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Abstract
In this paper we investigate homogenization results for the principal eigenvalue prob-
lem associated to 1-homogeneous, uniformly elliptic, second-order operators. Under
rather general assumptions, we prove that the principal eigenpair associated to an oscil-
latory operator converges to the eigenpair associated to the effective one. This includes
the case of fully nonlinear operators. Rates of convergence for the eigenvalues are pro-
vided for linear and nonlinear problems, under extra regularity/convexity assumptions.
Finally, a linear rate of convergence (in terms of the oscillation parameter) of suitably
normalized eigenfunctions is obtained for linear problems.

Keywords Second-order elliptic equations · Eigenvalue problem · Homogenization ·
Rate of convergence

1 Introduction

Let � ⊂ R
N be a bounded domain with smooth boundary, and consider a non-

divergence form, linear elliptic operator with the form

L = ai j (x)∂
2
xi x j + b j (x)∂x j + c(x), x ∈ �, (1.1)
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such that ai j ∈ C(�), b j , c ∈ L∞(�), satisfying the uniform ellipticity condition

λ|ξ |2 ≤ ai j (x)ξiξ j ≤ �|ξ |2, x ∈ �, ξ ∈ R
N , (1.2)

for some given constants 0 < λ ≤ �. Here we have adopted the usual notation of sum
over repeated indices.

In the pioneering work of Berestycki, Nirenberg and Varadhan [5], the authors
provide a complete study of the principal eigenvalue problem associated to L and �,
namely, the existence of a pair (φ1, λ1) ∈ C+(�) × R solving (in an adequate weak
sense) the eigenvalue problem

{
Lφ1 = −λ1φ1 in �

φ1 = 0 on ∂�.

Here we have denoted by C+(�) the space of continuous functions which are
positive in�. For equations in divergence form, the principal eigenvalue coincideswith
the first eigenvalue in the sense of the classical Rayleigh-Ritz formula. In particular, it
is unique (in the sense that it is the unique eigenvalue associated to an eigenfunction
that is positive in �), and simple (in the sense that the associated eigenspace is one-
dimensional).

One of the remarkable features of the methods presented in [5] is the possibility
to extend the study of the principal eigenvalue problem for fully nonlinear, uniformly
elliptic operators with the form

F = inf
α∈A

sup
β∈B

Lα,β, (1.3)

where, given sets of indices A,B, {Lα,β}α∈A,β∈B is a family of linear operators with
the form (1.1). This has been studied, for instance, by Birindelli and Demengel [4],
Armstrong [2] and Quaas-Sirakov [21]: under suitable assumptions on F , the authors
prove the existence of a pair (φ1, λ1) ∈ C+(�) × R, solving, in the viscosity sense,
the Dirichlet problem

{
F(x, φ1, Dφ1, D2φ1) = −λ1φ1, in �

φ1 = 0 on ∂�.
(1.4)

In particular, the principal eigenvalue λ1 = λ+
1 (F,�) is characterized as

λ+
1 (F,�) = sup{λ : ∃ φ > 0 in �, F(x, φ, Dφ, D2φ) ≤ −λφ in �}, (1.5)

where the inequality is understood in the viscosity sense. This eigenvalue is unique
and simple (the latter meaning that the eigenfunctions are unique up to a positive
multiplicative constant). It is possible to consider the eigenvalue problem associated
to negative eigenfunctions, but its analysis is somewhat analogous to that of its positive
counterpart (at least in what respects our interest here) and therefore we concentrate
on the positive eigenpair.
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The purpose of this article is the study of stability results for the principal eigenvalue
problem in the context of periodic homogenization.We introduce themain assumptions
in order to present our results. Denote by TN the flat N -dimensional torus, and by SN

the space of N×N symmetric matrices.We consider F ∈ C(�×T
N ×R×R

N ×SN )

and constants 0 < λ ≤ � < +∞ and C1,C2 > 0 such that, for all R > 0 we have

M−
λ,�(N ) − C1R(|z| + |w|) − C2R(|s| + |q|)

≤ F(x + z, y + w, r + s, p + q, M + N ) − F(x, y, r , p, M)

≤ M+
λ,�(N ) + C1R(|z| + |w|) + C2R(|s| + |q|),

(1.6)

for all x ∈ �, z ∈ R
N with x + z ∈ �, y, w ∈ T

N , r , s ∈ R, p, q ∈ R
N and

M, N ∈ SN with |r |, |s|, |p|, |q|, |M |, |N | ≤ R. Here, M±
λ,� denote the extremal

Pucci operators (see, e.g., [8])

M+
λ,�(X) = sup

λI≤A≤�I
Tr(AX), M−

λ,�(X) = inf
λI≤A≤�I

Tr(AX).

We also assume F is positively 1-homogeneous, that is

F(x, y, αr , α p, αX) = αF(x, y, r , p, X), (1.7)

for all α ≥ 0, x ∈ �, y ∈ T
N , p ∈ R

N , X ∈ SN and r ∈ R.
Thus, for each ε ∈ (0, 1), we have the existence of an eigenpair (uε , λε) ∈ C+(�)×

R solving

{
F(x, x/ε, u, Du, D2u) = −λεu in �,

u = 0 on ∂�.
(1.8)

Our first goal is to understand the homogenization behavior of problem (1.8) as ε →
0, and explore the possibility of having rates of convergencewhenever homogenization
holds. In fact, it is well-known (see Evans [12]) that for each x, r , p, X , there exists a
unique c ∈ R such that

F(x, y, r , p, D2v(y) + X) = c in TN , (1.9)

has a viscosity solution. We can thus define F̄ : � × R × R
N × SN → R as

F̄(x, r , p, X) = c, where c is the unique constant for which (1.9) has a solution.
We call F̄ the effective Hamiltonian. As it can be seen in [12], F̄ is continuous in all
its arguments (in viewof (1.6), F̄ is locally Lipschitz), uniformly elliptic and positively
1-homogeneous, and therefore, the effective eigenvalue problem

{
F̄(x, u, Du, D2u) = −λ̄u in �,

u = 0 on ∂�,
(1.10)

is solvable by the (positive) eigenpair (u, λ̄) ∈ C+(�) × R. As before, λ̄ is unique
and simple.
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The first main result of this paper is the following

Theorem 1.1 Assuming F satisfies (1.6), (1.7). Let (uε, λε) be the solution of (1.8).
Then, we have λε → λ̄ as ε → 0.

Let uε with ‖uε‖∞ = 1 and u solving (1.10) with ‖u‖∞ = 1, then uε → u as
ε → 0, uniformly on �̄.

For linear operators, results of this type dates back toOsborn [20], using the Spectral
Theorem for compact operators in Banach spaces. In Kesavan [16], the author obtains
the result for self-adjoint linear problems in divergence form. From here, an ample
class of problems have been addressed for operators having an appropriate weak for-
mulation (p-Laplace operator), and the analysis is extended to the entire spectrum of
the operator. Here we follow the viscosity approach initiated by Lions, Papanicoloau
and Varadhan [19], in junction with the tools of [5]. The proof of this theorem is an
adaptation of the perturbed test function method introduced in [12]. To some extent,
the problem can be regarded as a multi-scale homogenization problem as in [1], but
the resonant nature of the problem prevents the use of comparison principles, which
are replaced by the simplicity of the eigenvalue. We remark that operators like (1.3)
are commonly referred as Bellman-Isaacs operators, and naturally arise in some appli-
cations like the study of zero-sum stochastic differential games, see [14]. In the case of
a convex operator (namely, when A is a singleton), F in (1.3) is known as a Bellman
operator, and appears in the study of stochastic optimal control problems.

In the second part of the paper, we deal with rates of convergence for the principal
eigenvalue problem. In the case of proper problems, namely, for equations with the
form

F(x,
x

ε
, u, Du, D2u) = 0,

with F such that r 
→ F(x, y, r , p, X) is nonincreasing, rates of convergence are at
disposal in various contexts. In [9], Camilli and Marchi obtain a polynomial rate for
Hamilton-Jacobi-Bellmann problems posed in RN . The convexity of the nonlinearity
allows the use ofC2,α estimates to construct approximated correctors for the problem,
which in turn lead to the rate |uε − u| = O(εα′

) for some 0 < α′ < α. Also based
on regularity, higher order expansions of the solution uε are obtained by Kim and
Lee [18] for the Dirichlet problem on a bounded smooth domain. For the problem
treated therein, the nonlinearity F is convex, smooth and contains no lower-order
terms. In [7], Caffarelli and Souganidis introduce the concept of δ-viscosity solutions
in order to tackle the non-convex case, and where comparison principle for this type
of generalized solutions plays a key role.

Concerning the rate of convergence for the eigenvalues, we start focusing on the
nonlinear eigenvalue problem

{
F

(
x, x

ε
, uε, Duε, D2uε

) = −λεuε in �,

uε = 0 on ∂�,
(1.11)
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and its associated effective problem

{
F̄(x, u, Du, D2u) = −λ̄u in �,

u = 0 on ∂�.
(1.12)

Under convexity/regularity assumptions on F , we can prove the following rate of
convergence for {λε}ε .
Theorem 1.2 Assume F ∈ C2,1(� × T

N × R × R
N × SN ) is convex in its last three

variables and satisfies (1.6), (1.7). Let λε, λ̄ be, respectively, the principal eigenvalues
associated to (1.11) and (1.12). Then, there exists a constant C > 0 just depending
on F and � such that

|λε − λ̄| ≤ Cε,

for all ε ∈ (0, 1).

The proof of Theorem 1.2 is based on the Donsker-Varadhan variational character-
ization of the principal eigenvalue (see [2]), together with regularity estimates for the
corrector that can be found in [18]. This is why we need to impose some additional
hypotheses on the operator F . The same arguments allows us to prove the convergence
of the principal eigenvalue for linear operators with lower order terms with the form

Lεu = ai j (x, x/ε)∂
2
xi x j u + b j (x, x/ε)∂x j u + c(x, x/ε)u, (1.13)

in the case the coefficients ai j , b j , c are smooth enough.
In fact, considering Lε as above and the corresponding principal eigenvalue

problem

{
Lεuε = −λεuε in �,

uε = 0 on ∂�,
(1.14)

we are able to provide a rate of convergence for the principal eigenfunctions associated
to this problem. It is a well-known fact that the effective problem inherits the main
structure of the original one, see [12]. In particular, the effective operator related to
Lε is linear and takes the form

L̄u = āi j∂
2
xi x j u + b̄ j∂x j u + c̄u,

for some continuous entries āi j , b̄ j , c̄. Moreover, the effective matrix ā is uniformly
elliptic, with the same ellipticity constants of a = (ai j ). Thus, the effective problem
in this case takes the form

{
L̄u = −λ̄u in �,

u = 0 on ∂�.
(1.15)
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Of course, if we ask u > 0 in � in (1.15), then λ̄ is the principal eigenvalue
associated to L̄ and �. The same holds for the perturbed problem (1.14).

Concerning the convergence of the eigenfunctions (and eigenvalues), our result is
the following

Theorem 1.3 Let Lε in (1.13) with a ∈ C2,1(�̄ × T
N ; SN ), b ∈ C2,1(�̄ × T

N ;RN ),
and c ∈ C2,1(�̄×T

N ). Let (u, λ̄) be a solution to (1.15) with u > 0 in �. Then, there
exists C > 0 depending on the coefficients a, b, c and �, such that, for all ε ∈ (0, 1),
there exists uε solving (1.14) with uε > 0 in �, satisfying

|λε − λ̄| + ‖uε − u‖L∞(�) ≤ Cε. (1.16)

The rate of convergence for the principal eigenvalue is obtained in the same way
as Theorem 1.2. For the rate of the eigenfunction, the result follows basically by
Theorem 1 in [20], but we provide a pure PDE proof here, by introducing an auxiliary
homogenization problem whose solution serves as a pivot between uε and u. This
strategy was previously used in [16], and we combine it with the rates of convergence
of [18] for the auxiliary problem. Again, the simplicity of the principal eigenvalue λ̄

in (1.15) plays a crucial role.
Thepaper is organized as follows: inSect. 2weprove the general convergence result,

Theorem1.1. InSect. 3,we analyze the convergence of the principal eigenvalue in some
particular linear and nonlinear cases. Finally, in Sect. 4 we prove a rate of convergence
of the eigenfunction in the linear case.

2 General Convergence Result

We start with the following result, see Lemma 3.1 in [12].

Proposition 2.1 Under the assumptions of Theorem 1.1, for each x, p ∈ R
N , r ∈

R, X ∈ S
N , there exists a unique constant c = c(x, r , p, X) such that the problem (1.9)

has a viscosity solution v ∈ C1,σ (TN ). This solution is unique up to an additive
constant.

As we mentioned in the introduction, this result allows us to define the effective
Hamiltonian F̄ ∈ C(� × R × R

N × SN ), which satisfies the assumption in [21] to
define the principal eigenvalue λ̄ = λ+

1 (F̄,�) in the sense described in (1.5).
Next we prove uniform bounds for the eigenvalue λε.

Lemma 2.2 Assume F satisfies (1.6), (1.7). Let λε be the principal eigenvalues
associated to (1.11). Then, there exist universal constants 0 < c < C such that

−c ≤ λε ≤ C

for all ε ∈ (0, 1).

Proof Write y = x/ε ∈ T
N and note that the constant function w ≡ 1 satisfies

F(x, y, w, Dw, D2w) ≤ c := ‖F(·, ·, 1, 0, 0)‖L∞(�̄×TN )
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Using the characterization of the eigenvalue (1.5), it is easy to see that λε ≥ −c.
For the upper bound we use the technique presented in [5]. Up to a translation, we

assume without loss of generality that the origin belongs to�. Let r ∈ (0, 1) such that
Br (0) ⊂ � and define

σ(x) = (r2 − |x |2)2+,

A simple computation shows that for |x | < r , we have the eigenvalues of D2σ(x)
are 8|x |2 − 4(r2 − |x |2) (with multiplicity 1), and −4(r2 − |x |2) (with multiplicity
N − 1). Denote

r0 = r
( �N + C1

2λ + �N + C1

)1/2
.

Let |x | ≤ r0. Then we have

F(x, x/ε, σ (x), Dσ(x), D2σ(x))

σ (x)
≥ M−

λ,�(D2σ(x)) − C1|Dσ(x)|
σ(x)

− C2

≥ −4(N + C1r)(r2 − |x |2)
σ (x)

− C2

= −4(N + C1)

r2 − |x |2 − C2,

from which the ratio is bounded below by −(4(N + C1)(r2 − r20 )−1 + C2).
Similarly, for |x | > r0, we have that

F(x, x/ε, σ (x), Dσ(x), D2σ(x))

σ (x)
≥ −8λ|x |2 − 4(N� + C1)(r2 − |x |2)

σ (x)
− C2

≥ −C2.

Then, there exists C > 0 just depending on the data such that

F(x, x/ε, σ, Dσ, D2σ) ≥ −Cσ in �.

Since the support of σ is compact in �, up to a positive factor, we can assume σ

touches uε from below at some point x1 ∈ Br (0). Using the viscosity inequality for
uε , we conclude that

F(x1, x1/ε, σ (x1), Dσ(x1), D
2σ(x1)) ≤ −λεσ (x1),

and using the point wise inequality satisfied by σ , we conclude that

−Cσ(x1) ≤ −λεσ (x1).

Since σ(x1) > 0, we conclude the upper bound for λε . 
�
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We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1 We start by defining

λ∗ = lim sup
ε→0

λε, λ∗ = lim inf
ε→0

λε.

Replacing F by F − (C1 + 1)u, we can assume F is proper and λ∗ > 0.
For each ε ∈ (0, 1), denote by uε the principal eigenfunction associated to λε such

that ‖uε‖∞ = 1.
We consider εk → 0 such that λk := λεk → λ∗, and write uk = uεk . Given that

the operator is elliptic we have by standard regularity theory that {uk}k is precompact
in Cα(�̄) for some α > 0. Then, up to subsequences, it converges uniformly to some
u ∈ Cα′

(�̄), 0 ≤ α′ < α, which is nonnegative in �. Using that the boundary of � is
smooth, and the fact that uk solves extremal inequalities involving the Pucci operators,
independent of k, from available boundary regularity results (see Theorem 1.1 in [22])
it follows that the family uk is uniformly Lipschitz on the boundary of the domain,
hence every sequence of points xk ∈ � such that uk(xk) = 1 remains uniformly away
the boundary. Thus, taking x̄ as a limit point of the sequence xk , we have shown that
that there exists x̄ ∈ � such that u(x̄) = 1.

Now, we prove that the limit u solves

F̄(x, u, Du, D2u) ≤ −λ∗u in �; u = 0 on ∂�, (2.1)

in the viscosity sense.
By contradiction, we assume this does not hold. Then, there exists x0 ∈ � and a

smooth function φ strictly touching u from below at x0 such that

F̄(x0, φ(x0), Dφ(x0), D
2φ(x0)) ≥ −λ∗φ(x0) + 3η, (2.2)

for some η > 0. For simplicity, we write X0 = (x0, φ(x0), Dφ(x0), D2φ(x0)).
Next, we follow the arguments in [1]. For r ∈ (0, 1) to be chosen, we define the

Hamiltonian Fr ∈ C(TN × SN ), given by

Fr (y,Y ) = min{F(x, y, φ(x) + s, Dφ(x) + q, D2φ(x) + Y ) : |x − x0|, |s|, |q| ≤ r},

Next, we state our
Claim 1: There exists r > 0 small enough for which there exists a function χ ∈ C(TN )

solving, in the viscosity sense, the inequality

Fr (y, D
2χ) ≥ F̄(X0) − η in TN . (2.3)

In fact, notice that Fr is uniformly elliptic in view of (1.6), and that

Fr (y,Y ) → F(x0, y, φ(x0), Dφ(x0), D
2φ(x0) + Y ) as r → 0,
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locally uniform in (y,Y ). Then, for δ > 0, we consider the problem

−δw + Fr (y, D
2w) = 0 in TN ,

which has a unique viscosity solution wr ,δ , which has Lipschitz bounds independent
of δ and r in view of the uniform ellipticity of Fr . By comparison, there exists C > 0
such that δ‖wr ,δ‖∞ ≤ C . Considering w̃r ,δ(y) = wr ,δ(y) − wr ,δ(0), we have w̃r ,δ

is bounded and uniformly Lipschitz in T
N . By standard stability results of viscosity

solutions, w̃r ,δ converges (up to subsequences) to a solution w of the problem

F(x0, y, φ(x0), Dφ(x0), D
2φ(x0) + D2w) = c in TN ,

as r , δ → 0 for some c ∈ R. Since this constant is unique, it necessarily meets F̄(X0).
Then, given η > 0, we can fix r , δ small enough to conclude our Claim 1 with

χ = w̃r ,δ . Notice that we can assume χ ∈ C1,σ for some σ > 0 in view of classi-
cal regularity results in elliptic theory (namely, Theorem VII.2 in [15] together with
Theorem 2.1 in [23]).

Consider the function

φk(x) = φ(x) + ε2kχ(
x

εk
), x ∈ �.

We now seek to establish the following
Claim 2: There exists 0 < r1 < r for which there exists K0 ∈ N such that, for all
k ≥ K0, φk solves

F(x,
x

εk
, φk, Dφk, D

2φk) ≥ −λkφk in Br1(x0),

in the viscosity sense.
This claim follows by the usual perturbed test function method, but we provide the

details for completeness. Let x1 ∈ Br1(x0) and ψ a smooth function touching φk from
above. Then, we have y1 = x1/εk is a maximum point for the function

y 
→ χ(y) − 1

ε2k
(ψ(εk y) − φ(εk y)).

Using (2.3) and (2.2), we have

Fr (
x1
εk

, D2ψ(x1) − D2φ(x1)) ≥ −λ∗φ(x0) + 2η,

and from here, since χ, Dχ are uniformly bounded in terms of k, and using that

εk Dχ(y1) + Dφ(x1) = Dψ(x1),
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for all k large in terms of r we conclude that

F(x1,
x1
εk

, φk(x1), Dψ(x1), D
2ψ(x1)) ≥ −λ∗φ(x0) + 2η. (2.4)

Then, taking r1 small enough just in terms of φ, η and the upper bounds for λk

(which do not depend on k), and taking k large enough (just depending on η and φ),
we conclude that

F(x1,
x1
εk

, φk(x1), Dψ(x1), D
2ψ(x1)) ≥ −λkφk(x1),

from which the Claim 2 follows.
Then, taking r1 > 0 smaller if necessary, we can use maximum principles in small

domains (see Theorem 3.5 in [21]) to conclude that

sup
Br1 (x0)

{φk − uk} ≤ sup
∂Br1 (x0)

{φk − uk}.

Passing to the limit as k → ∞, and arranging terms, we conclude that

inf
Br1 (x0)

{u − φ} ≥ inf
∂Br1 (x0)

{u − φ},

which is a contradiction with the fact that x0 is a strict test point. This concludes (2.1).
Notice that in particular we have F̄(x, u, Du, D2u) ≤ 0 in �, from which we see that
u > 0 in � by Strong Maximum Principle in [6]. Then, by definition of λ(F̄), we get

λ∗ ≤ λ(F̄).

The same procedure above leads to the existence of a function v ≥ 0 in �, not
identically zero, viscosity solution to

F̄(x, v, Dv, D2v) ≥ −λ∗v in �, v = 0 on ∂�.

Hence, if λ∗ < λ(F̄), the operator F̄(u) + λ∗u satisfies the maximum principle.
Thus, v ≤ 0 in �, which is a contradiction. Then,

λ(F̄) ≤ λ∗ ≤ λ∗ ≤ λ(F̄),

and the convergence of the eigenvalues follows.
Now we tackle the convergence of the eigenfunctions. By the previous result, we

have every converging subsequence of {uε} converges to a positive solution of the
effective eigenvalue problem. By Strong Maximum Principle such solution is strictly
positive in �, from which we conclude the result by the simplicity of the principal
eigenfunction. 
�
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Remark 2.3 It is possible to prove the convergence of the principal eigenfunctions
with different normalizations. For instance, let x0 ∈ � and consider the normalization
uε(x0) = 1. Since uε solves

M−
λ,�(D2u) − C1|Du| − C̃2|u| ≤ 0 in �

M+
λ,�(D2u) + C1|Du| + C̃2|u| ≤ 0 in �,

for some C̃2 > 0, by Harnack inequality (c.f. Theorem 3.6 in [21]), for each K ⊂⊂ �

containing x0, there exists a constant CK > 0 depending on K and the data, but
not on ε such that supK uε ≤ CK infK uε ≤ CK . Then, writing Fε(x, r , p, X) =
F(x, x

ε
, r , p, X), we consider K such that the operator Fε +λε satisfies the maximum

principle in � \ K , (see Theorem 3.5 in [21]). This compact set K does not depend
on ε. Then, using a suitable power of the distance to the boundary, we can construct
a barrier function to conclude uniform bounds for the family {uε}ε in �\K . Hence,
the family is uniformly bounded in �̄ and we can perform the same proof above to
conclude the convergence of uε to the principal eigenfunction u with normalization
u(x0) = 1.

The following corollary is obtained from Theorem 1.1, resembling multiscale
results in the spirit of Corollary 1 in [1]. It will be useful when we look for the
rate of convergence for the first eigenfunction in Sect. 4.

Corollary 2.4 Assume F satisfies the assumptions of Theorem 1.1, and denote by λε

its principal eigenvalue as in (1.8). Consider { f ε}ε ⊂ C(�) such that f ε → 0 locally
uniformly in � as ε → 0, and assume zε is a viscosity solution to the problem

{
F(x, x

ε
, u, Du, D2u) = −λεu + f ε, in �,

u = 0 on ∂�.

with {zε}ε uniformly bounded in �. Then, up to subsequences, zε → u uniformly in
�, with u solving (1.10).

Proof We provide an sketch of the proof. It follows the lines of Theorem 1.1, but
knowing from the start that λε → λ̄, the eigenvalue in (1.10). From this fact, and by
the same compactness argument of Theorem 1.1, we may assume zε converges locally
uniformly to some z ∈ C(�̄).

The contradiction argument starts by assuming the existence of x0 ∈ � and a
smooth function φ touching z from below, such that the following analogue of (2.2)
holds:

F̄(x0, φ(x0), Dφ(x0), D
2φ(x0)) ≥ −λ̄φ(x0) + 4η, (2.5)

for some η > 0. The statement and proof of the analogue of Claim 1 in Theorem 1.1
are the same, since f ε plays no role here.

The perturbed test function φk is constructed as before and, writing fk := f εk , it
remains to show the following, instead of Claim 2 in the previous proof: there exists
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0 < r1 < r for which there exists K0 ∈ N such that, for all k ≥ K0, φk solves

F(x,
x

εk
, φk, Dφk, D

2φk) ≥ −λkφk + fk in Br1(x0),

in the viscosity sense.
This is accomplished by taking k large enough so that ‖ fk‖Br1 (x0) ≤ η, which

implies that (2.4) holds exactly as before. The concluding argument is the same, so
we omit further details. 
�

3 Rate of Convergence for the Principal Eigenvalue

In this sectionwe assume that F ∈ C2,1(�×T
N×R×R

N×SN ). As in Proposition 2.1,
for x ∈ �, r ∈ R, p ∈ R

N and M ∈ SN , F̄(x, r , p, M) is defined as the unique
constant c such that the problem

F(x, y, r , p, M + D2
yyχ(y)) = c, y ∈ T

N , (3.1)

admits a viscosity solution χ ∈ C(TN ) which is unique up to an additive constant.
We denote it as χ(y; x, r , p, M).

The solvability of (3.1) follows by well-known stability properties for the
approximation problem

− δχδ + F(x, y, r , p, M + D2
yyχ

δ) = 0 y ∈ T
N , (3.2)

which, for each δ > 0, has a unique solution that we denote by χδ(y; x, r , p, M). By
classical Evans-Krylov estimates for convex, uniformly elliptic operators (see [8, 13,
17]) we have y 
→ χδ(y) := χδ(y; x, r , p, M) is C2,α(TN ), and that by (1.6), for
each R > 0 there exists CR > 0 such that

‖δχδ‖C2,α(TN ) ≤ CR,

for all x ∈ �̄ and |r |, |p|, |M | ≤ R. Moreover, denoting χ̃ δ(y) = χδ(y) − χδ(0) we
have that

sup
δ∈(0,1)

‖χ̃ δ‖C2,α(TN ) ≤ CR .

This is a straightforward adaptation of Lemma 3.1.4 in [18]. We use this bounds
define the function χ in (3.1), by means of stability as δ → 0, as the limit

χ(y) = lim
δ→0

χδ(y) − χδ(0),
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where we have ommited the dependence on x, r , p, M for simplicity. Moreover, it is
possible to prove that c = F̄ in (3.1) is given by

F̄(x, r , p, X) = lim
δ→0

δχδ(y; x, r , p, X),

where the limit (up to subsequences) is uniform in y. By standard results in periodic
homogenization, we have F̄ is convex, positively 1-homogeneous, uniformly elliptic
(with the same ellipticity constants of F), see [12].

From now on, we concentrate on regularity estimates for the effective Hamiltonian
F̄ and the other functions involved in its definition.

Given x, x ′ ∈ �, r , r ′ ∈ R, p, p′ ∈ R
N , M, M ′ ∈ SN (each of them bounded by

R > 0), and denoting

vδ
1(y) = χδ(y; x, r , p, M); vδ

2(y) = χδ(y; x ′, r ′, p′, M ′)

we have wδ = vδ
1 − vδ

2 solves

− δwδ + ai j∂
2
yi y j w

δ + f = 0 in TN , (3.3)

where we have adopted the notation

Nt (y) = (t(D2
yyv

δ
1 + M) + (1 − t)(D2

yyv
δ
2 + M ′), p, r , x, y), t ∈ [0, 1],

nt (y) = (y, t x + (1 − t)x ′, tr + (1 − t)r ′, tp + (1 − t)p′), t ∈ [0, 1],

ai j (y) =
∫ 1

0

∂F

∂mi j
(Nt (y))dt,

f (y) = ai j (M − M ′)i j +
∫ 1

0
〈D(x,r ,p)F(nt (y), X

′), (x − x ′, r − r ′, p − p′)〉dt,

where we have adopted the summation on repeated indices. Since F ∈ C1,1 and vδ
1, v

δ
2

are C2,α , ai j ∈ Cα(TN ) (with Cα estimates depending on R) and is uniformly elliptic
(with ellipticity constants not depending on R), see Lemma 3.1.6 in [18]. Then, by
comparison principle on (3.3) we conclude that

‖δχδ(·; x, r , p, M) − δχδ(·, x ′, r ′, p′, M ′)‖C2,α(TN )

≤ CR(|x − x ′| + |r − r ′| + |p − p′| + |M − M ′|),

for all x, x ′ ∈ �̄, |r |, |r ′|, |p|, |p′|, |M |, |M ′| ≤ R. Taking limits in δ we conclude that
F̄ is Lipschitz continuous, and therefore we conclude that the principal eigenfunction
u to (1.10), normalized as ‖u‖∞ = 1, belongs to C2,α(�) ∩ C1(�̄), with estimates
depending only on �, N and F .

A linearization procedure involving partial derivatives of F [similar to the one
leading to (3.3)] allows us to conclude that the first-order partial derivatives of F̄ and
χ with respect to each of its variables are Lipschitz continuous (c.f. Lemma 3.2.5 in
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[18]). Iterating the process for higher-order derivatives of F̄ and χ , we conclude the
following

Proposition 3.1 Under the assumptions of Theorem 1.2, we have

‖F̄‖C2,1(�̄×B̄3
R) + sup

y∈TN
‖χ(y; ·, ·, ·, ·)‖C2,1(�̄×B̄3

R) ≤ CR;

here B̄3
R denotes the product of the balls BR in each R,RN and SN .

In addition, the function u solving (1.10) is in C4,α(�̄).

For the latter fact, see Lemma 3.3.1 in [18].
Now, we write

w2(x, y) := χ(y; x, u(x), Du(x), D2u(x)), x ∈ �, y ∈ T
N ,

and note that w2 is such that Dxw2, Dyw2, D2
xxw2, D2

xyw2, D2
yyw2 are uniformly

bounded in �̄ × T
N by Proposition 3.1.

Consider the function wε(x) = u(x) + ε2w2(x, x/ε). Since wε ∈ C2(�), we can
compute

Dwε(x, x/ε) = Du(x) + εDyw2(x, x/ε) + ε2Dxw2(x, x/ε),

D2wε(x, x/ε) = D2u(x) + D2
yyw2(x, x/ε) + 2εD2

xyw2(x, x/ε) + ε2D2
xxw2(x, x/ε),

for each x ∈ �. Using (1.6), (1.9) and (1.10) (i.e., the equations solved by w2 and u,
respectively), that

F(x, x/ε,wε(x), Dxw
ε(x), D2

xxw
ε(x))

= F(x, x/ε, u(x), Du(x), D2u(x) + D2
yyw2(x, x/ε)) + O(ε)

= F̄(x, u(x), Du(x), D2u(x)) + O(ε)

= −λ̄u(x) + O(ε),

(3.4)

where the O(ε)-term depends only on the data.
With the above elements, we are able to provide the

Proof of Theorem 1.2: Using the Donsker-Varadhan characterization of the principal
eigenvalue (see Theorem 1.1 in [3]), we have

−λε = inf
φ ∈ C2(�),

φ > 0

∫
�

F(x, x/ε, φ(x), Dφ(x), D2φ(x))

φ(x)
dμε(x),

for some probability measure με ∈ P(�̄).
Let C̄ > 0 such that ‖w2‖∞ ≤ C̄ . For γ ∈ (0, 1), consider the function

φε(x) = wε(x) + C̄ε + εdγ (x), x ∈ �.
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Here, d denotes the distance function to the boundary ∂�. In what follows, for
δ > 0 we denote �δ = {x ∈ � : d(x) < δ}, and δ0 > 0 is such that d ∈ C2(�δ0). We
extended d as a smooth function in �, positive in each compact subset of �.

Then, φε is admissible in the infimum above. By (1.6) and (3.4), we see that

F(x,
x

ε
, φε(x), Dφε(x), D

2φε(x)) ≤ λ̄u(x) + εM+(D2dγ (x)) + C2ε|Ddγ (x)| + C2ε,

where M+ is the extremal Pucci operator. We have that there exists c1 > 0 such that,
for each δ ∈ (0, 1) small enough, we have

M+(D2dγ (x)) ≤ −c1d
γ−2(x) for x such that d(x) ≤ δ,

and that

M+(D2dγ (x)) ≤ Cδ forxsuch that d(x) ≥ δ,

for some Cδ > 0. Also, since |Ddγ (x)| = γ dγ−1|Dd(x)| = γ dγ−1(x) for all x such
that d(x) ≤ δ, we may take c1, δ ∈ (0, 1) smaller and Cδ larger, if necessary, to have

M+(D2dγ (x)) + C2|Ddγ (x)| ≤ −c1d
γ−2(x) forx such that d(x) ≤ δ, (3.5)

and

M+(D2dγ (x)) + C2|Ddγ (x)| ≤ Cδ forxsuch that d(x) ≥ δ. (3.6)

Then, we have

−λε ≤
∫

�

−λ̄u(x) + εM+(D2dγ (x)) + C2ε|Ddγ (x)| + C2ε

φε(x)
dμε(x)

≤ − λ̄ +
∫

�

εM+(D2dγ (x)) + C̃ε

φε(x)
dμε(x),

for some C̃ > 0 just depending on the data. Now, we can fix δ > 0 small enough such
that M+(D2dγ (x)) + C2|Ddγ (x)| + C̃ ≤ 0 for all d(x) ≤ δ, from which we get

−λε ≤ −λ̄ +
∫

�\�δ

(Cδ + C̃)ε

φε(x)
dμε(x) ≤ −λ̄ + Cε,

where the last inequality follows by the fact that φε is bounded by below by a positive
constant not depending on ε over � \ �δ . Then, we conclude that

λε ≥ λ̄ − Cε,

for some C > 0.
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For the upper bound, we consider the function

φε(x) = wε(x) − (C̄ + 1)ε − εdγ (x), x ∈ �, (3.7)

where d and γ are defined as before. Then, similarly to (3.5) and (3.6), there exists
c,C, C̃ > 0 just depending on the data such that, for each δ ∈ (0, δ0) and all x ∈ �

we have

F(x,
x

ε
, φε(x), Dφε(x), D

2φε(x))

≥ − λ̄u(x) − C2ε − C2ε|Ddγ (x)| + εM−(−D2dγ (x))

≥ − λ̄φε(x) − C̃ε + cεδγ−21�δ (x) − Cδγ−2ε1�\�δ (x)

= − (λ̄ + �ε)φε(x) + ε
[
�φε(x) − C̃ + cδγ−21�δ (x) − Cδγ−21�\�δ (x)

]
,

(3.8)

for every � > 0, which is going to be fixed below. Here we have denoted as 1A the
indicator function of the set A.

We start fixing δ > 0 small such that cδγ−2 ≥ 2C̃ + 1. Once δ is fixed this way,
we take � such that � inf�\�δ0

φε ≥ C̃ + Cδγ−2. This is a constant not depending on
ε. In particular, this makes the term in square brackets in (3.8) above non negative in
� \ �δ . On the other hand, since φε ≥ −Cε in � for some C > 0, we have

�φε(x) − C̃ + cδγ−2 ≥ −C�ε + C̃ + 1

for all x ∈ �δ . Thus, for all ε small enough in terms of the data, we conclude that φε

satisfies

F(x,
x

ε
, φε, Dφε, D

2φε) ≥ −(λ̄ + �ε)φε in �.

Since φε(x) < 0 for each x a neighborhood of the boundary, up to a multiplicative
positive constant, we have φε touches from below uε at a point x0 ∈ �where φε(x0) =
uε(x0) > 0, and therefore can be used as a test function for u. We thus have

−(λ̄ + �ε)φε(x0) ≤ F(x0, x0/ε, φε(x0), Dφε(x0), D
2φε(x0)) ≤ −λεuε(x0),

and, using once more that φε(x0) = uε(x0) > 0, from here we get λε ≤ λ̄ + �ε. This
concludes the proof. 
�

4 Proof of Theorem 1.3

This section is entirely devoted to the

Proof of Theorem 1.3: We have proved the rate of convergence for the eigenvalues in
Theorem 1.2.
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By replacing λ̄ and λε with λ̄ + C1 + 1 and λε + C1 + 1, respectively, we can
assume that L̄ and Lε are both proper operators. Let u be the solution to (1.15) with
‖u‖∞ = 1. Given ε ∈ (0, 1) consider the following homogenization problem

{
Lεwε = −λ̄u in �

wε = 0 in ∂�,
(4.1)

By Theorem 1.1.1 in [18], we have the existence of C > 0 just depending on the
coefficients of L and � (but not on ε), such that

‖wε − u‖∞ ≤ Cε. (4.2)

Assume uε is a normalized eigenfunction for (1.14) (take ‖uε‖∞ = 1 for definite-
ness), and consider zε = uε − wε + tεuε for some tε ∈ R to be fixed. It is easy to see
that zε solves the problem

{
Lεzε + λεzε = −λεwε + λ̄u in �,

zε = 0 on ∂�.
(4.3)

We consider tε such that

(zε, uε) = 0, (4.4)

where (·, ·) denotes the inner product in L2(�). This is possible by taking

tε = (wε, uε)

‖uε‖L2
− 1.

Note that, from the maximum principle applied to (4.3), ‖wε‖∞ is uniformly
bounded; hence, so is tε , since‖uε‖∞ = 1.Thus the family {zε}ε is uniformlybounded,
and by standard elliptic estimates we have it is equicontinuous in �̄.

With this choice, we claim the existence of C0 > 0 such that

‖zε‖∞ ≤ C0ε, (4.5)

for all ε ∈ (0, 1). Let us argue by contradiction, assuming the existence of a sequence
εn ∈ (0, 1) such that zn = zεn satisfies

‖zn‖∞ ≥ nεn,

as n → ∞. Notice that, in particular, we have zn is not identically zero in � for all n,
and that εn → 0 as n → ∞. Let ẑn = zn/‖zn‖∞ and note that it solves

{
Lεn ẑn + λεn ẑn = −λεwε+λ̄u

‖zn‖ in �,

ẑn = 0 on ∂�,
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Since ‖λεnwεn − λ̄u‖∞ ≤ Cεn for some C > 0, we have that

‖ − λεwε + λ̄u‖
‖zn‖ ≤ C

n
.

Then, by Corollary 2.4, we have that (ẑn) converges uniformly, up to subsequences,
to a nontrivial solution z to the eigenvalue problem

{
L̄z = −λ̄z in �

z = 0 in ∂�,

hence z is an eigenfunction of L with ‖z‖∞ = 1. On the other hand, using (4.4) we
have

(z, u) = 0,

but this implies that z = 0, a contradiction, and the claim is proven.
From (4.5), we get that

‖wε − (1 + tε)u
ε‖∞ ≤ C0ε,

and from here we get the result, by triangle inequality, (4.2) and replacing uε by
(1 + tε)uε in the statement of the theorem. 
�
Acknowledgements We wish to express our gratitude to the anonymous referee for the thorough review of
a previous version of this article. Their remarks and revisions allowed us to improve our results to a greater
generality and also make the presentation clearer.

Funding A. R.-P. was partially supported by Fondecyt Grant Postdoctorado Nacional No. 3190858. G. D.
was partially supported by Fondecyt Grant No. 1190209. E. T. was partially supported by Fondecyt Grant
No. 1201897.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

1. Alvarez, O., Bardi, M., Marchi, C.: Multiscale problems and homogenization for second-order
Hamilton-Jacobi equations. J. Differ. Equ. 243, 349–387 (2007)

2. Armstrong, S.: Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear
elliptic equations. J. Diff. Eq. 246(7), 2958–2987 (2009)

3. Armstrong, S.: TheDirichlet problem for the Bellman equations at resonance. J. Diff. Eq. 247, 931–955
(2009)

4. Bardi,M., DaLio, F.: On the strongmaximumprinciple for fully nonlinear degenerate elliptic equations
arch. Math (Basel) 73(4), 276–285 (1999)

5. Berestycki, H., Nirenberg, L., Varadhan, S.: The principal eigenvalue and maximum principle for
second order elliptic operators in general domains. Comm. Pure Appl. Math. 47(1), 47–92 (1994)

6. Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully nonlinear singular
operators. Adv. Differ. Equ. 11, 91–119 (2006)

123



Applied Mathematics & Optimization (2023) 88 :5 Page 19 of 19 5

7. Caffarelli, L.A., Souganidis, P.E.: Rates of convergence for the homogenization of fully nonlinear
uniformly elliptic PDE in random media. Invent. Math. 180(2), 301–360 (2010)

8. Cabré, X., Caffarelli, L.: Fully nonlinear elliptic equations. American Mathematical Society Collo-
quium Publications, vol. 43. American Mathematical Society, Providence, RI (1995)

9. Camilli, F., Marchi, C.: Rates of convergence in periodic homogenization of fully nonlinear uniformly
elliptic pdes. Nonlinearity 22(6), 1481 (2009)

10. Capuzzo-Dolcetta, I., Ishii, H.: On the rate of convergence in homogenization of Hamilton-Jacobi
equations. Indiana Univ. Math. J. (2001). https://doi.org/10.1512/iumj.2001.50.1933

11. Donsker, M.D., Varadhan, S.R.S.: On the principal eigenvalue of second-order elliptic differential
operators. Comm. Pure Appl. Math. 29(6), 595–621 (1976)

12. Evans, L.C.: Periodic Homogeneization of certain fully nonlinear partial differential equations Proc.
R. Soc. Edinb. A 120, 245–265 (1992)

13. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm.
Pure Appl. Math. 35(3), 333–363 (1982)

14. Fleming, W.H., Souganidis, P.: On the existence of value functions of two-player, zero sum stochastic
differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

15. Ishii, H., Lions, P.L.: Viscosity solutions of fully nonlinear second-order elliptic partial differential
equations. J. Differ. Equ. 83, 26–78 (1990)

16. Kesavan, S.: Homogenization of elliptic eigenvalue problems. I. Appl. Math. Optim. 5(2), 153–167
(1979)

17. Krylov, N.V.: Boundedly inhomogeneous elliptic and parabolic equations. Izv. Akad. Nauk SSSR Ser.
Mat. 46(3), 487–523 (1982)

18. Kim, S., Lee, K.-A.: Higher order convergence rates in theory of homogenization: equations of non-
divergence form. Arch. Rational Mech. Anal. 2016, 1273–1304 (2019)

19. Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogeneization of Hamilton-Jacobi equations.
Unpublished, (1986)

20. Osborn, O.: Spectral approximation for compact operators. Math. Comput. 29, 712–725 (1975)
21. Quaas, A., Sirakov, B.: Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic

ooperators. Adv. Math. 218(1), 105–135 (2008)
22. Silvestre, L., Sirakov, B.: Boundary regularity for viscosity solutions of fully nonlinear elliptic

equations. Commun. Partial Differ. Equ. 39, 1694–1717 (2014)
23. Trudinger, Neil S.: Hölder gradient estimates for fully nonlinear elliptic equations. Proceedings of the

Royal Society of Edinburgh, 108A, 57-65, (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1512/iumj.2001.50.1933

	Periodic Homogenization of the Principal Eigenvalue of Second-Order Elliptic Operators
	Abstract
	1 Introduction
	2 General Convergence Result
	3 Rate of Convergence for the Principal Eigenvalue
	4 Proof of Theorem 1.3
	Acknowledgements
	References




