ε

t )dt .

Now by (8) it follows

d|�2ε
t |2 = 4δ

ε
|�2ε

t |2 + 2

ε
〈A2�

2ε
t ,�2ε

t 〉dt + 2

ε
e2δt/ε〈G(e−2δt/ε�2ε

t + �2ε
t ),�2ε

t 〉dt

− 2

ε
e2δt/ε〈G(�2ε

t ),�2ε
t 〉dt + 2

ε
e2δt/ε〈G(�2ε

t ),�2ε
t 〉dt

≤ 2

ε
e2δt/ε〈G(�2ε

t ),�2ε
t 〉dt .

Now similarly to [19, proof of Lemma 3.10] fix θ > 0, differentiate f (x) = √
x + θ

and use the previous inequality, then:

|�2ε
t | ≤
√

|�2ε
t |2 + θ

≤
√

|v|2 + θ +
∫ t

0

1

ε

1
√|�2ε

s |2 + θ
e
2δ
ε
s |G(�2ε

s )||�2ε
s |ds.

Now by dominated convergence for θ → 0 we have:

|�2ε
t | ≤ |v| +

∫ t

0

1

ε
e
2δ
ε
s |G(�2ε

s )|ds,

so that by recalling the definition of �2ε
t we have:

|V ε
t | ≤ e− 2δ

ε
t |v| +

∫ t

0

1

ε
e− 2δ

ε
(t−s)|G(�2ε

s )|ds + |�2ε
t |
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= e− 2δ
ε
t |v| +

∫ t/ε

0
e−2δ(t/ε−s)|G(�2ε

εs )|ds + |�2ε
t |.

Then, by Holder’s inequality and Lemma 3.2, we have:

E|V ε
t |p ≤ C |v|p + CE

∣
∣
∣
∣

∫ t/ε

0
e−2δ(t/ε−s)|G(�2ε

εs )|ds
∣
∣
∣
∣

p

+ CE

∣
∣
∣�

2ε
t

∣
∣
∣
p

≤ C |v|p + C

(∫ t/ε

0
e− 2δ p

(p−1) (t/ε−s)ds

)p−1 ∫ t/ε

0
e−2δ p(t/ε−s)

E|G(�2ε
εs )|pds

+ CE

∣
∣
∣�

2ε
t

∣
∣
∣
p

= C |v|p + C

(∫ t/ε

0
e− 2δ p

(p−1) σdσ

)p−1 ∫ t

0

1

ε
e−2δ p(t−s)/ε

E|G(�2ε
s )|pds

+ CE

∣
∣
∣�

2ε
t

∣
∣
∣
p

≤ C |v|p + C

(∫ t/ε

0
e− 2δ p

(p−1) σdσ

)p−1 ∫ t

0

1

ε
e−2δ p(t−s)/ε(1 + E|�2ε

s |p)ds

+ CE

∣
∣
∣�

2ε
t

∣
∣
∣
p

≤ C |v|p + C

(∫ t/ε

0
e− 2δ p

(p−1) σdσ

)p−1 ∫ t

0

1

ε
e−2δ p(t−s)/εds + C

≤ C(1 + |v|p).

This proves (12).
Finally inserting (12) into (15) we have (11). ��

Lemma 3.4 Let 0 < α < 1/2 − γ , u ∈ D((−A1)
α), v ∈ K, then there exists

C = C(T , α) > 0 such that

E

[

sup
t∈[0,T ]

∣
∣U ε

t

∣
∣2
α

]

≤ C(1 + |u|2α + |v|2),

for every ε > 0.

Proof Consider for t ≤ T

U ε
t = eA1t u +

∫ t

0
eA1(t−s)F(U ε

s , V ε
s )ds +

∫ t

0
eA1(t−s)dWQ1

s . (16)

First as u ∈ D((−A1)
α) we have:

sup
t≤T

|eA1t u|2α = sup
t≤T

|eA1t (−A1)
αu|2 ≤ C |u|2α.
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Moreover by (4) and by Lemma 3.3 we have:

E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
eA1(t−s)F(U ε

s , V ε
s )ds

∣
∣
∣
∣

2

α

]

≤ E

[

sup
t∈[0,T ]

∣
∣
∣
∣

∫ t

0
(t − s)−α

∣
∣F(U ε

s , V ε
s )
∣
∣ ds

∣
∣
∣
∣

2
]

≤ CE

[

sup
t∈[0,T ]

∫ t

0
(t − s)−2αds

∫ t

0

∣
∣F(U ε

s , V ε
s )
∣
∣2 ds

]

≤ C
∫ T

0

(
1 + E|U ε

s |2 + E|V ε
s |2
)
ds

≤ C(1 + |u|2 + |v|2).

Finally by Lemma 3.1 we have:

E

[

sup
t∈[0,T ]

∣
∣
∣�

1
t

∣
∣
∣
2

α

]

< +∞.

By considering (16), calculatingE
[
supt∈[0,T ]

∣
∣U ε

t

∣
∣2
α

]
and using the last three inequal-

ities we have the thesis. ��
Lemma 3.5 Let 0 < α < 1/2 − γ , u ∈ D((−A1)

α), v ∈ K, then there exists
C = C(T , α) > 0 such that

E
∣
∣U ε

t+h −U ε
t

∣
∣2 ≤ C |h|2α(1 + |u|2α + |v|2),

for every ε > 0, 0 ≤ t ≤ T , h ≥ 0 such that t + h ≤ T .

Proof For 0 ≤ t ≤ T , h ≥ 0 such that t + h ≤ T we have

U ε
t+h −U ε

t = (eA1h − I )U ε
t +
∫ t+h

t
eA1(t+h−s)F(U ε

s , V ε
s )ds

+
∫ t+h

t
eA1(t+h−s)dWQ1

s . (17)

Consider the first term on the right-hand-side, as u ∈ D((−A1)
α) by (5) and by

Lemma 3.4 we have:

E

∣
∣
∣(eA1h − I )U ε

t

∣
∣
∣
2 ≤ C |h|2αE ∣∣U ε

t

∣
∣2
α

≤ C |h|2α(1 + |u|2α + |v|2).
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Consider now the second term on the right-hand-side, then by Lemma 3.3 we have:

E

∣
∣
∣
∣

∫ t+h

t
eA1(t+h−s)F(U ε

s , V ε
s )ds

∣
∣
∣
∣

2

≤ C |h|
∫ t+h

t

(
1 + E|U ε

s |2 + E|V ε
s |2
)
ds

≤ C |h|2(1 + |u|2 + |v|2).

Finally for the third term on the right-hand-side by Ito’s isometry and Hypothesis 4
we have:

E

∣
∣
∣
∣

∫ t+h

t
eA1(t+h−s)dWQ1

s

∣
∣
∣
∣

2

=
∫ t+h

t

∥
∥
∥eA1(t+h−s)Q1/2

1

∥
∥
∥
2

L2
ds

≤ C
∫ t+h

t
|t + h − s|−2γ ds

= C |h|1−2γ .

As by assumption 2α ∧ 2 ∧ (1 − 2γ ) = 2α then we have the thesis. ��

4 Fast Motion

In this section we study some classical properties of the fast motion. Consider

{
dvv

s = A2v
v
s ds + G(vv

s )ds + dw
Q2
s ,

vv
0 = v ∈ K ,

(18)

for every s ≥ 0 and for some Q2-Wiener process w
Q2
s .

First define the semigroup related to the fast motion by

Psφ(v) = E
[
φ(vv

s )
]
, (19)

for every φ ∈ BB(K ), s ≥ 0.
Next recall that δ was defined by (7), then we have:

Lemma 4.1

E

[∣
∣vv1

s − vv2
s

∣
∣2
]

≤ e−4δs |v1 − v2|2,

for every s ≥ 0, v1, v2 ∈ K.

Proof Define ρs = v
v1
s − v

v2
s , then by (8) we have:

d

ds
|ρs |2 = 2〈A2ρs, ρs〉 + 2〈G(vv1

s ) − G(vv2
s ), ρs〉

≤ −4δ|ρs |2,

123



39 Page 14 of 36 Applied Mathematics & Optimization (2023) 88 :39

for every s ≥ 0, v1, v2 ∈ K .
Then by taking the expectation and applying the comparison Theorem we have the

thesis. ��
Next we can show:

Lemma 4.2 Let p ≥ 1, then there exists C = C(p) > 0 such that:

E
[∣
∣vv

s

∣
∣p
] ≤ C(1 + e−δ ps |v|p),

for every s ≥ 0, v ∈ K.

Proof Define

�̃Q2
s =
∫ s

0
eA2(s−r)dwQ2

r .

First by Burkholder’s inequality and Hypotheses 2 and 4 similarly to what is done for
Lemma 3.2 we have:

E

[∣
∣
∣�̃

Q2
s

∣
∣
∣
p] ≤ C

(∫ s

0

∥
∥
∥eA2(s−r)Q1/2

2

∥
∥
∥
2

L2
dr

)p/2

≤ C

(∫ s

0
e−λ(s−r)

(
s − r

2
∧ 1

)−2γ

dr

)p/2

≤ C, (20)

for every s ≥ 0.
Now set ρs = vv

s − �̃
Q2
s . Then for p ≥ 2 we have:

1

p

d

ds
|ρs |p = 〈A2ρs, ρs〉|ρs |p−2 + 〈G(ρs + �̃Q2

s ) − G(�̃Q2
s ), ρs〉|ρs |p−2

+ 〈G(�̃Q2
s ), ρs〉|ρs |p−2

≤ −2δ|ρs |p + C(1 + |�̃Q2
s |)|ρs |p−1

≤ −δ|ρs |p + C(1 + |�̃Q2
s |p).

Then by the comparison Theorem and (20) we have:

E
∣
∣vu,v

s

∣
∣p ≤ CE|ρs |p + CE|�̃Q2

s |p

≤ C

[

e−δ ps |v|p +
∫ s

0
e−δ p(s−r)

(
1 + E|�̃Q2

r |p
)
dr + E|�̃Q2

s |p
]

≤ C
(
e−δ ps |v|p + 1

)
.

��
Now by [11, Theorem 6.3.3] there exists a unique invariant measure μ for the

semigroup Pt . Moreover we have:
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Lemma 4.3 We have:

∫

K
|z|μ(dz) < ∞. (21)

Proof Fix N > 0, then by definition of invariant measure and Lemma 4.2 we have for
every s > 0

∫

K
(|z| ∧ N )μ(dz) =

∫

K
E
[|vzs | ∧ N

]
μ(dz)≤

∫

K

{[
C
(
1 + e−δs |z|)] ∧ N

}
μ(dz)

≤
∫

K
C
(
1 ∧ N + e−δs |z| ∧ N

)
μ(dz)

≤ C

(

1 + e−δs
∫

K
(|z| ∧ N )μ(dz)

)

,

where we have used the fact that (a + b) ∧ c ≤ a ∧ c + b ∧ c for every a, b, c ≥ 0.
By choosing s > 0 large enough we have

∫

K
(|z| ∧ N )μ(dz) ≤ C,

for some C > 0 independent of N . Letting N → ∞ by the monotone convergence
Theorem we have the result. ��

Next we study the convergence to equlibrium of the semigroup of the fast motion,
i.e. we prove:

Lemma 4.4 There exists C > 0 such that

∣
∣
∣
∣Psφ(v) −

∫

K
φ(z)μ(dz)

∣
∣
∣
∣ ≤ C [φ]Lip e

−2δs(1 + |v|),

for every s ≥ 0, v ∈ K, φ ∈ Lip(K ).
Moreover there exists C > 0 such that

∣
∣
∣
∣Psφ(v) −

∫

K
φ(z)μ(dz)

∣
∣
∣
∣ ≤ C |φ|∞e−δs(s ∧ 1)−1/2(1 + |v|),

for every s > 0, φ ∈ BB(K ), v ∈ K.

Proof First for every φ ∈ Lip(K ) by Lemma 4.1 we have:

|Psφ(v2) − Psφ(v1)| ≤ [φ]Lip E
[∣
∣vv2

s − vv1
s

∣
∣
]

≤ [φ]Lip e−2δs |v2 − v1|,
(22)

for every s ≥ 0, v1, v2 ∈ K .
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Now let s > 0, by definition of invariant measure, (22) and Lemma 4.3 we have:

∣
∣
∣
∣Psφ(v) −

∫

K
φ(z)μ(dz)

∣
∣
∣
∣ =
∣
∣
∣
∣

∫

K
(Psφ(v) − Psφ(z)) μ(dz)

∣
∣
∣
∣

≤ [φ]Lip e
−2δs
∫

K
|v − z|μ(dz)

≤ C [φ]Lip e
−2δs(1 + |v|), (23)

for every v ∈ K , φ ∈ Lip(K ) so that we have the first inequality.
Now thanks to Hypothesis 5 we can apply [10, Theorem 9.32] to have the Bismut-

Elworthy formula:

sup
u∈H

|DPsφ|∞ ≤ C(s ∧ 1)−1/2|φ|∞, (24)

for every s > 0, φ ∈ BB(K ).
Now by the semigroup property, the regularizing property of the semigroup (24)

and by (22) we have:

|Psφ(v2) − Psφ(v1)| = ∣∣Ps/2
(
Ps/2φ
)
(v2) − Ps/2

(
Ps/2φ
)
(v1)
∣
∣

≤ [Ps/2φ
]

Lip e
−2δ s

2 |v2 − v1|
≤ C |φ|∞(s ∧ 1)−

1
2 e−δs |v2 − v1|, (25)

for every s > 0, v1, v2 ∈ K .
Finally similarly to before by (25) for s > 0 we have:

∣
∣
∣
∣Psφ(v) −

∫

K
φ(z)μ(dz)

∣
∣
∣
∣ =
∣
∣
∣
∣

∫

K
(Psφ(v) − Psφ(z)) μ(dz)

∣
∣
∣
∣

≤ C |φ|∞(s ∧ 1)−
1
2 e−δs
∫

K
|v − z|μ(dz)

≤ C |φ|∞(s ∧ 1)−
1
2 e−δs(1 + |v|),

for every v ∈ K , φ ∈ BB(K ). ��
Now we study the mixing properties of the semigroup of the fast motion. To this
purpose define for 0 ≤ s ≤ t ≤ ∞, v ∈ K

Ht
s(v) = σ(vv

r , 0 ≤ s ≤ r ≤ t).

Then a classical consequence of Lemmas 4.2, 4.4 is the following mixing result whose
proof is the same of [7, Lemma 3.2] and is reported in the appendix for completeness.

Lemma 4.5 There exists C > 0 such that

sup
{|P(B1 ∩ B2) − P(B1)P(B2)| : B1 ∈ Ht

0(v), B2 ∈ H∞
t+s(v)
}
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≤ Ce−δss−1/2(1 + |v|),

for every 0 ≤ s ≤ t , v ∈ K.

Now Lemma 4.5 implies the following classical result, e.g. see [37] (see also [7,
Proposition 3.3]). The proof can be found in the appendix for completeness.

Lemma 4.6 There exists C > 0 such that for every 0 ≤ s1 ≤ t1 < s2 ≤ t2 and ξi
Hti

si (v)-measurable i = 1, 2 and |ξi | ≤ 1 a.s i = 1, 2

|E [ξ1ξ2] − Eξ1Eξ2| ≤ C
e−δ(s2−t1)

√
s2 − t1

(1 + |v|) .

Since in our case |ξi |will not be bounded by 1 we need the following result which is
similar to [7, Proposition 3.3]. Also in this case we postpone the proof in the appendix.

Lemma 4.7 Let ρ ∈ (0, 1). Then there exists C = C(ρ) > 0 such that for every
0 ≤ s1 ≤ t1 < s2 ≤ t2 and ξi Hti

si (v)-measurable, i = 1, 2 satisfying for some
Ki = Ki (ρ) > 0

(
E |ξi |

2
1−ρ

) 1−ρ
2 = Ki < ∞ (26)

then:

|E [ξ1ξ2] − Eξ1Eξ2| ≤ CK
2

2+ρ

1 K
2

2+ρ

2 (K1 + K2)
2ρ
2+ρ

(
e−δ(s2−t1)

√
s2 − t1

(1 + |v|)
) ρ

2+ρ

.

5 Averaged Equation

In this section we introduce the averaged equation and we prove its well-posedness.

F(u) =
∫

K
F(u, v)μ(dv), (27)

for every u ∈ H and consider the so called averaged equation:

{
dUt = A1Utdt + F(Ut )dt + dWQ1

t ,

U0 = u,
(28)

for every t ≤ T .
Now we prove the well-posedness of the averaged equation:

Proposition 2 Equation (28) admits a unique mild solution given by:

Ut = eA1t u +
∫ t

0
eA1(t−s)F(Us)ds +

∫ t

0
eA1(t−s)dWQ1

s ,
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for every t ∈ [0, T ].
Moreover for every p > 0 there exists C = C(T , p) > 0 such that

E

[

sup
t∈[0,T ]

|Ut |p
]

≤ C(1 + |u|p).

Proof In order to prove the first part of the Proposition it is sufficient to prove that F is
Lipschitz (e.g. see [10]). But this follows from the Lipschitz continuity of F , indeed:

|F(u1) − F(u2)| ≤
∫

K
|F(u1, v) − F(u2, v)|μ(dv) ≤ LF |u1 − u2|, ∀u1, u2 ∈ H .

Hence we obtain the Lipschitzianity of F and the first claim of the Proposition.
The proof of the second claim of the Proposition follows by a standard application

of Gronwall’s Lemma. ��

6 Preliminary Results

In this section we prove a technical result, i.e. Lemma 6.3, which is inspired by [7,
Lemma 4.2] and follows by the mixing properties of the fast motion studied in Sect. 4,
in particular Lemma 4.7. In order to prove it we proceed with similar techniques to
the ones of the proof of [7, Lemma 4.2].

Fix ξ ∈ C([0, T ]; H), v ∈ K , h ∈ H with |h| = 1, and define

�h(r):=〈F(ξ r , V
ε
r ) − F(ξ r ), h〉 ∀r ≤ T

and

�h(r):=�h(εr) = 〈F(ξεr , V
ε
εr ) − F(ξεr ), h〉.

Moreover let n ∈ N and set:

J j (r1, . . . , r2n) :=
∣
∣
∣
∣
∣
∣
E

2n∏

i=1

�h (ri ) − E

2 j∏

i=1

�h (ri )E
2n∏

i=2 j+1

�h (ri )

∣
∣
∣
∣
∣
∣
, (29)

for every 1 ≤ j ≤ n, 0 ≤ r1 ≤ . . . ≤ r2n ≤ T /ε.
First we show the following result:

Lemma 6.1 Let 0 < ρ < 1 then there exists C = C(T , ρ, n) > 0 and η = η(ρ, j2 −
j1) > 0 such that

∣
∣
∣
∣
∣
∣
E

j2∏

i= j1

�h(ri )

∣
∣
∣
∣
∣
∣
≤ C

(
e−δ(r j2−r j2−1)

√
r j2 − r j2−1

) ρ
2+ρ
(

1 + sup
r≤T

|ξ r |η + |v|η
)

, (30)
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for every u ∈ H , v ∈ K, 1 ≤ j1 ≤ j2 ≤ n, 0 ≤ r1 ≤ . . . ≤ r2n ≤ T /ε.
Moreover there exists C = C(T , ρ, n) > 0 and η = η(ρ, n) > 0 such that

J j (r1, . . . , r2n) ≤ C

(
e−δr̂ j
√
r̂ j

) ρ
2+ρ
(

1 + sup
r≤T

|ξ r |η + |v|η
)

, (31)

where

r̂ j = max
(
r2n − r2n−1, r2 j+1 − r2 j

)
,

for every 1 ≤ j ≤ n, 0 ≤ r1 ≤ . . . ≤ r2n ≤ T /ε.

Remark 6.2 Note that the dependence of the exponents with respect to j2 − j1 and n
is not restrictive: once n has been fixed (together with ρ and T ) we are allowed to take
any 0 ≤ j1 ≤ j2 ≤ n. In this sense η = η(ρ, j2 − j1). Of course since j2 − j1 ≤ n we
could choose η′ = η′(ρ, n) ≥ η and replace η with η′ in the estimates of the Lemma.
However the estimate with η is more precise.

Proof By the sublinearity of �h and Lemma 4.2 for every p ≥ 1 we have:

E

∣
∣
∣
∣
∣
∣

j2∏

i= j1

�h (ri )

∣
∣
∣
∣
∣
∣

p

≤ C

⎛

⎝1 +
j2∑

i= j1

∣
∣ξεri

∣
∣( j2− j1+1)p +

j2∑

i= j1

E
∣
∣V ε

εri

∣
∣( j2− j1+1)p

⎞

⎠

≤ C

(

1 + sup
r≤T

|ξ r |( j2− j1+1)p + |v|( j2− j1+1)p

)

,

(32)

for every 1 ≤ j1 ≤ j2 ≤ 2n.
Notice that V ε

εr and vv
r , defined by (18) for w

Q2
r = WQ2

εr /
√

ε, are indistinguishable
for r ∈ [0, T /ε]. Then by setting p = 2/(1 − ρ) and applying Lemma 4.7 to
ξ1 = ∏ j

i=1 �h (ri ), ξ2 = ∏2n
i= j+1 �h (ri ) with K1 = C(1 + supr≤T |ξ r | j + |v| j ),

K2 = C(1 + supr≤T |ξ r |2n− j + |v|2n− j ) for every 0 ≤ j1 < j < j2 ≤ 2n we have:

∣
∣
∣
∣
∣
∣
E

j2∏

i= j1

�h (ri ) − E

j∏

i= j1

�h (ri )E
j2∏

i= j+1

�h (ri )

∣
∣
∣
∣
∣
∣

≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)(

e−δ(r j+1−r j)
√
r j+1 − r j

) ρ
2+ρ

,

(33)

where η = j2 − j1 + ρ( j2− j1−1)
(ρ+2) .

By definitions of �h , the indistinguishability of V ε
εr , vv

r and by Lemma 4.4 we
have:

∣
∣E�h
(
r j2
)∣
∣ ≤ Ce−2δr j2

(

1 + sup
r≤T

|ξ r | + |v|
)

. (34)
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Now by the last three inequalities we have:
∣
∣
∣
∣
∣
∣
E

j2∏

i= j1

�h (ri )

∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣
E

j2∏

i= j1

�h (ri ) − E

j2−1∏

i= j1

�h (ri )E�h
(
r j2
)

∣
∣
∣
∣
∣
∣
+ E

∣
∣
∣
∣

j2−1∏

i= j1

�h (ri )

∣
∣
∣
∣

∣
∣E�h
(
r j2
) ∣
∣

≤ C

(

1 + sup
r≤T

|ξr |η + |v|η
)
⎛

⎜
⎝
e
−δ
(
r j2−r j2−1

)

√
r j2 − r j2−1

⎞

⎟
⎠

ρ
2+ρ

+ C(1 + sup
r≤T

|ξr | j2− j1 + |v| j2− j1 )

(

1 + sup
r≤T

|ξr | + |v|
)

e−2δr j2

≤ C

(

1 + sup
r≤T

|ξr |η + |v|η
)
⎛

⎜
⎝
e
−δ
(
r j2−r j2−1

)

√
r j2 − r j2−1

⎞

⎟
⎠

ρ
2+ρ

,

where η = ( j2 − j1 + 1) + ρ( j2− j1)
(ρ+2) . This implies (30).

Now by (30) we have:

∣
∣
∣
∣
∣
∣
E

2n∏

i= j1

�h (ri )

∣
∣
∣
∣
∣
∣
≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)(

e−δ(r2n−r2n−1)

√
r2n − r2n−1

) ρ
2+ρ

. (35)

for every j1 < 2n.

Now fix any j < 2n. Then by the last inequality and (32) we have:

∣
∣
∣
∣
∣
∣
E

2n∏

i=1

�h (ri ) − E

j∏

i=1

�h (ri )E
2n∏

i= j+1

�h (ri )

∣
∣
∣
∣
∣
∣

≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)(

e−δ(r2n−r2n−1)

√
r2n − r2n−1

) ρ
2+ρ

.

(36)

Finally consider (33) with j1 = 1, j2 = 2n and (36). Since the function f (s) =
e−δss−1/2 is decreasing we have

∣
∣
∣
∣
∣
∣
E

2n∏

i=1

�h (ri ) − E

j∏

i=1

�h (ri )E
2n∏

i= j+1

�h (ri )

∣
∣
∣
∣
∣
∣

≤ C

⎛

⎝
e−δmax(r2n−r2n−1,r2 j+1−r2 j)

√

max
(
r2n − r2n−1, r2 j+1 − r2 j

)

⎞

⎠

ρ
2+ρ (

1 + sup
r≤T

|ξ r |η + |v|η
)

= C

(
e−δr̂ j
√
r̂ j

) ρ
2+ρ
(

1 + sup
r≤T

|ξ r |η + |v|η
)

.

This implies (31). ��

123



Applied Mathematics & Optimization (2023) 88 :39 Page 21 of 36 39

Let 0 < α, 0 ≤ β < 1/3 and set

θα,β(r) := e−rαr−β ∀r > 0.

Now we can state and prove the main result of this section.

Lemma 6.3 Let n ∈ N and 0 ≤ β < 1/3. Then there exists a constant C =
C(T , n, β) > 0 and η = η(n) > 0 such that for every ε > 0, α > 0, u ∈ H , v ∈ K,
h ∈ H with |h| = 1 we have:

∫

[s,t]2n

∣
∣
∣
∣
∣
E

2n∏

i=1

θα,β(t − ri )〈F(ξ ri , V
ε
ri ) − F(ξ ri ), h〉

∣
∣
∣
∣
∣
dr1 . . . dr2n

≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)

εn
(
1

α

)(1−2β)n

.

Proof Recall the definition of �h(r), then by a change of variable we have:

∫

[s,t]2n

∣
∣
∣
∣
∣
E

2n∏

i=1

θα,β(t − ri )〈F(ξ ri , V
ε
ri ) − F(ξ ri ), h〉

∣
∣
∣
∣
∣
dr1 . . . dr2n = ε2nHε(s, t),

(37)

where we have defined:

Hε(s, t) :=
∫

[ s
ε
, t
ε

]2n

∣
∣
∣
∣
∣
E

2n∏

i=1

(
θα,β (t − εri ) �h (ri )

)
∣
∣
∣
∣
∣
dr1 · · · dr2n .

By simmetry we have:

Hε(s, t) = C
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

∣
∣
∣
∣
∣
E

2n∏

i=1

(
θα,β (t − εri ) �h (ri )

)
∣
∣
∣
∣
∣
dr1 · · · dr2n . (38)

We proceed by induction on n and to this purpose fix some ρ ∈ (0, 1). Consider n = 1
then by the definition of θα,β = e−rαr−β , (30) and some changes of variables we have

ε2Hε (s, t) = 2ε2
∫ t

ε

s
ε

∫ r2

s
ε

θα,β (t − εr1) θα,β (t − εr2) |E [�h (r1) �h (r2)]|dr1dr2

≤ Cε2
∫ t

ε

s
ε

∫ r2

s
ε

θα,β (t − εr1) θα,β (t − εr2)

(
e−δ(r2−r1)

√
r2 − r1

) ρ
2+ρ

dr1dr2

(

1 + sup
r≤T

|ξ r |η + |v|η
)

= Cε2−2β
∫ t−s

ε

0
y−β
2 e−εy2α

∫ t−s
ε

y2
y−β
1 e−εy1α

(
e−δ(y1−y2)

√
y1 − y2

) ρ
2+ρ

dy1dy2

(

1 + sup
r≤T

|ξ r |η + |v|η
)

≤ Cε2−2β
∫ t−s

ε

0
y−2β
2 e−2εy2α

∫ +∞

0

(
e−δy1
√
y1

) ρ
2+ρ

dy1dy2

(

1 + sup
r≤T

|ξ r |η + |v|η
)
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≤ Cε2−2β
∫ t−s

ε

0
y−2β
2 e−2εy2αdy2

(

1 + sup
r≤T

|ξ r |η + |v|η
)

= Cε2−2β (εα)−(1−2β)

∫ α(t−s)

0
r−2βe−2r dr

(

1 + sup
r≤T

|ξ r |η + |v|η
)

≤ Cε2−2β (εα)−(1−2β)

(

1 + sup
r≤T

|ξ r |η + |v|η
)

= Cεα−(1−2β)

(

1 + sup
r≤T

|ξ r |η + |v|η
)

,

so that by (37) we have the thesis for n = 1.
Now assume that

∫

[s,t] j

∣
∣
∣
∣
∣
∣
E

j∏

i=1

θα,β(t − εri )�h(ri )

∣
∣
∣
∣
∣
∣
dr1 . . . dr j

≤ C

(

1 + sup
r≤T

|ξ r |η j + |v|η j

)

ε j/2
(
1

α

)(1−2β) j/2

,

for every even j < 2n where η j = j + ρ( j−1)
(ρ+2) .

We prove that then it holds for j = 2n.
Set for r = (r1, . . . r2n) ∈ (s, t)2n with s ≤ r1 ≤ . . . ≤ r2n ≤ t the integer j(r)

such that

max
j=1,...,n−1

(
r2 j+1 − r2 j

) = r2 j(r)+1 − r2 j(r).

and consider Hε(s, t) given by (38). Recalling the definition of J j (r1, . . . r2n) given
by (29) we have:

ε2n Hε(s, t) = Cε2n
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri )

∣
∣
∣
∣
∣
E

2n∏

i=1

�h (ri )

∣
∣
∣
∣
∣
dr1 · · · dr2n

≤ Cε2n
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri ) J j(r) (r1, . . . , r2n) dr1 · · · dr2n

+Cε2n
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri )

∣
∣
∣
∣
∣
∣
E

2 j(r)∏

i=1

�h (ri )E
2n∏

i=2 j(r)+1

�h (ri )

∣
∣
∣
∣
∣
∣
dr1 · · · dr2n .

Note that by definition of j(r), for every s ≤ r1 ≤ . . . ≤ r2n ≤ t , we have

∣
∣
∣
∣
∣
∣
E

2 j(r)∏

i=1

�h (ri )E
2n∏

i=2 j(r)+1

�h (ri )

∣
∣
∣
∣
∣
∣
≤

n−1∑

j=1

∣
∣
∣
∣
∣
∣
E

2 j∏

i=1

�h (ri )E
2n∏

i=2 j+1

�h (ri )

∣
∣
∣
∣
∣
∣
.
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It follows:

ε2n Hε(s, t)

≤ Cε2n
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri ) J j(r) (r1, . . . , r2n) dr1 · · · dr2n

+Cε2n
n−1∑

j=1

∫ t
ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri )

∣
∣
∣
∣
∣
∣
E

2 j∏

i=1

�h (ri )E
2n∏

i=2 j+1

�h (ri )

∣
∣
∣
∣
∣
∣
dr1 · · · dr2n

= Cε2n
∫ t

ε

s
ε

∫ r2n

s
ε

. . .

∫ r2

s
ε

2n∏

i=1

θα,β (t − εri ) J j(r) (r1, . . . , r2n) dr1 · · · dr2n

+ Cε2n
n−1∑

j=1

∫ t
ε

s
ε

∫ r2 j

s
ε

. . .

∫ r2

s
ε

2 j∏

i=1

θα,β (t − εri )

∣
∣
∣
∣
∣
∣
E

2 j∏

i=1

�h (ri )

∣
∣
∣
∣
∣
∣
dr1 · · · r2 j

×
∫ t

ε

s
ε

∫ r2(n− j)

s
ε

· · ·
∫ r2

s
ε

2(n− j)∏

i=1

θα,β (t − εri )

∣
∣
∣
∣
∣
∣
E

2(n− j)∏

i=1

�h (ri )

∣
∣
∣
∣
∣
∣
dr1 · · · r2(n− j)

=: ε2n I1,ε (s, t) + ε2n I2,ε (s, t).

(39)

Now by (31) and the definition of j(r) we have:

J j(r) (r1, . . . , r2n) ≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)(

e−δr̂ j(r)
√
r̂ j(r)

) ρ
2+ρ

= C

(

1 + sup
r≤T

|ξ r |η + |v|η
)

(
e−δ max(r2n−r2n−1,r2n−1−r2n−2,··· ,r3−r2)

√
max (r2n − r2n−1, r2n−1 − r2n−2, · · · , r3 − r2)

) ρ
2+ρ

= C

(

1 + sup
r≤T

|ξ r |η + |v|η
)

e− δρ
2+ρ

max(r2n−r2n−1,r2n−1−r2n−2,··· ,r3−r2)

[
max (r2n − r2n−1, r2n−1 − r2n−2, · · · , r3 − r2)

]ρ̄ ,

where ρ̄ = ρ
2(2+ρ)

.
Recall that ri+1 ≥ ri for every i and note that max (r2n − r2n−1, r2n−1 − r2n−2) ≥

1/2(r2n − r2n−2) and max (r2n − r2n−1, r2n−1 − r2n−2, · · · , r3 − r2) ≥ 1
n(

r2n − r2n−1 +∑n−1
i=1 r2i+1 − r2i

)
. Hence, since g(t) = 1/t ρ̄ , f (t) = e−αt for

α > 0 are decreasing, we have (recall that C may change from line to line):

J j(r) (r1, . . . , r2n) ≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)
e− δρ

2+ρ
max(r2n−r2n−1,r2n−1−r2n−2,··· ,r3−r2)

[
max (r2n − r2n−1, r2n−1 − r2n−2)

]ρ̄
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≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)
e− δρ

2+ρ
max(r2n−r2n−1,r2n−1−r2n−2,··· ,r3−r2)

(r2n − r2n−2)
ρ̄

≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)
e
− δρ

2+ρ
1
n

(
r2n−r2n−1+∑n−1

i=1 r2i+1−r2i
)

(r2n − r2n−2)
ρ̄

= C

(

1 + sup
r≤T

|ξ r |η + |v|η
)
e
−δn

(
r2n−r2n−2+∑n−2

i=1 r2i+1−r2i
)

(r2n − r2n−2)
ρ̄

,

where in the last equality we have defined δn = δρ
n(2+ρ)

and we have used the following

identity:
∑n−1

i=1 r2i+1 − r2i = r2n−1 − r2n−2 +∑n−2
i=1 r2i+1 − r2i .

We can apply this last inequality in order to estimate I1,ε(s, t), i.e.

I1,ε(s, t) ≤ C

(

1 + sup
r≤T

|ξr |η + |v|η
)∫ t

ε

s
ε

∫ r2n

s
ε

· · ·
∫ r2

s
ε

e−δn(r2n−r2n−2)

(r2n − r2n−2)
ρ̄

×
2n∏

i=1

ϑα,β (t − εri )
n−2∏

i=1

e−δn(r2i+1−r2i )dr1 · · · dr2n

= Cε−2nβ

∫ t−s
ε

0
e−(εα−δn)y2n y−β

2n

∫ t−s
ε

y2n
e−εαy2n−1 y−β

2n−1

∫ t−s
ε

y2n−1

e−(εα+δn)y2n−2

(y2n−2 − y2n)ρ̄
y−β
2n−2

×
∫ t−s

ε

y2n−2

· · ·
∫ t−s

ε

y3

2n−2∏

i=2

e−(εα+(−1)i δn
)
yi r−β

i

∫ t−s
ε

y2
e−εαy1 y−β

1 dy1 · · · dy2n
(

1 + sup
r≤T

|ξr |η + |v|η
)

.

Now for k = 1, 2, 3, i = 1, 3, . . . 2n − 1 we obtain:
∫ t−s

ε

yi+1

e−kεαyi y−kβ
i dyi = (εα)kβ−1

∫ (t−s)α

εαyi+1

e−kyi y−kβ
i dyi

≤ C(εα)kβ−1. (40)

Now consider i = 2, 4, . . . 2n, we have:
∫ t−s

ε

yi+1

e−(εα+δn)yi y−β
i dyi ≤ y−β

i+1e
−(εα+δn)yi+1 (εα + δn)

−1

≤ Cy−β
i+1e

−(εα+δn)yi+1 . (41)

Now by (40) and (41) we have:

∫ t−s
ε

y2n−2

· · ·
∫ t−s

ε

y3

2n−2∏

i=2

e−(εα+(−1)i δn
)
yi y−β

i

∫ t−s
ε

y2
e−εαy1 y−β

1 dy1 · · · dy2n−3

≤ (εα)β−1(εα)(2β−1)(n−2)

= (εα)n(2β−1)−(3β−1).

(42)
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Now consider the remaining term in the inequality for I1,ε(s, t): by (40) and (41) we
have
∫ t−s

ε

0
e−(εα−δn )y2n y−β

2n

∫ t−s
ε

y2n
e−εαy2n−1 y−β

2n−1

∫ t−s
ε

y2n−1

e−(εα+δn )y2n−2

(
y2n−2 − y2n

)ρ̄
y−β
2n−2dy2n−2dy2n−1dy2n

≤ C
∫ t−s

ε

0
e−3εαy2n y−3β

2n

∫ t−s
ε

y2n

e−(2εα+δn )(y2n−1−y2n)

(
y2n−1 − y2n

)ρ̄
dy2n−1dy2n

≤ C
∫ t−s

ε

0
e−3εαy2n y−3β

2n

∫ ∞
0

e−δn y2n−1

yρ̄
2n−1

dy2n−1dy2n

≤ C(εα)3β−1.

(43)

Applying now (42) and (43) to the inequality for I1,ε(s, t) we have:

I1,ε ≤ Cε−2nβ(εα)n(2β−1)−(3β−1)(εα)3β−1

(

1 + sup
r≤T

|ξ r |η + |v|η
)

= Cε−nα−(1−2β)n

(

1 + sup
r≤T

|ξ r |η + |v|η
)

.

(44)

In addition by the inductive hypothesis we have:

I2,ε ≤ Cε−nα−(1−2β)n

(

1 + sup
r≤T

|ξ r |η + |v|η
)

. (45)

Finally applying the last two inequalities to (39) and then going back to (37) we have
the thesis. ��

7 Order of Convergence

In this section we finally investigate the order of convergence. We first prove the fol-
lowing proposition which will be crucial in the derivation of the order of convergence.

Proposition 3 There exist C = C(T ) > 0, ι > 0 such that

E

[

sup
0≤t≤τ

∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(Us, V

ε
s ) − F(Us)

)
ds

∣
∣
∣
∣

2
]

≤ Cε(1 + |u|ι + |v|ι),

for every 0 ≤ τ ≤ T , ε > 0, u ∈ H , v ∈ K.

Proof We proceed with similar techniques to the ones in the proof of [7, Theorem
4.1].

Define

Z ε
t :=
∫ t

0
eA1(t−s) (F(Us, V

ε
s ) − F(Us)

)
ds.
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We proceed using the factorization method, e.g. see [10, Chapter 5, Section 3]: fix
ζ > 0, n ≥ 2 integer and 1/(2n) < β < 1/3 as in Hypothesis 1, then:

Z ε
t = sin βπ

π

∫ t

0
(t − s)β−1eA1(t−s)Y ε

s ds,

where

Y ε
s =
∫ s

0
(s − r)−βeA1(s−r) (F(Ur , V

ε
r ) − F(Ur )

)
dr .

By Holder’s inequality we have:

E

[

sup
t∈[0,τ ]

|Z ε
t |2n
]

≤ C
∫ τ

0
E|Y ε

s |2nds. (46)

We now claim that there exist C = C(T ) > 0 and η > 0 such that

E
∣
∣Y ε

s

∣
∣2n ≤ Cεn

(
1 + |u|η + |v|η) , (47)

for every 0 ≤ t0 ≤ s ≤ T , ε > 0, u ∈ H , v ∈ K .
Indeed first recall the spectral representation (3). Then by Parseval’s identity,

Holder’s inequality, Hypothesis 1 and the properties of conditional expectations we
have:

E
∣
∣Y ε

s

∣
∣2n =E

( ∞∑

k=1

α
− (n−1)ζ

n
k α

(n−1)ζ
n

k

∣
∣
∣
∣

∫ s

0
(s − r)−βe−(s−r)αk 〈F(Ur , V

ε
r ) − F(Ur ), ek〉dr

∣
∣
∣
∣

2
)n

≤
( ∞∑

k=1

α
−ζ
k

)n−1 ∞∑

k=1

[
α

(n−1)ζ
k E

∣
∣
∣
∣

∫ s

0
(s − r)−βe−(s−r)αk 〈F(Ur , V

ε
r ) − F(Ur ), ek〉dr

∣
∣
∣
∣

2n ]

≤ C
∞∑

k=1

[
α

(n−1)ζ
k E

∣
∣
∣
∣

∫ s

0
(s − r)−βe−(s−r)αk 〈F(Ur , V

ε
r ) − F(Ur ), ek〉dr

∣
∣
∣
∣

2n ]

= C
∞∑

k=1

[
α

(n−1)ζ
k E

∫

[0,s]2n

2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(Uri , V

ε
ri ) − F(Uri ), ek〉dr1 · · · dr2n

]

= C
∞∑

k=1

[

α
(n−1)ζ
k E

[

E

[ ∫

[0,s]2n

2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(Uri , V

ε
ri ) − F(Uri ), ek〉

dr1 · · · dr2n
∣
∣
∣
∣ {Ur ,∀r ≤ s}

]]]

.

Now consider the conditional expectation on the right-hand-side. Fixing s ≥ 0,
due to the independence of the averaged component {Ur ,∀r ≤ s} (which is
σ {WQ1

r ,∀r ≤ s}−measurable) and the fast component {V ε
r ,∀r ≤ s} (which is
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σ {WQ2
r ,∀r ≤ s}−measurable being independent of σ {WQ1

r ,∀r ≤ s}), for every
ξ ∈ C([0, s]; H) we have

E

[ ∫

[0,s]2n

2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(Uri , V

ε
ri ) − F(Uri ), ek〉dr1 · · · dr2n

∣
∣
∣
∣{Ur ,∀r ≤ s} = {ξ r , ∀r ≤ s}

]

= E

[ ∫

[0,s]2n

2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(ξ ri , V

ε
ri ) − F(ξ ri ), ek〉dr1 · · · dr2n

]

≤
∫

[0,s]2n

∣
∣
∣
∣E

[ 2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(ξ ri , V

ε
ri ) − F(ξ ri ), ek〉

]∣
∣
∣
∣dr1 · · · dr2n

≤ C

(

1 + sup
r≤T

|ξ r |η + |v|η
)

εn
(

1

αk

)(1−2β)n

,

where the last inequality follows by Lemma 6.3.
Hence we have:

E

[ ∫

[0,s]2n

2n∏

i=1

(s − ri )
−β e−(s−ri )αk 〈F(Uri , V

ε
ri ) − F(Uri ), ek〉dr1 · · · dr2n

∣
∣
∣
∣{Ur ,∀r ≤ s}

]

≤ C

(

1 + sup
r≤T

|Ur |η + |v|η
)

εn
(

1

αk

)(1−2β)n

.

Inserting this inequality in the one for E
∣
∣Y ε

s

∣
∣2n we have:

E
∣
∣Y ε

s

∣
∣2n ≤ Cεn

(

1 + E

[

sup
r≤T

|Ur |η
]

+ |v|η
) ∞∑

k=1

α
(n−1)ζ−(1−2β)n
k

≤ Cεn
(
1 + |u|η + |v|η)

∞∑

k=1

α
n(ζ+2β−1)−ζ
k .

The series on the right-hand-side is convergent by Hypothesis 1 and we have (47), so
that the claim is proved.

Inserting (47) into (46) we have:

E

[

sup
t∈[0,τ ]

|Z ε
t |2n
]

≤ Cεn
(
1 + |u|η + |v|η) .

Finally by Holder’s inequality we have the thesis:

E

[

sup
t∈[0,τ ]
∣
∣Z ε

t

∣
∣2

]

≤
(

E

[

sup
t∈[0,τ ]
∣
∣Z ε

t

∣
∣2n

])1/n

≤ Cε
(
1 + |u|ι + |v|ι) ,

for ι = η/n. ��
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We can now state and prove the main Theorem of this work:

Theorem 1 Let u ∈ H, v ∈ K and assume Hypotheses 1, 2, 3, 4, 5. Then there exists
C = C(T , |u|, |v|) > 0 such that

E

[

sup
t∈[0,T ]

∣
∣U ε

t −Ut
∣
∣2

]

≤ Cε,

for every ε > 0.

Proof For t ∈ [0, T ] we have:

U ε
t −Ut =

∫ t

0
eA1(t−s) (F(U ε

s , V ε
s ) − F(Us)

)
ds,

so that:

∣
∣U ε

t −Ut
∣
∣ ≤
∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(U ε

s , V ε
s ) − F(Us, V

ε
s )
)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(Us, V

ε
s ) − F(Us)

)
ds

∣
∣
∣
∣ .

Now let 0 ≤ τ ≤ T and compute

E

[

sup
0≤t≤τ

∣
∣
∣Ũ ε

t −Ut

∣
∣
∣
2
]

≤ 2E

[

sup
0≤t≤τ

∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(U ε

s , V ε
s ) − F(Us, V

ε
s )
)
ds

∣
∣
∣
∣

2
]

+ 2E

[

sup
0≤t≤τ

∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(Us, V

ε
s ) − F(Us)

)
ds

∣
∣
∣
∣

2
]

.

For the first term on the right-hand-side by the Lipschitz continuity of F we have:

E

[

sup
0≤t≤τ

∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(U ε

s , V ε
s ) − F(Us, V

ε
s )
)
ds

∣
∣
∣
∣

2
]

≤ C
∫ τ

0
E
∣
∣U ε

s −Us
∣
∣2 ds.

For the second term on the right-hand-side by Proposition 3 we have:

E

[

sup
0≤t≤τ

∣
∣
∣
∣

∫ t

0
eA1(t−s) (F(Us, V

ε
s ) − F(Us)

)
ds

∣
∣
∣
∣

2
]

≤ Cε.

Putting everything together we have:

E

[

sup
0≤t≤τ

∣
∣U ε

t −Ut
∣
∣2

]

≤ C

(

ε +
∫ τ

0
E
∣
∣U ε

s −Us
∣
∣2 ds

)

, (48)
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for every τ ≤ T .
Then by Gronwall’s Lemma we have the thesis of the Theorem:

E

[

sup
0≤t≤T

∣
∣U ε

t −Ut
∣
∣2

]

≤ Cε.

��
Finally we can provide an application to which our theory can be applied and which

is not covered by the existing literature.

Example 1 Consider the following fully coupled slow-fast stochastic reaction-diffusion
system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂uε

∂t (t, ξ) = ∂2

∂ξ2
uε(t, ξ) + f (ξ, uε(t, ξ), vε(t, ξ)) + ẇ1(t, ξ),

∂vε

∂t (t, ξ) = 1
ε

[(
∂2

∂ξ2
− λ
)

vε(t, ξ) + g (ξ, vε(t, ξ))
]

+ 1√
ε
ẇ2(t, ξ),

uε(0, ξ) = u(ξ), vε(0, ξ) = v(ξ), ξ ∈ [0, L],
uε(t, ξ) = vε(t, ξ) = 0, t ≥ 0, ξ = 0, L,

(49)

where

• t ∈ [0, T ], ξ ∈ [0, L],
• ε ∈ (0, 1] is a small parameter representing the ratio of time-scales between the
two variables of the system uε and vε ,

• uε and vε are the slow and fast components respectively,
• u, v ∈ H = L2[0, T ] are the initial conditions,
• λ > 0,
• f , g : [0, L] × R → R are Lipschitz functions uniformly wrt ξ with Lipschitz
constants L f , LG respectively and LG < λ,

• ẇ1, ẇ2 are independent white noises both in time and space.

Then it is well known [6] that (49) can be rewritten in the abstract form (2) where
H = K = L2[0, T ], F : H × H → H , G : H → H are the Nemytskii operators of
f , g respectively, i.e.

F(x, y)(ξ) = f (ξ, x(ξ), y(ξ)),

G(y)(ξ) = g(ξ, y(ξ)).

In this setting the hypotheses of Theorem 1 are satisfied (recall Remarks 2.1, 2.2) so
that the result can be applied.
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A Proof of Lemma 4.5

Proof First observe that

Ht
s(v) = σ(Cts(v), 0 ≤ s ≤ t),

where

Cts(v) = {vv
r1 ∈ A1, . . . v

v
rk ∈ Ak : k ∈ N, s ≤ r1 < . . . < rk ≤ t, A1, . . . Ak ∈ B(K )}

(50)

is the family of cylindrical sets.
Consider B1 ∈ Ct0(v) and B2 ∈ C∞

s+t (v), i.e.

B1 =
k1⋂

i=1

{
vv
r1,i ∈ A1,i

}
, B2 =

k2⋂

i=1

{
vv
r2,i ∈ A2,i

}
,

for 0 ≤ r1,1 < · · · < r1,k1 ≤ t and s + t ≤ r2,1 < · · · < r2,k2 < ∞ and A j,i ∈ B(K ),
for j = 1, 2 and i = 1, . . . , k j .

First by the tower property of conditional expectations we have:

P (B1 ∩ B2) = E

[
k1∏

i=1

1A1,i

(
vv
r1,i

) k2∏

i=1

1A2,i

(
vv
r2,i

)
]

= E

[
k1∏

i=1

1A1,i

(
vv
r1,i

)
E

[
k2∏

i=1

1A2,i

(
vv
r2,i

) ∣∣
∣
∣Ft

]]

, (51)

where 1Ai, j (·) is the indicator function.
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Now, as t + s ≤ r2,1 < · · · < r2,k2 , we have:

E

[
k2∏

i=1

1A2,i

(
vv
r2,i

) ∣∣
∣
∣Ft

]

= E

[

1A2,1

(
vv
r2,1

)
E

[
k2∏

i=2

1A2,i

(
vv
r2,i

) ∣∣
∣
∣Fr2,1

] ∣
∣
∣
∣Ft

]

= E

[

1A2,1

(
vv
r2,1

)
E

[

1A2,2

(
vv
r2,2

)
E

[
k2∏

i=3

1A2,i

(
vv
r2,i

) ∣∣
∣
∣Fr2,2

] ∣
∣
∣
∣Fr2,1

] ∣
∣
∣
∣Ft

]

.

By iteration we have:

E

[
k2∏

i=1

1A2,i

(
vv
r2,i

) ∣∣
∣
∣Ft

]

= E

[
1A2,1

(
vv
r2,1

)
E

[
1A2,2

(
vv
r2,2

)
E

[
1A2,3

(
vv
r2,3

)
· · ·E
[
1A2,k2

(
vv
r2,k2

)
| Fr2,k2−1

]
| · · · |Fr2,2

]
|Fr2,1

]
| Ft

]

= Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2 −r2,k2−1

(
IA2,k2

)
· · ·
))] (

vv
t

)
,

so that by (51) we have:

P(B1 ∩ B2) = E

[
k1∏

i=1

1A1,i

(
vv
r1,i

)
Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2 −r2,k2−1

(
IA2,k2

)
· · ·
))] (

vv
t

)
]

.

In a similar way we have:

E

k2∏

i=1

1A2,i

(
vv
(
r2,i
)) = Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2−r2,k2−1

(
IA2,k2

)
· · ·
))]

(v) ,

so that

P(B1)P(B2)

= E

k1∏

i=1

1A1,i

(
vv
r1,i

)
E

k2∏

i=1

1A2,i

(
vv
(
r2,i
))

= E

k1∏

i=1

1A1,i

(
vv
r1,i

)
Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2−r2,k2−1

(
IA2,k2

)
· · ·
))]

(v) .

It follows

P (B1 ∩ B2) − P (B1)P (B2)

= E

[ k1∏

i=1

1A1,i

(
vu,v
(
r1,i
))
{

Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2 −r2,k2−1

(
IA2,k2

)
· · ·
))] (

vv
t

)

− Pr2,1−t

[
1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2 −r2,k2−1

(
IA2,k2

)
· · ·
))]

(v)

}]

= E

[ k1∏

i=1

1A1,i

(
vv
(
r1,i
))
{

Pr2,1−tφ
(
vv
t

)− Pr2,1−tφ(v)

}]
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= E

[ k1∏

i=1

1A1,i

(
vv
(
r1,i
))
{

Pr2,1−tφ
(
vv
t

)−
∫

K
φ(v)μ(dv)

}]

,

for φ:=1A2,1 Pr2,2−r2,1

(
1A2,2 Pr2,3−r2,2

(
· · · IA2,k2−1 Pr2,k2−r2,k2−1

(
IA2,k2

)
· · ·
))

.

Then by Lemmas 4.2 and 4.4 and as f (s) = e−δss−1/2 is decreasing we have:

|P (B1 ∩ B2) − P (B1)P (B2)| ≤ C
e−δ(r2,1−t)
√
r2,1 − t

(
1 + E

∣
∣vv

t

∣
∣+ |v|)

≤ C
e−δs

√
s

(1 + |v|) ,

so that the inequality holds when B1 ∈ Ct0(v) and B2 ∈ C∞
t+s(v).

Finally recalling (50) the validity of the inequality can be extended to every B1 ∈
Ht

0(v) and B2 ∈ H∞
s+t (v). ��

B Proof of Lemma 4.6

Proof As |ξ1| ≤ 1 a.s. we have:

|E [ξ1ξ2] − Eξ1Eξ2| = ∣∣E [ξ1E
[
ξ2 | Ht1

s1(v)
]]− Eξ1Eξ2

∣
∣

= ∣∣E [ξ1
(
E
[
ξ2 | Ht1

s1(v)
]− Eξ2

)]∣
∣

≤
∣
∣
∣E
[
ξ̃1
(
E
[
ξ2 | Ht1

s1(v)
]− Eξ2

)]∣∣
∣

=
∣
∣
∣E
[
ξ̃1ξ2

]
− Eξ̃1Eξ2

∣
∣
∣ ,

where we have defined

ξ̃1:=
{
1, if E

[
ξ2 | Ht1

s1(v)
]− Eξ2 > 0,

−1, if E
[
ξ2 | Ht1

s1(v)
]− Eξ2 ≤ 0.

Similarly, as |ξ2| ≤ 1 a.s., we have:

∣
∣
∣E[ξ̃1ξ2] − Eξ̃1Eξ2

∣
∣
∣ =
∣
∣
∣E
[
ξ2E
[
ξ̃1 | Ht2

s2(v)
]]

− Eξ̃1Eξ2

∣
∣
∣

=
∣
∣
∣E
[
ξ2

(
E

[
ξ̃1 | Ht1

s1(v)
]

− Eξ̃1

)]∣
∣
∣

≤
∣
∣
∣E
[
ξ̃2

(
E

[
ξ̃1 | Ht1

s1(v)
]

− Eξ̃1

)]∣
∣
∣

=
∣
∣
∣E[ξ̃1ξ̃2] − Eξ̃1Eξ̃2

∣
∣
∣ ,
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where we have defined

ξ̃2:=
⎧
⎨

⎩

1, if E

[
ξ̃1 | Ht2

s2(v)
]

− Eξ̃1 > 0,

−1, if E

[
ξ̃1 | Ht2

s2(v)
]

− Eξ̃1 ≤ 0.

Then it follows:

|E[ξ1ξ2] − Eξ1Eξ2| ≤
∣
∣
∣E[ξ̃1ξ̃2] − Eξ̃1Eξ̃2

∣
∣
∣ .

Notice that

ξ̃1 = 21A − 1, ξ̃2 = 21B − 1

with

A = {ω ∈ � : E [ξ2 | Ht1
s1(v)
]− Eξ2 > 0

}
,

B =
{
ω ∈ � : E

[
ξ̃1 | Ht2

s2(v)
]

− Eξ̃1 > 0
}

.

It follows:

|E[ξ1ξ2] − Eξ1Eξ2| ≤
∣
∣
∣E[ξ̃1ξ̃2] − Eξ̃1Eξ̃2

∣
∣
∣ = |E[(21A − 1)(21B − 1)]

− E[21A − 1]E[21B − 1]|
= 4|E[1A1B] − E[1A]E[1B]| = 4|P(A ∩ B) − P(A)P(B)|.

Now by Lemma 4.5 as A ∈ Ht1
s1(v), B ∈ Ht2

s2(v) we have:

|E[ξ1ξ2] − Eξ1Eξ2| ≤ C
e−δ(s2−t1)

√
s2 − t1

(1 + |v|)

so that we have the thesis of the Lemma. ��

C Proof of Lemma 4.7

Proof We proceed in a similar way to the proof of [7, Proposition 3.3].
Indeed fix R > 0 and set A1,R = {ω ∈ � : |ξ1| ≤ R}, A2,R = {ω ∈ � : |ξ2| ≤ R}.
Then we have:

E[ξ1ξ2] − Eξ1Eξ2

= E

[
ξ1ξ2

(
1A1,R∩A2,R + 1Ac

1,R∪Ac
2,R

)]
− Eξ1Eξ2

= {E[ξ11A1,R ξ21A2,R ] − E[ξ11A1,R ]E[ξ21A2,R ]}+ E[ξ1ξ21Ac
1,R∪Ac

2,R
]
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−
{
E[ξ11A1,R ]E[ξ21Ac

2,R
] + E[ξ11Ac

1,R
]E[ξ21A2,R ] + E[ξ11Ac

1,R
]E[ξ21Ac

2,R
]
}

=T1,R + T2,R + T3,R .

Consider T1,R , then we have:

T1,R = R2
(

E

[
ξ1

R
1A1,R

ξ2

R
1A2,R

]

− E

[
ξ1

R
1A1,R

]

E

[
ξ2

R
1A2,R

])

.

Now as
∣
∣
∣
ξi
R 1Ai,R

∣
∣
∣ ≤ 1 a.s then by Lemma 4.6 we have:

∣
∣T1,R
∣
∣ ≤ CR2 e

−δ(s2−t1)

√
s2 − t1

(1 + |v|) .

For T2,R by Holder’s and Markov’s inequalities we have:

∣
∣T2,R
∣
∣

2
1−ρ ≤ E |ξ1|

2
1−ρ E |ξ2|

2
1−ρ
(
P
(
Ac
1,R

)+ P
(
Ac
2,R

)) 2ρ
1−ρ

≤ E |ξ1|
2

1−ρ E |ξ2|
2

1−ρ R− 2ρ
1−ρ (E |ξ1| + E |ξ2|)

2ρ
1−ρ

and then by (26) we have:

∣
∣T2,R
∣
∣ ≤ CK1K2(K1 + K2)

ρR−ρ.

For the first term of T3,R we have:

|E[ξ11A1,R ]E[ξ21Ac
2,R

]| ≤
(
E|ξ1|

2
1−ρ

) 1−ρ
2
(
E|ξ2|

2
1−ρ

) 1−ρ
2

P
(
Ac
2,R

)ρ
.

Also the other terms can be treated in an analogous way and then similarly to before
we have:

∣
∣T3,R
∣
∣ ≤ CK1K2(K1 + K2)

ρR−ρ.

Now by inserting the inequalities for Ti,R into the first equation we have:

|Eξ1ξ2 − Eξ1Eξ2| ≤ C
e−δ(s2−t1)

√
s2 − t1

(1 + |v|) R2 + CK1K2(K1 + K2)
ρR−ρ.

By minimizing over R > 0 the right-hand-side of the previous inequality we have:

|Eξ1ξ2 − Eξ1Eξ2| ≤ CK
2

2+ρ

1 K
2

2+ρ

2 (K1 + K2)
2ρ
2+ρ

(
e−δ(s2−t1)

√
s2 − t1

(1 + |v|)
) ρ

2+ρ

.

��
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