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Abstract
We introduce a unified sensitivity concept for shape and topological perturbations and
perform the sensitivity analysis for a discretized PDE-constrained design optimization
problem in two space dimensions. We assume that the design is represented by a
piecewise linear and globally continuous level set function on a fixed finite element
mesh and relate perturbations of the level set function to perturbations of the shape
or topology of the corresponding design. We illustrate the sensitivity analysis for a
problem that is constrained by a reaction–diffusion equation and draw connections
between our discrete sensitivities and the well-established continuous concepts of
shape and topological derivatives. Finally,we verify our sensitivities and illustrate their
application in a level-set-based design optimization algorithm where no distinction
between shape and topological updates has to be made.
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1 Introduction

Numerical methods for the design optimization of technical systems are of great inter-
est in science and engineering. Applications include the optimization of mechanical
structures [2, 29], electromagnetic devices [5, 19], fluid flow [21], heat dissipation
[20] and many more. There exist several different approaches to computational design
optimization. On the one hand, shape optimization techniques based on the mathemat-
ical concept of shape derivatives [15] canmodify boundaries andmaterial interfaces in
a smooth way, but typically cannot alter the topology of a design. An exception being
the level set method for shape optimization [2] where the design is represented by the
zero level set of a design function whose evolution is guided by shape sensitivities
via a transport equation. While this approach allows for merging of components, it
lacks a nucleation mechanism and is often coupled with the topological derivative
concept [26, 30], see e.g. [1, 10]. For a computationally-oriented introduction to these
classical level-set based methods, we refer the interested reader to [12]. In the class of
density-based topology optimization methods [7], a design is represented by a density
function ρ(x) that is allowed to attain any value in the interval [0, 1]. Then, regions
with ρ(x) = 0 and ρ(x) = 1 are interpreted as occupied by material 1 and 2, respec-
tively, while intermediate density values 0 < ρ(x) < 1 are penalized in order to obtain
designs that are almost “black-and-white”. One advantage of density based methods
is that the system response depends continuously on ρ and the standard notions of
derivatives in vector spaces can be applied. Here, interfaces are typically not crisp
and there is no measure of optimality with respect to shape variations at the interface.
Finally we mention the level-set algorithm for topology optimization introduced in
[4], where the design is guided solely by the topological derivative, which however is
not defined on the material interfaces. As a consequence, the final designs cannot be
shown to be optimal with respect to shape variations at the interface. This aspect has
been thoroughly analyzed in [6] where the authors draw a connection to density-based
methods and, for two particular problem classes, propose an interpolation scheme
which relates the derivative with respect to the density function, to topological and
shape derivatives in the interior and on the interface, respectively.

The goal of this paper is to unify the concepts of topological and shape pertur-
bations and to treat design optimization problems by a unified sensitivity, called the
topological-shape derivative. In this way, we aim at combining topological sensitivity
information (related to the topological derivative) in the interior of each subdomain and
shape sensitivity information (related to the shape derivative) at the material interface.
While the topological derivative is defined as the sensitivity of a design-dependent
cost function with respect to the introduction of a small hole or inclusion of different
material, the shape derivative is defined as the cost function’s sensitivity with respect
to a transformation of the domain. In order to unify these two concepts, we consider a
domain description by means of a continuous level set function which attains positive
values in one of two subdomains and negative values in the other. Then a perturbation
of the level set function in the interior of a subdomain can be related to a topolog-
ical perturbation, and a perturbation close to the material interface can be seen as
a perturbation of the shape of the domain. We remark that this point of view is in
alignment with the concept of dilations of points and curves as introduced in [13],
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see also [14]. In principle, this idea was already followed in [9] and also in the recent
work [8] where the discrete shape sensitivity analysis for perturbations of boundaries
represented by level set functions is carried out and compared to the classical approach
where domains are perturbed by transformations rather than dilations. In these works,
however, only the case of shape optimization and no combination with topology opti-
mization is considered. In [22] the author represents domains by level set functions
and relates shape and topological derivatives of shape functionals to derivatives with
respect to the level set function in a continuous setting without PDE constraints. In
contrast to this, we consider PDE-constrained problems, but our analysis is performed
on the discrete level, i.e. we follow the paradigm “discretize-then-optimize” for our
sensitivity analysis with respect to a level set function.

The rest of this paper is organized as follows: In Sect. 2, we introduce the model
problem and the classical concepts of topological and shape derivative in the continu-
ous setting. After presenting the discretized setting in Sect. 3, we proceed to compute
the numerical topological-shape derivative of our discretizedmodel problem in Sect. 4.
In Sect. 5 we compare the computed sensitivities with the sensitivities obtained by
discretizing the continuous formulas. Finally we verify our computed formulas and
present optimization results in Sect. 6 before giving a conclusion in Sect. 7.

2 Model Problem and Continuous Setting

Let D be a given, fixed, open and bounded hold-all domain and Ω ⊂ D an open and
measurable subset. Let the boundary of D be decomposed into �D, �N ⊂ D with
�D ∪ �N = ∂D and �D ∩ �N = ∅. In the present paper, we consider a topology
optimisation problem with a tracking type cost function

g(Ω, u) = c1|Ω| + c2

∫
D

α̃Ω |u − û|2 dx (1)

where û ∈ H1(D) is a given desired state, and c1, c2 ∈ R are given constants. The
continuous topology optimization problem reads

min
Ω∈A

g(Ω, u), (2a)

subject to

−λΩ�u + αΩu = fΩ in D, (2b)

u = gD on �D, (2c)

λΩ∂nu = gN on �N , (2d)

where

α̃Ω(x) =χΩ(x)α̃1 + χD\Ω(x)α̃2, λΩ(x) = χΩ(x)λ1 + χD\Ω(x)λ2,

αΩ(x) =χΩ(x)α1 + χD\Ω(x)α2, fΩ(x) = χΩ(x) f1 + χD\Ω(x) f2,
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for some constants λ1, λ2 > 0, α1, α2, α̃1, α̃2 ≥ 0 and f1, f2 ∈ R with χS the
characteristic function of a set S,

χS(x) =
{
1, x ∈ S,

0, else.

Here, A denotes a set of admissible subsets of D, and the data gD ∈ H1/2(�D),
gN ∈ L2(�N ) are given. The weak formulation of the PDE constraint reads

Find u ∈ Vg := {v ∈ H1(D) : v = gD on �D} such that∫
D

λΩ∇u · ∇v + αΩuv dx =
∫
D

fΩv dx for all v ∈ V0 (3)

with V0 = {v ∈ H1(D) : v = 0 on �D}. We assume that either |�D| > 0 or
α1, α2 > 0 such that, for given Ω ∈ A, (3) admits a unique solution which we denote
by u(Ω). We introduce the reduced cost function g(Ω) := g(Ω, u(Ω)).

2.1 Classical Topological Derivative

Let ω ⊂ R
d with 0 ∈ ω. For a point z ∈ Ω ∪ (D\Ω), let ωε := z + εω denote a

perturbation of the domain around z of (small enough) size ε and of shape ω. The
continuous topological derivative of the shape function g = g(Ω) is defined by

dT g(Ω)(z) =
{
limε↘0

g(Ω∪ωε)−g(Ω)
|ωε | for z ∈ D \Ω,

limε↘0
g(Ω\ω̄ε)−g(Ω)

|ωε | for z ∈ Ω.
(4)

Note that the topological derivative is not defined for points z ∈ ∂Ω on the material
interface. For problem (2) we obtain for z ∈ D\Ω

dT g(Ω)(z) =c1 + c2(α̃1 − α̃2)(u(z)− û(z))2

+ 2λ2
λ1 − λ2

λ1 + λ2
∇u(z) · ∇ p(z)+ (α1 − α2)u(z)p(z)− ( f1 − f2)p(z),

(5)

whereas for z ∈ Ω

dT g(Ω)(z) =− c1 + c2(α̃2 − α̃1)(u(z)− û(z))2

+ 2λ1
λ2 − λ1

λ1 + λ2
∇u(z) · ∇ p(z)+ (α2 − α1)u(z)p(z)− ( f2 − f1)p(z),

(6)

see, e.g. [3].
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2.2 Classical Shape Derivative

We recall the definition of the classical shape derivative as well as its formula for our
model problem (1)–(2). Given an admissible shape Ω ∈ A and a smooth vector field
V ∈ C∞c (D) that is compactly supported in D, we define the perturbed domain

Ωt = (id+ tV )(Ω), (7)

for a small perturbation parameter t > 0 where id : Rd → R
d denotes the identity

operator. The classical shape derivative of g at Ω with respect to V is then given by

dSg(Ω)(V ) = lim
t↘0

g(Ωt )− g(Ω)

t
(8)

if this limit exists and the mapping V �→ dSg(Ω)(V ) is linear and continuous. Under
suitable assumptions it can be shown that this shape derivative admits the tensor
representation

dSg(Ω)(V ) =
∫
D
SΩ
1 : ∂V + SΩ

0 · Vdx, (9)

for some tensors SΩ
0 ∈ L1(D,Rd), SΩ

1 ∈ L1(D,Rd×d) [23]. Here, ∂V denotes the
Jacobian of the vector field V . The structure theorem of Hadamard-Zolésio [15, pp.
480–481] states that under certain smoothness assumptions the shape derivative of a
shape function g with respect to a vector field V can always be written as an integral
over the boundary of a scalar function L times the normal component of V , i.e.,

dSg(Ω)(V ) =
∫

∂Ω

L (V · n) ds (10)

where n denotes the unit normal vector pointing out ofΩ . For problem (2) one obtains
[23]

SΩ
1 = (c1χΩ + c2α̃Ω(u − û)2 + λΩ∇u · ∇ p + αΩup − fΩ p)I

− λΩ∇u ⊗∇ p − λΩ∇ p ⊗∇u, (11)

SΩ
0 = −2α̃Ω(u − û)∇û (12)

where I ∈ R
d,d denotes the identity matrix, and

L =[(SΩ,in
1 − SΩ,out

1 )n] · n
=c1 + c2(α̃1 − α̃2)(u − û)2 + (α1 − α2)up − ( f1 − f2)p

+ (λ1 − λ2)(∇u · τ)(∇ p · τ)−
(

1

λ1
− 1

λ2

)
(λΩ∇u · n)(λΩ∇ p · n).
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Here, SΩ,in
1 and SΩ,out

1 denote the restrictions of the tensor SΩ
1 to Ω and D\Ω ,

respectively. Furthermore, for two column vectors a, b ∈ R
d , a ⊗ b = ab� ∈ R

d×d
denotes their outer product, τ denotes the tangential vector and p ∈ H1

0 (D) is the
solution to the adjoint equation

∫
D

λΩ∇v · ∇ p + αΩvp dx = −2c2
∫
D

α̃Ω(u − û)v dx for all v ∈ H1
0 (D).

Moreover, motivated by the definition of the topological derivative (4) with the
volume of the difference of the perturbed and unperturbed domains in the denominator,
we introduce the alternative definition of a shape derivative

d̂Sg(Ω)(V ) = lim
t↘0

g(Ωt )− g(Ω)

|Ωt�Ω| , (13)

with the symmetric difference of two sets A�B := (A\B) ∪ (B\A). Note that the
volume of the symmetric difference in (13) can be written as

|Ωt�Ω| =
∫
D
|χΩt − χΩ | dx. (14)

Lemma 1 Let Ω and V smooth. It holds

lim
t↘0

1

t
|Ωt�Ω| =

∫
∂Ω

|V · n| dSx .

The proof is given in Appendix A.1. From Lemma 1, we immediately obtain the
following relation between dSg(Ω)(V ) and d̂Sg(Ω)(V ).

Corollary 1 Suppose that g is shape differentiable at Ω and that Ω and V are smooth
and

∫
∂Ω
|V · n| dSx > 0. Then it holds

d̂Sg(Ω)(V ) = dSg(Ω)(V )∫
∂Ω
|V · n| dSx . (15)

Proof This follows immediately from the definition of d̂Sg(Ω)(V ) by Lemma 1 since

d̂Sg(Ω)(V ) = lim
t↘0

g(Ωt )− g(Ω)

|Ωt�Ω| =
lim
t↘0

g(Ωt )−g(Ω)
t

lim
t↘0

|Ωt�Ω|
t

= dSg(Ω)(V )∫
∂Ω
|V · n| dSx . (16)

��
Remark 1 The condition

∫
Ω
div(V ) dx �= 0 is a sufficient condition for

∫
∂Ω
|V ·

n| dSx > 0, since

0 <

∣∣∣∣
∫

Ω

div(V ) dx

∣∣∣∣ =
∣∣∣∣
∫

∂Ω

V · n dSx

∣∣∣∣ <

∫
∂Ω

|V · n| dSx . (17)
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2.3 The Continuous Topological-Shape Derivative

Here and in the following, we assume that the domain Ω is described by a level-set
function φ : D → R via

φ(x) < 0⇐⇒ x ∈ Ω, (18a)

φ(x) > 0⇐⇒ x ∈ D \Ω (18b)

φ(x) = 0⇐⇒ x ∈ ∂Ω ∩ D. (18c)

For givenφ, letΩ(φ) denote the unique domain defined by (18a)–(18c). In this section,
in contrast to the setting in Sect. 2.2, we perturb Ω indirectly by perturbing φ such
that φε = Oεφ for some operator Oε : C0(D) → C0(D) depending on ε ≥ 0 with
the property Ω(O0φ) = Ω(φ). Later on, in the discrete setting, we will distinguish
between two different types of perturbation operators Oε corresponding to shape or
topological perturbations of Ω .

Let, from now on,J (φ) := g(Ω(φ)) denote the reduced cost function as a function
of the level set function φ. This way, a continuous topological-shape derivative can be
defined as

dJ (φ) = lim
ε↘0

J (φε)− J (φ)

|Ω(φε)�Ω(φ)| . (19)

Note that this sensitivity depends on the choice of the perturbation operator Oε, which
can represent either a shape perturbation or a topological perturbation. We will mostly
be concerned with its discrete counterpart, which will be introduced in Sect. 4. Note
that, in the case of shape perturbations, due to the scaling |Ω(φε)�Ω(φ)| instead of
ε in the denominator the shape derivative is modified and does not correspond to (8)
but rather to (13).
Relation to literature

The sensitivity of shape functionswith respect to perturbations of a level set function
(representing a shape) was investigated in [22] for the case without PDE constraints.
There, the author considers smooth level set functions and rigorously computes the
Gâteaux (semi-)derivative in the direction of a smooth perturbation of the level set
function, both for the case of shape and topological perturbations. In the case of shape
perturbations, it is shown that the Gâteaux derivative coincides with the shape deriva-
tive (8) with respect to a suitably chosen vector field. On the other hand, a resemblance
between the notions of Gâteaux derivative and topological derivative is shown, yet the
Gâteaux derivative may vanish or not exist in cases where the topological derivative
is finite. Evidently, this discrepancy results from the fact that the denominator in the
definition of the Gâteaux derivative is always of order one whereas it is of the order
of the space dimension in the topological derivative.

While the analysis for shape and topological perturbations is carried out separately
in [22], a more unified approach is followed in [13, 14]. In these publications, the idea
is to consider sensitivities with respect to domain perturbations that are obtained by the
dilation of lower-dimensional objects. Here, given a set E ⊂ R

d of dimension k ≤ d,
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the dilated set of radius r is given by Er = {x ∈ R
d : dE (x) ≤ r}where dE (x) denotes

a distance of a point x to a set E . For instance, when E is chosen as a single point,
the dilated set is just a ball of radius r around that point and performing a sensitivity
analysis with respect to the volume of the dilated object leads to the topological
derivative. On the other hand, when E is chosen as the boundary of a domain, Er can
be defined using a signed distance function and corresponds to a uniform expansion
of the domain. Then, a similar procedure leads to the shape derivative with respect to
a uniform expansion in normal direction (i.e. V = n in (7)–(8)). In [13], a sensitivity
analysis for various choices of E is carried out with respect to the volume of the
perturbation. We note, however, that arbitrary shape perturbations are not covered and
would require an extension of the theory. Comparing [22] and [13], we observe that
in the former paper only smooth perturbations of a level set function are admissible
whereas, in the latter approach, domain perturbations by dilations can be interpreted
as perturbations of level set functions by a (non-smooth) distance function.

Finally, we mention [9] where a domain is represented by a discretized level set
function and a shape sensitivity analysis is carried out with respect to a perturbation
of the level set values close to the boundary. This procedure can be interpreted as an
application of the idea of dilation to discretized shape optimization problems. As the
authors point out, this kind of shape sensitivity analysis is more natural compared to
the standard approach based on domain transformations when employed in a level-set
framework; an observation also made in [22, Sec. 3]. The authors show numerical
results for the shape optimization of an acoustic horn, but do not consider topological
perturbations in this work.

As it can be seen from (19), our approach is related to the dilation concept since
we also consider the sensitivity with respect to the volume of the domain perturbation
Ωt�Ω . In the following, we will investigate the topological-shape derivative in a
discretized setting. Similarly to [9], we will consider shape sensitivity analysis with
respect to level set values onmesh nodes close to the boundary. Moreover, we will also
be able to dealwith topological perturbations and treat shape and topological updates in
a unified way by a discretized version of (19), called the numerical topological-shape
derivative.

Remark 2 The concept of the topological-shape derivative which we introduce in this
paper should not be confusedwith the topological-shape sensitivitymethod introduced
in [27, 28]. While the new concept represents a unified sensitivity with respect to both
shape and topological perturbations, the sensitivity method [27, 28] is a method to
compute the pointwise topological derivative as a limit of a certain shape derivative
and thus does not account for shape changes at physical material interfaces.

3 Numerical Setting

In this sectionweconsider the discretization of (2). LetT be agivenfinite elementmesh
covering D with M nodes {xk}Mk=1 and N triangular elements {τl}Nl=1. We introduce
the index set Ixk of all element indices of elements τl where xk is a node of τl ,
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τ1

τ2

τ3

τ4 xk

(a) Ixk = {1, 2, 3, 4}

τ�

x1

x2

x3

(b) Jτl = {1, 2, 3}

x1

xk

x2

x3

x4

(c) Rxk = {k, 1, 2, 3, 4}

Fig. 1 Illustration of the sets Ixk , Jτl , and Rxk

Ixk := {l ∈ {1, . . . , N } : xk ∈ τ̄l} for k = 1, . . . , M . (20)

Moreover,

Jτl := {k ∈ {1, . . . , M} : xk ∈ τ̄l} for l = 1, . . . , N (21)

is the index set of all node indices of nodes xk in τ̄l . Furthermore, we introduce the
one-ring of a node xk ,

Rxk := {i ∈ {1, . . . , M}|∃l ∈ Ixk : xi ∈ τ̄l} for k = 1, . . . , M . (22)

These sets are illustrated in Fig. 1.
Let P1 = {a+bx1+cx2 : a, b, c ∈ R} denote the space of affine linear polynomials

in two space dimensions and S1h(D) the space of piecewise affine linear and globally
continuous functions on T ,

S1h(D) = {v ∈ H1(D) : v|T ∈ P1 for all T ∈ T } = span{ϕ1, . . . , ϕM }

with the hat basis functions ϕi ∈ S1h(D) which satisfy ϕi (x j ) = δi j , i, j = 1, . . . , M .
The discretization of problem (2) leads to the discretized optimization problem

min
Ω

c1|Ω| + c2(u− û)�M̃(u− û) (23a)

subject to Au = f, (23b)

with the solution vector u ∈ R
M and A = M +K. Here, the mass matrices M, M̃ ∈

R
M×M , the stiffness matrix K ∈ R

M×M , and the right-hand-side vector f ∈ R
M

depend on the shape Ω and are given by

M[i, j] =
∫
D

αΩϕ jϕi dx, K[i, j] =
∫
D

λΩ∇ϕ j · ∇ϕi dx,

f[i] =
∫
D

fΩϕi dx, M̃[i, j] =
∫
D

α̃Ωϕ jϕi dx.
(24)
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On the reference element τR = {ξ ∈ R
2 : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1− ξ1} we have the

local form functions

ψ1(ξ1, ξ2) = 1− ξ1 − ξ2, ψ2(ξ1, ξ2) = ξ1, ψ3(ξ1, ξ2) = ξ2.

For an element τl ∈ T , we denote the global vertex indices of its three vertices by
l1, l2, l3 and assume them to be numbered in counter-clockwise orientation. Then,
the respective local finite element matrices and the local right-hand-side vector for
element τl are given by

ml [i, j] = |detJl |
∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
(αΩ ◦�l)ψ jψi dξ2 dξ1,

kl [i, j] = |detJl |
(
J−1l ∇ξψ j

)� (
J−1l ∇ξψi

) ∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
(λΩ ◦�l) dξ2 dξ1,

fl [i] = |detJl |
∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
( fΩ ◦�l) ψi dξ2 dξ1,

for i, j ∈ {1, 2, 3}, where ∇ξψ j = [∂ξ1ψ j , ∂ξ2ψ j ]� and the mapping �l between τR
and τl and its Jacobian Jl are given by

�l(ξ1, ξ2) = xl1 + Jl

[
ξ1
ξ2

]
, Jl =

[
xl2 − xl1 xl3 − xl1

] ∈ R
2×2.

4 Numerical Topological-Shape Derivative

Given the discretization introduced in Sect. 3, in contrast to the continuous topological-
shape derivative, the numerical topological-shape derivative is only defined at the
nodes of the finite element mesh T . For a given piecewise linear level set function φ ∈
S1h(D) letΩ(φ) be defined by (18a)–(18c) andJ (φ) = g(Ω(φ), u(φ)), where u(φ) ∈
Vh = {v ∈ S1h(D) : v = gD on �D} is the finite element function corresponding to
the solution of (23b). Note that, in this section, Ω(φ) is polygonal since φ ∈ S1h(D).
The topological-shape derivative at node xk ∈ T is defined by

dJ (φ)(xk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

limε↘0
J (T−→+k,ε φ)−J (φ)

|Ω(T−→+k,ε φ)�Ω(φ)| for xk ∈ T−(φ),

limε↘0
J (T+→−k,ε φ)−J (φ)

|Ω(T+→−k,ε φ)�Ω(φ)| for xk ∈ T+(φ),

limε↘0
J (Sk,εφ)−J (φ)

|Ω(Sk,εφ)�Ω(φ)| for xk ∈ S(φ).

(25)

Here, given φ ∈ S1h(D), the respective sets are defined by

T−(φ) ={xk ∈ T | ∀i ∈ Rxk : φ(xi ) ≤ 0}, (26a)
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•
•

•
•

•

•

ε

(a) Shape derivative: Initial do-
main in green, perturbed domain
in orange. Interface is moved to
the left.

• • • • •

•
ε

(b) Shape derivative: No effect of
the perturbation

• • • • •• •

•

• •

•

ε

(c) Topological derivative: Shape
derivative at a topologically per-
turbed level-set function (dashed
blue)

Fig. 2 Illustration of the shape derivative and the topological derivative

T+(φ) ={xk ∈ T | ∀i ∈ Rxk : φ(xi ) ≥ 0}, (26b)

S(φ) =T \ (T−(φ) ∪ T+(φ)). (26c)

Whenever, the level set function φ is clear from the context, we will drop the argument
and write T−,T+,S for brevity. Furthermore, T−→+k,ε : S1h(D) → S1h(D) is the
positive discrete topological perturbation operator defined by its action

T−→+k,ε φ(x) = φ(x)− (φ(xk)− ε)ϕk(x), (27)

see Fig. 2(c), whereas the negative discrete topological perturbation operator T+→−k,ε :
S1h(D)→ S1h(D) is defined by

T+→−k,ε φ(x) = φ(x)− (φ(xk)+ ε)ϕk(x). (28)

Finally, the discrete shape perturbation operator Sk,ε : S1h(D)→ S1h(D) is defined
by

Sk,εφ(x) := φ(x)+ εϕk(x). (29)

Remark 3 Note that the discrete perturbation operators defined above only change the
nodal value of the finite element function φ ∈ S1h(D) at one node xk , e.g. for Sk,ε it
holds Sk,εφ(x j ) = φ(x j ) for all j ∈ T \{k} and Sk,εφ(xk) = φ(xk)+ ε.

4.1 Computation of the Numerical Topological-Shape Derivative for the Area Cost
Functional

Before we compute the numerical topological-shape derivative (25) for the full model
problem (2), we consider the case of the pure volume cost function and neglect the
PDE constraint, i.e., we set c1 = 1, c2 = 0 in (1).

For that purpose, we investigate

δk,εa = |Ω(Ok,εφ)| − |Ω(φ)|, (30)
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for Ok,ε ∈ {T−→+k,ε , T+→−k,ε , Sk,ε}. We note that for the computation of (30) only
those "cut elements" are relevant which have a node xk , i.e.

δk,εa =
∑
l∈Ck

δk,εal with δk,εal :=
∫

τl

H(−Ok,εφ)− H(−φ) dx, (31)

where H(x) denotes the Heaviside step function and

Ck = {l ∈ Ixk : τl ∩ ∂Ω(Ok,εφ) �= ∅} (32)

is the set of all indices of elements adjacent to xk which are intersected by the perturbed
interface. Note that, for ε > 0 small enough,Ck does not depend on the concrete value
of ε. For an element τl with l ∈ Ixk we denote the three vertices in counter-clockwise
orientation by xl1 , xl2 , xl3 and assume that xk = xl1 .Moreover we denoteφl j := φ(xl j )
and φ̃l j := Ok,εφ(xl j ) for j = 1, 2, 3 and small enough ε. In the following, we will
be interested in

dka :=
∑
l∈Ck

dkal with dkal := lim
ε↘0

δk,εal
εo

. (33)

with δk,εal defined in (30). Here, o = 1 in the case of a shape perturbation and o = 2
in the case of a topological perturbation. We consider six different sets (see Fig. 3 for
an illustration)

I A+xk ={l ∈ Ixk : φ̃l1 > 0, φ̃l2 < 0, φ̃l3 < 0}, I A−xk ={l ∈ Ixk : φ̃l1 < 0, φ̃l2 > 0, φ̃l3 > 0},
I B+xk ={l ∈ Ixk : φ̃l1 < 0, φ̃l2 > 0, φ̃l3 < 0}, I B−xk ={l ∈ Ixk : φ̃l1 > 0, φ̃l2 < 0, φ̃l3 > 0},
I C+xk ={l ∈ Ixk : φ̃l1 < 0, φ̃l2 < 0, φ̃l3 > 0}, I C−xk ={l ∈ Ixk : φ̃l1 > 0, φ̃l2 > 0, φ̃l3 < 0},

(34)

such that

Ck = I A+xk ∪ I A−xk ∪ I B+xk ∪ I B−xk ∪ I C+xk ∪ I C−xk

with a direct sum on the right hand side. We can thus split the sum in (31) into six
parts,

δk,εa = I A+
Ixk
+ I A−

Ixk
+ IB+

Ixk
+ IB−

Ixk
+ IC+

Ixk
+ IC−

Ixk
.

Configuration A For l ∈ I A+xk we have

∫
τl

H(−Ok,εφ(x)) dx = |detJl |
2

⎛
⎝1−

∫ �1

ξ1=0

∫ �2

(
1− ξ1

�1

)

ξ2=0
dξ2dξ1

⎞
⎠

= |detJl |
2

(1− �1�2), (35)
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+
1

−2−
3

(a) Triangle is in I
A+
xk

−1

+2−
3

(b) Triangle is in I
B+
xk

−1

−2+
3

(c) Triangle is in I
C+
xk

−
1

+2+
3

(d) Triangle is in I
A−
xk

+
1

−2+
3

(e) Triangle is in I
B−
xk

+
1

+2−
3

(f) Triangle is in I
C−
xk

Fig. 3 Illustration of the sets I A+xk , I
A−
xk , I

B+
xk , I

B−
xk , I

C+
xk , I

C−
xk . The nodal values of the level-set functions

are indicated by −, +. The interface is drawn in red

−

−
+−

−

(a) Triangles are in I
A+
xk

+

+
−+

+

(b) Triangles are in I
A−
xk

Fig. 4 Illustration of I A+xk and I
A−
xk in the case of topological perturbations

with

�1 = φl1 + ε

φl1 + ε − φl2
, �2 = φl1 + ε

φl1 + ε − φl3
.

Therefore,

IA+
Ixk

=
∑

l∈I A+xk

|detJl |
2

(
− (φl1 + ε)2

(φl1 + ε − φl2 )(φl1 + ε − φl3)
+ φ2

l1
(φl1 − φl2 )(φl1 − φl3)

)

=
∑

l∈I A+xk

|detJl |
2

(
εφl1

[
φl1(φl2 + φl3)− 2φl2φl3

]+ ε2
[
φl1(φl2 + φl3)− φl2φl3

]
(φl1 − φl2 )

2(φl1 − φl3)
2 + O(ε)

)
.

(36)

For xk ∈ T− and Ok,ε = T−→+k,ε , it holds Ixk = I A+xk (see Fig. 4a) and we have to
consider (36) with φl1 = 0. Thus, we obtain
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I A+
Ixk
= −

∑
l∈I A+xk

ε2 |detJl |
2

φl2φl3

φ2
l2
φ2
l3
+ O(ε)

, (37)

and conclude for this case

dka = lim
ε↘0

δk,εa

ε2
= −

∑
l∈I A+xk

|detJl |
2φl2φl3

. (38)

Moreover, for xk ∈ T+ and Ok,ε = T+→−k,ε , it holds Ixk = I A−xk (see Fig. 4b) and we

have for l ∈ I A−xk ,

∫
τl

H(−Ok,εφ(x)) dx = |detJl |
2

∫ �1

ξ1=0

∫ �2

(
1− ξ1

�1

)

ξ2=0
dξ2dξ1 = |detJl |

2
�1�2,

which leads to

IA−
Ixk
= −

∑
l∈I A−xk

|detJl |
2

(
εφl1

[
φl1 (φl2 + φl3 )− 2φl2φl3

]+ ε2
[
φl1 (φl2 + φl3 )− φl2φl3

]
(φl1 − φl2 )

2(φl1 − φl3 )
2 + O(ε)

)
. (39)

Therefore, we obtain for this case

dka = lim
ε↘0

δk,εa

ε2
=
∑
l∈I A−xk

|detJl |
2φl2φl3

.

Finally, for xk ∈ S and Ok,ε = Sk,ε we deduce from (36)

lim
ε↘0

I A+
Ixk

ε
=
∑
l∈I A+xk

|detJl | φl1

[
φl1(φl2 + φl3)− 2φl2φl3

]
2(φl1 − φl2)

2(φl1 − φl3)
2 , (40)

and from (39)

lim
ε↘0

I A−
Ixk

ε
= −

∑
l∈I A−xk

|detJl | φl1

[
φl1(φl2 + φl3)− 2φl2φl3

]
2(φl1 − φl2)

2(φl1 − φl3)
2 . (41)

Configuration BWe note that configuration B can only occur for the case xk ∈ S and
Ok,ε = Sk,ε. For l ∈ I B+xk it holds

∫
τl

H(−Sk,εφ(x)) dx = |detJl |
2

(
1− φ2

l2

(φl2 − φl3)(φl2 − φl1 − ε)

)
, (42)
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and

IB+
Ixk
=
∑
l∈I B+xk

|detJl |φ2
l2

2

(φl2 − φl3)(φl2 − φl1 − ε)− (φl2 − φl3)(φl2 − φl1)

(φl2 − φl3)(φl2 − φl1)(φl2 − φl3)(φl2 − φl1 − ε)

=
∑
l∈I B+xk

|detJl |φ2
l2

2

−ε(φl2 − φl3)

(φl2 − φl3)
2(φl2 − φl1)(φl2 − φl1 − ε)

.

Thus,

lim
ε↘0

IB+
Ixk

ε
= −

∑
l∈I B+xk

|detJl |
2

φ2
l2

(φl2 − φl3)(φl2 − φl1)
2 . (43)

For the case l ∈ I B−xk we have

∫
τl

H(−Sk,εφ(x)) dx = |detJl |
2

φ2
l2

(φl2 − φl3)(φl2 − φl1 − ε)
, (44)

and obtain

lim
ε↘0

IB−
Ixk

ε
=
∑
l∈I B−xk

|detJl |
2

φ2
l2

(φl2 − φl3)(φl2 − φl1)
2 . (45)

Configuration C Analogously as for configuration B, we note that configuration C
can only occur for the case xk ∈ S and Ok,ε = Sk,ε. Furthermore, the formulas for
configuration C can be obtained by exchanging l3 and l2 in the formulas (43) and (45).

Summarizing, we have shown the following result.

Theorem 1 For xk ∈ T− we have

dka =
∑
l∈I A+xk

dkal =
∑
l∈I A+xk

(−1) |detJl |
2φl2φl3

. (46)

For xk ∈ T+ we have

dka =
∑
l∈I A−xk

dkal =
∑
l∈I A−xk

|detJl |
2φl2φl3

. (47)
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For xk ∈ S we have

dka =
∑
l∈I A+xk

I0(φl1, φl2 , φl3)−
∑
l∈I A−xk

I0(φl1, φl2 , φl3)−
∑
l∈I B+xk

I1(φl1 , φl2 , φl3)

+
∑
l∈I B−xk

I1(φl1 , φl2 , φl3)−
∑
l∈IC+xk

I1(φl1 , φl3 , φl2)+
∑
l∈IC−xk

I1(φl1, φl3 , φl2),

(48)

with

I0(φl1, φl2 , φl3) =
|detJl | φl1

[
φl1(φl2 + φl3)− 2φl2φl3

]
2(φl1 − φl2)

2(φl1 − φl3)
2 ,

I1(φl1, φl2 , φl3) =
|detJl | φ2

l2

2(φl2 − φl3)(φl2 − φl1)
2 .

Remark 4 The corresponding computations for the denominators in
(25), i.e. |Ω(Ok,εφ)�Ω(φ)|, are closely related to the computations presented in this
section for (30). Denoting

δk,εãl :=
∫

τl

|H(−Ok,εφ)− H(−φ)| dx, dkãl := lim
ε↘0

δk,εãl
εo

,

we get that

lim
ε↘0

|Ω(Ok,εφ)�Ω(φ)|
εo

=
∑
l∈Ck

dkãl =: dkã (49)

where dkãl = |dkal | with the formulas for dkal given in (46)–(48). It is obvious that,
for xk ∈ T −, dkal < 0 and for xk ∈ T +, dkal > 0. Moreover, note that, for xk ∈ S,
it holds dkal < 0 for all l ∈ Ck . This yields that

dkal
dkãl

=
{
−1 if k ∈ S ∪ T −,

1 if k ∈ T +.
(50)

Corollary 2 From Theorem 1 and Remark 4, it follows that the numerical topological-
shape derivative of the volume cost function Vol(φ) := |Ω(φ)| is given by

dVol(φ)(xk) =
{
−1 if k ∈ S ∪ T −,

1 if k ∈ T +.
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4.2 Computation of the Numerical Topological-Shape Derivative via Lagrangian
Framework

Next, we consider the computation of the numerical topological-shape derivative of
an optimization problem that is constrained by a discretized PDE. For that purpose,
we set c1 = 0 in (1) and J (φ,u) := g(Ω(φ),u). The discretized problem reads

min
φ

J (φ,u) (51)

s.t. Aφu = fφ (52)

and we are interested in the sensitivity of J when the level set function φ representing
the geometry is replaced by a perturbed level set function φε = Ok,εφ. The perturbed
Lagrangian for (51)–(52) with respect to a perturbation of φ reads

L(ε,u, v) =J (φε,u)+ Aεu · v − fε · v (53)

where we use the abbreviated notationAε := Aφε , and fε := fφε . Moreover, for ε ≥ 0,
we define the perturbed state uε as the solution to

0 = ∂vL(ε,uε, v),

i.e. uε is the solution to

Aεuε = fε (54)

and the (unperturbed) adjoint state p as the solution to

0 = ∂uL(0,u,p), (55)

for the state u given, i.e. p solves

A�p = −∂u J (φ,u).

Note that we use the notation u for uε=0. The numerical topological-shape derivative
at the node xk can be computed as the limit

dJ (φ)(xk) = lim
ε↘0

1

|Ω(φε)�Ω(φ)| (J (φε,uε)− J (φ,u)).

With the help of the Lagrangian (53), we can rewrite the right hand side as

J (φε,uε)− J (φ,u) = L(ε,uε,p)− L(0,u,p)
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where we used that uε solves (54) for ε ≥ 0. Following the approach used in [18], we
use the fundamental theorem of calculus as well as (55) to rewrite this as

J (φε,uε)− J (φ,u) =
∫ 1

0
[∂uL(ε,u + s(uε − u),p)− ∂uL(ε,u,p)](uε − u)ds

(56)

+ [∂uL(ε,u,p)− ∂uL(0,u,p)](uε − u) (57)

+ L(ε,u,p)− L(0,u,p). (58)

Thus the numerical topological-shape derivative can be obtained as the sum of three
limits,

dJ (φ)(xk) = R1(u,p)+ R2(u,p)+ R0(u,p)

where

R1(u,p) := lim
ε↘0

1

|Ω(φε)�Ω(φ)|
∫ 1

0
[∂uL(ε,u+ s(uε − u),p)− ∂uL(ε,u, p)](uε − u)ds,

R2(u,p) := lim
ε↘0

1

|Ω(φε)�Ω(φ)| [∂uL(ε,u, p)− ∂uL(0, u, p)](uε − u),

R0(u,p) := lim
ε↘0

1

|Ω(φε)�Ω(φ)| [L(ε,u,p)− L(0, u,p)].

For J (φε,u) = c2(u − û)M̃ε(u − û), where M̃ε := M̃φε represents the matrix M̃
defined in (24) with Ω = Ω(φε), we get

R1(u,p) =c2lim
ε↘0

1

|Ω(φε)�Ω(φ)| (uε − u)�M̃ε(uε − u).

Moreover,

R2(u, p) =lim
ε↘0

1

|Ω(φε)�Ω(φ)|
[
2c2(M̃ε − M̃)(u− û) · (uε − u)+ (Aε − A)(uε − u) · p

]
,

(59)

and

R0(u,p) =lim
ε↘0

1

|Ω(φε)�Ω(φ)|
[
c2(u− û)�(M̃ε − M̃)(u− û)+ p�(Aε − A)u− (fε − f) · p

]
.

(60)

Lemma 2 There exist constants c > 0, ε̂ > 0 such that for all ε ∈ (0, ε̂)

‖uε − u‖ ≤ c εo.
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Here, o = 1 in the case of a shape perturbation and o = 2 in the case of a topological
perturbation.

Proof Subtracting (54) for ε = 0 from the same equation with ε > 0, we get

Aε(uε − u) = fε − f − (Aε − A)u

and thus, by the ellipticity of the bilinear form corresponding to Aε and the triangle
inequality, there is a constant c > 0 such that for all ε > 0 small enough

‖uε − u‖ ≤ c(‖fε − f‖ − ‖Aε − A‖‖u‖). (61)

For the difference between the perturbed and unperturbed right hand sides we have

|(fε − f)i | ≤|( f1 − f2)|
∫

Ω(φε)�Ω(φ)

|ϕi (x)| dx

|(Aε − A)i, j | ≤
∫

Ω(φε)�Ω(φ)

(
|(λ1 − λ2)||∇ϕ j (x)||∇ϕi (x)| + |(α1 − α2)||ϕ j (x)||ϕi (x)|

)
dx .

The result follows from the boundedness of |ϕi (x)| and |∇ϕi (x)| together with (49)
which implies the existence of c > 0 such that |Ω(φε)�Ω(φ)| ≤ cεo (cf. Remark 4).

��
From Lemma 2 it follows that the terms R1(u,p) and R2(u,p) vanish. We remark
that this is in contrast to the continuous case, where asymptotic analysis shows that
R2 does not vanish. We will address this issue in more detail in Sect. 5. Thus, in the
discrete setting we obtain dJ (φ)(xk) = R0(u,p), i.e.,

dJ (φ)(xk) = p�(dkAu− dkf)+ c2(u− û)�dkM̃(u− û)

dkã
(62)

where

dkA = lim
ε↘0

Aε − A
εo

, dkM̃ = lim
ε↘0

M̃ε − M̃
εo

,

dkf = lim
ε↘0

fε − f
εo

, dkã = lim
ε↘0

|Ω(φε)�Ω(φ)|
εo

,

(63)

with o = 1 for xk ∈ S and o = 2 for xk ∈ T− ∪ T+. To obtain (62), we divided
both numerator and denominator of (60) by εo and used that the limit of the quotient
coincides with the quotient of the limits provided both limits exist and the limit in the
denominator does not vanish. Next we state the numerical topological-shape derivative
of problem (2) for arbitrary constant weights c1, c2 ≥ 0 in the cost function (1).
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Theorem 2 (Numerical topological-shape derivative) For l = 1, . . . , N, let ul =
[ul1, ul2 , ul3 ]� and pl = [pl1, pl2 , pl3 ]� be the nodal values for element τl of the
solution and the adjoint, and

k0,l [i, j] =
(
J−1l ∇ξψ j

)� (
J−1l ∇ξψi

)
, i, j = 1, . . . , 3.

Moreover, uk = u(xk), pk = p(xk), and ûk = û(xk). For xk ∈ T− the numerical
topological derivative reads

dJ (φ)(xk) = −c1 −�λ

∑
l∈Ixk

p�l k0,lul |detJl |
φl2φl3∑

l∈Ixk
|detJl |
φl2φl3

−�α pkuk +� f pk − c2�α̃(uk − ûk)
2,

(64)

whereas for xk ∈ T+ we have

dJ (φ)(xk) = c1 +�λ

∑
l∈Ixk

p�l k0,lul |detJl |
φl2φl3∑

l∈Ixk
|detJl |
φl2φl3

+�α pkuk −� f pk + c2�α̃(uk − ûk)
2,

(65)

with

�α = α1 − α2, �λ = λ1 − λ2, � f = f1 − f2, �α̃ = α̃1 − α̃2.

For xk ∈ S the numerical shape derivative reads

dJ (φ)(xk) = −c1 +�λ

∑
l∈Ck p

�
l k0,lul dkal
dk ã

+�α

∑
l∈Ck p

�
l dkm

I
l ul

dk ã

−� f
∑

l∈Ck p
�
l dk f

I
l

dk ã
+ c2�α̃

∑
l∈Ck (ul−ûl )�dkmI

l (ul−ûl )
dk ã

, (66)

where the entries of the element matrix dkmI
l and of the element vector dkf Il are

dependent on the local cut situation (cases I = A±, B±, C±) and are given in
Appendix A.2. The values dkã can be computed by (48) considering Remark 4.

Proof We evaluate (62) for xk ∈ T− and Ok,ε = T−→+k,ε . Thus, o = 2 in (63). We
note that

p�dkAu =
N∑
l=1

p�l (dkml + dkkl)ul . (67)
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We have for l ∈ Ixk

kl (φε)− kl (φ) = k0,l |detJl |
(∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
λ1H(−φε ◦�l )+ λ2H(φε ◦�l ) dξ2 dξ1

−
∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
λ1H(−φ ◦�l )+ λ2H(φ ◦�l ) dξ2 dξ1

)

= k0,l |detJl |
(

λ1

∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
(H(−φε ◦�l )− H(−φ ◦�l )) dξ2 dξ1

+ λ2

∫ 1

ξ1=0

∫ 1−ξ1

ξ2=0
(H(φε ◦�l )− H(φ ◦�l )) dξ2 dξ1

)

= k0,l (λ1 − λ2)δk,εal

due to (31) because |Ωε| − |Ω| = −(|D\Ωε| − |D\Ω|) and with (38) we obtain

dkkl = lim
ε↘0

kl(φε)− kl(φ)

ε2
= −�λ

|detJl |
2φl2φl3

k0,l . (68)

Due to

∫ l1

ξ1=0

∫ l2
(
1− ξ1

l1

)

ξ2=0
ξa1 ξb2 dξ2 dξ1 = εa+b+2

φa+1
l2

φb+1
l3

+ O(εa+b+2)

for some a, b ∈ N, we have

dkml = lim
ε↘0

ml (φε)−ml (φ)

ε2
= − lim

ε↘0

�α

ε2

∫ l1

ξ1=0

∫ l2
(
1− ξ1

l1

)

ξ2=0
ψi (ξ)ψ j (ξ) |detJl | dξ2 dξ1

=
⎡
⎢⎣
−�α|detJl |

2φl2φl3
0 0

0 0 0
0 0 0

⎤
⎥⎦ ,

(69)

and conclude

N∑
l=1

p�l dkmlul = −�α pkuk
∑
l∈Ixk

|detJl |
2φl2φl3

. (70)
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Furthermore, with

dkfl = lim
ε↘0

fl(φε)− fl(φ)

ε2
= − lim

ε↘0

� f

ε2

∫ l1

ξ1=0

∫ l2
(
1− ξ1

l1

)

ξ2=0
ψi (ξ) |detJl | dξ2 dξ1

=
⎡
⎢⎣
−� f |detJl |

2φl2φl3
0
0

⎤
⎥⎦ ,

(71)

it follows that

p�dkf =
N∑
l=1

p�l dkfl = −� f pk
∑
l∈Ixk

|detJl |
2φl2φl3

. (72)

Analogously to (69) we have

dkm̃l = lim
ε↘0

m̃l(φε)− m̃l(φ)

ε2
=
⎡
⎢⎣
−�α̃|detJl |

2φl2φl3
0 0

0 0 0
0 0 0

⎤
⎥⎦ , (73)

and obtain

(u− û)�dkM̃(u− û) =
∑
l∈Ixk

(u0,l − ûl)�dkm̃l(u0,l − ûl)

= −�α̃(uk − ûk)
2
∑
l∈Ixk

|detJl |
2φl2φl3

.

(74)

In the present situation, dkã is given by the absolute value of (38) (see also Remark
4),

dkã =
∑
l∈I A+xk

|detJl |
2φl2φl3

. (75)

By inserting (68), (70), (72), (74), and (75) in (62), together with Corollary 2, we
obtain the sought expression (64). Formula (65) can be obtained in an analogous way
as (64).

The formula in (66) follows directly from (62) togetherwith Corollary 2. The values
of dkmI

l and dkf Il for all possible cut situations I ∈ {A+, A−, B+, B−,C+,C−} are
given in Appendix A.2 and were computed using symbolic computer algebra tools. A
mathematical derivation of these terms is omitted here for brevity. ��
Remark 5 In this work, we restricted ourselves to the spatially two-dimensional setting
D ⊂ R

2 where D is discretized by a triangular mesh. We expect that, at the cost of
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more technical computations, an extension to three-dimensional problems involving
a tetrahedral mesh can be carried out along the lines of the presented work. For shape
perturbations, one has to consider all different configurations howa tetrahedral element
can be divided by a planar interface. In addition to the class of configurations where
one of the four nodes is cut off (cf. Fig. 3 for the 2d case), one also has to consider
all configurations where any two of the four vertices of the tetrahedron are on one
side of the interface and two on the other side. For topological perturbations, only
the first class of configurations will be of interest and no significant difference to the
two-dimensional setting is expected.

Similarly, an extension of the presented method to more general settings such as
more general cost functions of the type g = g(Ω, u,∇u) or spatially varying material
coefficients can be obtained at the cost of more technical computations.

5 Connection Between Continuous and Discrete Sensitivities

The topological-shape derivative introduced in (25) and computed for model problem
(2) in Theorem 2 represents a sensitivity of the discretized problem (23). In this
section,wedrawsomecomparisonswith the classical topological and shapederivatives
defined on the continuous level before discretization. While the purpose of this paper
is to follow the idea discretize-then-differentiate, we consider the other way here for
comparison reasons.

5.1 Connections Between Continuous and Discrete Topological Derivative

For comparison, we also illustrate the derivation of the continuous topological deriva-
tive according to (4) for problem (2). We use the same Lagrangian framework as
introduced in Sect. 4.2, see also [18]. Given a shape Ω ∈ A, a point z ∈ D\∂Ω , an
inclusion shape ω ⊂ R

d with 0 ∈ ω and ε ≥ 0, we define the inclusion ωε = z + εω

and the perturbed Lagrangian

G(ε, ϕ, ψ) := c1|Ωε| + c2

∫
D

α̃Ωε |ϕ − û|2 dx

+
∫
D

λΩε∇ϕ · ∇ψ + αΩεϕψ dx −
∫
D

fΩεψ dx

where Ωε = Ω\ωε for z ∈ Ω and Ωε = Ω ∪ ωε for z ∈ D\Ω . For simplicity, we
only consider the latter case, i.e. z ∈ D \Ω in the sequel.

Noting that uε, ε ≥ 0, is the solution to the perturbed state equation with parameter
ε, the topological derivative can also be written as

dT g(Ω)(z) = lim
ε↘0

1

|ωε| (G(ε, uε, p)− G(0, u0, p)) (76)
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with the solution to the unperturbed adjoint state equation p. As in Sect. 4.2, this leads
to the topological derivative consisting of the three terms

dT g(Ω)(z) = R1(u, p)+ R2(u, p)+ R0(u, p)

where

R1(u, p) :=lim
ε↘0

1

|Ωε�Ω|
∫ 1

0
[∂uG(ε, u0 + s(uε − u0), p)− ∂uG(ε, u, p)](uε − u0)ds,

R2(u, p) :=lim
ε↘0

1

|Ωε�Ω| [∂uG(ε, u, p)− ∂uG(0, u, p)](uε − u),

R0(u, p) :=lim
ε↘0

1

|Ωε�Ω| [G(ε, u, p)− G(0, u, p)],

provided that these limits exist. It is straightforwardly checked that for z ∈ D \Ω

R0(u, p) = c1 + c2(α̃1 − α̃2)(u − û)2(z)+ (λ1 − λ2)∇u(z) · ∇ p(z)

+ (α1 − α2)u(z)p(z)− ( f1 − f2)(z)p(z).

For the term R2(u, p), we obtain

R2(u, p) =lim
ε↘0

1

|ωε|
[
2c2

∫
ωε

(α̃1 − α̃2)(u0 − û)(uε − u0) dy

+
∫

ωε

(λ1 − λ2)∇(uε − u0) · ∇ p dy

+
∫

ωε

(α1 − α2)(uε − u0)p dy

]
.

A change of variables y = Tε(x) = z + εx yields

R2(u, p) = lim
ε↘0

1

|ω|
[
2c2(α̃1 − α̃2)

∫
ω

(u0 − û) ◦ Tε(uε − u0) ◦ Tε dx

+ (λ1 − λ2)

∫
ω

(∇(uε − u0)) ◦ Tε · (∇ p) ◦ Tε dx

+ (α1 − α2)

∫
ω

(uε − u0) ◦ Tε p ◦ Tε dx

]
(77)

We have a closer look at the diffusion term

Rλ
2 (u, p) := lim

ε↘0

1

|ω| (λ1 − λ2)

∫
ω

(∇(uε − u0)) ◦ Tε · (∇ p) ◦ Tε dx . (78)
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In the continuous setting, we now define Kε := 1
ε
(uε−u0)◦Tε and use the chain rule

(∇ϕ) ◦ Tε = 1
ε
∇(ϕ ◦ Tε) to obtain

Rλ
2 (u, p) =lim

ε↘0

1

|ω| (λ1 − λ2)

∫
ω

∇Kε · (∇ p) ◦ Tε dx (79)

Next, one can show the weak convergence∇Kε⇀∇K for K ∈ ḂL(R2) being defined
as the solution to the exterior problem

∫
Rd

λω∇K · ∇ψ dx = −(λ1 − λ2)

∫
ω

∇u(z) · ∇ψ dx for all ψ ∈ ḂL(R2),

where ḂL(R2) := {v ∈ H1
loc(R

2) : ∇v ∈ L2(R2)}/R is a Beppo-Levi space. Assum-
ing continuity of ∇ p around the point of perturbation z, it follows that

Rλ
2 (u, p) = 1

|ω| (λ1 − λ2)

∫
ω

∇K · ∇ p(z) dx . (80)

It can be shown that the other terms in (77) vanish and thus R2(u, p) = Rλ
2 (u, p).

Finally, it follows from the analysis in [18, Sec. 5] that R1(u, p)+R2(u, p) = 1
|ω| (λ1−

λ2)
∫
ω
∇K · ∇ p(z) dx = R2(u, p), thus R1(u, p) = 0 and dT g(Ω)(z) = R0(u, p)+

Rλ
2 (u, p).

Remark 6 Comparing the topological derivative formula obtained here with the sen-
sitivity for interior nodes xk ∈ T− ∪ T+ obtained in Sect. 4, we see that the term
corresponding to Rλ

2 (u, p), i.e., the term

lim
ε↘0

1

|Ω(φε)�Ω(φ)| (Kε −K0)(uε − u0) · p

in (59), vanishes in the discrete setting. This can be seen as follows: For uhε , ε ≥ 0,
and ph ∈ Vh , we have the expansion in the finite element basis

uhε (x) =
M∑
i=1

u(i)
ε ϕi , ph(x) =

M∑
i=1

p(i)ϕi .

If we now plug in these discretized functions into (78) and consider a fixed mesh size
h, we get on the other hand

Rλ
2 (uh, ph) = lim

ε↘0

1

|ω| (λ1 − λ2)

∫
ω
(∇(uhε − uh0)) ◦ Tε · (∇ ph) ◦ Tε dx

= lim
ε↘0

1

|ω| (λ1 − λ2)

M∑
i, j=1

(u(i)
ε − u(i)

0 )p( j)
∫
ω
(∇ϕi )(z + εx) · (∇ϕ j )(z + εx) dx = 0
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where we used the continuity of ε �→ uε according to Lemma 2. Note that, since the
mesh and the basis functions are assumed to be fixed and independent of ε, unlike in
the continuous setting, here the continuity of the normal flux of the discrete solution
uhε across the interface ∂ωε is not preserved. Wemention that, when using an extended
discretization technique that accounts for an accurate resolution of the material inter-
face (e.g. XFEM [25] or CutFEM [11]), the corresponding discrete sensitivities would
include a term corresponding to Rλ

2 (u, p).

5.2 Connection Between Continuous and Discrete Shape Derivative

The continuous shape derivative dSg(Ω)(V ) for a PDE-constrained shape optimiza-
tion problem given a shape Ω ∈ A and a smooth vector field V can also be
obtained via a Lagrangian approach. For our problem (2), it can be obtained as
dSg(Ω)(V ) = ∂tG(0, u, p) with

G(t, ϕ, ψ) :=c1
∫

Ω

ξ(t) dx + c2

∫
D

α̃Ω |ϕ − û ◦ Tt |2ξ(t) dx

+
∫
D

λΩ A(t)∇ϕ · ∇ψ + αΩϕψξ(t) dx −
∫
D

fΩψξ(t) dx

where Tt (x) = x + tV (x), ξ(t) = det(∂Tt ), A(t) = ξ(t)∂T−1t ∂T−Tt , see [31] for a
detailed description. In the continuous setting, the shape derivative reads in its volume
form

dSg(Ω)(V ) =
∫
D
SΩ
1 : ∂V + SΩ

0 · V dx

with SΩ
1 and SΩ

0 given in (11) and (12), respectively. Under certain smoothness
assumptions, it can be transformed into the Hadamard or boundary form

dSg(Ω)(V ) =
∫

∂Ω

L (V · n) dSx (81)

with L = (SΩ,in
1 − SΩ,out

1 )n · n given by

L = c1 + c2(α̃1 − α̃2)(u − û)2 + (α1 − α2)up − ( f1 − f2)p + Lλ (82)

where Lλ is given by

Lλ := (λ1 − λ2)(∇u · τ)(∇ p · τ)−
(

1

λ1
− 1

λ2

)
(λΩ∇u · n)(λΩ∇ p · n)

= λ1∇uin · ∇ pin − λ2∇uout · ∇ pout

− 2λ1(∇uin · n)(∇ pin · n)+ 2λ2(∇uout · n)(∇ pout · n). (83)
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Here, ∇uin,∇ pin and ∇uout,∇ pout denote the restrictions of the gradients to Ω and
D\Ω , respectively, and n denotes the unit normal vector pointing out of Ω . Note
that, when using a finite element discretization which does not resolve the interface
such that the gradients of the discretized state and adjoint variable are continuous, i.e.
∇uh,in = ∇uh,out and ∇ ph,in = ∇ ph,out, (83) becomes

Lλ
h = (λ1 − λ2)∇uh · ∇ ph − 2(λ1 − λ2)(∇uh · n)(∇ ph · n) (84)

We now discretize the continuous shape derivative formula (81) for the vector field
V (k) that is obtained from the perturbation of the level set function φ in (only) node
xk , k ∈ S fixed. For that purpose we fix φ ∈ S1h(D) and the corresponding domain
Ω(φ). Note that we consider V (k) to be supported only on the discretized material
interface ∂Ω(φ) ∩ D. We begin with the case of the pure volume cost function by
setting c2 = 0.

Proposition 1 Let c2 = 0 and xk ∈ S fixed. Let V (k) the vector field that corresponds
to a perturbation of the value of φ at position xk . Then

dSg(Ω(φ))(V (k)) = c1
∑
l∈Ck

dkal

where dkal is as in (48).

Proof For c2 = 0 we also have p = 0 and thus L = c1, i.e., we are in the case of pure
volume minimization. From (81) we know that dSg(Ω(φ))(V (k)) = c1

∫
∂Ω(φ)

V (k) ·
n dSx . First of all, we note that the vector field V (k) corresponding to a perturbation
of φ at node xk is only nonzero in elements τl for l ∈ Ck with Ck as defined in (32).
Thus, the shape derivative reduces to

dSg(Ω(φ))(V (k)) = c1
∑
l∈Ck

∫
τl∩∂Ω(φ)

V (k) · n dSx .

We compute the vector field V (k) and normal vector n explicitly depending on the cut
situation. Recall the sets I A+xk , I A−xk , I B+xk , I B−xk , I C+xk , I C−xk introduced in (34), see also
Fig. 3.

Given two points p and q and their respective level set values a and b of different
sign, ab < 0, we denote the root of the linear interpolating function by

y(p,q, a, b) = p− a

b − a
(q− p)

and note that d
da y(p,q, a, b) = − b

(b−a)2
(q− p).

We begin with Configuration A. For an element index l ∈ I A+xk ∪ I A−xk , we denote
the vertices of element τl by xl1 , xl2 , xl3 and assume their enumeration in counter-
clockwise orderwith xk = xl1 . The corresponding values of the given level set function
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φ are denoted by φl1, φl2 , φl3 , respectively.We parametrize the line connecting the two
roots of the perturbed level set function along the edges by

pA[ε](s) = (1− s)y(xl1 , xl2 , φl1 + ε, φl2)+ sy(xl1 , xl3 , φl1 + ε, φl3)

and obtain the vector field corresponding to the perturbation of φk = φl1 along the
line τl ∩ ∂Ω(φ) as

V̂ A(s) = d

dε
pA[ε](s)|ε=0 = (1− s)

−φl2

(φl2 − φl1)
2 (xl2 − xl1)+ s

−φl3

(φl3 − φl1)
2 (xl3 − xl1).

Introducing the notation dki,k j := |y(xlk , xli , φlk , φli ) − y(xlk , xl j , φlk , φl j )| for the
length of the interface in element τl , the normed tangential vector along τl ∩ ∂Ω(φ)

and the normed normal vector pointing out of Ω(φ) are given by

t̂ A =y(xl1 , xl3 , φl1 , φl3)− y(xl1 , xl2 , φl1 , φl2)

d13,12

n̂ A+ = φl1

d13,12

(
1

φl2 − φl1
R(xl2 − xl1)−

1

φl3 − φl1
R(xl3 − xl1)

)
= −n̂ A−

where R denotes a 90 degree counter-clockwise rotation matrix, R =
(
0 −1
1 0

)
.

Noting that (xl3 − xl1)
�R(xl2 − xl1) = |detJl | = −(xl2 − xl1)

�R(xl3 − xl1) and
(xl j − xl1)

�R(xl j − xl1) = 0, j = 2, 3, we get

V̂ A(s) · n̂ A+ = −|detJl |φl1

d13,12

φl2(φl3 − φl1)+ sφl1(φl2 − φl3)

(φl2 − φl1)
2(φl3 − φl1)

2 = −V̂ A(s) · n̂ A− .

(85)

Finally, by elementary computation we obtain for l ∈ I A+xk

∫
τl∩∂Ω(φ)

V (k) · n dSx =d13,12
∫ 1

0
V̂ A(t) · n̂ A+ dt

=|detJl |φl1
−φl2φl3 + 1

2φl1(φl2 + φl3)

(φl2 − φl1)
2(φl3 − φl1)

2

and the same formula with a different sign for l ∈ I A−xk . Proceeding analogously, we

obtain for l ∈ I B+xk and l ∈ I C+xk

V̂ B(s) · n̂B+ =|detJl |
d23,21

(1− s)φ2
l2

(φl2 − φl1)
2(φl3 − φl2)

= −V̂ B(s) · n̂B− , (86)

V̂ C (s) · n̂C+ =|detJl |
d31,32

(1− s)φ2
l3

(φl3 − φl1)
2(φl2 − φl3)

= −V̂ C (s) · n̂C− , (87)
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and further

∫
τl∩∂Ω(φ)

V (k) · n dSx =|detJl |
2

φ2
l2

(φl2 − φl1)
2(φl3 − φl2)

, l ∈ I B+xk ,

∫
τl∩∂Ω(φ)

V (k) · n dSx =|detJl |
2

−φ2
l3

(φl3 − φl1)
2(φl3 − φl2)

, l ∈ I C+xk ,

respectively. Again, the formulas for l ∈ I B−xk and l ∈ I C−xk just differ by a different
sign.

Finally, comparing the computed values with the formulas of dkal (48) yields the
claimed result. ��

In view of Proposition 1, the definition in (13) and Remark 4, we see that, in the
case c2 = 0, it holds

d̂Sg(Ω(φ))(V (k)) = c1
∑

l∈Ck
dkal∑

l∈Ck
dkãl

= −c1, (88)

which is in alignment with the first term of the formula in (66).
Next, we consider the general PDE-constrained case where c2 > 0.

Proposition 2 Let c1 = 0 and xk ∈ S fixed. Let V (k) the vector field that corresponds
to a perturbation of the value of φ at position xk . Then

dSg(Ω(φ))(V (k)) = �λ
∑
l∈Ck

p�l k0,lul dkal +�α
∑
l∈Ck

p�l dkmI
l ul

−� f
∑
l∈Ck

p�l dkf Il + c2�α̃
∑
l∈Ck

(ul − ûl)�dkmI
l (ul − ûl)

− 2�λ
∑
l∈Ck

(∇uh · nI )|τl∩∂Ω(φ)(∇ ph · n)|τl∩∂Ω(φ)dkal ,

(89)

where we use the same notation as in Theorem 2. In particular, dkmI
l and dkf

I
l depend

on the cut situation, I ∈ {A+, A−, B+, B−,C+,C−} and are given explicitly in
Appendix A.2.

Proof Let an element index l ∈ Ck fixed and ul = [ul1, ul2 , ul3 ]�, pl =
[pl1, pl2 , pl3 ]� contain the nodal values of the finite element functions uh and ph
corresponding to the three vertices xl1 , xl2 , xl3 of element l, respectively. Also here,
the ordering is in counter-clockwise direction starting with xl1 = xk . We compute
the shape derivative (81) with L given in (82) after discretization (i.e. after replacing
the functions u, p, û by finite element approximations uh , ph , ûh). In particular, the
term Lλ is approximated by (84). Depending on how the material interface ∂Ω(φ)

cuts through element τl , the normal component of the vector field V (k) along the line
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τl ∩ ∂Ω(φ) is given in (85)–(87). For and I ∈ {A+, A−, B+, B−,C+,C−}, it can be
seen by elementary yet tedious calculations that

∫
τl∩∂Ω(φ)

ph(x)V
I (x) · nI dSx = p�l dkf Il ,

∫
τl∩∂Ω(φ)

uh(x)ph(x)V
I (x) · nI dSx = p�l dkmI

l ul ,

∫
τl∩∂Ω(φ)

(uh(x)− ûh(x))
2V I (x) · nI dSx = (ul − ûl)�dkmI

l (ul − ûl),

with dkmI
l and dkf Il as given in Appendix A.2. Examplarily, we illustrate the calcu-

lation for the second of these terms for the cut situation I = A+, see Fig. 3a. Let
ul,12 and ul,13 denote the values of the linear function uh |τl at the intersection of the
interface ∂Ω(φ) with the edges that connect the point xl1 with xl2 and xl1 with xl3 ,

respectively. Note the relations ul,12 = ul2φl1−ul1φl2
φl1−φl2

and ul,13 = ul3φl1−ul1φl3
φl1−φl3

. Analo-

gously we define the values pl,12 and pl,13. The function uh along the line τl ∩ ∂Ω(φ)

can now be written as ûh(s) = ul,12 + s(ul,13 − ul,12), s ∈ [0, 1] and we get

∫
τl∩∂Ω(φ)

uh(x)ph(x)V I (x) · nI dSx

= d13,12

∫ 1

0
(ul,12 + s(ul,13 − ul,12))(pl,12 + s(pl,13 − pl,12))V̂

A+(s) · n̂ A+ ds

= p�l dkm
A+
l ul

where d13,12 = |τl ∩ ∂Ω(φ)|. The last equality is obtained by plugging in (85) and
straightforward (yet tedious) calculation. Finally, since uh and ph are linear and the
normal vector is constant on τl ∩ ∂Ω(φ), we see that Lλ

h is constant and, using Propo-
sition 1, we obtain

∫
τl∩∂Ω(φ)

Lλ
h(x)V

I (x) · nI dSx = Lλ
h(x)

∫
τl∩∂Ω(φ)

V I (x) · nI dSx

= �λ
(
p�l k0,lul − 2(∇uh · nI )|τl∩∂Ω(φ)(∇ ph · nI )|τl∩∂Ω(φ)

)
dkal .

��
Combining the findings of Propositions 1 and 2 and dividing by dkã (defined in

Remark 4), we obtain the resulting formula for the alternative definition of the shape
derivative as defined in (13)

d̂Sg(Ω(φ))(V (k)) = −c1 + 1

dk ã

(
�λ

∑
l∈Ck

p�l k0,lul dkal

+�α
∑
l∈Ck

p�l dkmI
l ul −� f

∑
l∈Ck

p�l dk f Il
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+c2�α̃
∑
l∈Ck

(ul − ûl )�dkmI
l (ul − ûl )

−2�λ
∑
l∈Ck

(∇uh · nI )|τl∩∂Ω(φ)(∇ ph · n)|τl∩∂Ω(φ)dkal

)
. (90)

Remark 7 Note that (90) is obtained by discretizing the continuous shape deriva-
tive (81)–(83). We see immediately that (90) resembles the formula for the discrete
topological-shape derivative for nodes xk ∈ S (66). The only difference is the
occurence of the last term in (90), which is not accounted for when performing the
sensitivity analysis in the discrete setting.

Note that this term stems from the presence of ∂T−1t ∂T−Tt in thematrix A(t), which,
in turn, originates from two applications of the chain rule, (∇ϕ)◦Tt = ∂T−�t ∇(ϕ◦Tt ).
Similarly as in the case of the topological derivative in Sect. 5.1, the reason for this
discrepancy is the fact that, for the given discretization scheme, the gradients of the
finite element basis functions are constant on each element and thus (∇ϕ) ◦ Tt = ∇ϕ

for small enough shape perturbation parameter t .

Remark 8 As a second, conceptual difference between the classical continuous shape
derivative defined by (8) and our discrete counterpart (66), we recall that in the defi-
nition (25) we divided by the change of volume also in the case xk ∈ S.

Thus, comparing (90) with (66), we see that, for the chosen finite element set-
ting, the discretization of the continuous shape derivative coincides with the discrete
topological-shape derivative for the volume function, but not for the PDE-constrained
part of the cost function (1) when the diffusion term is perturbed.

6 Numerical Experiments

In this section, we verify our implementation of the numerical topological-shape
derivative derived in Sect. 4 by numerical experiments, before applying a level-set
based topology optimization algorithm based on these sensitivities to our model prob-
lem.

6.1 Verification

The implementation of the topological-shape derivative is verified by comparing
the computed sensitivity values against numerical values obtained by three differ-
ent approaches. These are (i) a finite difference test, (ii) an application of the complex
step derivative [24] and (iii) a test based on hyper-dual numbers developed in [16].
All tests are conducted for a fixed configuration.

We recall the definition of the topological-shape derivative (25) at a node xk of the
mesh

dJ (φ)(xk) = lim
ε↘0

δJε(φ)(xk) with δJε(φ)(xk) := J (Ok,εφ)− J (φ)

|Ω(Ok,εφ)�Ω(φ)| (91)
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where Ok,ε represents the operator T−→+k,ε , T+→−k,ε , Sk,ε depending on whether the
node xk is in T−, T+ or S, respectively.

6.1.1 Finite Difference Test

For the finite difference (FD) test, we compute the errors

eFD
S (ε) =

√∑
xk∈S

(δJε(φ)(xk)− dJ (φ)(xk))2,

eFD
T (ε) =

√ ∑
xk∈T−∪T+

(δJε(φ)(xk)− dJ (φ)(xk))2 (92)

for a decreasing sequence of values for ε. The results are shown in Fig. 5a. We observe
convergence of order ε up to a point where the cancellation error dominates.

6.1.2 Complex Step Derivative Test

In order to overcome this drawback of the finite difference test, we next consider a
test based on the complex step (CS) derivative [24]. For the case of classical first
order derivatives, this method is not subject to subtractive cancellation errors. For that
purpose, using Remark 4, let us first rewrite (91) as

dJ (φ)(xk) = limε↘0
J (Ok,εφ)−J (φ)

εo

limε↘0
|Ω(Ok,εφ)�Ω(φ)|

εo

= 1

dkã
lim
ε↘0

J (Ok,εφ)− J (φ)

εo
, (93)

where o = 1 if xk ∈ S and o = 2 if xk ∈ T− ∪ T+. Moreover, assuming a higher
order expansion of the form

J (Ok,εφ) = J (φ)+ εo dkã dJ (φ)(xk)

+ εo+1 dkã d2J (φ)(xk)+ εo+2 dkã d3J (φ)(xk)+ o(εo+2) (94)

with some higher order sensitivities d2J (φ)(xk), d3J (φ)(xk) and assuming that (94)
also holds for complex-valued ε, we can follow the idea of the complex step derivative
[24]: Setting ε = ih in (94) with h > 0 and i the complex unit yields

dJ (φ)(xk) = Im(J (Ok,ihφ))

h dkã
+O(h2) (95)

in the case o = 1 where xk ∈ S, and

dJ (φ)(xk) = Re(J (Ok,ihφ)− J (φ))

−h2 dkã +O(h2)
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Fig. 5 a Results of the finite
difference test. b Results
obtained with the complex step
derivative. c Results obtained
with hyper-dual numbers
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in the case o = 2 where xk ∈ T− ∪ T+. This means

dJ (φ)(xk) = δJ CS
h (φ)(xk)+O(h2)

with

δJ CS
h (φ)(xk) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re(J (T−→+k,ih φ)−J (φ))

−h2 dk ã , xk ∈ T−,

Re(J (T+→−k,ih φ)−J (φ))

−h2 dk ã , xk ∈ T+,
Im(J (Sk,ihφ))

h dk ã
, xk ∈ S.

(96)

Analogously to (92), we define the summed errors eCS
S (h) and eCS

T (h) by just replacing
δJε(φ)(xk) by δJ CS

h (φ)(xk) defined above. Figure5b shows the errors eCS
S and eCS

T
for a positive, decreasing sequence of h where we observe quadratic decay for both
errors. While the error eCS

S corresponding to the shape nodes xk ∈ S decays to
machine precision, the error eCS

T corresponding to the interior nodes xk ∈ T− ∪ T+
deteriorates at some point due to the cancellation error occurring when subtracting
J (φ) from J (Ok,ihφ) in (96).

Remark 9 In this subsection, for the sake of code verification, we have assumed a
complex-valued perturbation of the level-set function. This has to be understood in a
fully numerical context, rather than in the continuos setting. In particular, the repre-
sentation of the domain by the level-set function (18) is not applicable any more, due
to the occurrence of complex numbers in a comparison of numbers. However, within
the numerical method to solve the state equation and to evaluate the objective function,
comparison of numbers is only needed for the classification of ’cut elements’. Apart
from classification the finite element method (computing local matrices, assembly of
the global matrices and solving the system of linear equations) uses only formulas
consisting of basic operations (+,−,·,:), where complex values are not a problem. For
instance, the area of an element that is cut by a perturbed level-set function is written
as an analytic formula depending on the perturbation parameter ε in (35). Here, a
complex valued perturbation parameter can be treated without problems.

When it comes to element classification the code has to follow the same execution
path for the complex perturbation as if the perturbation were only real valued. To this
end we distinguish between nodes belonging to S and nodes belonging to T− ∪ T+.
In the case of a node xk ∈ S simply the real part of the complex level-set value can
be used. This is due to the fact that for small enough perturbations the cut situation is
the same as for the unperturbed setting. In the case of nodes xk belonging to T− and
T+, the operators T+→−k,ih and T−→+k,ih provide numbers with vanishing real part at xk ,
i.e.Re(T+→−k,ih φ(xk)) = Re(T−→+k,ih φ(xk)) = 0. Here, the imaginary part of the nodal
value of the perturbed level-set function has the same sign as in the case of a purely
real perturbation and can thus be used in the classification.
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6.1.3 Test Based on Hyper-Dual Numbers

In order to overcome this cancellation error also for the case of xk ∈ T− ∪ T+,
we resort to hyper-dual (HD) numbers as introduced in [16]. Here, the idea is to
consider numbers with three non-real components denoted by E1, E2 and E1E2 with
E2
1 = E2

2 = (E1E2)
2 = 0. Assuming that expansion (94) holds up to order o+ 1 also

for such hyper-dual values of ε, we can set ε = hE1+ hE2+ 0E1E2 for some h > 0.
For o = 1, considering only the first non-real part (i.e., the E1part) and exploiting that
E2
1 = 0, we obtain the equality

dJ (φ)(xk) = E1part(J (Ok,hE1+hE2φ))

h dkã
(97)

for xk ∈ S. Similarly, with the same choice of ε, by considering only the E1E2-part
of the expansion and exploiting E2

1 = E2
2 = E2

1E
2
2 = 0, we obtain for o = 2

dJ (φ)(xk) = E1E2part(J (Ok,hE1+hE2φ))

2h2 dkã
(98)

for xk ∈ T−∪T+. In this case, the corresponding summed errors eHD
S (h) and eHD

T (h)

vanish for arbitrary h ∈ R. This is also observed numerically since both (97) and (98)
suffer neither from a truncation nor a cancellation error. Figure5c shows that the the
obtained results agree up to machine precision with the derivatives obtained by (64),
(65), and the respective formula for the shape derivative (66).

Remark 10 Analogously to Remark 9, the perturbation of the level-set function by a
hyper-dual number has to beunderstood in the numerical setting.Wehave implemented
the hyper-dual numbers using operator overloading, i.e. fundamental operations were
extended towork also onhyper-dual numbers respecting the calculation rules described
in [16]. Thus formulas involving basic operations do not pose a problem. Nevertheless,
care has to be taken when it comes to element classification. Again, in the case of
nodes belonging toS simply the real part of the hyper-dual number can be used. For
topological perturbations the classification is based on the E1part.

6.2 Application of Optimization Algorithm toModel Problem

Finally we show the use of the numerical topological-shape derivative computed in
Sect. 4 within a level-set based topology optimization algorithm.We first state the pre-
cise model problem, before introducing the algorithm and showing numerical results.

6.2.1 Problem Setting

We consider the unit square D = [0, 1]2 and minimize the objective function (1)
with c1 = 0 and c2 = 1 subject to the PDE constraint in (2). The chosen problem
parameters are shown in Table 1.
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Table 1 Problem parameters for
the numerical experiment α̃1 α̃2 α1 α2 λ1 λ2 f1 f2

1 0.9 1 0.2 1 0.6 1 0.5

We consider a mixed Dirichlet-Neumann problem by choosing

�D = {(x, y) ∈ ∂D|y = 0 or y = 1}, �N = ∂D \ �D,

and gD(x, y) = y, gN (x, y) = 0.
In order to define a desired state û, we choose a level-set function φd which implies

a desired shape Ωd , compute the corresponding solution u∗ to φd and set û := u∗.
Then, by construction, (Ωd , û) is also the solution of the design optimization problem.
In the numerical tests we used five different meshes with 145, 545, 2113, 8321, and
33025 nodes respectively. For each mesh we obtain φd by interpolation of

φ̄d(x, y) =
(
(x − 0.3)2 + (y − 0.4)2 − 0.22

) (
(x − 0.7)2 + (y − 0.7)2 − 0.12

)
.

(99)

This yields that Ω are two (approximated) circles with radii 0.2 and 0.1 respectively,
see Fig. 6.

6.2.2 Optimization Algorithm

The optimization algorithm we use to solve the problem introduced in Sect. 6.2.1 is
inspired by [4].

Definition 1 We say a level set function φ ∈ S1h(D) is locally optimal for the problem
described by J if

{
dJ (φ)(xk) ≥ 0 for xk ∈ T− ∪ T+,

dJ (φ)(xk) = 0 for xk ∈ S.
(100)

We introduce the generalized numerical topological-shape derivative Gφ ∈ S1h(D)

with

Gφ(xk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−min(dJ (φ)(xk), 0) for xk ∈ T−,

min(dJ (φ)(xk), 0) for xk ∈ T+,

−dJ (φ)(xk) for xk ∈ S.

(101)

With this definition, we immediately get the following optimality condition:
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(a) 145 nodes (b) 545 nodes

(c) 2113 nodes (d) 8321 nodes

(e) 33025 nodes

Fig. 6 The different meshes and corresponding sought shapes used in the numerical experiments

Lemma 3 Let φ ∈ S1h(D) and

Gφ(xk) = 0, for k = 1, . . . , M . (102)

Then φ is locally optimal in the sense of Definition 1.

The update of the level-set function based on the information of the topological-shape
derivative is done by spherical linear interpolation (see also [4])
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φi+1 = 1

sin(θi )

(
sin((1− κi )θi )φi + sin(κiθi )

Gφi

‖Gφi ‖L2(D)

)
, (103)

where θi = arc cos((φi ,Gφi )L2(D)) is the angle between the given level set functionφi

and the sensitivity Gφi in an L2(D)-sense. Here, κi ∈ (0, 1) is a line search parameter
which is adapted such that a decrease in the objective function is achieved.Note that, by
construction, the update (103) preserves the L2(D)-norm, ‖φi+1‖L2(D) = ‖φi‖L2(D).
As in [4, 17], we can also show that φ is evolving along a descent direction:

Lemma 4 Let φi , φi+1 ∈ S1h(D) two subsequent iterates related by (103). Then we
have for xk ∈ T−(φi ) ∪ T+(φi )

φi (xk) > 0 > φi+1(xk) �⇒ dJ (φi )(xk) < 0, (104)

φi (xk) < 0 < φi+1(xk) �⇒ dJ (φi )(xk) < 0. (105)

Proof Let xk ∈ T+(φi ), i.e. φi (xk) > 0 and assume that φi+1(xk) < 0. Since sin(θ) >

0 and sin(sθ) > 0 for all θ ∈ (0, π) and s ∈ (0, 1), it follows from (103) that
Gφi (xk) < 0 and thus, by (101), dJ (φi )(xk) < 0 as claimed in (104). An analogous
argument yields (105). ��

We can also show that Gφ constitutes a descent direction for xk ∈ S.

Lemma 5 Let φ ∈ S1h(D) and suppose that

lim
ε↘0

J (Sk,εφ)− J (φ)

|Ω(Sk,εφ)�Ω(φ)| = −limε↗0

J (Sk,εφ)− J (φ)

|Ω(Sk,εφ)�Ω(φ)| . (106)

Let xk ∈ S(φ) be fixed and let φκ be the level set function according to (103) with line
search parameter κ ∈ (0, 1) that is updated only in xk , i.e., φκ = a(κ)φ+ b(κ)Gφϕk

with a(κ) = sin((1 − κ)θ)/ sin(θ) and b(κ) = sin(κθ)/
(
sin(θ)‖Gφ‖L2(D)

)
. More-

over assume that |dJ (φ)(xk)| > 0. Then there exists κ ∈ (0, 1) such that for all
κ ∈ (0, κ)

J (φκ) < J (φ).

Proof Suppose that 0 > dJ (φ)(xk). Then it follows from (25) that J (φ + εϕk) <

J (φ) for ε > 0 small enough. Thus, sincea(κ), b(κ) > 0 for θ ∈ (0, π) and κ ∈ (0, 1)
and since J (φκ) = J ( 1

a(κ)
φκ), it follows

J (φκ) = J (φ + b(κ)/a(κ)Gφϕk) = J (φi − b(κ)/a(κ)dJ (φi )(xk)ϕk) < J (φi )

for κ > 0 small enough since −b(κ)/a(κ)dJ (φi )(xk) > 0 and b(κ)/a(κ) → 0 as
κ ↘ 0. On the other hand, if 0 < dJ (φi )(xk), it follows from (25) and (106) that
J (φ + εϕk) < J (φ) for ε < 0 small enough and further for κ small enough

J (φκ) = J (φ − b(κ)/a(κ)dJ (φ)(xk)ϕk) < J (φ).

��
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Remark 11 In the continuous setting, the property corresponding to (106) is fulfilled
for smooth domains which can be seen as follows. Let ΩV

t = (id+ tV )(Ω) and note
that ΩV−t = Ω−V

t . Then, by Lemma 1,

lim
s↗0

|ΩV
s �Ω|
s

= −lim
t↘0

|Ω−V
t �Ω|
t

= −
∫

∂Ω

|V · n| dSx = −lim
s↘0

|ΩV
s �Ω|
s

and, assuming differentiability of s �→ g(ΩV
s ),

lim
s↘0

g(ΩV
s )− g(Ω)

|ΩV
s �Ω| =

lim
s→0

(
g(ΩV

s )− g(Ω)
)
/s

lim
s↘0
|ΩV

s �Ω|/s = −lim
s↗0

g(ΩV
s )− g(Ω)

|ΩV
s �Ω| .

In the discrete case, however, there may occur situations where the limits in (106)
do not coincide. This can be the case in particular in situations where φ(xk) = 0. We
remark that this issue seemed not to cause problems in our numerical experiments.

Remark 12 In practice it turned out to be advantageous to include a smoothing step of
the level set function. Thus, we chose the following update strategy: We first set

ψ = 1

sin(θi )

(
sin((1− κi )θi )φi + sin(κiθi )

Gφi

‖Gφi ‖L2(D)

)
,

with the same notation as above before smoothing the level set function in T−(ψ) ∪
T+(ψ) by

ψ̂(xk) =

⎧⎪⎨
⎪⎩

∑
i∈Rxk ψ(xi )

|Rxk | for xk ∈ T−(ψ) ∪ T+(ψ),

ψ(xk) for xk ∈ S.

(107)

Finally, the level-set function is normalized and the next iterate is given by

φi+1 = ψ̂

‖ψ̂‖L2(D)

. (108)

Remark 13 Compared to a classical level set method [2] which is based solely on
shape sensitivities, our method does not lack a nucleation mechanism and thus it
is not necessary to use perforated initial designs or alternating shape or topological
update steps [1, 10]. While this is also true for the level set method introduced in
[4], which is based solely on topological derivatives, that method typically uses an
average of topological derivatives as sensitivities at the material interfaces, which does
not necessarily represent the correct shape sensitivities. Moreover, in contrast to these
mentioned methods, our approach uses sensitivities of the discretized problem.
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(a) 1 iteration (b) 2 iteration

(c) 10 iteration (d) 20 iteration

(e) 100 iteration (f) 800 iteration

-1 -0.5 0 0.5 1

Fig. 7 Evolution of the level-set function for the 145 nodes mesh

123



Applied Mathematics & Optimization (2023) 88 :46 Page 41 of 52 46

(a) 1 iteration (b) 2 iteration

(c) 10 iteration (d) 20 iteration

(e) 100 iteration (f) 800 iteration

-1 -0.5 0 0.5 1

Fig. 8 Evolution of the level-set function for the 545 nodes mesh
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(a) 1 iteration (b) 2 iteration

(c) 10 iteration (d) 20 iteration

(e) 100 iteration (f) 800 iteration

-1 -0.5 0 0.5 1

Fig. 9 Evolution of the level-set function for the 2113 nodes mesh
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(a) 1 iteration (b) 2 iteration

(c) 10 iteration (d) 20 iteration

(e) 100 iteration (f) 800 iteration

-1 -0.5 0 0.5 1

Fig. 10 Evolution of the level-set function for the 8321 nodes mesh

123



46 Page 44 of 52 Applied Mathematics & Optimization (2023) 88 :46

(a) 1 iteration (b) 2 iteration

(c) 10 iteration (d) 20 iteration

(e) 100 iteration (f) 800 iteration

-1 -0.5 0 0.5 1

Fig. 11 Evolution of the level-set function for the 33025 nodes mesh
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Fig. 12 Evolution of the objective function (a) and the norm of the topological-shape derivative (b) in
course of the optimization

6.2.3 Numerical Results

As an initial design for the optimisation, we take the empty set,Ω = ∅. This is realized
by choosing φ0 = 1/‖1‖L2(D) as the initial level set function. We use the algorithm
outlined in Sect. 6.2.2 to update this level set function. We terminated the algorithm
after the fixed number of 800 iterations. The final as well as some intermediate con-
figurations are illustrated in Figs. 7, 8, 9, 10, and 11 for the five different levels of
discretization.

We observe that in all cases the two circles are recovered with high accuracy. In
Fig. 12 the evolution of the objective function as well as of the norm of the generalized
numerical topological-shape derivative is plotted. We observe that objective function
decreases fast and after 800 iterations a reduction by a factor of approximately 10−5−
10−8 could be achieved. Moreover, we observe that the norm of the topological-
shape derivative decreases continuously, more and more approaching the optimality
condition (102).

7 Conclusions

In this work we presented a new sensitivity concept, called the topological-shape
derivative which is based on a level set representation of a domain. This approach
allows for a unified sensitivity analysis for shape and topological perturbations, which
we carried out for a discretized PDE-constrained design optimization problem in two
space dimensions. For the discretization we used a standard first order finite element
method which does not account for the interface position in the approximation space.
Therefore, kinks in the solution of the state and adjoint equations at material interfaces
are not resolved. Comparing the computed sensitivities of the discretized problem
with the discretization of the continuous topological and shape derivatives, we saw
that certain terms did not appear in the former approach. These lack of these terms
can be traced back to the inability of the chosen discretization method to represent
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such kinks. Thus, it would be interesting to study discretization methods which do
account for these kinks, e.g.XFEM or CutFEM, and perform the sensitivity analysis
in these settings in futurework. Furthermore, the extension to higher space dimensions,
higher polynomial degree and other PDE constraints such as elasticitywould be further
interesting research directions.
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A Appendix

A.1 Proof of Lemma 1

Proof We investigate the limit

lim
t↘0

1

t
|Ωt�Ω| =lim

t↘0

1

t

(∫
Ωt\Ω

dx +
∫

Ω\Ωt

dx

)
.

Let c : [0, 1] → ∂Ω be a smooth parametrization of the boundary ∂Ω in counter-
clockwise direction with smooth inverse and define ct : [0, 1] → ∂Ωt ,

ct (s) := c(s)+ tV (c(s)) = (id+ tV )(c(s)). (109)

The derivative is given by

ċt (s) = d

ds
ct (s) = ċ(s)+ t ∂V (c(s))ċ(s) = (I + t ∂V (c(s)))ċ(s). (110)

Let t > 0 sufficiently small such that, for all t ∈ (0, t), the number of intersection
points between ∂Ω and ∂Ωt is a fixed number N . To each intersection point we
associate a pair of numbers (si (t), ŝi (t)) such that

c(si (t)) = ct (ŝi (t)) = c(ŝi (t))+ tV (c(ŝi (t))), (111)
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see Fig. 13 for an illustration of the situation. The symmetric difference can now be
written asΩt�Ω =⋃N

i=1 Ai (t), where Ai (t) denotes the region between ∂Ω and ∂Ωt

bounded by the intersection points c(si (t)) and c(si+1(t)) (here, AN (t) is bounded
by c(sN (t)) and c(s1(t))). More precisely, Ai (t) is bounded by the two segments
{c(s) : s ∈ [si (t), si+1(t)]} and {ct (s) : s ∈ [ŝi (t), ŝi+1(t)]}. Now let i ∈ {1, . . . , N }
fixed. The volume of Ai (t) can be expressed by the divergence theorem as

|Ai (t)| =
∫
Ai (t)

1

2
div

(
x1
x2

)
dx = 1

2

∫
∂Ai (t)

x · n(x) dSx (112)

= 1

2

(∫ si+1(t)

si (t)
c(s)�Ri

ċ(s)

|ċ(s)| |ċ(s)| ds +
∫ ŝi+1(t)

ŝi (t)
ct (s)

�(−Ri )
ċt (s)

|ċt (s)| |ċt (s)| ds
)

(113)

with the rotation matrix

Ri = di

[
0 1
−1 0

]
, where di =

{
1, if Ai (t) ⊂ Ω \Ωt ,

−1, if Ai (t) ⊂ Ωt \Ω,
(114)

such that Ri
ċ(s)
|ċ(s)| and (−Ri )

ċt (s)|ċt (s)| are the unit normal vectors pointing out of Ai (t) at

c(s) and ct (s), respectively. Note that R�i = −Ri . For further use we note that

ct (s)
�Ri ċt (s) = [c(s)+ tV (c(s))]�Ri (I + t ∂V (c(s))) ċ(s)

= c(s)�Ri ċ(s)+ t
(
V (c(s))�Ri ċ(s)

+c(s)�Ri · ∂V (c(s)) ċ(s)
)
+ t2V (s)�Ri ∂V (c(s)) ċ(s).

Furthermore, let

s̄i := lim
t↘0

si (t), (115)

and we observe from (111) that lim
t↘0

ŝi (t) = s̄i .

Fig. 13 Illustration of the pairs
(si (t), ŝi (t))
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Moreover, since we assumed the inverse of c to be smooth (in particular Lipschitz
continuous with constant L), we have that the limit

lim
t↘0

1

t
|si (t)− ŝi (t)| ≤ lim

t↘0

L

t
|c(si (t))− c(ŝi (t))| = L|V (c(s̄i ))|, (116)

exists. Here we used (111) and the continuity of V and c.
With the abbreviation fc(s) := c(s)�Ri ċ(s) we have

|Ai (t)|

= 1

2

(∫ si (t)

ŝi (t)
fc(s) ds +

∫ si+1(t)

si (t)
fc(s) ds +

∫ ŝi+1(t)

si+1(t)
fc(s) ds −

∫ ŝi+1(t)

ŝi (t)
fct (s) ds

−
∫ si (t)

ŝi (t)
fc(s) ds −

∫ ŝi+1(t)

si+1(t)
fc(s) ds

)

= 1

2

(∫ ŝi+1(t)

ŝi (t)

[
fc(s)− fct (s)

]
ds −

∫ si (t)

ŝi (t)
fc(s) ds −

∫ ŝi+1(t)

si+1(t)
fc(s) ds

)
. (117)

Thus,
1
t |Ai (t)| = 1

2

(
Bi (t)− Ci (t)+ Ci+1(t)

)
with

Bi (t) = −
∫ ŝi+1(t)

ŝi (t)

[
V (c(s))�Ri ċ(s)+ c(s)�Ri ∂V (c(s)) ċ(s)

]
ds +O(t), (118)

Ci (t) = 1

t

∫ si (t)

ŝi (t)
fc(s) ds. (119)

In order to compute Bi (t) we note that

d

ds
(V (c(s))�Ri c(s)) = V (c(s))�Ri ċ(s)+ (∂V (c(s))ċ(s))� Ric(s)

= V (c(s))�Ri ċ(s)− c(s)�Ri ∂V (c(s)) ċ(s)

Thus,

Bi (t) =
∫ ŝi+1(t)

ŝi (t)

[
d

ds
(V (c(s))�Ri c(s))− 2V (c(s))�Ri ċ(s)

]
ds +O(t)

= V (c(ŝi+1(t)))�Ri c(ŝi+1(t))− V (c(ŝi (t)))
�Ri c(ŝi (t))

− 2
∫ ŝi+1(t)

ŝi (t)
V (c(s))�Ri ċ(s) ds +O(t). (120)
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For Ci (t), by the mean value theorem there exists s̃i ∈ [ŝi (t), si (t)] such that

Ci (t) = 1

t

∫ si (t)

ŝi (t)
c(s)�Ri ċ(s) ds = c(s̃i )

�Ri ċ(s̃i )
1

t
|si (t)− ŝi (t)|. (121)

On the other hand, we note that with (111) the following vector identity holds

tV (c(ŝi (t))) = c(si (t))− c(ŝi (t)) =
∫ si (t)

ŝi (t)
ċ(s) ds

= (si (t)− ŝi (t))
∫ 1

0
ċ(ŝi (t)+ a(si (t)− ŝi (t))) da

and thus,

ċ(s̄i )lim
t↘0

1

t
(si (t)− ŝi (t))

= lim
t↘0

(
1

t
(si (t)− ŝi (t))

∫ 1

0
ċ(ŝi (t)+ a(si (t)− ŝi (t))) da

)
= V (c(s̄i )).

(122)

Combining (120) and (121) we get

lim
t↘0

1

t
|Ai (t)| =lim

t↘0

1

2
(Bi (t)− Ci (t)+ Ci+1(t))

=lim
t↘0

1

2

(
−2
∫ ŝi+1(t)

ŝi (t)
V (c(s))�Ri ċ(s) ds + δi (t)− δi+1(t)

)

with

δi (t) := c(ŝi (t))
�RiV (c(ŝi (t)))− c(s̃i )

�Ri ċ(s̃i )
1

t
|si (t)− ŝi (t)|.

From (122), it follows that lim
t↘0

δi (t) = 0 = lim
t↘0

δi+1(t) and thus

lim
t↘0

1

t
|Ai (t)| = −

∫ s̄i+1

s̄i
V (c(s))�Ri ċ(s) ds = −

∫ c(s̄i+1)

c(s̄i )
V (x) · ni (x) dSx

Here we used

ni (x) =
{
n(x) if V (x) · n(x) < 0,

−n(x) if V (x) · n(x) > 0,
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where n denotes the unit normal vector pointing out of Ω . Thus we have found

lim
t↘0

1

t
|Ωt�Ω| =

N∑
i=1

lim
t↘0

1

t
|Ai (t)| =

∫
∂Ω

|V (x) · n(x)| dSx .

��

A.2 Matrix Entries for the Numerical Shape Derivative

In order to simplify the notation we use in this section the abbreviation φi := φli for
i = 1, 2, 3. The matrix entries for dkmI

l = |detJl | dkm̄I
l and dkf Il = |detJl | dk f̄ Il in

(66) are given by

dkm̄
A±
l [1, 1]

= ±
φ4
1

(
φ3
2 + φ2

2φ3 + φ2φ
2
3 + φ3

3

)
− 4φ1φ

3
2φ3

3 + 6φ2
1φ2

2φ2
3 (φ2 + φ3)− 4φ3

1φ2φ3

(
φ2
2 + φ2φ3 + φ2

3

)

4(φ1 − φ2)
4(φ1 − φ3)

4 ,

dkm̄
A±
l [1, 2] = dkm̄

A±
l [2, 1]

= ∓
φ2
1

(
3φ2

1φ2
2 + 2φ2

1φ2φ3 + φ2
1φ2

3 − 8φ1φ
2
2φ3 − 4φ1φ2φ

2
3 + 6φ2

2φ2
3

)

12(φ1 − φ2)
4(φ1 − φ3)

3 ,

dkm̄
A±
l [1, 3] = dkm̄

A±
l [3, 1]

= ∓
φ2
1

(
φ2
1φ2

2 + 2φ2
1φ2φ3 + 3φ2

1φ2
3 − 4φ1φ

2
2φ3 − 8φ1φ2φ

2
3 + 6φ2

2φ2
3

)

12(φ1 − φ2)
3(φ1 − φ3)

4 ,

dkm̄
A±
l [2, 2] = ±φ3

1 (3φ1φ2 + φ1φ3 − 4φ2φ3)

12(φ1 − φ2)
4(φ1 − φ3)

2 ,

dkm̄
A±
l [2, 3] = dkm̄

A±
l [3, 2] = ±φ3

1 (φ1φ2 + φ1φ3 − 2φ2φ3)

12(φ1 − φ2)
3(φ1 − φ3)

3 ,

dkm̄
A±
l [3, 3] = ±φ3

1 (φ1φ2 + 3φ1φ3 − 4φ2φ3)

12(φ1 − φ2)
2(φ1 − φ3)

4 ,

dkm̄
B±
l [1, 1] = ∓ φ4

2

4(φ1 − φ2)
4 (φ2 − φ3)

,

dkm̄
B±
l [1, 2] = dkm̄

B±
l [2, 1] = ±φ3

2 (3φ1φ2 − 4φ1φ3 + φ2φ3)

12(φ1 − φ2)
4(φ2 − φ3)

2 ,

dkm̄
B±
l [1, 3] = dkm̄

B±
l [3, 1] = ± φ4

2

12(φ1 − φ2)
3(φ2 − φ3)

2 ,

dkm̄
B±
l [2, 2] = ∓

φ2
2

(
3φ2

1φ2
2 − 8φ2

1φ2φ3 + 6φ2
1φ2

3 + 2φ1φ
2
2φ3 − 4φ1φ2φ

2
3 + φ2

2φ2
3

)

12(φ1 − φ2)
4(φ2 − φ3)

3 ,
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dkm̄
B±
l [2, 3] = dkm̄

B±
l [3, 2] = ∓φ3

2 (φ1φ2 − 2φ1φ3 + φ2φ3)

12(φ1 − φ2)
3(φ2 − φ3)

3 ,

dkm̄
B±
l [3, 3] = ∓ φ4

2

12(φ1 − φ2)
2(φ2 − φ3)

3 ,

dk f̄
A±
l [1] = ∓

φ1

(
φ2
1φ2

2 + φ2
1φ2φ3 + φ2

1φ2
3 − 3φ1φ

2
2φ3 − 3φ1φ2φ

2
3 + 3φ2

2φ2
3

)

3(φ1 − φ2)
3(φ1 − φ3)

3 ,

dk f̄
A±
l [2] = ±φ2

1 (2φ1φ2 + φ1φ3 − 3φ2φ3)

6(φ1 − φ2)
3(φ1 − φ3)

2 ,

dk f̄
A±
l [3] = ±φ2

1 (φ1φ2 + 2φ1φ3 − 3φ2φ3)

6(φ1 − φ2)
2(φ1 − φ3)

3 ,

dk f̄
B±
l [1] = ± φ3

2

3(φ1 − φ2)
3 (φ2 − φ3)

,

dk f̄
B±
l [2] = ∓φ2

2 (2φ1φ2 − 3φ1φ3 + φ2φ3)

6(φ1 − φ2)
3(φ2 − φ3)

2 ,

dk f̄
B±
l [3] = ∓ φ3

2

6(φ1 − φ2)
2(φ2 − φ3)

2 .

The formulas for dkm̄C±
l and dk f̄ C

±
l can be obtained from the formulas for dkm̄B±

l and

dk f̄ B
±

l by exchanging the matrix entry indices 2 and 3, and φ2 and φ3, e.g. dk f̄ C
±

l [3]
is obtained from dk f̄ B

±
l [2] by exchanging φ2 and φ3.
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