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Abstract
In this work, we approach the minimization of a continuously differentiable convex
function under linear equality constraints by a second-order dynamical system with
an asymptotically vanishing damping term. The system under consideration is a time
rescaled version of another system previously found in the literature. We show fast
convergence of the primal-dual gap, the feasibility measure, and the objective function
value along the generated trajectories. These convergence rates now depend on the
rescaling parameter, and thus can be improved by choosing said parameter appropri-
ately. When the objective function has a Lipschitz continuous gradient, we show that
the primal-dual trajectory asymptotically converges weakly to a primal-dual optimal
solution to the underlying minimization problem. We also exhibit improved rates of
convergence of the gradient along the primal trajectories and of the adjoint of the
corresponding linear operator along the dual trajectories. We illustrate the theoretical
outcomes and also carry out a comparison with other classes of dynamical systems
through numerical experiments.
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1 Introduction

1.1 Problem Statement andMotivation

In this paper we will consider the optimization problem

min f (x) ,

subject to Ax = b
(1.1)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X ,Y are real Hilbert spaces;
f : X → R is a continuously differentiable convex function;
A : X → Y is a continuous linear operator and b ∈ Y;
the set S of primal-dual optimal solutions of (1.1) is assumed to be nonempty.

(1.2)
This model formulation underlies many important applications in various areas, such
as image recovery [25], machine learning [20, 31], the energy dispatch of power grids
[42, 43], distributed optimization [32, 44] and network optimization [40, 45].

In recent years, there has been a flurry of research on the relationship between
continuous time dynamical systems and the numerical algorithms that arise from their
discretizations. For the unconstrained optimization problem, it has been known that
inertial systems with damped velocities enjoy good convergence properties. For a
convex, smooth function f : X → R, Polyak is the first to consider the heavy ball
with friction (HBF) dynamics [37, 38]

ẍ(t) + γ ẋ(t) + ∇ f (x(t)) = 0. (HBF)

Alvarez and Attouch continue the line of this study, focusing on inertial dynamics
with a fixed viscous damping coefficient [2–4]. Later on, Cabot et al. [21, 22] consider
the system that replaces γ with a time dependent damping coefficient γ (t). In [41],
Su, Boyd, and Candès showed that it turns out one can achieve fast convergence rates
by introducing a time dependent damping coefficient which vanishes in a controlled
manner, neither too fast nor too slowly, as t goes to infinity

ẍ(t) + α

t
ẋ(t) + ∇ f (x(t)) = 0. (AVD)

For α � 3, the authors showed that a solution x : [t0,+∞) → X to (AVD) satisfies

f (x(t)) − f (x∗) = O
(

1
t2

)
as t → +∞. In fact, the choice α = 3 provides a

continuous limit counterpart to Nesterov’s celebrated accelerated gradient algorithm
[15, 34, 35]. Weak convergence of the trajectories to minimizers of f when α > 3 has
been shown by Attouch et al. in [6] and May in [33], together with the improved rates

of convergence f (x(t)) − f (x∗) = o
(

1
t2

)
as t → +∞. In the meantime, similar
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results for the discrete counterpart were also reported by Chambolle and Dossal in
[23], and by Attouch and Peypouquet in [13].

In [7], Attouch, Chbani, and Riahi proposed an inertial proximal type algorithm,
which results from a discretization of the time rescaled (AVD) system

ẍ(t) + α

t
ẋ(t) + δ(t)∇ f (x(t)) = 0,

where δ : [t0,+∞) → R+ is a time scaling function satisfying a certain growth condi-

tion,which enters the convergence statement bywayof f (x (t))− f (x∗) = O
(

1
t2δ(t)

)

as t → +∞. The resulting algorithm obtained by the authors is considerably simpler
than the founding proximal point algorithm proposed byGüler in [26], while providing
comparable convergence rates for the functional values.

In order to approach constrained optimization problems, Augmented Lagrangian
Method (ALM) [39] (for linearly constrained problems) and Alternating Direction
Method of Multipliers (ADMM) [20, 24] (for problems with separable objectives and
block variables linearly coupled in the constraints) and some of their variants have
been shown to enjoy substantial success. Continuous-time approaches for structured
convex minimization problems formulated in the spirit of the full splitting paradigm
have been recently addressed in [18] and, closely connected to our approach, in [10,
17, 27, 45], to which we will have a closer look in Subsection 2.2. The temporal
discretization resulting from these dynamics gives rise to the numerical algorithmwith
fast convergence rates [28, 29] and with a convergence guarantee for the generated
iterate [19], without additional assumptions such as strong convexity.

In this paper, we will investigate a second-order dynamical system with asymptotic
vanishing damping and time rescaling term, which is associated with the optimization
problem (1.1) and formulated in terms of its augmented Lagrangian. The case when
the time rescaling term does not appear has been established in [17]. We show that
by introducing this time rescaling function, we are able to derive faster convergence
rates for the primal-dual gap, the feasibility measure, and the objective function value
along the generated trajectories while still maintaining the asymptotic behaviour of
the trajectories towards a primal-dual optimal solution. On the other hand, this work
can also be viewed as an extension of the time rescaling technique derived in [7, 9]
for the constrained case. To our knowledge, the trajectory convergence for dynamics
with time scaling seems to be new in the constrained case.

1.2 Notations and a Preliminary Result

For both Hilbert spacesX andY , the Euclidean inner product and the associated norm
will be denoted by 〈·, ·〉 and ‖·‖, respectively. The Cartesian product X × Y will be
endowed with the inner product and the associated norm defined for (x, λ) , (z, μ) ∈
X × Y as

〈(x, λ) , (z, μ)〉 = 〈x, z〉 + 〈λ,μ〉 and ‖(x, λ)‖ =
√

‖x‖2 + ‖λ‖2,
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respectively.
Let f : X → R be a continuously differentiable convex function such that ∇ f is

�−Lipschitz continuous. For every x, y ∈ X it holds (see [35, Theorem 2.1.5])

0 � 1

2�
‖∇ f (x) − ∇ f (y)‖2 � f (x) − f (y) − 〈∇ f (y) , x − y〉 � �

2
‖x − y‖2 .

(1.3)

2 The Primal-Dual Dynamical Approach

2.1 Augmented Lagrangian Formulation

Consider the saddle point problem

min
x∈X

max
λ∈Y

L (x, λ) (2.1)

associated to problem (1.1), where L : X ×Y → R denotes the Lagrangian function

L (x, λ) := f (x) + 〈λ, Ax − b〉 .

Under the assumptions (1.2),L is convex with respect to x ∈ X and affine with respect
to λ ∈ Y . A pair (x∗, λ∗) ∈ X × Y is said to be a saddle point of the Lagrangian
function L if for every (x, λ) ∈ X × Y

L (x∗, λ) � L (x∗, λ∗) � L (x, λ∗) . (2.2)

If (x∗, λ∗) ∈ X ×Y is a saddle point of L then x∗ ∈ X is an optimal solution of (1.1),
andλ∗ ∈ Y is an optimal solution of its Lagrange dual problem. If x∗ ∈ X is an optimal
solution of (1.1) and a suitable constraint qualification is fulfilled, then there exists an
optimal solution λ∗ ∈ Y of the Lagrange dual problem such that (x∗, λ∗) ∈ X ×Y is
a saddle point of L. For details and insights into the topic of constraint qualifications
for convex duality we refer to [14, 16].

The set of saddle points ofL, called also primal-dual optimal solutions of (1.1), will
be denoted by S and, as stated in the assumptions, it will be assumed to be nonempty.
The set of feasible points of (1.1) will be denoted by F := {x ∈ X : Ax = b} and the
optimal objective value of (1.1) by f∗.

The system of primal-dual optimality conditions for (1.1) reads

(x∗, λ∗) ∈ S ⇔
{

∇xL (x∗, λ∗) = 0

∇λL (x∗, λ∗) = 0
⇔

{
∇ f (x∗) + A∗λ∗ = 0

Ax∗ − b = 0
, (2.3)

where A∗ : Y → X denotes the adjoint operator of A.
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Forβ � 0,we consider also the augmentedLagrangianLβ : X×Y → R associated
with (1.1)

Lβ (x, λ) := L (x, λ)+β

2
‖Ax − b‖2 = f (x)+〈λ, Ax − b〉+β

2
‖Ax − b‖2 . (2.4)

For every (x, λ) ∈ F × Y it holds

f (x) = Lβ (x, λ) = L (x, λ) . (2.5)

If (x∗, λ∗) ∈ S, then we have for every (x, λ) ∈ X × Y

L (x∗, λ) = Lβ (x∗, λ) � L (x∗, λ∗) = Lβ (x∗, λ∗) � L (x, λ∗) � Lβ (x, λ∗) .

In addition, from (2.3) we have

(x∗, λ∗) ∈ S ⇔
{

∇ f (x∗) + A∗λ∗ = 0

Ax∗ − b = 0
⇔

{
∇ f (x∗) + A∗λ∗ + βA∗(Ax∗ − b) = 0

Ax∗ − b = 0

⇔
{

∇xLβ(x∗, λ∗) = 0

∇λLβ(x∗, λ∗) = 0.

In other words, for any β � 0 the sets of saddle points of L and Lβ are identical.

2.2 The Primal-Dual Asymptotic Vanishing Damping Dynamical Systemwith Time
Rescaling

In this subsection we present the system under study, and we include a brief discussion
regarding the existence and uniqueness of solutions.

The dynamical system which we associate to (1.1) and investigate in this paper
reads

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍ (t) + α

t
ẋ (t) + δ (t)∇xLβ

(
x (t) , λ (t) + θ t λ̇ (t)

)
= 0

λ̈ (t) + α

t
λ̇ (t) − δ (t)∇λLβ

(
x (t) + θ t ẋ (t) , λ (t)

)
= 0

(
x (t0) , λ (t0)

)
=
(
x0, λ0

)
and

(
ẋ (t0) , λ̇ (t0)

)
=
(
ẋ0, λ̇0

)

, (2.6)

where t0 > 0, α > 0, θ > 0, δ : [t0,+∞) → R is a nonnegative continuously
differentiable function and (x0, λ0) ,

(
ẋ0, λ̇0

) ∈ X × Y are the initial conditions.
Replacing the expressions of the partial gradients of Lβ into the system leads to the
following formulation for (2.6):
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍ (t) + α

t
ẋ (t) + δ (t)∇ f (x (t)) + δ (t) A∗ (λ (t) + θ t λ̇ (t)

) + δ (t) βA∗(Ax (t) − b
)

= 0

λ̈ (t) + α

t
λ̇ (t) − δ (t)

(
A
(
x (t) + θ t ẋ (t)

) − b
)

= 0
(
x (t0) , λ (t0)

)
=
(
x0, λ0

)
and

(
ẋ (t0) , λ̇ (t0)

)
=
(
ẋ0, λ̇0

)
.

The case (2.6) in which there is no time rescaling, i.e., when δ(t) ≡ 1, was studied
by Zeng et al. in [45], and by Boţ and Nguyen in [17]. The system with more general
damping, extrapolation and time rescaling coefficients was addressed by He et al. in
[27, 30] and by Attouch et al. in [10]. We mention that extending the results in this
paper to the multi-block case is possible. For further details, we refer the readers to
[17, Sect. 2.4].

It is well known that the viscous damping term α
t has a vital role in achieving fast

convergence in unconstrained minimization [6, 8, 33]. The role of the extrapolation
θ t is to induce more flexibility in the dynamical system and in the associated discrete
schemes, as it has been recently noticed in [10, 12, 27, 45]. The time scaling function
δ (·) has the role to further improve the rates of convergence of the objective function
value along the trajectory, as it was noticed in the context of unconstrained minimiza-
tion problems in [7, 9, 11] and of linearly constrained minimization problems in [10,
30].

It is straightforward to show the existence of local solutions to (2.6), under the
additional assumption that ∇ f is Lipschitz continuous on every bounded subset
of X . First, notice that (2.6) can be rewritten as a first-order dynamical sys-
tem. Indeed, (x, λ) : [t0,+∞) → X × Y is a solution to (2.6) if and only if
(x, λ, y, ν) : [t0,+∞) → X × Y × X × Y is a solution to

{(
ẋ(t), λ̇(t), ẏ(t), ν̇(t)

) = F (t, x(t), λ(t), y(t), ν(t))

(x(t0), λ(t0), y(t0), ν(t0)) = (
x0, λ0, ẋ0, λ̇0

)
,

where F : [t0,+∞) × X × Y × X × Y → X × Y × X × Y is given by

F(t, z, μ,w, η)

:=
(
w, η,−α

t
w − δ(t)

[∇ f (z) + A∗(μ + θ tη
) + βA∗(Az − b

)]
,

−α

t
η + δ(t)

[
A
(
z + θ tw

) − b
])

.

where F is evidently continuous in t , and F(t, ·) is Lipschitz continuous on every
bounded subset, provided that the same property holds for ∇ f . We can then employ a
theorem such as that by Cauchy-Lipschitz to obtain the existence of a unique solution
to the previous system, and thus a unique solution to (2.6), defined on a maximal
interval [t0, Tmax). To go further and show the existence and uniqueness of a global
solution (that is, Tmax = +∞) we will need some energy estimates derived in the next
section in a similar way as in [11, 17]. For this reason, the existence and uniqueness
of a global solution is postponed to a later stage.
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3 Faster Convergence Rates via Time Rescaling

In this section we will derive fast convergence rates for the primal-dual gap, the
feasibilitymeasure, and the objective function value along the trajectories generated by
the dynamical system (2.6).Wewillmake the following assumptions on the parameters
α, θ , β and the function δ throughout this section.

Assumption 1 In (2.6), assume that δ : [t0,+∞) → (0,+∞) is continuously
differentiable. Moreover, suppose that the parameters α, β, θ and the function δ

satisfy

α � 3, β � 0,
1

2
� θ � 1

α − 1
and sup

t�t0

t δ̇(t)

δ(t)
� 1 − 2θ

θ
. (3.1)

Besides the first three conditions that are known previously in [17], it is worth pointing
out that we can deduce from the last one the following inequality for every t � t0:

t δ̇ (t)

δ (t)
� 1 − 2θ

θ
= 1

θ
− 2 � α − 3. (3.2)

This gives a connection to the condition which appears in [7]. A few more comments
regarding the function δ will come later, after the convergence rates statements.

3.1 The Energy Function

Let (x, λ) : [t0,+∞) → X × Y be a solution of (2.6). Let (x∗, λ∗) ∈ S be fixed, we
define the energy function E : [t0,+∞) → R

E (t) := θ2t2δ(t)
(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))

) + 1

2
‖v (t)‖2

+ ξ

2

∥
∥
(
x (t) , λ (t)

) − (x∗, λ∗)
∥
∥2 , (3.3)

where

v (t) := (
x (t) , λ (t)

) − (x∗, λ∗) + θ t
(
ẋ (t) , λ̇ (t)

)
, (3.4)

ξ := αθ − θ − 1 � 0. (3.5)

Notice that, according to (2.4) and (2.5), we have for every t � t0

Lβ (x (t) , λ∗) − Lβ (x∗, λ (t)) = L (x (t) , λ∗) − L (x∗, λ (t)) + β

2
‖Ax (t) − b‖2

(3.6)

= L (x (t) , λ∗) − f∗ + β

2
‖Ax (t) − b‖2

= f (x (t)) − f∗
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+ 〈λ∗, Ax (t) − b〉 + β

2
‖Ax (t) − b‖2 � 0,

(3.7)

where f∗ denotes the optimal objective value of (1.1). In addition, due to (3.7), we
have

E (t) � 0 ∀t � t0. (3.8)

The construction of E is inspired by [17]. However, one can notice that we only
consider E defined with respect to a fixed primal-dual solution (x∗, λ∗) ∈ S rather
than a family of energy functions, each defined with respect to a point (z, μ) ∈ F×Y .
This gives simpler proofs for some results when compared to those in [17].

Assumption 1 implies the nonnegativity of following quantity, which will appear
many times in our analysis:

σ : [t0,+∞) → R+, σ (t) := 1 − 2θ

θ
δ(t) − t δ̇(t). (3.9)

The following lemma gives us the decreasing property of the energy function. As a
consequence of this lemma, we obtain some integrability results which will be needed
later. The proofs are postponed to the Appendix.

Lemma 3.1 Let (x, λ) : [t0,+∞) → X ×Y be a solution of (2.6) and (x∗, λ∗) ∈ S.
For every t � t0 it holds

d

dt
E (t) � −θ2tσ(t)

(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) − 1

2
βθ tδ (t) ‖Ax (t) − b‖2

− ξθ t
∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 .

Proof See “Proof of Lemma 3.1” in Appendix B. �
Theorem 3.2 Let (x, λ) : [t0,+∞) → X ×Y be a solution of (2.6) and (x∗, λ∗) ∈ S.
The following statements are true

(i) it holds

∫ +∞

t0
tσ(t)

[
L (x(t), λ∗) − L(x∗, λ(t))

]
dt � E(t0) < +∞, (3.10)

β

∫ +∞

t0
tδ(t) ‖Ax (t) − b‖2 dt � 2E(t0)

θ
< +∞, (3.11)

ξ

∫ +∞

t0
t
∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 � E(t0)

θ
< +∞; (3.12)

(ii) if, in addition, α > 3 and 1
2 � θ > 1

α−1 , then the trajectory (x(t), λ(t))t�t0 is
bounded and the convergence rate of its velocity is

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥ = O

(
1

t

)

as t → +∞.
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Proof See “Proof of Theorem 3.2” in Appendix B. �

3.2 Fast Convergence Rates for the Primal-Dual Gap, the Feasibility Measure and
the Objective FunctionValue

The following are the main convergence rates results of the paper.

Theorem 3.3 Let (x, λ) : [t0,+∞) → X ×Y be a solution of (2.6) and (x∗, λ∗) ∈ S.
The following statements are true

(i) for every t � t0 it holds

0 � L (x(t), λ∗) − L(x∗, λ(t)) � E(t0)

θ2t2δ(t)
; (3.13)

(ii) for every t � t0 it holds

‖Ax (t) − b‖ � 2C1

t2δ(t)
, (3.14)

where

C1 := sup
t�t0

t
∥
∥λ̇ (t)

∥
∥ + (α − 1) sup

t�t0

‖λ (t) − λ∗‖

+ t20 δ(t0) ‖Ax(t0) − b‖ + t0
∥
∥λ̇ (t0)

∥
∥ ;

(iii) for every t � t0 it holds

| f (x (t)) − f∗| �
(E(t0)

θ2
+ 2C1 ‖λ∗‖

)
1

t2δ(t)
. (3.15)

Proof (i) We have already established that E is nonincreasing on [t0,+∞). Therefore,
from the expression for E and relation (3.6) we deduce

θ2t2δ(t)
[L (x(t), λ∗) − L(x∗, λ(t))

]
� E(t0) ∀t � t0, (3.16)

and the first claim follows.
(ii) From the second line of (2.6), for every t � t0 we have

t λ̈(t) + αλ̇(t) = tδ(t)
(
A
(
x(t) + θ t ẋ(t)

) − b
)

= tδ(t)
(
Ax(t) − b

) + θ t2δ(t)Aẋ(t).

(3.17)
Fix t � t0. On the one hand, integration by parts yields

∫ t

t0

(
sλ̈(s) + αλ̇(s)

)
ds = t λ̇(t) − t0λ̇(t0) −

∫ t

t0
λ̇(s)ds + α

∫ t

t0
λ̇(s)ds

= t λ̇(t) − t0λ̇(t0) + (α − 1)(λ(t) − λ(t0)).

(3.18)
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On the other hand, again integrating by parts leads to

∫ t

t0
s2δ(s)Aẋ(s)ds = t2δ(t)(Ax(t) − b) − t20 δ(t0)(Ax(t0) − b)

−
∫ t

t0

(
2sδ(s) + s2δ̇(s)

)
(Ax(s) − b)ds.

(3.19)

Now, integrating (3.17) from t0 to t and using (3.18) and (3.19) gives us

t λ̇(t) − t0λ̇(t0) + (α − 1)(λ(t) − λ(t0))

=
∫ t

t0
sδ(s)(Ax(s) − b)ds + θ

∫ t

t0
s2δ(s)Aẋ(s)ds

= t2δ(t)(Ax(t) − b) − t20 δ(t0)(Ax(t0) − b)

+
∫ t

t0
s
[
(1 − 2θ)δ(s) − θsδ̇(s)

]
(Ax(s) − b)ds

= t2δ(t)(Ax(t) − b) − t20 δ(t0)(Ax(t0) − b)

+
∫ t

t0

(1 − 2θ)δ(s) − θsδ̇(s)

sδ(s)
s2δ(s)(Ax(s) − b)ds. (3.20)

It follows that, for every t � t0, we have

∥
∥
∥
∥t

2δ(t)(Ax(t) − b) +
∫ t

t0

(1 − 2θ)δ(s) − θsδ̇(s)

sδ(s)
s2δ(s)(Ax(s) − b)ds

∥
∥
∥
∥ � C1,

(3.21)
where

C1 = sup
t�t0

t
∥
∥λ̇ (t)

∥
∥ + (α − 1) sup

t�t0
‖λ(t) − λ (t0) ‖ + t20 δ(t0) ‖Ax(t0) − b‖

+ t0
∥
∥λ̇ (t0)

∥
∥ < +∞,

and this quantity is finite in light of (B.7) and (B.5). Now, we set

g(t) := t2δ(t) ‖Ax (t) − b‖ , a(t) := (1 − 2θ)δ(t) − θ t δ̇(t)

tδ(t)
∀t � t0

and we apply Lemma A.1 to deduce that

t2δ(t) ‖Ax (t) − b‖ � 2C1 ∀t � t0. (3.22)

(iii) For a fixed t � t0, we have

L (x(t), λ∗) − L(x∗, λ(t)) = f (x(t)) − f (x∗) + 〈λ∗, Ax(t) − b〉.
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Therefore, from using (3.22) and (3.16) we obtain, for every t � t0,

| f (x (t)) − f∗| � L (x(t), λ∗) − L(x∗, λ(t)) + ‖λ∗‖ ‖Ax (t) − b‖
�
(E(t0)

θ2
+ 2C1 ‖λ∗‖

)
1

t2δ(t)
,

which leads to the last statement. �
Some comments regarding the previous proof and results are in order.

Remark 3.4 The proof we provided here is significantly shorter than the one derived
in [17] thanks to Lemma A.1. This Lemma is the one used in [28] for showing the fast
convergence to zero of the feasibility measure, although the authors study a different
dynamical system. On the other hand, when δ (t) ≡ 1, the result in [17] is more robust

than the one we obtain here, as it gives theO
(

1
t2

)
rates for the sum of primal-dual gap

and feasibility measure, rather than each one individually. It also allows us to focus
only on the energy function defined with respect to a primal-dual optimal solution
(x∗, λ∗) ∈ S, rather than on an arbitrary feasible point (z, μ) ∈ F × Y as in [17].

Remark 3.5 Here are some remarks comparing our rates of convergence to those in
[10, 30].

• Primal-dual gap: According to (3.13), the following rate of convergence for the
primal-dual is exhibited:

L(x(t), λ∗
) − L(x∗, λ(t)

) = O
(

1

t2δ(t)

)

as t → +∞,

which coincides with the findings of [10, 30].
• Feasibility measure: According to (3.14), we have

‖Ax (t) − b‖ = O
(

1

t2δ(t)

)

as t → +∞,

which improves the rate O
(

1
t
√

δ(t)

)
reported in [10, 30].

• Functional values: Relation (3.15) tells us that

| f (x (t)) − f∗| = O
(

1

t2δ(t)

)

as t → +∞.

In [10], only the upper bound presents this order of convergence. The lower bound

obtained is of order O
(

1
t
√

δ(t)

)
as t → +∞. In [30], there are no comments on

the rate attained by the functional values in the case of a general time rescaling
parameter.
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• Further comparisons with [30]: in [30, Theorem 2.16], unlike the preceding

result [30, Theorem 2.15], the authors produce a rate of O
(

1
t1/θ

)
as t → +∞

for ‖Ax(t) − b‖ and | f (x(t)) − f (x∗)|, provided the time rescaling parameter is

chosen to be δ(t) = δ0t
1
θ
−2, for some δ0 > 0. This choice comes from the solution

to the differential equation

t δ̇(t)

δ(t)
= 1 − 2θ

θ
∀t � t0,

and thus is covered by our results when the growth condition (3.1) holds with
equality. The rates are consequently

O
(

1

t2 · δ0t
1
θ
−2

)

= O
(

1

t
1
θ

)

as t → +∞.

In this setting, if we wish to obtain fast convergence rates, we need to choose a
small θ . In light of Assumption 1, where we have 1

2 � θ � 1
α−1 , this can be

achieved by taking α large enough. Such behaviour can also be seen in [10] and
in the unconstrained case [7, 11].

4 Weak Convergence of the Trajectory to a Primal-Dual Solution

In this section we will show that the solutions to (2.6) weakly converge to an element
of S. The fact that δ (t) enters the convergence rate statement suggests that one can
benefit from this time rescaling function when it is at least nondecreasing on [t0,+∞).
We are, in fact, going to need this condition when showing trajectory convergence.

Assumption 2 In (2.6), assume that∇ f is �-Lipschitz continuous for some � > 0
and that δ : [t0,+∞) → (0,+∞) is continuously differentiable and nondecreas-
ing. Moreover, suppose that the parameters α, β, θ and the function δ satisfy

α > 3, β � 0,
1

2
> θ >

1

α − 1
, sup

t�t0

t δ̇(t)

δ(t)
<

1 − 2θ

θ
.

Assumption 2 entails the existence of C2 > 0 such that

t δ̇(t)

δ(t)
+ C2 � 1 − 2θ

θ
∀t � t0. (4.1)

and therefore it follows further from the nondecreasing property of δ that

0 < C2δ(t0) � C2δ(t) � (1 − 2θ)δ(t) − θ t δ̇(t) ∀t � t0. (4.2)
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Moreover, from (4.1), for every t � t0, we have

0 < C2 � 1 − 2θ

θ
− t δ̇(t)

δ(t)
= σ(t)

δ(t)
,

which gives

δ(t) � σ(t)

C2
∀t � t0. (4.3)

We can now formally state the existence and uniqueness result of the trajectory.
The proof follows the same argument as in [17, Theorem 4.1], therefore we omit the
details.

Theorem 4.1 In the setting of Assumption 2, for every choice of initial conditions

x(t0) = x0, λ(t0) = λ0, ẋ(t0) = ẋ0, and λ̇(t0) = λ̇0

the system (2.6) has a unique global twice continuously differentiable solution (x, λ) :
[t0,+∞) → X × Y .

The additional Lipschitz continuity condition of ∇ f and the fact that δ is nonde-
creasing give rise to the following two essential integrability statements.

Proposition 4.2 Let (x, λ) : [t0,+∞) → X ×Y be a solution of (2.6) and (x∗, λ∗) ∈
S. Then it holds

∫ +∞

t0
tδ(t) ‖∇ f (x(t)) − ∇ f (x∗)‖2 dt < +∞ (4.4)

and ∫ +∞

t0
tδ(t) ‖Ax (t) − b‖2 dt < +∞. (4.5)

Proof See “Proof of Proposition 4.2” in Appendix B. �
Now, for a given primal-dual solution (x∗, λ∗) ∈ S, we define the following map-

pings on [t0,+∞)

W (t) := δ(t)
[Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

] + 1

2

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 � 0, (4.6)

ϕ(t) := 1

2

∥
∥
(
x(t), λ(t)

) − (x∗, λ∗)
∥
∥2 � 0. (4.7)

The following are three technical lemmas that we will need in this section. Lemma
4.4 guarantess that the first condition of Opial’s Lemma is met.

Lemma 4.3 Let (x, λ) : [t0,+∞) → X ×Y a solution of (2.6) and (x∗, λ∗) ∈ S. The
following inequality holds for every t � t0:

ϕ̈(t)+ α

t
ϕ̇(t)+θ t Ẇ (t)+ δ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2+ βδ(t)

2
‖Ax (t) − b‖2 � 0.

(4.8)
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Proof See “Proof of Lemma 4.3” in Appendix B. �
Lemma 4.4 Let (x, λ) : [t0,+∞) → X × Y be a solution to (2.6) and (x∗, λ∗) ∈ S.
Then the positive part [ϕ̇]+ of ϕ̇ belongs to L

1 [t0,+∞) and the limit limt→+∞ ϕ(t)
exists.

Proof For any t � t0, we multiply (4.8) by t and drop the last two norm squared terms
to obtain

t ϕ̈(t) + αϕ̇(t) + θ t2Ẇ (t) � 0.

Recall from (4.6) that for every t � t0 we have

tW (t) = tδ(t)
[Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

] + t

2

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 . (4.9)

On the one hand, according to (3.12), the second summand of the previous expression
belongs to L1 [t0,+∞). On the other hand, using (4.3) and (3.10), we assert that

∫ +∞

t0
tδ(t)

[Lβ (x(t), λ∗) − Lβ(x∗, λ(t))
]
dt

� 1

C2

∫ +∞

t0
tσ(t)

[Lβ (x(t), λ∗) − Lβ(x∗, λ(t))
]
dt < +∞.

Hence, the first summand of (4.9) also belongs to L
1 [t0,+∞), which implies that

the mapping t �→ tW (t) belongs to L
1 [t0,+∞) as well. For achieving the desired

conclusion, we make use of Lemma A.4 with φ := ϕ and w := θW . �
Lemma 4.5 Let (x, λ) : [t0,+∞) → X × Y be a solution to (2.6) and (x∗, λ∗) ∈ S.
The following inequality holds for every t � t0

α

tδ(t)

d

dt

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 + 2

〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t) − λ∗)

〉

+ θ
d

dt

(
tδ(t)

∥
∥A∗(λ(t) − λ∗)

∥
∥2
)

+ (
(1 − θ)δ(t) − θ t δ̇(t)

) ∥
∥A∗(λ(t) − λ∗)

∥
∥2

� δ(t)
[
2‖∇ f (x(t)) − ∇ f (x∗)‖2 +

(
2β2‖A‖2 + 1

)
‖Ax (t) − b‖2

]
.

Proof See “Proof of Lemma 4.5” in Appendix B. �
Lemma 4.6 Let (x, λ) : [t0,+∞) → X × Y be a solution to (2.6) and (x∗, λ∗) ∈ S.
Then, for every t � t0 it holds

θ tα+1δ(t)
∥
∥A∗ (λ (t) − λ∗)

∥
∥2

� −tαϕ̇(t) +
∫ t

t0
sαV (s)ds
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+
∫ t

t0
sα
[(

θ(α + 1) − 1
)
δ(t) + θsδ̇(s)

] ∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds

− 2tα
〈
ẋ(t), A∗(λ(t) − λ∗)

〉 + C5, (4.10)

where, for s � t0,

V (s) := θ(α + 1)W (s) +
(

α(α − 1)

t20 δ(0)
+ ‖A‖

)
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2

+ C3δ(s)‖∇ f (x(s)) − ∇ f (x∗)‖2 + C4δ(s)‖Ax(s) − b‖2,

for certain nonnegative constants C3,C4 and C5.

Proof See “Proof of Lemma 4.6” in Appendix B. �
The following proposition provides us with the main integrability result that will

be used for verifying the second condition of Opial’s Lemma.

Proposition 4.7 Let (x, λ) : [t0,+∞) → X ×Y be a solution to (2.6) and (x∗, λ∗) ∈
S. Then it holds ∫ +∞

t0
tδ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt < +∞. (4.11)

Proof We divide (4.10) by tα , thus obtaining

θ tδ(t)
∥
∥A∗ (λ (t) − λ∗)

∥
∥2 � −ϕ̇(t) + 1

tα

∫ t

t0
sαV (s)ds

+ 1

tα

∫ t

t0
sα
[(

θ(α + 1) − 1
)
δ(s) + θsδ̇(s)

]

∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds

− 2
〈
ẋ(t), A∗(λ(t) − λ∗)

〉 + C5

tα
.

Now, we integrate this inequality from t0 to r . We get

θ

∫ r

t0
tδ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt

� ϕ(t0) − ϕ(r) +
∫ r

t0

1

tα

(∫ t

t0
sαV (s)ds

)

dt

+
∫ r

t0

1

tα

(∫ t

t0
sα
[(

θ(α + 1) − 1
)
δ(s) + θsδ̇(s)

] ∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds

)

dt

− 2
∫ r

t0

〈
Aẋ(t), λ(t) − λ∗

〉
dt + C5

∫ r

t0
tαdt . (4.12)
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We now recall some important facts. First of all, we have

∫ r

t0

1

tα
dt � 1

(α − 1)tα−1
0

. (4.13)

In addition, according to Lemma A.2, it holds

∫ r

t0

1

tα

(∫ t

t0
sαV (s)ds

)

dt � 1

α − 1

∫ r

t0
tV (t)dt, (4.14)

and

∫ r

t0

1

tα

(∫ t

t0
sα
[(

θ(α + 1) − 1
)
δ(s) + θsδ̇(s)

] ∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds

)

dt

� 1

α − 1

∫ r

t0

[(
θ(α + 1) − 1

)
δ(t) + θ t δ̇(t)

] ∥
∥A∗(λ(t) − λ∗)

∥
∥2 dt, (4.15)

respectively.
Finally, integrating by parts leads to

−
∫ r

t0

〈
Aẋ(t), λ(t) − λ∗

〉
dt

= −〈
Ax(r) − b, λ(r) − λ∗

〉 + 〈
Ax(t0) − b, λ(t0) − λ∗

〉 +
∫ r

t0

〈
Ax(t) − b, λ̇(t)

〉
dt

� ‖Ax(r) − b‖‖λ(r) − λ∗‖ + ‖Ax(t0) − b‖ ‖λ(t0) − λ∗‖ +
∫ r

t0

〈
Ax(t) − b, λ̇(t)

〉
dt

� sup
t�t0

{‖Ax (t) − b‖ ‖λ (t) − λ∗‖} + ‖Ax(t0) − b‖ ‖λ(t0 − λ∗)‖

+ 1

2

∫ r

t0

(‖Ax (t) − b‖2 + ∥
∥λ̇ (t)

∥
∥2
)
dt . (4.16)

The supremum term is finite due to the boundedness of the trajectory. Now, by using
the nonnegativity of ϕ and the facts (4.13), (4.14), (4.15) and (4.16) on (4.12), we
come to

θ

α − 1

∫ r

t0
tσ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt

=
∫ r

t0

[

θδ(t) −
(
θ(α + 1) − 1

)
δ(t) + θ t δ̇(t)

α − 1

]

t
∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt

� 1

α − 1

∫ r

t0
tV (t)dt +

∫ r

t0
t
(
‖Ax (t) − b‖2 + ∥

∥λ̇ (t)
∥
∥2
)
dt + C6, (4.17)
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where

C6 := ϕ(t0) + 2 sup
t�t0

{‖Ax (t) − b‖ ‖λ (t) − λ∗‖}

+ 2 ‖Ax(t0) − b‖ ‖λ(t0 − λ∗)‖ + C5

(α − 1)tα−1
0

.

According to (3.11) and (3.12) in Theorem3.2, aswell as Lemma 4.4, we know that the
mappings t �→ tV (t) and t �→ t

(‖Ax (t) − b‖2 + ∥
∥λ̇ (t)

∥
∥
)
belong to L

1 [t0,+∞).
Therefore, by taking the limit as r → +∞ in (4.17) we obtain

∫ +∞

t0
tσ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt < +∞.

Again, from (4.3) we conclude that

∫ +∞

t0
tδ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt � 1

C2

∫ +∞

t0
tσ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2 dt < +∞,

which completes the proof. �
The following result is thefinal step towards the second condition ofOpial’sLemma.

Theorem 4.8 Let (x, λ) : [t0,+∞) → X ×Y be a solution to (2.6) and (x∗, λ∗) ∈ S.
Then it holds

‖∇ f (x (t)) − ∇ f (x∗)‖ = o

(
1√

t 4
√

δ(t)

)

and

∥
∥A∗ (λ (t) − λ∗)

∥
∥ = o

(
1√

t 4
√

δ(t)

)

as t → +∞. (4.18)

Consequently,

∥
∥∇xL

(
x (t) , λ (t)

)∥
∥ = ∥

∥∇ f (x (t)) + A∗λ (t)
∥
∥ = o

(
1√

t 4
√

δ(t)

)

as t → +∞,

while, as seen earlier,

∥
∥∇λL

(
x (t) , λ (t)

)∥
∥ = ‖Ax (t) − b‖ = O

(
1

t2δ(t)

)

as t → +∞.

Proof We first show the gradient rate. For t � t0, it holds

d

dt

(
t
√

δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2
)

=
(
√

δ(t) + t δ̇(t)

2
√

δ(t)

)

‖∇ f (x (t)) − ∇ f (x∗)‖2
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+ 2t
√

δ(t)

〈

∇ f (x(t)) − ∇ f (x∗),
d

dt
∇ f (x(t))

〉

. (4.19)

On the one hand, by Assumption 2, we can write

(
√

δ(t) + t δ̇(t)

2
√

δ(t)

)

=
(
√

δ(t) +
√

δ(t)

2
· t δ̇(t)

δ(t)

)

�
(

1 + 1 − 2θ

2θ

)
√

δ(t)

= 1

2θ

√
δ(t). (4.20)

Since δ is nondecreasing, for t � t0 we have
√

δ(t) �
√

δ(t0) > 0. Set t1 :=
max

{
t0,

1√
t0

}
. Therefore, for t � t1 it holds

1√
δ(t)

� 1√
δ(t0)

= t1 � t

and thus √
δ(t) � tδ(t). (4.21)

On the other hand, for every t � t1 we deduce

2t
√

δ(t)

〈

∇ f (x(t)) − ∇ f (x∗),
d

dt
∇ f (x(t))

〉

= 2t

〈
√

δ(t)
[∇ f (x(t)) − ∇ f (x∗)

]
,
d

dt
∇ f (x(t))

〉

� tδ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 + t

∥
∥
∥
∥
d

dt
∇ f (x(t))

∥
∥
∥
∥

2

� tδ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 + �2t
∥
∥ẋ(t)

∥
∥2, (4.22)

where the last inequality is a consequence of the �-Lipschitz continuity of ∇ f . By
combining (4.20), (4.21) and (4.22), from (4.19) we assert that for every t � t1

d

dt

(
t
√

δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2
)

�
(

1 + 1

2θ

)

tδ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 + �2t
∥
∥ẋ(t)

∥
∥2.

The right hand side of the previous inequality belongs to L
1[t1,+∞), according to

(3.12) and (4.4). Since δ is nondecreasing, for every t � t1 we have

√
δ(t) = √

δ(t) ·
√

δ(t)√
δ(t)

� δ(t)√
δ(t0)

,
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and thus

∫ +∞

t1
t
√

δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 dt

� 1√
δ(t0)

∫ +∞

t1
tδ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 dt < +∞. (4.23)

This means that the function being differentiated also belongs to L1[t1,+∞). There-
fore, Lemma A.3 gives us

t
√

δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2 → 0 as t → +∞.

Proceeding in the exact same way, for every t � t1 we have

d

dt

(
t
√

δ(t)
∥
∥A∗(λ(t) − λ∗)

∥
∥2
)

=
(
√

δ(t) + t δ̇(t)

2
√

δ(t)

)
∥
∥A∗(λ(t) − λ∗)

∥
∥2 + 2t

√
δ(t)

〈
AA∗(λ(t) − λ∗), λ̇(t)

〉

�
(

1

2θ
+ ‖A‖2

)

tδ(t)
∥
∥A∗(λ(t) − λ∗)

∥
∥2 + t

∥
∥λ̇ (t)

∥
∥2 .

According to (3.12) and (4.11), the right hand side of the previous inequality belongs
to L1[t1,+∞). Arguing as in (4.23), we deduce that the function being differentiated
also belongs to L1[t1,+∞). Again applying Lemma A.3, we come to

t
√

δ(t)
∥
∥A∗(λ(t) − λ∗)

∥
∥2 → 0 as t → +∞.

Finally, recalling that A∗λ∗ = −∇ f (x∗), we deduce from the triangle inequality
that

∥
∥∇xL

(
x (t) , λ (t)

)∥
∥ = ∥

∥∇ f (x (t)) + A∗λ (t)
∥
∥

� ‖∇ f (x (t)) − ∇ f (x∗)‖ + ∥
∥A∗(λ(t) − λ∗)

∥
∥

= o

(
1√

t 4
√

δ(t)

)

as t → +∞,

and the third claim follows. �
Remark 4.9 The previous theorem also has its own interest. It tells us that the time
rescaling parameter also plays a role in accelerating the rates of convergence for
‖∇ f (x (t)) − ∇ f (x∗)‖ and ‖A∗(λ(t) − λ∗)‖ as t → +∞. Moreover, we deduce
from (4.18) that the mapping (x, λ) �→ (∇ f (x), A∗λ) is constant along S, as reported
in [17, Proposition A.4].

We now come to the final step and show weak convergence of the trajectories of
(2.6) to elements of S.
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Theorem 4.10 Let (x, λ) : [t0,+∞) → X ×Y be a solution to (2.6) and (x∗, λ∗) ∈ S.
Then

(
x(t), λ(t)

)
converges weakly to a primal-dual solution of (1.1) as t → +∞.

Proof For proving this theorem, we make use of Opial’s Lemma (see Lemma A.5).
Lemma 4.4 tells us that limt→+∞

∥
∥
(
x(t), λ(t)

) − (x∗, λ∗)
∥
∥ exists for every (x∗, λ∗) ∈

S, which proves condition (i) of Opial’s Lemma. Now let
(
x̃, λ̃

)
be anyweak sequential

cluster point of
(
x(t), λ(t)

)
as t → +∞, whichmeans there exists a strictly increasing

sequence (tn)n∈N ⊆ [t0,+∞) such that

(
x(tn), λ(tn)

)
⇀
(
x̃, λ̃

)
as n → +∞.

We want to show the remaining condition of Opial’s Lemma, which asks us to check
that

(
x̃, λ̃

) ∈ S. In other words, we must show that

L(x̃, λ) � L(x̃, λ̃) � L(x, λ̃) ∀(x, λ) ∈ X × Y . (4.24)

Let (x, λ) ∈ X × Y and (x∗, λ∗) ∈ S be fixed. Notice that the functions

f (·) + 〈
λ̃, A(·) − Ax

〉 : X → R and
〈·, b − Ax

〉 : Y → R

are convex and continuous, therefore they are lower semicontinuous. According to
a known result (see, for example, [14, Theorem 9.1]), they are also weakly lower
semicontinuous. Therefore, we can derive that

L(x̃, λ̃) − L(x, λ̃) = f
(
x̃
) + 〈

λ̃, Ax̃ − Ax
〉 − f (x)

� lim inf
n→+∞

[
f (x(tn)) + 〈

λ̃, Axn − Ax
〉] − f (x)

= f (x∗) + 〈
λ̃, b − Ax

〉 − f (x)

� f (x∗) − f (x) + lim inf
n→+∞

〈
A∗λ(tn), x∗ − x

〉

= f (x∗) − (
f (x) + 〈λ∗, Ax − b〉)

= L(x∗, λ∗) − L(x, λ∗) � 0,

where in the second and third equalities we used the fact that, as n → +∞, we have
f (x(tn)) → f (x∗) and Ax(tn) → b (Theorem 3.3), and A∗λn → A∗λ∗ (Theorem
4.8). Similarly, theweak lower semicontinuity of the function

〈
λ−λ̃, A(·)−b

〉 : X → R

yields

L(x̃, λ) − L(x̃, λ̃) = 〈
λ − λ̃, Ax̃ − b

〉
� lim inf

n→+∞
〈
λ − λ̃, Ax(tn) − b

〉 = 0,

We have thus showed (4.24) and the proof is concluded. �
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5 Numerical Experiments

We will illustate the theoretical results by two numerical examples, with X = R
4

and Y = R
2. We will address two minimization problems with linear constraints; one

with a strongly convex objective function and another with a convex objective function
which is not strongly convex. In both cases, the linear constraints are dictated by

A =
[
1 −1 −1 0
0 1 0 −1

]

and b =
[
0
0

]

.

Example 5.1 Consider the minimization problem

min f (x1, x2, x3, x4) := (x1 − 1)2 + (x2 − 1)2 + x23 + x24
subject to x1 − x2 − x3 = 0

x2 − x4 = 0.

The optimality conditions can be calculated and lead to the following primal-dual
solution pair

x∗ =

⎡

⎢
⎢
⎣

0.8
0.6
0.2
0.6

⎤

⎥
⎥
⎦ and λ∗ =

[
0.4
1.2

]

.

Example 5.2 Consider the minimization problem

min f (x1, x2, x3, x4) := log
(
1 + e−x1−x2

) + x23 + x24
subject to x1 − x2 − x3 = 0

x2 − x4 = 0.

This problem is similar to the regularized logistic regression frequently used in
machine learning. We cannot explicitly calculate the optimality conditions as in the
previous case; instead, we use the last solution in the numerical experiment as the
approximate solution.

To comply with Assumption 2, we choose t0 > 0, α = 8, β = 10, θ = 1
6 , and we

test four different choices for the rescaling parameter: δ(t) = 1 (i.e., the (PD-AVD)
dynamics in [17, 45]), δ(t) = t , δ(t) = t2 and δ(t) = t3. In both examples, the initial
conditions are

x(t0) =

⎡

⎢
⎢
⎣

0.5
0.5
0.5
0.5

⎤

⎥
⎥
⎦ , λ(t0) =

[
0.2
0.2

]

, ẋ(t0) =

⎡

⎢
⎢
⎣

0.5
0.5
0.5
0.5

⎤

⎥
⎥
⎦ and λ̇(t0) =

[
0.5
0.5

]

.

For each choice of δ, we plot, using a logarithmic scale, the primal-dual gap
L(x(t), λ∗

) − L(x∗, λ(t)
)
, the feasibility measure ‖Ax (t) − b‖ and the func-

tional values | f (x (t)) − f∗|, to highlight the theoretical result in Theorem 3.3.
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We also illustrate the findings from Theorem 4.8, namely, we plot the quantities
‖∇ f (x (t)) − ∇ f (x∗)‖ and ‖A∗ (λ (t) − λ∗)‖, as well as the velocity ‖(ẋ(t), λ̇(t))‖.

Figures 1 and 2 display these plots for Examples 5.1 and 5.2, respectively. As
predicted by the theory, choosing faster-growing time rescaling parameters yields
better convergence rates. This is not the case for the velocities.

Next we use Example 5.2 to compare the convergence behaviour of our system
(2.6) with the one where the asymptotically vanishing damping term is chosen to be
α
tr , for r ∈ [0, 1]. Notice that r = 1 gives our system (2.6). When r = 0, in the setting
of [30, Theorem 2.2], we know that the primal-dual gap exhibits a convergence rate

of O
(

1
tδ(t)

)
as t → +∞. This is illustrated in Fig. 3, were we plotted the combina-

tions (δ(t) = t; r = 0), (δ(t) = t; r = 1),
(
δ(t) = t2; r = 0

)
, and

(
δ(t) = t2; r = 1

)
.

In particular, observe that the rate predicted by [30, Theorem 2.2] for the primal-dual

gap for the case
(
δ(t) = t2; r = 0

)
readsO

(
1
t ·t2

)
, while the rate predicted by our The-

orem 3.3 for the case (δ(t) = t; r = 1) readsO
(

1
t2·t

)
. It is no surprise then to see the

combinations
(
δ(t) = t2; r = 0

)
and (δ(t) = t; r = 1) exhibiting similar convergence

behaviour in Fig. 3.
For better understanding, we run Example 5.2 once more to show the plots

which result from fixing the time rescaling parameter δ(t) = t and varying r ∈
{0, 0.25, 0.5, 0.75, 1}. Notice how the convergence improves as r approaches 1. As

t → +∞, [30, Theorem 2.7] predicts convergence rates ofO
(

1
tτ δ(t)

)
for the primal-

dual gap and of O
(

1
tτ/2

)
for the velocities, which is reflected in our plots.

Acknowledgements The authors would like to thank the editor and the anonymous referees for their helpful
comments and suggestions, which have led to the improvement of this paper.

Funding Open access funding provided byAustrianScienceFund (FWF).D.-K.Nguyen research supported
by FWF (Austrian Science Fund), project P 34922-N.

Declarations

Conflict of interest No potential conflict of interest was reported by the authors.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Here we collect the auxiliary results that are required to carry out many steps in out
analysis.

123

http://creativecommons.org/licenses/by/4.0/


Applied Mathematics & Optimization (2023) 88 :27 Page 23 of 43 27

Fi
g.
1

T
he

fu
nc
tio

n
δ
(t

)
in
flu

en
ce
s
co
nv
er
ge
nc
e
be
ha
vi
ou

r
in

E
xa
m
pl
e
5.
1

123



27 Page 24 of 43 Applied Mathematics & Optimization (2023) 88 :27

Fi
g.
2

T
he

fu
nc
tio

n
δ
(t

)
in
flu

en
ce
s
co
nv
er
ge
nc
e
be
ha
vi
ou

r
in

E
xa
m
pl
e
5.
2

123



Applied Mathematics & Optimization (2023) 88 :27 Page 25 of 43 27

Fi
g.
3

T
he

fu
nc
tio

n
δ
(t

),
as

w
el
la
s
th
e
pa
ra
m
et
er

r,
in
flu

en
ce

co
nv
er
ge
nc
e
be
ha
vi
ou

r
in

E
xa
m
pl
e
5.
2

123



27 Page 26 of 43 Applied Mathematics & Optimization (2023) 88 :27

Fi
g.
4

T
he

pa
ra
m
et
er

r
in
flu

en
ce
s
co
nv
er
ge
nc
e
be
ha
vi
ou

r
in

E
xa
m
pl
e
5.
2

123



Applied Mathematics & Optimization (2023) 88 :27 Page 27 of 43 27

A proof for the following lemma in the finite-dimensional case can be found in [28,
Lemma 6]. The proof for the infinite-dimensional case is short and virtually identical,
so we include it here for the sake of completeness.

Lemma A.1 Assume that t0 > 0, g : [t0,+∞) → Y is a continuous differentiable
function, a : [t0,+∞) → [0,+∞) is a continuous function, and C � 0. If, in the
sense of Bochner integrability, we have

∥
∥
∥
∥g(t) +

∫ t

t0
a(s)g(s)ds

∥
∥
∥
∥ � C ∀t � t0 (A.1)

then

sup
t�t0

‖g(t)‖ � 2C < +∞.

Proof Define, for every t � t0,

G(t) := e
∫ t
t0
a(s)ds

∫ t

t0
a(s)g(s)ds.

Fix t � t0. The time derivative of G reads

Ġ(t) = a(t)e
∫ t
t0
a(s)ds

∫ t

t0
a(s)g(s)ds + e

∫ t
t0
a(s)ds

a(t)g(t)

= a(t)e
∫ t
t0
a(s)ds

[

g(t) +
∫ t

t0
a(s)g(s)ds

]

,

so by using (A.1) and the previous equality we arrive at

∥
∥Ġ(t)

∥
∥ � Ca(t)e

∫ t
t0
a(s)ds = C

d

dt

(

e
∫ t
t0
a(s)ds

)

. (A.2)

Since G(t0) = 0, we have

G(t) = G(t) − G(t0) =
∫ t

t0
Ġ(s)ds,

so by employing (A.2) and the previous equality we obtain, for every t � t0,

e
∫ t
t0
a(s)ds

∥
∥
∥
∥

∫ t

t0
a(s)g(s)ds

∥
∥
∥
∥ = ‖G(t)‖ �

∫ t

t0

∥
∥Ġ(s)

∥
∥ds � C

∫ t

t0

d

ds

(
e
∫ s
t0
a(τ )dτ

)
ds

� C

[

e
∫ t
t0
a(s)ds − 1

]

� Ce
∫ t
t0
a(s)ds

.

123



27 Page 28 of 43 Applied Mathematics & Optimization (2023) 88 :27

Dividing both sides of the previous inequality by e
∫ t
t0
a(s)ds gives us

∥
∥
∥
∥

∫ t

t0
a(s)g(s)ds

∥
∥
∥
∥ � C ∀t � t0. (A.3)

Now, by putting (A.1) and (A.3) we finally come to

‖g(t)‖ �
∥
∥
∥
∥g(t) +

∫ t

t0
a(s)g(s)ds

∥
∥
∥
∥ +

∥
∥
∥
∥

∫ t

t0
a(s)g(s)ds

∥
∥
∥
∥ � 2C ∀t � t0,

which leads to the announced statement. �
The proofs for the following results can be found in [17, Lemma A.1] and [1,

Lemma 5.2], respectively.

Lemma A.2 Let 0 < t0 � r � +∞ and h : [t0,+∞) → [0,+∞) be a continuous
function. For every α > 1 it holds

∫ r

t0

1

tα

[∫ t

t0
sα−1h(s)

]

dt � 1

α − 1

∫ r

t0
h(t)dt .

If r = +∞, then equality holds.

Lemma A.3 Let t0 > 0, 1 � p < +∞ and 1 � q � +∞. Suppose that
F ∈ L

p [t0,+∞) is a locally absolutely continuous nonnegative function, G ∈
L
q [t0,+∞) and

Ḟ(t) � G(t) ∀t � t0.

Then, limt→+∞ F(t) = 0.

The following lemma is a slight variation of results already present in the literature.
See, for example, [5, Lemma A.2].

Lemma A.4 Let t0 > 0, α > 1, and let φ : [t0,+∞) → R be a twice continuously
differentiable function bounded from below. Furthermore, assume w : [t0,+∞) →
[0,+∞) to be a continuously differentiable function such that t �→ tw(t) belongs to
L
1[t0,+∞) and

t φ̈(t) + αφ̇(t) + t2ẇ(t) � 0 ∀t � t0.

Then, the positive part [φ̇]+ of φ̇ belongs to L1[t0,+∞) and the limit limt→+∞ φ(t)
is a real number.

Proof Fix t � t0. Adding (α + 1)tw(t) to both sides of the previous inequality and
then multiplying it by tα−1 yields

d

dt

(
tαφ̇(t)

) + d

dt

(
tα+1w(t)

)
� (α + 1)tαw(t).
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Since the previous inequality holds for any t � t0, we can integrate it from t0 to t � t0
to get

tαφ̇(t) − tα0 φ̇(t0) + tα+1w(t) − tα+1
0 w(t0) � (α + 1)

∫ t

t0
sαw(s)ds.

After dropping the nonnegative term tα+1w(t) and dividing by tα we arrive at

φ̇(t) � C̃

tα
+ α + 1

tα

∫ t

t0
sαw(s)ds ∀t � t0,

where

C̃ := tα0
∣
∣φ̇(t0)

∣
∣ + tα+1

0 w(t0),

which further leads to

[φ̇(t)]+ � C̃

tα
+ α + 1

tα

∫ t

t0
sαw(s)ds ∀t � t0.

Now, we integrate this inequality from t0 to r � t0 and we apply Lemma A.2 with
h : [t0,+∞) → [0,+∞) given by h(s) := sw(s) to obtain

∫ r

t0
[φ̇(t)]+dt � C̃

∫ r

t0

1

tα
dt + (α + 1)

∫ r

t0

1

tα

[∫ t

t0
sα−1 · sw(s)ds

]

dt

� C̃

1 − α

(
1

tα−1
0

− 1

rα−1

)

+ α + 1

1 − α

∫ r

t0
tw(t)dt .

By hypothesis, as r → +∞, the right hand side of the previous inequality is finite. In
other words,

∫ +∞

t0
[φ̇(t)]+dt < +∞.

The previous statement, together with the fact that we assumed that φ was bounded
from below, allow us to deduce that the function ψ : [t0,+∞) → R given by

ψ(t) := φ(t) −
∫ t

t0
[φ̇(s)]+ds

is also bounded from below. An easy computation shows that ψ̇ is nonpositive on
[t0,+∞), thusψ is nonincreasing on [t0,+∞). These facts imply that limt→+∞ ψ(t)
is a real number. Finally, we conclude that

lim
t→+∞ φ(t) = lim

t→+∞ ψ(t) +
∫ +∞

t0
[φ̇(s)]+ds ∈ R.
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�
The proof for Opial’s Lemma can be found in [36].

Lemma A.5 (Opial’s Lemma) Let H be a real Hilbert space, S ⊆ H a nonempty set,
t0 > 0 and z : [t0,+∞) → H a mapping that satisfies

(i) for every z∗ ∈ S, limt→+∞ ‖z(t) − z∗‖ exists;
(ii) every weak sequential cluster point of the trajectory z(t) as t → +∞ belongs to

S.

Then, z(t) converges weakly to an element of S as t → +∞.

Appendix B: Missing Proofs

Proof of Lemma 3.1

Let t � t0 be fixed. Since x∗ ∈ F, we have

∇x
(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))

) = ∇xLβ (x (t) , λ∗)
= ∇ f (x (t)) + A∗λ∗ + βA∗ (Ax (t) − b) ,

∇λ

(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) = −∇λLβ (x∗, λ (t)) = 0.

Under these expressions, the system (2.6) can be equivalently written as

(
ẍ (t) , λ̈ (t)

) = −α

t

(
ẋ (t) , λ̇ (t)

) − δ (t)
(∇xLβ (x (t) , λ∗) , 0

)

− δ(t)
(
A∗ (λ (t) − λ∗ + θ t λ̇ (t)

)
,−

(
A (x (t) + θ t ẋ (t)) − b

))
,

which leads to

v̇ (t) = (1 + θ)
(
ẋ (t) , λ̇ (t)

) + θ t
(
ẍ (t) , λ̈ (t)

)

= −ξ
(
ẋ (t) , λ̇ (t)

) − θ tδ (t) (t)
(∇xLβ (x (t) , λ∗) , 0

)

− θ tδ (t)
(
A∗ (λ (t) − λ∗ + θ t λ̇ (t)

)
,−

(
A (x (t) + θ t ẋ (t)) − b

))
.

We get from the distributive property of the inner product

〈v (t) , v̇ (t)〉
= −ξ

〈(
x (t) , λ (t)

) − (x∗, λ∗),
(
ẋ (t) , λ̇ (t)

)〉 − ξθ t
∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2

− θ tδ (t)
〈(∇xLβ (x (t) , λ∗) , 0

)
,
(
x (t) , λ (t)

) − (x∗, λ∗)
〉

− θ2t2δ (t)
〈(∇xLβ (x (t) , λ∗) , 0

)
,
(
ẋ (t) , λ̇ (t)

)〉

− θ tδ (t)
〈
λ (t) − λ∗ + θ t λ̇ (t) , Ax (t) − Ax∗

〉

− θ2t2δ (t)
〈
λ (t) − λ∗ + θ t λ̇ (t) , Aẋ (t)

〉
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+ θ tδ (t) 〈A (x (t) + θ t ẋ (t)) − b, λ (t) − λ∗〉
+ θ2t2δ (t)

〈
A (x (t) + θ t ẋ (t)) − b, λ̇ (t)

〉
.

Since x∗ ∈ F, the last four terms in the above identity vanish. Indeed,

− 〈
λ (t) − λ∗ + θ t λ̇ (t) , Ax (t) − Ax∗

〉 − θ t
〈
λ (t) − λ∗ + θ t λ̇ (t) , Aẋ (t)

〉

+ 〈A (x (t) + θ t ẋ (t)) − b, λ (t) − λ∗〉 + θ t
〈
A (x (t) + θ t ẋ (t)) − b, λ̇ (t)

〉

= − 〈
λ (t) − λ∗ + θ t λ̇ (t) , Ax (t) − b

〉 − θ t
〈
λ (t) − λ∗ + θ t λ̇ (t) , Aẋ (t)

〉

+ 〈Ax (t) − b, λ (t) − λ∗〉 + θ t 〈Aẋ (t) , λ (t) − λ∗〉
+ θ t

〈
Ax (t) − b, λ̇ (t)

〉 + θ2t2
〈
Aẋ (t) , λ̇ (t)

〉

= 0.

Therefore, differentiating E with respect to t gives

d

dt
E (t) = θ2t

(
2δ (t) + t δ̇ (t)

) (Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
)

+ θ2t2δ(t)
〈(∇xLβ (x (t) , λ∗) , 0

)
,
(
ẋ (t) , λ̇ (t)

)〉

+ 〈v (t) , v̇ (t)〉 + ξ
〈(
x (t) , λ (t)

) − (x∗, λ∗),
(
ẋ (t) , λ̇ (t)

)〉

= θ2t
(
2δ (t) + t δ̇ (t)

) (Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) − ξθ t

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2

− θ tδ(t)
〈(∇xLβ (x (t) , λ∗) , 0

)
,
(
x (t) , λ (t)

) − (x∗, λ∗)
〉
. (B.1)

Furthermore, the convexity of f and the fact that x∗ ∈ F guarantee

− 〈(∇xLβ (x (t) , λ∗) , 0
)
,
(
x (t) , λ (t)

) − (x∗, λ∗)
〉

= 〈∇ f (x (t)) , x∗ − x (t)〉 + 〈
A∗λ∗, x∗ − x (t)

〉 + β
〈
A∗ (Ax (t) − b) , x∗ − x (t)

〉

� − ( f (x (t)) − f (x∗)) − 〈λ∗, Ax (t) − b〉 − β ‖Ax (t) − b‖2

= − (Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) − β

2
‖Ax (t) − b‖2 , (B.2)

wherewe recall that the second equality comes from (2.5). Bymultiplying this inequal-
ity by θ tδ(t) and combining it with (B.1), the coefficient attached to the primal-dual
gap becomes

θ2t
(
2δ(t) + t δ̇(t)

) − θ tδ(t) = −θ2t

(
1 − 2θ

θ
δ(t) − t δ̇(t)

)

= −θ2tσ(t),

which finally gives the desired statement. �

Proof of Theorem 3.2

(i) Recall that Assumption 1 implies σ(t) � 0 for all t � t0 and ξ � 0. Moreover,
(x∗, λ∗) ∈ S yields x∗ ∈ F. Therefore, we can apply (3.7) and Lemma 3.1 to obtain,
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for every t � t0,

d

dt
E(t) � −θ2tσ(t)

(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
)

− 1

2
βθ tδ(t) ‖Ax (t) − b‖2 − ξθ t

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2 � 0. (B.3)

This means that E is nonincreasing on [t0,+∞). For every t � t0, by integrating (B.3)
from t0 to t , we obtain

θ2
∫ t

t0
tσ(t)

(
L(x(s), λ∗) − L(x∗, λ(s))

)
ds

+ βθ

2

∫ t

t0
sδ(s)‖Ax(s) − b‖2ds + ξθ

∫ t

t0
s
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2 ds

� E(t0) − E(t) � E(t0),

where the last inequality follows from (3.8). Since all quantities inside the integrals
are nonnegative, we obtain (3.10)–(3.12) by letting t → +∞.

(ii) Let t � t0 be fixed. Inequality (B.3) tells us that E is nonincreasing on [t0,+∞).

θ2t2δ(t)
(
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

)

+ ‖v(t)‖2 + ξ

2

∥
∥
(
x(t), λ(t)

) − (x∗, λ∗)
∥
∥2 � E(t0).

(B.4)

Assuming α > 3 and 1
2 � θ > 1

α−1 , we immediately see ξ > 0. From (B.4) we obtain
∥
∥
(
x(t), λ(t)

) − (x∗, λ∗)
∥
∥2 � 2E(t0)

ξ
, (B.5)

and

‖v(t)‖ = ∥
∥
(
x(t), λ(t)

) − (x∗, λ∗) + θ t
(
ẋ(t), λ̇(t)

)∥
∥ �

√
2E(t0). (B.6)

The estimate (B.5) leads to the boundedness of the trajectory. Moreover, applying the
triangle inequality and (B.5)–(B.6), we obtain

t
∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥ � 1

θ

(∥
∥
(
x(t), λ(t)

) − (x∗, λ∗)
∥
∥ + ‖v(t)‖)

� 1

θ

(√
2E(t0)

ξ
+ √

2E(t0)

)

= 1

θ

(
1√
ξ

+ 1

)
√
2E(t0), (B.7)

which gives the desired convergence rate. �

Proof of Proposition 4.2

Thanks to ∇ f being �-Lipschitz continuous, we can use (1.3) to refine relation (B.2)
in the proof of Lemma 3.1
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− 〈(∇xLβ (x (t) , λ∗) , 0
)
,
(
x (t) , λ (t)

) − (x∗, λ∗)
〉

= 〈∇ f (x(t)), x∗ − x(t)〉 + 〈
A∗λ∗, x∗ − x(t)

〉 + β
〈
A∗(Ax(t) − b), x∗ − x(t)

〉

� −( f (x(t)) − f (x∗)) − 1

2�
‖∇ f (x(t)) − ∇ f (x∗)‖2 − 〈λ∗, Ax(t) − b〉

− β ‖Ax (t) − b‖2

= − (Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) − 1

2�
‖∇ f (x(t)) − ∇ f (x∗)‖2

− β

2
‖Ax (t) − b‖2 .

Consequently, combining this inequality with (B.1) yields, for every t � t0

d

dt
E(t) � −θ2tσ(t)

(Lβ (x (t) , λ∗) − Lβ (x∗, λ (t))
) − ξθ t

∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2

− θ tδ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2 − θβtδ(t)

2
‖Ax (t) − b‖2

� −θ tδ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2 .

Integration of this inequality produces (4.4).
The finiteness of the second integral is only entailed by (3.11) when β > 0. For the

general case β � 0, we use (3.14) and the fact that δ is nondecreasing on [t0,+∞) to
obtain

∫ +∞

t0
tδ(t) ‖Ax (t) − b‖2 dt � 4C2

1

∫ +∞

t0

1

t3δ(t)
dt � 4C2

1

δ(t0)

∫ +∞

t0

1

t3
dt < +∞,

and the proof is complete. �

Proof of Lemma 4.3

Let t � t0 be fixed. Differentiating W with respect to time yields

Ẇ (t) = δ̇(t)
[
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

]

+ δ(t)
[〈∇xLβ (x(t), λ∗) , ẋ(t)

〉 − 〈∇λLβ(x∗, λ(t)), λ̇(t)
〉]

+ 〈ẍ(t), ẋ(t)〉 + 〈λ̈(t), λ̇(t)〉.

Recall the formulas for the gradients of L

∇xLβ (x(t), λ∗) = ∇ f (x(t)) + A∗λ∗ + βA∗(Ax(t) − b),

∇λLβ(x∗, λ(t)) = Ax∗ − b = 0,
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since x∗ ∈ F. Plugging this into the expression for Ẇ (t) gives us

Ẇ (t) = δ̇(t)
[
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

]

+ δ(t)
〈∇xLβ(x(t), λ(t) + θ t λ̇(t)), ẋ(t)

〉 + 〈ẍ(t), ẋ(t)〉
− δ(t)

〈
λ(t) − λ∗ + θ t λ̇(t), Aẋ(t)

〉

− δ(t)
〈∇λLβ(x(t) + θ t ẋ(t), λ(t)), ˙λ(t)

〉 + 〈λ̈(t), λ̇(t)〉
+ δ(t)

〈
Ax(t) − b + θ t Aẋ(t), λ̇(t)

〉
.

By regrouping and using (2.6), we arrive at

Ẇ (t) = δ̇(t)
[
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

]
− α

t
‖ẋ (t)‖2 − α

t
‖λ̇(t)‖2

− δ(t) 〈λ(t) − λ∗, Aẋ(t)〉 + δ(t)
〈
Ax(t) − b, λ̇(t)

〉
.

(B.8)

On the other hand, by the chain rule, we have

ϕ̇(t) = 〈x(t) − x∗, ẋ(t)〉 + 〈
λ(t) − λ∗, λ̇(t)

〉
,

ϕ̈(t) = 〈x(t) − x∗, ẍ(t)〉 + ‖ẋ (t)‖2 + 〈
λ(t) − λ∗, λ̈(t)

〉 + ∥
∥λ̇(t)

∥
∥2.

By combining these relations, (2.6) and the fact that x∗ ∈ F, we get

ϕ̈(t) + α

t
ϕ̇(t) =

〈
x(t) − x∗, ẍ(t) + α

t
ẋ(t)

〉
+
〈
λ(t) − λ∗, λ̈(t) + α

t
λ̇(t)

〉
+ ‖ẋ (t)‖2

+ ∥
∥λ̇ (t)

∥
∥2

= −〈
x(t) − x∗, δ(t)∇xLβ(x(t), λ(t) + θ t λ̇(t))

〉

+ 〈
λ(t) − λ∗, δ(t)∇λLβ(x(t) + θ t λ̇(t), λ(t))

〉 + ‖ẋ (t)‖2 + ∥
∥λ̇ (t)

∥
∥2

= −〈
x(t) − x∗, δ(t)∇xLβ (x(t), λ∗)

〉

− 〈
Ax(t) − b, δ(t)

(
λ(t) − λ∗ + θ t λ̇(t)

)〉

+ 〈
λ(t) − λ∗, δ(t)

(
Ax(t) − b + θ t Aẋ(t)

)〉 + ‖ẋ (t)‖2 + ∥
∥λ̇ (t)

∥
∥2

= −δ(t)
〈
x(t) − x∗,∇xLβ (x(t), λ∗)

〉 − θ tδ(t)
〈
Ax(t) − b, λ̇(t)

〉

+ θ tδ(t)
〈
λ(t) − λ∗, Aẋ(t)

〉 + ‖ẋ (t)‖2 + ∥
∥λ̇ (t)

∥
∥2 (B.9)

The Lipschitz continuity of ∇ f entails

− 〈
x(t) − x∗,∇xLβ (x(t), λ∗)

〉

= −〈x(t) − x∗,∇ f (x(t))〉 − 〈
x(t) − x∗, A∗λ∗

〉 − β ‖Ax (t) − b‖2

� −( f (x(t)) − f (x∗)) − 1

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2

− 〈λ∗, Ax(t) − b〉 − β ‖Ax (t) − b‖2
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= −
(
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

)
− 1

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2

− β

2
‖Ax (t) − b‖2 .

This, together with (B.9), implies

ϕ̈(t) + α

t
ϕ̇(t) � −δ(t)

(
Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

)
− θ tδ(t)

〈
Ax(t) − b, λ̇(t)

〉

+ θ tδ(t)
〈
λ(t) − λ∗, Aẋ(t)

〉 + ‖ẋ (t)‖2 + ∥
∥λ̇ (t)

∥
∥2

− δ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2 − βδ(t)

2
‖Ax (t) − b‖2 . (B.10)

Multiplying (B.8) by θ t > 0 and then adding the result to (B.10) yields

ϕ̈(t) + α

t
ϕ̇(t) + θ t Ẇ (t) = −(

δ(t) − θ t δ̇(t)
)(Lβ (x(t), λ∗) − Lβ(x∗, λ(t))

)

− δ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2 − βδ(t)

2
‖Ax (t) − b‖2

+ (1 − θα)
∥
∥
(
ẋ (t) , λ̇ (t)

)∥
∥2

� −δ(t)

2�
‖∇ f (x (t)) − ∇ f (x∗)‖2 − βδ(t)

2
‖Ax (t) − b‖2 ,

where the last inequality follows from Assumption 2

1 − θα � −θ < 0,

−δ(t) + θ t δ̇(t) � (2θ − 1)δ(t) + θ t δ̇(t) � 0.

The desired result then follows after some rearranging. �

Proof of Lemma 4.5

Let t � t0 be fixed. From (2.6) and the fact that A∗λ∗ = −∇ f (x∗), we have

δ2 (t)
∥
∥∇ f (x(t)) − ∇ f (x∗) + βA∗(Ax(t) − b)

∥
∥2

=
∥
∥
∥ẍ(t) + α

t
ẋ(t) + δ(t)A∗(λ(t) − λ∗ + θ t λ̇(t)

)∥∥
∥
2

=
∥
∥
∥ẍ(t) + α

t
ẋ(t)

∥
∥
∥
2 + δ2(t)

∥
∥A∗(λ(t) − λ∗ + θ t λ̇(t)

)∥
∥2

+ 2δ(t)
〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t) − λ∗

)〉

+ 2θ tδ(t)
〈
ẍ(t), A∗λ̇(t)

〉 + 2αθ tδ(t)
〈
ẋ(t), A∗λ̇(t)

〉
. (B.11)
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Again using (2.6) yields

δ2 (t) ‖Ax ((t)) − b‖2 =
∥
∥
∥λ̈(t) + α

t
λ̇(t) − θ tδ(t)Aẋ(t)

∥
∥
∥
2

=
∥
∥
∥λ̈(t) + α

t
λ̇(t)

∥
∥
∥
2 + θ2t2δ2 (t) ‖Aẋ (t)‖2

− 2θ tδ(t)
〈
λ̈(t), Aẋ(t)

〉 − 2αθδ(t)
〈
λ̇(t), Aẋ(t)

〉
(B.12)

Adding (B.11) and (B.12) together produces

δ2 (t)
∥
∥∇ f (x(t)) − ∇ f (x∗) + βA∗(Ax(t) − b)

∥
∥2 + δ2 (t) ‖Ax ((t)) − b‖2

=
∥
∥
∥
(
ẍ(t), λ̈(t)

) + α

t

(
ẋ(t), λ̇(t)

)∥∥
∥
2 + δ2(t)

∥
∥A∗(λ(t) − λ∗

+ θ t λ̇(t)
)∥
∥2 + θ2t2δ2(t) ‖Aẋ (t)‖2

+ 2θ tδ(t)
〈
ẍ(t), A∗λ̇(t)

〉 − 2θ tδ(t)
〈
λ̈(t), Aẋ(t)

〉

+ 2δ(t)
〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t) − λ∗)

〉
. (B.13)

On the one hand, we have

θ2t2δ2(t) ‖Aẋ (t)‖2 + 2θ tδ(t)
〈
ẍ(t), A∗λ̇(t)

〉 − 2θ tδ(t)
〈
λ̈(t), Aẋ(t)

〉

= θ2t2δ2(t)
∥
∥
(
A∗λ̇(t),−Aẋ(t)

)∥
∥2 − θ2t2δ2(t)

∥
∥A∗λ̇(t)

∥
∥2

+ 2θ tδ(t)
〈(
ẍ(t), λ̈(t)

)
,
(
A∗λ̇(t),−Aẋ(t)

)〉

= −∥
∥
(
ẍ(t), λ̈(t)

)∥
∥2 + ∥

∥
(
ẍ(t), λ̈(t)

) + θ tδ(t)A∗(A∗λ̇(t),−Aẋ(t)
)∥
∥2

− θ2t2δ2(t)
∥
∥A∗λ̇(t)

∥
∥2

� −∥
∥
(
ẍ(t), λ̈(t)

)∥
∥2 − θ2t2δ2(t)

∥
∥A∗λ̇(t)

∥
∥2. (B.14)

On the other hand, it holds

∥
∥
∥
(
ẍ(t), λ̈(t)

) + α

t

(
ẋ(t), λ̇(t)

)∥∥
∥
2 − ∥

∥
(
ẍ(t), λ̈(t)

)∥
∥2

= α2

t2
∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2 + 2

α

t

〈(
ẍ(t), λ̈(t)

)
,
(
ẋ(t), λ̇(t)

)〉
� α

t

d

dt

∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2.

(B.15)

Moreover,

δ(t)
∥
∥A∗(λ(t) − λ∗ + θ t λ̇(t)

)∥
∥2 − θ2t2δ(t)

∥
∥A∗λ̇(t)

∥
∥2

= δ(t)
∥
∥A∗(λ(t) − λ∗)

∥
∥2 + 2θ tδ(t)

〈
AA∗(λ(t) − λ∗), ˙λ(t)

〉

= (
(1 − θ)δ(t) − θ t δ̇(t)

)∥
∥A∗(λ(t) − λ∗

)∥
∥2 + θδ(t)

∥
∥A∗(λ(t) − λ∗)

∥
∥2

+ θ t δ̇(t)
∥
∥A∗ (λ (t) − λ∗)

∥
∥2 + θ

d

dt

∥
∥A∗(λ(t) − λ∗)‖2
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= (
(1 − θ)δ(t) − θ t δ̇(t)

) ∥
∥A∗ (λ (t) − λ∗)

∥
∥2 + θ

d

dt

(
tδ(t)

∥
∥A∗(λ(t) − λ∗)

∥
∥2
)
.

(B.16)

Now, using (B.14), (B.15) and (B.16) in (B.13) yields

δ2 (t) (t)
∥
∥∇ f (x(t)) − ∇ f (x∗) + βA∗(Ax(t) − b)

∥
∥2 + δ2 (t) ‖Ax ((t)) − b‖2

�
∥
∥
∥
(
ẍ(t), λ̈(t)

) + α

t

(
ẋ(t), λ̇(t)

)∥∥
∥
2 + δ2(t)

∥
∥A∗(λ(t) − λ∗ + θ t λ̇(t)

)∥
∥2

− ∥
∥
(
ẍ(t), λ̈(t)

)∥
∥2 − θ2t2δ2(t)

∥
∥A∗λ̇(t)

∥
∥2+2δ(t)

〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t)−λ∗)

〉

� α

t

d

dt

∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2 + 2δ(t)

〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t) − λ∗)

〉

+ δ(t)
[(

(1 − θ)δ(t) − θ t δ̇(t)
)∥
∥A∗(λ(t) − λ∗)

∥
∥2

+θ
d

dt

(
tδ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2
)]

Finally, since

∥
∥∇ f (x(t)) − ∇ f (x∗) + βA∗(Ax(t) − b)

∥
∥2 + ‖Ax ((t)) − b‖2

� 2 ‖∇ f (x (t)) − ∇ f (x∗)‖2 + (2β‖A‖2 + 1) ‖Ax (t) − b‖2 ,

the conclusion follows after dividing the inequality by δ(t). �

Proof of Lemma 4.6

For every t � t0, by summing up the two inequalities produced by Lemmas 4.3 and
4.5 we deduce that

ϕ̈(t) + α

t
ϕ̇(t) + θ t Ẇ (t) + α

tδ(t)

∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2

+ θ
d

dt

(
tδ(t)

∥
∥A∗(λ(t) − λ∗)

∥
∥2
)

+ 2
〈
ẍ(t) + α

t
ẋ(t), A∗(λ(t) − λ∗)

〉

� −(
(1 − θ)δ(t) − θ t δ̇(t)

)∥
∥A∗(λ(t) − λ∗)

∥
∥2

+
(

2 − 1

2�

)

δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2

+
(

2β2‖A‖2 + 1 − β

2

)

δ(t) ‖Ax (t) − b‖2

� −(
(1 − θ)δ(t) − θ t δ̇(t)

)∥
∥A∗(λ(t) − λ∗)

∥
∥2

+ C3δ(t) ‖∇ f (x (t)) − ∇ f (x∗)‖2
+ C4δ(t) ‖Ax (t) − b‖2 , (B.17)
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where

C3 :=
[

2 − 1

2�

]

+
� 0 and C4 :=

[

2β2‖A‖2 + 1 − β

2

]

+
� 0.

Mutiplying (B.17) by tα and integrating from t0 to t , we obtain

I1(t) + θ I2(t) + α I3(t) + θ I4(t) + 2I5(t)

�
∫ t

t0
sα
(
(1 − θ)δ(s) − θsδ̇(s)

)∥
∥A∗(λ(s)

− λ∗)
∥
∥2ds + C3

∫ t

t0
sαδ(s)‖∇ f (x(s)) − ∇ f (x∗)‖2ds

+ C4

∫ t

t0
sαδ(s)‖Ax(s) − b‖2ds, (B.18)

where

I1(t) :=
∫ t

t0

(
sαϕ̈(s) + αsα−1ϕ̇(s)

)
ds,

I2(t) :=
∫ t

t0
sα+1Ẇ (s)ds,

I3(t) :=
∫ t

t0

sα−1

δ(s)

d

ds

∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2ds,

I4(t) :=
∫ t

t0
sα d

ds

(
sδ(s)

∥
∥A∗(λ(s) − λ∗)

∥
∥2
)
ds,

I5(t) :=
∫ t

t0

〈
sα ẍ(s) + αsα−1 ẋ(s), A∗(λ(s) − λ∗)

〉
ds.

We will furnish five different inequalities from computing each of these integrals
separately. Let t � t0 be fixed.

• The integral I1(t). By the chain rule, for s � t0 it holds

sαϕ̈(s) + αsα−1ϕ̇(s) = d

ds

(
sαϕ̇(s)

)
,

which leads to

0 = I1(t) − tαϕ̇(t) + tα0 ϕ̇(t0) � I1(t) − tαϕ̇(t) + |tα0 ϕ̇(t0)|. (B.19)

• The integrals I2(t) and I4(t). Integration by parts gives

I2(t) + I4(t) = tα+1W (t) − tα+1
0 W (t0)

− (α + 1)
∫ t

t0
sαW (s)ds + tα+1δ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2
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− tα+1
0 δ(t0)

∥
∥A∗(λ(t0) − λ∗)

∥
∥2

− α

∫ t

t0
sαδ(s)

∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds,

and from here

tα+1δ(t)
∥
∥A∗ (λ (t) − λ∗)

∥
∥2 � tα+1W (t) + tα+1δ(t)

∥
∥A∗ (λ (t) − λ∗)

∥
∥2

= I2(t) + I4(t) + tα+1
0 W (t0) + tα+1

0 δ(t0)
∥
∥A∗(λ(t0) − λ∗)

∥
∥2

+ (α + 1)
∫ t

t0
sαW (s)ds

+ α

∫ t

t0
sαδ(s)

∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds. (B.20)

• The integral I3(t). Again by integrating by parts, we get

I3(t) = tα−1

δ(t)

∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2 − tα−1

0

δ(t0)

∥
∥
(
ẋ(t0), λ̇(t0)

)∥
∥2

−
∫ t

t0

[
(α − 1)sα−2δ(s) − sα−1δ̇(s)

δ2(s)

]
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2ds.

For s � t0, according to Assumption 2 we have δ̇(s) � 0, hence δ is monotonically
increasing and therefore

(α − 1)sα−2δ(s) − sα−1δ(s)

δ2(s)
� (α − 1)sα−2δ(s)

δ2(s)
� (α − 1)sα

t20 δ(t0)
.

It follows that

0 � tα−1

δ(t)

∥
∥
(
ẋ(t), λ̇(t)

)∥
∥2

= I3(t) + tα−1
0

δ(t0)

∥
∥
(
ẋ(t0), λ̇(t0)

)∥
∥2

+
∫ t

t0

[
(α − 1)sα−2δ(s) − sα−1δ̇(s)

δ2(s)

]
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2ds

� I3(t) + tα−1
0

δ(t0)

∥
∥
(
ẋ(t0), λ̇(t0)

)∥
∥2 + α − 1

t20 δ(t0)

∫ t

t0
sα
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2ds. (B.21)

• The integral I5(t). Integration by parts entails

I5(t) =
∫ t

t0

〈
d

ds

(
sα ẋ(s)

)
, A∗(λ(s) − λ∗)

〉

ds

= tα
〈
ẋ(t), A∗(λ(t) − λ∗)

〉 − tα0
〈
ẋ(t0), A

∗(λ(t0) − λ∗)
〉
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−
∫ t

t0
sα
〈
ẋ(s), A∗λ̇(s)

〉
ds.

By the Cauchy–Schwarz inequality, we deduce that

∫ t

t0
sα
〈
ẋ(s), A∗λ̇(s)

〉
ds � ‖A‖

∫ t

t0
sα ‖ẋ(s)‖ ∥∥λ̇(s)

∥
∥ ds

� ‖A‖
2

∫ t

t0
sα
(∥
∥ẋ(s)

∥
∥2 + ∥

∥λ̇(s)
∥
∥2
)
ds,

and thus

0 � I5(t) − tα
〈
ẋ(t), A∗(λ(t) − λ∗)

〉 + ∣
∣tα0

〈
ẋ(t0), A

∗(λ(t0) − λ∗)
〉∣
∣

+ ‖A‖
2

∫ t

t0
sα
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2ds.

(B.22)

Now, summing up the inequalities (B.19), (B.20), (B.21), and (B.22), then we proceed
to employ (B.18) and obtain

θ tα+1δ(t)
∥
∥A∗ (λ (t) − λ∗)

∥
∥2

� I1(t) + θ I2(t) + α I3(t) + θ I4(t) + 2I5 − tαϕ̇(t)

+
∫ t

t0
sα

[

θ(α + 1)W (s) +
(

α(α − 1)

t20 δ(t0)
+ ‖A‖

)
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2

]

ds

+ θα

∫ t

t0
sαδ(s)

∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds − 2tα

〈
ẋ(t), A∗(λ(t) − λ∗)

〉 + C5

� −tαϕ̇(t) +
∫ t

t0
sαV (s)ds +

∫ t

t0
sα
[(

θ(α + 1) − 1
)
δ(t) + θsδ̇(s)

]

∥
∥A∗(λ(s) − λ∗)

∥
∥2 ds

− 2tα
〈
ẋ(t), A∗(λ(t) − λ∗)

〉 + C5,

where recall that V was given by

V (s) := θ(α + 1)W (s) +
(

α(α − 1)

t20 δ(0)
+ ‖A‖

)
∥
∥
(
ẋ(s), λ̇(s)

)∥
∥2

+ C3δ(s)‖∇ f (x(s)) − ∇ f (x∗)‖2 + C4δ(s)‖Ax(s) − b‖2,

and the constant C5 is given by

C5 := tα0 |ϕ̇(t0)| + θ tα+1
0 W (t0) + α

tα−1
0

δ(t0)

∥
∥
(
ẋ(t0, λ̇(t0))

)∥
∥2

+ θ tα+1
0 δ(t0)

∥
∥A∗(λ(t0) − λ∗)

∥
∥2 + 2tα0

∣
∣
〈
ẋ(t0), A

∗(λ(t0) − λ∗)
〉∣
∣ � 0.

We come then to the desired result.
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18. Boţ, R.I., Csetnek, E.R., László, S.C.: A primal-dual dynamical approach to structured convex mini-
mization problems. J. Differ. Equ. 269(12), 10717–10757 (2020). https://doi.org/10.1016/j.jde.2020.
07.039
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