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Abstract
We apply the sample average approximation (SAA) method to risk-neutral optimiza-
tion problems governed by nonlinear partial differential equations (PDEs)with random
inputs.We analyze the consistency of the SAA optimal values and SAA solutions. Our
analysis exploits problem structure in PDE-constrained optimization problems, allow-
ing us to construct deterministic, compact subsets of the feasible set that contain the
solutions to the risk-neutral problem and eventually those to the SAA problems. The
construction is used to study the consistency using results established in the literature
on stochastic programming. The assumptions of our framework are verified on three
nonlinear optimization problems under uncertainty.

Keywords Stochastic programming · Monte Carlo sampling · Sample average
approximation · Optimization under uncertainty · PDE-constrained optimization
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1 Introduction

Advances in areas such as computational science and engineering, applied mathe-
matics, software design, and scientific computing have allowed decision makers to
optimize complex physics-based systems under uncertainty, such as those modeled
using partial differential equations (PDEs) with uncertain inputs. Recent applications
in the field of PDE-constrained optimization under uncertainty are, for example, oil
field development [60], stellarator coil optimization [81], acoustic wave propagation
[82], and shape optimization of electrical engines [39]. In the literature on optimization
under uncertainty, several approaches have been proposed for obtaining decisions that
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are resilient to uncertainty, such as robust optimization [11] and stochastic optimization
[70]. When the parameter vector is modeled as a random vector with known probabil-
ity distribution, a common approach is to seek decisions that minimize the expected
value of a parameterized objective function. The resulting optimization problem is
referred to as risk-neutral optimization problem. However, evaluating the risk-neutral
problem’s objective function would require computing a potentially high-dimensional
integral. Furthermore, each evaluation of the parameterized objective function may
require the simulation of complex systems of PDEs, adding another challenge to
obtaining solutions to risk-neutral PDE-constrained optimization problems.

A common approach for approximating risk-neutral optimization problems is the
sample average approximation (SAA) method, yielding the SAA problem. For exam-
ple, the SAA approach is used in the literature on mathematical programming [38, 70,
73] and on PDE-constrained optimization [29, 43, 66, 81]. The SAA problem’s objec-
tive function is the sample average of the parameterized objective function computed
using samples of the random vector. To assess the quality of the SAA solutions as
approximate solutions to the risk-neutral problem, different error measures have been
considered, such as the consistency of the SAA optimal value and of SAA solutions [7,
30, 50, 68, 69, 72], nonasymptotic sample size estimates [18, 67, 70, 71, 73], mean and
almost sure convergence rates [9], and confidence intervals for SAA optimal values
[27].

A number of results on the SAA approach are based on the compactness of either
the feasible set or of sets that eventually contain the SAA solutions, such as the
consistency properties of SAA solutions and sample size estimates. The analysis of the
SAA approach as applied to PDE-constrained optimization problems is complicated
by the fact that the feasible sets are commonly noncompact, such as the set of square
integrable functions defined on the interval (0, 1) with values in [−1, 1]. Moreover,
level sets of the SAA objective function may not be contained in a deterministic,
compact set as shown in Appendix A. Our approach for establishing consistency is
based on that developed in [72, Chap. 5]. While the consistency results in [72, Chap.
5] are established for finite dimensional stochastic programs, the results do not require
the compactness of the feasible set. Instead, they are valid provided that the solution
set to the stochastic program and those to the SAA problems are eventually contained
in a deterministic, compact set.

We establish the consistency of SAA optimal values and SAA solutions to risk-
neutral nonlinear PDE-constrained optimization problems. For analyzing the SAA
approach, we construct deterministic, compact subsets of the possibly infinite dimen-
sional feasible sets that contain the solutions to risk-neutral PDE-constrained problems
and eventually those to the corresponding SAA problems. This observation allows us
to study the consistency using the tools developed in the literature onM-estimation [34,
52] and stochastic programming [70, 72]. Our consistency results are inspired by and
based on those established in [70, Sects. 2 and 7] and [72, Chap. 5]. For our construc-
tion of these compact sets, we use the fact that many PDE-constrained optimization
problems involve compact operators, such as compact embeddings. Moreover, we
use first-order optimality conditions and PDE stability estimates. The construction is
partly inspired by the computations used to establish higher regularity of solutions to
deterministic PDE-constrained optimization problems [56, p. 1305], [76, Sect. 2.15]
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and a computationmade in the author’s dissertation [57, Sect. 3.5] which demonstrates
that all SAA solutions to certain linear elliptic optimal control problems are contained
in a compact set.

The SAA method as applied to risk-neutral strongly convex PDE-constrained opti-
mization has recently been analyzed in [33, 54, 58, 66]. The authors of [62] apply
the SAA scheme to the optimal control of ordinary differential equations with ran-
dom inputs and demonstrate the epiconvergence of the SAA objective function and
the weak consistency of SAA critical points in the sense defined in [64, Definition
3.3.6]. The weak consistency implies that accumulation points of SAA critical points
are critical points of the optimal control problem [62, p. 13].

Monte Carlo sampling is one approach to approximating expected values in
stochastic program’s objective functions. For strongly convex elliptic PDE-constrained
optimization problems, quasi-Monte Carlo techniques are analyzed in [28]. Further
discretization approaches for expectations are, for example, stochastic collocation [74]
and low-rank tensor approximations [23]. Besides risk-neutral PDE-constrained opti-
mization, risk-averse PDE-constrained optimization [3, 17, 43, 44, 55], distributionally
robust PDE-constrained optimization [41, 59], robust PDE-constrained optimization
[5, 39, 51], and PDE-constrained optimization with chance constraints [16, 20, 21, 26,
75] provide approaches to decision making under uncertainty with PDEs.

1.1 Outline

We introduce notation in Sect. 2 and a class of risk-neutral nonlinear PDE-constrained
optimization problems and their SAA problems in Sect. 3. Section 3.1 presents a
compact subset that contains the solutions to the risk-neutral problem and eventually
those to its SAA problems. We study the consistency of SAA optimal values and solu-
tions in Sect. 3.2. Section 4 discusses the application of our theory to three nonlinear
PDE-constrained optimization problems under uncertainty. We summarize our con-
tributions, and discuss some limitations of our approach and open research questions
in Sect. 5.

2 Notation and Preliminaries

Throughout the paper, the control space U is a real, separable Hilbert space and is
identified with its dual, that is, we omit writing the Riesz mapping.

Metric spaces are defined over the real numbers and equipped with their Borel
sigma-algebra. We abbreviate “with probability one” by w.p. 1. Let (�,A, μ) be
probability space. For two complete metric spaces Λ1 and Λ2, a mapping G : Λ1 ×
� → Λ2 is a Carathéodory mapping if G(·, θ) is continuous for all θ ∈ � and
G(v, ·) is measurable for each v ∈ Λ1. Let Λ be a Banach space. For each N ∈ N,
let ϒN : � ⇒ Λ be a set-valued mapping and let � ⊂ Λ be a set. We say that
w.p. 1 for all sufficiently large N , ϒN ⊂ � if the set { θ ∈ � : ∃ n(θ) ∈ N∀ N ≥
n(θ); ϒN (θ) ⊂ �} is contained in A and occurs w.p. 1, that is, if the limit inferior
of the sequence ({ θ ∈ � : ϒN (θ) ⊂ �})N is contained in A and occurs w.p. 1 [12,
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p. 55]. A mapping υ : � → Λ is strongly measurable if there exists a sequence of
simple mappings υk : � → Λ such that υk(θ) → υ(θ) as k → ∞ for all θ ∈ � [35,
Definition 1.1.4]. If Λ is separable, then υ : � → Λ is strongly measurable if and
only if it is measurable [35, Corollary 1.1.2 and Theorem 1.1.6]. The dual to a Banach
space Λ is Λ∗ and the norm of Λ is denoted by ‖·‖Λ. We use 〈·, ·〉Λ∗,Λ to denote the
dual pairing between Λ∗ and Λ. If Λ is a reflexive Banach space, we identify (Λ∗)∗
withΛ and write (Λ∗)∗ = Λ. LetΛ1 andΛ2 be real Banach spaces. A linear operator
ϒ : Λ1 → Λ2 is compact if the image ϒ(Λ0) is precompact in Λ2 for each bounded
set Λ0 ⊂ Λ1 [49, Definition 8.1-1]. The operator ϒ∗ : Λ∗

2 → Λ∗
1 is the (Banach

space-)adjoint operator of the linear, boundedmappingϒ : Λ1 → Λ2 and is defined by
〈ϒ∗v2, v1〉Λ∗

1,Λ1 = 〈v2, ϒv1〉Λ∗
2,Λ2 [49,Definition 4.5-1].WeuseΛ1 ↪−→ Λ2 to denote

a continuous embedding fromΛ1 toΛ2, that is,Λ1 ⊂ Λ2 and the embedding operator
ι : Λ1 → Λ2 defined by ι[v] = v is continuous [65, Definition 7.15 and Rem. 7.17]. A
continuous embedding is compact if the embedding operator is a compact operator [65,
Definition 7.25 and Lemma 8.75]. We denote by D f the Fréchet derivative of f , and
use the notation Dx f and fx for partial derivatives with respect to x . Throughout the
text, D ⊂ R

d is a bounded domain. For p ∈ [1,∞), we denote by L p(D) the Lebesgue
space of p-integrable functions defined on D and L∞(D) that of essentially bounded
functions. The space H1(D) is the space of all v ∈ L2(D) with weak derivatives
contained in L2(D)d , where L2(D)d is the Cartesian product of L2(D) taken d times.
We equip H1(D)with the norm‖y‖H1(D) = (‖y‖2

L2(D)
+‖∇ y‖2

L2(D)d )
1/2. TheHilbert

space H1
0 (D) consists of all v ∈ H1(D) with zero boundary traces and is equipped

with the norm ‖y‖H1
0 (D) = ‖∇ y‖L2(D)d . We define H−1(D) = H1

0 (D)∗. We define
Friedrichs’ constantCD ∈ (0,∞) byCD = supv∈H1

0 (D)\{0} ‖v‖L2(D) / ‖v‖H1
0 (D). The

indicator function IU0 : U → [0,∞] of U0 ⊂ U is given by IU0(v) = 0 if v ∈ U0
and IU0(v) = ∞ otherwise. For a convex, lower semicontinuous, proper function
χ : U → (−∞,∞], the proximity operator proxχ : U → U of χ is defined by (see
[10, Definition 12.23])

proxχ (v) = argmin
w∈U

χ(w) + (1/2) ‖v − w‖2U .

3 Risk-Neutral PDE-Constrained Optimization Problem

We consider the risk-neutral PDE-constrained optimization problem

min
u∈U

E [J1(S(u, ξ), ξ)] + ψ(u) + (α/2) ‖u‖2U (1)

and its sample average approximation

min
u∈U

1

N

N∑

i=1

J1(S(u, ξ i ), ξ i ) + ψ(u) + (α/2) ‖u‖2U , (2)
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where α > 0, and ξ1, ξ2, . . . are independent identically distributed�-valued random
elements defined on a complete probability space (�,F , P) and each ξ i has the same
distribution as that of the random element ξ . Here, ξ maps from a probability space to
a complete probability space with sample space � being a complete, separable metric
space.We state assumptions on the mappings J1 : Y ×� → [0,∞),ψ : U → [0,∞],
and S : U ×� → Y aswell as on the control spaceU and state spaceY inAssumptions
1 and 2. Let F : U → [0,∞] be the objective function of (1) and let F̂N : U → [0,∞]
be that of (2). Since ξ1, ξ2, . . . are definedon the commonprobability space (�,F , P),
we can view the function F̂N as defined on U × �. However, we often omit writing
the second argument. We often use ξ to denote a deterministic element in �.

In the remainder of the section, we impose conditions on the optimization problem
(1). Assumptions 1 and 2 ensure that the reduced formulation of the risk-neutral
problem (1) and its SAA problem (2) are well-defined.

Assumption 1 (a) The space U is a real, separable Hilbert space, and Y is a real,
separable Banach space.

(b) The function J1 : Y × � → [0,∞) is a Carathéodory function, and J1(·, ξ) is
continuously differentiable for all ξ ∈ �.

(c) The regularization parameter α is positive, andψ : U → [0,∞] is proper, convex
and lower semicontinuous.

The nonnegativity of J1 and ψ is fulfilled for many PDE-constrained optimization
problems (see Sect. 4). We define the feasible set

Uad = { u ∈ U : ψ(u) < ∞}. (3)

Assumption 2 (a) The operator E : (Y × U ) × � → Z is a Carathéodory mapping,
E(·, ·, ξ) is continuously differentiable for all ξ ∈ �, and Z is a real, separable
Banach space.

(b) For each (u, ξ) ∈ U × �, S(u, ξ) ∈ Y is the unique solution to: find y ∈ Y with
E(y, u, ξ) = 0.

(c) For each (u, ξ) ∈ U × �, Ey(S(u, ξ), u, ξ) has a bounded inverse.

Assumptions 1 and 2 and the implicit function theorem ensure that S(·, ξ) is contin-
uously differentiable on U for each ξ ∈ �. Let us define Ĵ1 : U × � → [0,∞)

by

Ĵ1(u, ξ) = J1(S(u, ξ), ξ) (4)

and Ĵ : U × � → [0,∞) by

Ĵ (u, ξ) = Ĵ1(u, ξ) + ψ(u) + (α/2) ‖u‖2U . (5)

Let us fix ξ ∈ �. Assumptions 1 and 2 allow us to use the adjoint approach [32, Sect.
1.6.2] to compute the gradient of the function Ĵ1(·, ξ) defined in (4) at each u ∈ U . It
yields the gradient

∇u Ĵ1(u, ξ) = Eu(S(u, ξ), u, ξ)∗z(u, ξ), (6)
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where for each (u, ξ) ∈ U × �, z(u, ξ) ∈ Z∗ is the unique solution to the (parame-
terized) adjoint equation: find z ∈ Z∗ with

Ey(S(u, ξ), u, ξ)∗z = −Dy J1(S(u, ξ), ξ). (7)

Assumption 3 The risk-neutral problem (1) has a solution. For each N ∈ N and every
ω ∈ �, the SAA problem (2) has a solution.

We refer the reader to [42, Theorem 1] and [44, Proposition 3.12] for theorems on the
existence of solutions to risk-averse PDE-constrained optimization problems.

For some u0 ∈ Uad with E
[
Ĵ (u0, ξ)

]
< ∞ and a scalar ρ ∈ (0,∞), we define the

set

V ρ
ad(u0) = {u ∈ Uad : (α/2) ‖u‖2U ≤ E

[
Ĵ (u0, ξ)

] + ρ}.

The existence of such a point u0 is implied by Assumption 3, for example. Whereas
Uad may be unbounded, the set V ρ

ad(u0) is bounded. If Uad is bounded and ρ ∈ (0,∞)

is sufficiently large, then V ρ
ad(u0) = Uad. Each solution to the risk-neutral problem (1)

is contained in V ρ
ad(u0), because Ĵ1 ≥ 0, ψ ≥ 0, and u0 ∈ Uad.

Assumption 4 allows us to construct compact subsets of the bounded set V ρ
ad(u0).

Assumption 4 (a) The linear operator K : V → U is compact, V is a real, separable
Banach space, and BV ρ

ad(u0)
⊂ U is a bounded, convex neighborhood of V ρ

ad(u0).
(b) The mapping M : U × � → V is a Carathéodory mapping and for all (u, ξ) ∈

U × �,

∇u Ĵ1(u, ξ) = K [M(u, ξ)]. (8)

(c) For some integrable random variable ζ : � → [0,∞),

‖M(u, ξ)‖V ≤ ζ(ξ) for all (u, ξ) ∈ BV ρ
ad(u0)

× �. (9)

Assumption 4 (b) and the gradient formula in (6) yield for all (u, ξ) ∈ U × �,

Eu(S(u, ξ), u, ξ)∗z(u, ξ) = K [M(u, ξ)].

Assumption 4 (c)may be verified using stability estimates for the solution operator and
adjoint state. If BV ρ

ad(u0)
would be unbounded, then Assumption 4 (c) may be violated.

Lemma 1 If Assumptions 1 and 2 hold, then Ĵ1 : U ×� → [0,∞) is a Carathéodory
mapping.

Proof For each ξ ∈ �, the implicit function theoremwhen combinedwithAssumption
1 and 2 ensures that the mappings S(·, ξ) is continuously differentiable. In particular,
Ĵ1(·, ξ) is continuous. Fix u ∈ U . The measurability of S(u, ·) follows from [8,
Theorem 8.2.9] when combined with Assumptions 1 and 2. Using the definition of Ĵ1
provided in (4), the measurability of J1(u, ·) and of S(u, ·), the separability of Y , and
the composition rule [35, Corollary 1.1.11], we find that Ĵ1(u, ·) is measurable. ��
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We define the expectation function F1 : BV ρ
ad(u0)

→ R and the sample average

function F̂1,N : BV ρ
ad(u0)

→ R by

F1(u) = E
[
Ĵ1(u, ξ)

]
and F̂1,N (u) = 1

N

N∑

i=1

Ĵ1(u, ξ i ). (10)

Lemma 2 If Assumptions 1-4 hold, then F1 and F̂1,N are continuously differentiable
on BV ρ

ad(u0)
and for each u ∈ BV ρ

ad(u0)
, we have ∇F1(u) = E

[∇u Ĵ1(u, ξ)
]

and

∇ F̂1,N (u) = (1/N )
∑N

i=1 ∇u Ĵ1(u, ξ i ).

We prove Lemma 2 using Lemma 3.

Lemma 3 If Assumptions 1,2 and 4 hold, then for all ξ ∈ �, the function Ĵ1(·, ξ) is
continuously differentiable on U, and for all u ∈ BV ρ

ad(u0)
, we have

Ĵ1(u, ξ) ≤ Ĵ1(u0, ξ) + CK ζ(ξ) ‖u − u0‖U ,

where CK ∈ [0,∞) is the operator norm of K .

Proof Since K is linear and compact, it is bounded [49, Lemma 8.1-2]. Hence CK

is finite. For each ξ ∈ �, Ĵ1(·, ξ) is continuously differentiable on U owing to the
implicit function theorem and Assumptions 1 and 2. Since ψ ≥ 0 and Ĵ1 ≥ 0,
we have u0 ∈ V ρ

ad(u0). Using the mean-value theorem, the convexity of BV ρ
ad(u0)

, u,
u0 ∈ BV ρ

ad(u0)
, the formula (8), and the estimate (9), we obtain

Ĵ1(u, ξ) − Ĵ1(u0, ξ) ≤ sup
t∈(0,1)

∥∥∇u Ĵ1(u0 + t(u − u0), ξ)
∥∥

U ‖u − u0‖U

≤ CK ζ(ξ) ‖u − u0‖U .

��
Proof (Proof of Lemma 2) Owing toψ(u0) ∈ [0,∞),E

[
Ĵ (u0, ξ)

]
< ∞, and Ĵ1 ≥ 0,

we have E
[
Ĵ1(u0, ξ)

] ∈ [0,∞). Combined with Lemma 3 and E [ζ(ξ)] < ∞, we
find that F1 is well-defined on the open set BV ρ

ad(u0)
. Moreover, Ĵ1(·, ξ) is continuously

differentiable on U for all ξ ∈ �. Combined with Assumption 4 and [25, Lemma
C.3], we find that F1 and F̂1,N are Fréchet differentiable on BV ρ

ad(u0)
with the asserted

derivatives. Using Assumption 4 and the dominated convergence theorem, we obtain
the continuity of the Fréchet derivatives on BV ρ

ad(u0)
. ��

3.1 Compact Subsets

We define a compact subset of the feasible set Uad that contains the solutions to the
risk-neutral problem (1) and eventually those to its SAA problem (2).
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Let us define

W ρ
ad = V ρ

ad(u0) ∩ {proxψ/α(−(1/α)K [v]) : v ∈ V , ‖v‖V ≤ E [ζ(ξ)] + ρ}‖·‖U
,

(11)

where U0
‖·‖U denotes the ‖·‖U -closure of U0 ⊂ U .

Lemma 4 If Assumptions 1,2 and 4 hold, then W ρ
ad is a compact subset of Uad.

Proof We first show that the second set on the right-hand side in (11) is compact.
Assumption 4 (c) yieldsE [ζ(ξ)] < ∞. Hence the set {v ∈ V : ‖v‖V ≤ E [ζ(ξ)]+ρ}
is bounded. Thus, its image under the compact operator K (see Assumption 4 (a))
is precompact. The operator proxψ/α(−(1/α)·) : U → U is continuous, as proxψ/α

is firmly nonexpansive [10, Proposition 12.28]. Since each continuous function maps
precompact sets to precompact ones [49, p. 412], the second set on the right-hand
side in (11) is compact. This set is a subset of Uad because proxψ/α(U ) ⊂ Uad.
Since V ρ

ad(u0) is closed, the set W ρ
ad is compact. Owing to V ρ

ad(u0) ⊂ Uad, we have
W ρ

ad ⊂ Uad. ��
For each ω ∈ �, we define

W [N ]
ad (ω) = {u = proxψ/α(−(1/α)∇u F̂1,N (u, ω)) : u ∈ V ρ

ad(u0)}
‖·‖U

. (12)

Lemma 5 Let Assumptions 1-4 hold. Then the following assertions hold.

1. The set of solutions to (1) is contained in W ρ
ad.

2. We have w.p. 1 for all sufficiently large N, W [N ]
ad ⊂ W ρ

ad.

Proof 1. Let u∗ be a solution to (1). Since Ĵ1 ≥ 0 and ψ ≥ 0, we have u∗ ∈
V ρ
ad(u0). Lemma 2 ensures that F1 is continuously differentiable on BV ρ

ad(u0)
. Hence

u∗ = proxψ/α(−(1/α)∇F1(u∗)) (cf. [63, Proposition 3.5] and [53, p. 2092]).Using
Assumption 4, in particular the bound in (9), and [35, Proposition 1.2.2], we have

∥∥E
[
M(u∗, ξ)

]∥∥
V ≤ E

[∥∥M(u∗, ξ)
∥∥

V

] ≤ E [ζ(ξ)] < ∞.

Combined with (8) and [35, eq. (1.2)], we find that

∇F1(u
∗) = E

[
K M(u∗, ξ)

] = KE
[
M(u∗, ξ)

]
.

Since u∗ = proxψ/α(−(1/α)KE
[
M(u∗, ξ)

]
) and ρ > 0, we have u∗ ∈ W ρ

ad (see
(11)).

2. The (strong) law of large numbers ensures (1/N )
∑N

i=1 ζ(ξ i ) → E [ζ(ξ)] w.p. 1
as N → ∞. Combined with ρ > 0, we deduce the existence of an event �1 ∈ F
with P(�1) = 1 and for each ω ∈ �1, there exists n(ω) ∈ N such that for all
N ≥ n(ω), we have

1

N

N∑

i=1

ζ(ξ i (ω)) ≤ E [ζ(ξ)] + ρ.
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Fix ω ∈ �1 and let N ≥ n(ω). Let u ∈ V ρ
ad(u0) be arbitrary. Using V ρ

ad(u0) ⊂
BV ρ

ad(u0)
and Assumption 4, we find that

∥∥∥∥
1

N

N∑

i=1

M(u, ξ i (ω))

∥∥∥∥
V

≤ 1

N

N∑

i=1

∥∥∥M(u, ξ i (ω))

∥∥∥
V

≤ 1

N

N∑

i=1

ζ(ξ i (ω))

≤ E [ζ(ξ)] + ρ,

where the right-hand side is independent of u ∈ V ρ
ad(u0). Furthermore

∇ F̂1,N (u, ω) = (1/N )

N∑

i=1

∇u Ĵ1(u, ξ i (ω)) = K

(
(1/N )

N∑

i=1

M(u, ξ i (ω))

)
.

We conclude that u = proxψ/α(−(1/α)∇ F̂1,N (u, ω)) ∈ W ρ
ad for each u ∈ V ρ

ad(u0).

Since W ρ
ad is closed (see Lemma 4), we have W [N ]

ad (ω) ⊂ W ρ
ad. Hence

�1 ⊂ {ω ∈ � : ∃ n(ω) ∈ N ∀ N ≥ n(ω); W [N ]
ad (ω) ⊂ W ρ

ad}.

The set on the right-hand side is a subset of �. Since �1 ∈ F , P(�1) = 1 and
(�,F , P) is complete, the set on the right-hand side is measurable and hence
occurs w.p. 1.

��
To establish the measurability of the event “for all sufficiently large N , W [N ]

ad ⊂
W ρ

ad,” we used the fact that (�,F , P) is complete. Since this event equals the limit

inferior of the sequence ({ω ∈ � : W [N ]
ad (ω) ⊂ W ρ

ad})N , the measurability of the event

would also be implied by that of {ω ∈ � : W [N ]
ad (ω) ⊂ W ρ

ad} for each N ∈ N [12,

p. 55]. This approach would require us to show that {ω ∈ � : W [N ]
ad (ω) ⊂ W ρ

ad} is
measurable for each N ∈ N, which entails those of {ω ∈ � : W [N ]

ad (ω) ⊂ W ρ
ad} and

W [N ]
ad . Using [8, Theorem 8.2.8], we can show that W [N ]

ad is measurable. However, an
application of [8, Theorem 8.2.8] requires (�,F , P) be complete.

3.2 Consistency of SAA Optimal Values and SAA Solutions

We demonstrate the consistency of the SAA optimal value and the SAA solutions. Let
ϑ∗ andS be the optimal value and the set of solutions to (1), respectively. Moreover,
for each ω ∈ �, let ϑ̂∗

N (ω) and ŜN (ω) be the optimal value and the set of solutions
to the SAA problem (2), respectively.

We define the distance dist(u,S ) from u ∈ ŜN (ω) to S and the deviation
D(ŜN (ω),S ) between the sets ŜN (ω) and S by

dist(u,S ) = inf
v∈S

‖u − v‖U and D(ŜN (ω),S ) = sup
u∈ŜN (ω)

dist(u,S ).
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Theorem 1 If Assumptions 1-4 hold, then ϑ̂∗
N → ϑ∗ and D(ŜN ,S ) → 0 w.p. 1 as

N → ∞.

We prepare our proof of Theorem 1, which is based on that of [72, Theorem 5.3].

Lemma 6 If Assumptions 1, 2 and 4 hold, then the function Ĵ1 defined in (4) is a
Carathéodory function on W ρ

ad × �. Moreover, ( Ĵ1(u, ξ))u∈Wρ
ad

is dominated by an
integrable function.

Proof Lemma 4 ensures that W ρ
ad is a compact metric space. Since W ρ

ad ⊂ U and Ĵ1 is
a Carathéodory function on U × � (see Lemma 1), the function Ĵ1 is a Carathéodory
function on W ρ

ad × �. Lemma 3 ensures that for all u ∈ W ρ
ad ⊂ V ρ

ad(u0),

Ĵ1(u, ξ) ≤ Ĵ1(u0, ξ) + CK ζ(ξ) sup
u∈Wρ

ad

‖u − u0‖U .

The random variable on the right-hand side is integrable owing to the integrability of
ζ (see Assumption 4 (c)), the boundedness of W ρ

ad (see Lemma 4), CK ∈ [0,∞), and
E

[
Ĵ (u0, ξ)

]
< ∞. Combined with Ĵ1 ≥ 0, we find that ( Ĵ1(u, ξ))Wρ

ad
is dominated

by an integrable random variable. ��

Lemma 7 If Assumptions 1-4 hold, then for each N ∈ N, the functions ϑ̂∗
N and

D(ŜN ,S ) are measurable.

Proof For each ω ∈ �, Assumption 3 ensures that ŜN (ω) is nonempty. The function
Ĵ1 is Carathéodory function onU ×� according to Lemma 6 andψ is lower semicon-
tinuous according to Assumption 1 (c). Hence ϑ̂∗

N is measurable [15, Lemma III.39]

and the set-valued mapping ŜN is measurable [15, p. 86]. Assumption 3 implies that
S is nonempty and, hence, dist(·,S ) is (Lipschitz) continuous [4, Theorem 3.16].
For each ω ∈ �, F̂N (·, ω) is lower semicontinuous and hence ŜN (ω) is closed. Thus
D(ŜN ,S ) is measurable [8, Theorem 8.2.11]. ��

Lemma 8 If Assumptions 1-4 hold, then F̂N converges to F w.p. 1 uniformly on W ρ
ad.

Proof We first verify the hypotheses of the uniform law of large numbers established
in [52, Corollary 4:1] to demonstrate the uniform almost sure convergence of F̂1,N to
F1 on W ρ

ad.
Lemma 6 ensures that Ĵ1 is a Carathéodory function on W ρ

ad × � and that
( Ĵ1(u, ξ))u∈Wρ

ad
is dominated by an integrable function. Moreover, W ρ

ad is a compact

metric space (see Lemma 4). Since ξ1, ξ2, . . . are independent identically distributed
random elements, the uniform law of large numbers [52, Corollary 4:1] implies that
F̂1,N (·) = (1/N )

∑N
i=1 Ĵ1(·, ξ i ) converges to F1(·) = E

[
Ĵ1(·, ξ)

]
w.p. 1 uniformly

on W ρ
ad.

Since Uad is the domain of ψ and ψ ≥ 0, we have ψ(u) ∈ [0,∞) for all u ∈ Uad.
Lemma 4 ensures W ρ

ad ⊂ Uad. Hence for all u ∈ W ρ
ad,
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F̂N (u) − F(u) = F̂1,N (u) + (α/2) ‖u‖2U + ψ(u) − (
F1(u) + (α/2) ‖u‖2U + ψ(u)

)

= F̂1,N (u) − F1(u).

Therefore, the assertion follows from the above uniform convergence statement. ��
Lemma 9 demonstrates that the SAA solution set is eventually contained in the

compact set W ρ
ad.

Lemma 9 If Assumptions 1-4 hold, then w.p. 1 for all sufficiently large N, ŜN ⊂ W ρ
ad.

Proof First, we show that w.p. 1 for all sufficiently large N , ŜN ⊂ V ρ
ad(u0). Lemma

6 ensures that Ĵ1 is a Carathéodory function on U × �. Since Ĵ ≥ 0, u0 ∈ Uad, and
E

[
Ĵ (u0, ξ)

]
< ∞, the (strong) law of large numbers ensures

1

N

N∑

i=1

Ĵ (u0, ξ
i ) → E

[
Ĵ (u0, ξ)

]
w.p. 1 as N → ∞.

Combined with ρ > 0, we deduce the existence of an event �1 ∈ F such that
P(�1) = 1 and for each ω ∈ �1, there exists n1(ω) ∈ N such that for all N ≥ n1(ω),
we have

1

N

N∑

i=1

Ĵ (u0, ξ
i (ω)) ≤ E

[
Ĵ (u0, ξ)

] + ρ. (13)

Fix ω ∈ �1 and let N ≥ n1(ω). Using ψ ≥ 0 and Ĵ1 ≥ 0, we have for all u∗
N =

u∗
N (ω) ∈ ŜN (ω),

(α/2)
∥∥u∗

N

∥∥2
U ≤ 1

N

N∑

i=1

Ĵ1(u
∗
N , ξ i (ω)) + ψ(u∗

N ) + (α/2)
∥∥u∗

N

∥∥2
U

≤ 1

N

N∑

i=1

Ĵ (u0, ξ
i (ω)).

Combined with (13), we find that ŜN (ω) ⊂ V ρ
ad(u0).

By construction of W [N ]
ad , we have ŜN (ω) ∩ V ρ

ad(u0) ⊂ W [N ]
ad (ω) for all ω ∈ �.

Indeed, if u∗
N (ω) ∈ ŜN (ω)∩V ρ

ad(u0), thenwe have the first-order optimality condition

u∗
N (ω) = proxψ/α(−(1/α)∇ F̂1,N (u∗

N (ω), ω)). Hence u∗
N (ω) ∈ W [N ]

ad (ω). Lemma 5

implies that w.p. 1 for all sufficiently large N , W [N ]
ad ⊂ W ρ

ad. Hence there exists
�2 ∈ F with P(�2) = 1 and for each ω ∈ �2 there exists n2(ω) ∈ N such that
for all N ≥ n2(ω), W [N ]

ad (ω) ⊂ W ρ
ad. Putting together the pieces, we find that for all

ω ∈ �1 ∩ �2 and each N ≥ max{n1(ω), n2(ω)}, we have ŜN (ω) ⊂ W ρ
ad. Since

(�,F , P) is complete and P(�1 ∩ �2) = 1, we have w.p. 1 for all sufficiently large
N , ŜN ⊂ W ρ

ad. ��
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Proof (Proof of Theorem 1) The proof is based on that of [72, Theorem 5.3]. Lemma 5
yieldsS ⊂ W ρ

ad. Lemma 9 ensures that w.p. 1 for all sufficiently large N , ŜN ⊂ W ρ
ad.

Hence, we deduce the existence of an event �1 ∈ F with P(�1) = 1 and for each
ω ∈ �1 there exists n(ω) ∈ N such that for all N ≥ n(ω), ŜN (ω) ⊂ W ρ

ad. Lemma
8 ensures that F̂N (·, ω) converges to F(·) uniformly on W ρ

ad for almost all ω ∈ �.
Therefore, there exists �2 ∈ F with P(�2) = 1 and for each ω ∈ �2, F̂N (·, ω)

converges to F(·) uniformly on W ρ
ad.

We show that ϑ̂∗
N (ω) → ϑ∗ as N → ∞ for each ω ∈ �1 ∩ �2. Fix ω ∈ �1 ∩ �2.

Assumption 3 ensures that S and ŜN (ω) are nonempty for all N ∈ N. Let u∗ ∈ S

and let u∗
N (ω) ∈ ŜN (ω). Then for all N ≥ n(ω), we have u∗

N (ω) ∈ W ρ
ad and hence

|ϑ̂∗
N (ω)−ϑ∗| ≤ supu∈Wρ

ad
|F̂N (u, ω)−F(u)| for all N ≥ n(ω) (cf. [37, pp. 194–195]).

We deduce ϑ̂∗
N (ω) → ϑ∗ as N → ∞.

Next, we show that D(ŜN (ω),S ) → 0 as N → ∞ for each ω ∈ �1 ∩ �2. Fix
ω ∈ �1 ∩ �2. Since S is nonempty (see Assumption 3), the function dist(·,S ) is
(Lipschitz) continuous [4, Theorem3.16]. For each N ≥ n(ω), the set ŜN (ω) is closed
and ŜN (ω) ⊂ W ρ

ad. Hence ŜN (ω) is compact for each N ≥ n(ω). Therefore, for each

N ≥ n(ω), there exists uN = uN (ω) ∈ W ρ
ad with dist(uN ,S ) = D(ŜN (ω),S ).

Suppose that D(ŜN (ω),S ) �→ 0. We deduce the existence of a subsequence N =
N (ω) of (n(ω), n(ω) + 1, . . .) such that D(uN ,S ) ≥ ε for all N ∈ N and some
ε > 0, and uN → ū ∈ W ρ

ad as N � N → ∞. Combined with the fact that dist(·,S )

is continuous, we obtain ū /∈ S . Hence F(ū) > ϑ∗. We have

lim inf
N�N→∞

F̂N (uN , ω) = lim
N�N→∞

(
F̂N (uN , ω) − F(uN )

) + lim inf
N�N→∞

F(uN ).

The uniform convergence implies that the first term in the right-hand side is zero. Since
F is lower semicontinuous on Uad (see Assumption 1 and Lemma 2), F(ū) > ϑ∗, and
F̂N (uN , ω) = ϑ̂∗

N (ω), we find that

lim inf
N�N→∞

ϑ̂∗
N (ω) = lim inf

N�N→∞
F̂N (uN , ω) = lim inf

N�N→∞
F(uN ) ≥ F(ū) > ϑ∗.

This contradicts ϑ̂∗
N (ω) → ϑ∗ as N → ∞. Hence D(ŜN (ω),S ) → 0 as N → ∞.

Combined with Lemma 7 and the fact that P(�1 ∩ �2) = 1, we obtain the almost
sure convergence statements. ��

4 Examples

We present three risk-neutral nonlinear PDE-constrained optimization problems and
verify the assumptions made in Sect. 3, except Assumption 3 on the existence of
solutions in order to keep the section relatively short.

We use the following facts. (i) The Sobolev spaces H1
0 (D) and H1(D) are separable

Hilbert spaces [1, Theorem 3.5]. (ii) If a real Banach space is reflexive and separable,
then its dual is separable [1, Theorem1.14]. (iii) The operator normof a linear, bounded
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operator equals that of its (Banach space-)adjoint operator [49, Theorem 4.5-2]. (iv)
If Λ1 and Λ2 are real, reflexive Banach spaces and ϒ : Λ1 → Λ2 is linear and
bounded, then (ϒ∗)∗ = ϒ [6, p. 390] (see also [65, Theorem 8.57]) because we write
(Λ∗

i )
∗ = Λi for i ∈ {1, 2}.

4.1 Boundary Optimal Control of a Semilinear State Equation

We consider the risk-neutral boundary optimal control of a parameterized semilinear
PDE. Our model problem is based on the deterministic semilinear boundary control
problems studied in [14, 32, 36, 76].

We consider

min
u∈L2(∂ D)

(1/2)E
[
‖S(u, ξ) − yd‖2L2(D)

]
+ (α/2) ‖u‖2L2(∂ D)

+ ψ(u), (14)

where ∂ D is the boundary of D ⊂ R
2 and for each (u, ξ) ∈ L2(∂ D) × �, the state

S(u, ξ) ∈ H1(D) is the weak solution to: find y ∈ H1(D) with

−∇ · (κ(ξ)∇ y) + g(ξ)y + y3 = b(ξ) in D, κ(ξ)∂ν y + σ(ξ)y = Bu on ∂ D,

(15)

where ∂ν y is the normal derivative of y; see [76, p. 31]. For a boundedLipschitz domain
D ⊂ R

d , we denote by L2(∂ D) the space of square integrable functions on ∂ D and
by L∞(∂ D) that of essentially bounded functions [6, p. 263]. The space L2(∂ D) is
a Hilbert space with inner product (v,w)L2(∂ D) = ∫

∂ D v(x)w(x)dHd−1(x), where
Hd−1 is the (d − 1)-dimensional Hausdorff measure on ∂ D [6, Theorem 3.16 and pp.
47, 263 and 267]. The space L2(∂ D) is separable [61, Theorem 4.1].

We formulate assumptions on the control problem (14).

– D ⊂ R
2 is a bounded Lipschitz domain.

– κ , g : � → L∞(D) are strongly measurable and there exist κmin, κmax, gmin,
gmax ∈ (0,∞) such that κmin ≤ κ(ξ) ≤ κmax and gmin ≤ g(ξ) ≤ gmax for all
ξ ∈ �.

– b : � → L2(D) and σ : � → L∞(∂ D) are strongly measurable with

E

[
‖b(ξ)‖2L2(D)

]
< ∞, E

[
‖σ(ξ)‖2L∞(∂ D)

]
< ∞ and σ(ξ) ≥ 0 for all ξ ∈ �.

– B : L2(∂ D) → L2(∂ D) is a linear, bounded operator.
– yd ∈ L2(D), α > 0, and ψ : L2(∂ D) → [0,∞] is proper, convex, and lower
semicontinuous.

Throughout the section, we assume these conditions be satisfied.
We establish Assumption 1. Since the embedding H1(D) ↪−→ L2(D) is continuous,

the function J1 : H1(D) → [0,∞) defined by J1(y) = (1/2) ‖y − yd‖2
L2(D)

is
continuously differentiable. We find that Assumption 1 holds true.
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We formulate the weak form of (15) as an operator equation; cf. [36, eq. (2)]. We
define E : H1(D) × L2(∂ D) × � → H1(D)∗ by

〈E(y, u, ξ), v〉H1(D)
∗
,H1(D) = (κ(ξ)∇ y,∇v)L2(D)2 + (g(ξ)y + y3, v)L2(D)

+ (σ (ξ)τ∂ D[y], τ∂ D[v])L2(∂ D)

− (b(ξ), v)L2(D) − (Bu, τ∂ D[v])L2(∂ D).

(16)

where τ∂ D : H1(D) → L2(∂ D) is the trace operator. We refer the reader to [6, p.
268] for the definition of τ∂ D . Since D has a Lipschitz boundary, the trace operator
τ∂ D is linear and compact [61, Theorem 6.2].

We verify Assumption 2. Using [32, Theorem 1.15], we find that E(y, u, ξ) = 0
has a unique solution S(u, ξ) ∈ H1(D) for each (u, ξ) ∈ L2(∂ D) × �. Since
the embedding H1(D) ↪−→ L6(D) is continuous [32, Theorem 1.14], we have
y3 ∈ L2(D) for each y ∈ H1(D) [32, p. 57] and the mapping L6(D) � y �→
y3 ∈ L2(D) is continuously differentiable [32, p. 76]. We find that E(·, ·, ξ) is
continuously differentiable. Now, the Lax–Milgram lemma can be used to show
that Ey(S(u, ξ), u, ξ) has a bounded inverse. We show that E(y, u, ·) is measur-
able for each (y, u) ∈ H1(D) × L2(∂ D). Since H1(D)∗ is separable, it suffices to
show that ξ �→ 〈E(y, u, ξ), v〉H1(D)

∗
,H1(D) is measurable for each fixed (y, v, u) ∈

H1(D)2 × L2(∂ D) [35, Theorem 1.1.6]. We define φ : L∞(D) → R by φ(ν) =
(ν∇ y,∇v)L2(D)2 . Hölder’s inequality ensures that φ is (Lipschitz) continuous. Since
ξ �→ (κ(ξ)∇ y,∇v)L2(D)2 is the composition of the continuous function φ with κ , it
is measurable [35, Corollary 1.1.11]. Similar arguments can be used to establish the
measurability of the other terms in (16). Hence Assumption 2 holds true.

We establish Assumption 4. Fix (u, ξ) ∈ L2(∂ D) × �. Choosing v = S(u, ξ) in
(16) and using

(κ(ξ)∇ y,∇ y)L2(D)2 + (g(ξ)y, y)L2(D) ≥ min{κmin, gmin} ‖y‖2H1(D)

valid for all y ∈ H1(D), we obtain the stability estimate

min{κmin, gmin} ‖S(u, ξ)‖H1(D) ≤ ‖b(ξ)‖L2(D) + Cτ∂ D ‖Bu‖L2(∂ D) , (17)

where Cτ∂ D is the operator norm of τ∂ D . For each (u, ξ) ∈ L2(∂ D) × �, let z(u, ξ)

be the unique solution to the adjoint equation: find z ∈ H1(D) with

(κ(ξ)∇z,∇v)L2(D)2 + (g(ξ)z + 3S(u, ξ)2z, v)L2(D) + (σ (ξ)τ∂ D[z], τ∂ D[v])L2(∂ D)

= −(S(u, ξ) − yd , v)L2(D) for all v ∈ H1(D);

cf. [76, eq. (4.54)] and [36, p. 729]. For its solution z(u, ξ), we obtain

min{κmin, gmin} ‖z(u, ξ)‖H1(D) ≤ ‖S(u, ξ) − yd‖L2(D) . (18)
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Since τ ∗
∂ D is the adjoint operator of τ∂ D , we have for all u ∈ L2(∂ D) and v ∈ H1(D),

(Bu, τ∂ D[v])L2(∂ D) = 〈τ ∗
∂ D Bu, v〉H1(D)

∗
,H1(D). Combined with τ∂ D = (τ ∗

∂ D)∗ and
the identity Eu(S(u, ξ), u, ξ) = −τ ∗

∂ D B (cf. [32, p. 136]), the gradient formula in (6)
yields

∇ Ĵ1(u, ξ) = −B∗τ∂ D[z(u, ξ)].

We choose K = −B∗τ∂ D and M(u, ξ) = z(u, ξ). The operator K : H1(D) →
L2(∂ D) is compact, as B is linear and bounded and τ∂ D is linear and compact [61,
Theorem 6.2]. Using [8, Theorem 8.2.9] and the measurability of S(u, ·) (see Lemma
1), we can show that z(u, ·) is measurable for all u ∈ L2(∂ D). The implicit function
theorem implies that z(·, ξ) is continuous for each ξ ∈ �. Since ψ is proper, there
exists u0 ∈ L2(∂ D)withψ(u0) < ∞. Using Young’s inequality, we have Ĵ1(u0, ξ) ≤
‖yd‖2

L2(D)
+ ‖S(u0, ξ)‖2L2(D)

. Combined with (17), we find that E
[
Ĵ1(u0, ξ)

]
< ∞

and hence E
[
Ĵ (u0, ξ)

]
< ∞. Let BV ρ

ad(u0)
be an open, bounded ball about zero

containing V ρ
ad(u0) and let Rad be its radius. We define

ζ(ξ) = 1
min{κmin,gmin}

(
‖yd‖L2(D) + Cτ∂ D CB Rad+‖b(ξ)‖L2(D)

min{κmin,gmin}
)
.

where CB > 0 is the operator norm of B. The random variable ζ is integrable. Using
the stability estimates (17) and (18), we conclude that Assumption 4 holds true.

4.2 Distributed Control of a Steady Burgers’ Equation

We consider the risk-neutral distributed optimization of a steady Burgers’ equation.
Deterministic optimal control problems with the Burgers’ equation are studied, for
example, in [19, 78–80]. We refer the reader to [40, 43, 46, 48] for risk-neutral and
risk-averse control of the steady Burgers’ equation.

Let us consider

min
u∈Uad

(1/2)E
[
‖S(u, ξ) − yd‖2L2(0,1)

]
+ (α/2) ‖u‖2L2(D0)

, (19)

where D0 ⊂ (0, 1) is a nonempty domain and for all (u, ξ) ∈ L2(D0) × �, the
state S(u, ξ) ∈ H1(0, 1) is the weak solution to the steady Burgers’ equation: find
y ∈ H1

0 (0, 1) with

−κ(ξ)y′′ + yy′ = b(ξ) + Bu in (0, 1), y(0) = 0, y(1) = 0,

where b : � → L2(D) and κ : � → (0,∞). As in [78, p. 78], B : L2(D0) →
L2(0, 1) is definedby (Bu)(x) = u(x) if x ∈ D0 and0 else.Weconsider homogeneous
Dirichlet boundary conditions, as it simplifies the derivationof a state stability estimate.

The weak form of the steady Burgers’ equation has at least one solution S(u, ξ) ∈
H1
0 (0, 1) for each (u, ξ) ∈ L2(D0) × � [79, Proposition 3.1]. We assume that the

solution S(u, ξ) be unique to ensure that the reduced formulation (19) is well-defined.
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A condition sufficient for uniqueness is that κ(ξ) is sufficiently large [79, Proposition
3.1]. We formulate the uniqueness as an assumption.

– κ : � → R is measurable and there exists κmin, κmax ∈ (0,∞) such that κmin ≤
κ(ξ) ≤ κmax for all ξ ∈ �.

– b : � → L2(0, 1) is strongly measurable and there exists bmax ∈ (0,∞) such that
‖b(ξ)‖L2(0,1) ≤ bmax for all ξ ∈ �.

– For each (u, ξ) ∈ L2(D0) × �, the solution S(u, ξ) ∈ H1
0 (0, 1) to the weak form

of the steady Burgers’ equation is unique.
– yd ∈ L2(0, 1), Uad ⊂ L2(D0) is nonempty, closed, and convex, and α > 0.

Throughout the section, we assume these conditions be satisfied.
Let us verify Assumption 1. The constraints in (19) can be modeled using the

indicator function ψ = IUad . Since Uad is nonempty, closed, and convex, the func-
tion IUad is proper, convex, and lower semicontinuous [13, Ex. 2.67]. The function
J1 : H1

0 (D) → [0,∞) defined by J1(y) = (1/2) ‖y − yd‖2
L2(D)

is continuously
differentiable. Putting together the pieces, we find that Assumption 1 holds true.

We define E : H1
0 (0, 1) × L2(D0) × � → H−1(0, 1) by

〈E(y, u, ξ), v〉H−1(D),H1
0 (D) = (κ(ξ)y′, v′)L2(0,1) + (yy′, v)L2(0,1)

− (b(ξ), v)L2(0,1) − (Bu, v)L2(0,1).

Let ι : H1
0 (0, 1) → L2(0, 1) be the embedding operator of the compact embedding

H1
0 (D) ↪−→ L2(0, 1). We have 〈ι∗[Bu], v〉H−1(D),H1

0 (D) = (Bu, v)L2(0,1) for all v ∈
H1
0 (D) and u ∈ L2(D0).
We show that Assumption 2 holds true. The operator E is well-defined [78, pp.

76 and 80] and E(·, ·, ξ) is twice continuously differentiable for each ξ ∈ � [78, p.
81]. For each (u, ξ) ∈ L2(D0) × �, Ey(S(u, ξ), u, ξ) has a bounded inverse [46, p.
A1866]. Using arguments similar to those in Sect. 4.1, we can show that E(y, u, ·)
is measurable for each (y, u) ∈ H1

0 (D) × L2(D0). We conclude that Assumption 2
holds true.

Using the gradient formula (6), (ι∗)∗ = ι, and Eu(S(u, ξ), u, ξ) = −ι∗ B, we find
that

∇ Ĵ1(u, ξ) = −B∗ι[z(u, ξ)], (20)

where for each (u, ξ) ∈ L2(D0) × �, z(u, ξ) ∈ H1
0 (0, 1) solves the adjoint equation:

find z ∈ H1
0 (0, 1) with

κ(ξ)(z′, v′)L2(0,1) − (S(u, ξ)z′, v)L2(0,1) = −(S(u, ξ) − yd , v)L2(0,1)

for all v ∈ H1
0 (0, 1); cf. [19, 205–206] and [78, p. 83]. Since ι is linear and compact,

and B is linear and bounded, the operator K = −B∗ι is compact [49, Theorem 8.2-5
and p. 427]. We choose M(u, ξ) = z(u, ξ).

We establish Assumption 4. Using [8, Theorem 8.2.9] and the measurability of
S(u, ·) (see Lemma 1), we can show that z(u, ·) is measurable for all u ∈ L2(D0). The
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implicit function theorem can be used to show that z(·, ξ) is continuous. Hence z is
a Carathéodory mapping. Next, we derive an H1

0 (0, 1)-stability estimate for the state.
We have ‖Bu‖L2(0,1) ≤ ‖u‖L2(D0)

for all u ∈ L2(D0). Hence the operator norm of B
is less than or equal to one. We have ‖v‖L p(0,1) ≤ ‖v‖H1

0 (0,1) for each v ∈ H1
0 (0, 1)

and 1 ≤ p ≤ ∞ [78, Lemma 3.4 on p. 9]. Hence Friedrichs’ constant CD satisfies
CD ≤ 1. Using integration by parts, we have (yy′, y)L2(0,1) = 0 for all y ∈ H1

0 (0, 1)
[78, p. 72]. Choosing v = S(u, ξ) in the weak form of Burgers’ equation, we obtain

κmin ‖S(u, ξ)‖H1
0 (0,1) ≤ ‖b(ξ)‖L2(0,1) + ‖u‖L2(D0)

; (21)

cf. [78, p. 75].Next,we establish a stability estimate for M(u, ξ) = z(u, ξ). Combining
the L∞(0, 1)-stability estimate established in [78, Lemma 3.4 on p. 83] with (1 +
e2x )ex ≤ 2e3x valid for all x ≥ 0, we obtain

‖z(u, ξ)‖L∞(0,1) ≤ 2κ(ξ)−1e3κ(ξ)−1‖S(u,ξ)‖L1(0,1) ‖S(u, ξ) − yd‖L2(0,1) . (22)

Choosing v = z(u, ξ) in the adjoint equation and using the Hölder and Friedrichs
inequalities, and CD ≤ 1, we obtain

κ(ξ) ‖z(u, ξ)‖H1
0 (0,1) ≤ ‖S(u, ξ)‖L2(0,1) ‖z(u, ξ)‖L∞(0,1) + ‖S(u, ξ) − yd‖L2(0,1) .

(23)

Since Uad is nonempty, there exists u0 ∈ Uad. Combined with (21) and the definition
of J1, we find thatE

[
Ĵ (u0, ξ)

]
< ∞. Let BV ρ

ad(u0)
be an open, bounded ball about zero

containing V ρ
ad(u0)with radius Rad > 0.We define ζ1(ξ) = (1/κmin)

( ‖b(ξ)‖L2(0,1)+
Rad + ‖yd‖L2(0,1)

)
and

ζ(ξ) = (1/κmin)ζ1(ξ)
(
(2/κmin)ζ1(ξ)e(3/κmin)ζ1(ξ) + 1

)
.

Combining (20) and the stability estimates (21), (22) and (23), we conclude that
Assumption 4 holds true with ζ being an essentially bounded random variable.

4.3 Distributed Control of a Semilinear State Equation

We consider a distributed control problem with a semilinear state equation based on
those considered in [47, Sect. 5] and [45, Sect. 5.2]. Risk-neutral optimization of
semilinear PDEs are also studied, for example, in [24, 25]. We refer the reader to
[77, Chap. 9] and [76, Chap. 4] for the analysis of deterministic, distributed control
problems with semilinear PDEs.

We consider

min
u∈Uad

(1/2)E
[
‖(1 − S(u, ξ))+‖2L2(D)

]
+ (α/2) ‖u‖2L2(D)

, (24)
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where (·)+ = max{0, ·}, α > 0, and Uad ⊂ L2(D) is a nonempty, closed, and convex.
For each (u, ξ) ∈ L2(D) × �, S(u, ξ) ∈ H1(D) is the solution to: find y ∈ H1(D)

with E(y, u, ξ) = 0, where the operator E : H1(D) × L2(D) × � → H1(D)∗ is
defined by

〈E(y, u, ξ), v〉H1(D)
∗
,H1(D) =(κ(ξ)∇ y,∇v)L2(D)2 + (g(ξ)y + y3, v)L2(D)

− (B(ξ)[u], v)L2(D) − (b(ξ), v)L2(D).
(25)

Let ι : H1(D) → L2(D) be the compact embedding operator of the compact
embedding H1(D) ↪−→ L2(D) [32, Theorem 1.14]. For each ξ ∈ �, we define
B(ξ) = ιB̃(ξ)ι∗. The operator B̃(ξ) : H1(D)∗ → H1(D) is the solution opera-
tor to a parameterized PDE. For each ( f , ξ) ∈ H1(D)∗ × �, B̃(ξ) f ∈ H1(D) is the
solution to: find w ∈ H1(D) with

(r(ξ)∇w,∇v)L2(D)2 + (w, v)L2(D) = 〈 f , v〉H1(D)
∗
,H1(D) for all v ∈ H1(D).

(26)

Since the embedding H1(D) ↪−→ L2(D) is continuous, the operator ι∗ is given by
〈ι∗[u], v〉H1(D)

∗
,H1(D) = (u, v)L2(D) for all (u, v) ∈ L2(D) × H1(D) [13, p. 21].

The assumptions stated next ensure the existence and uniqueness of solutions to
the PDE defined by the operator in (25) and the well-posedness of the operator B̃(ξ);
see [47, Sects. 3 and 5].

– D ⊂ R
2 is a bounded Lipschitz domain.

– κ , g : � → L∞(D) are strongly measurable and there exist κmin, κmax, gmin,
gmax ∈ (0,∞) such that κmin ≤ κ(ξ) ≤ κmax and gmin ≤ g(ξ) ≤ gmax for all
ξ ∈ �.

– b : � → L2(D) and r : � → L∞(D) are strongly measurable and there exist
bmax, rmin, rmax ∈ (0,∞) such that ‖b(ξ)‖L2(D) ≤ bmax and rmin ≤ r(ξ) ≤ rmax
for all ξ ∈ �.

Throughout the section, we assume these conditions be satisfied.
Assumption 1 is fulfilled since the function J1 : H1(D) → [0,∞) defined by

J1(y) = (1/2) ‖(1 − ιy)+‖2
L2(D)

is continuously differentiable [47, p. 14]. We have

Dy J1(y) = −ι∗(1 − ι[y])+. Since ι[y] = y, we have for all y ∈ H1(D),

∥∥Dy J1(y)
∥∥

H1(D)∗ ≤ ‖(1 − y)+‖L2(D) ≤ ‖1‖L2(D) + ‖y‖H1(D) . (27)

For each ξ ∈ �, the operator E(·, ·, ξ) is continuously differentiable [47, p. 14] and
for each (u, ξ) ∈ L2(D)×�, Ey(S(u, ξ), u, ξ) has a bounded inverse [47, p. 9]. Using
arguments similar to those in Sect. 4.1, we can show that E(y, u, ·) is measurable for
each (y, u) ∈ H1(D) × L2(D). We find that Assumption 2 holds true.

We verify Assumption 4. For each (u, ξ) ∈ L2(D) × �, the adjoint state z(u, ξ) ∈
H1(D) is the solution to: find z ∈ H1(D) with

(κ(ξ)∇z,∇v)L2(D)2 + (g(ξ)z + 3S(u, ξ)2z, v)L2(D) = ((1 − S(u, ξ))+, v)L2(D)
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for all v ∈ H1(D). Choosing v = z(u, ξ) and using (27), we obtain the stability
estimate

min{κmin, gmin} ‖z(u, ξ)‖H1(D) ≤ ‖1‖L2(D) + ‖S(u, ξ)‖H1(D) . (28)

Moreover, for all f ∈ H1(D) and u ∈ L2(D), we have the stability estimates (cf. [47,
Sects. 3 and 5])

min{rmin, 1}
∥∥B̃(ξ) f

∥∥
H1(D)

≤ ‖ f ‖H1(D)∗ ,

min{κmin, gmin} ‖S(u, ξ)‖H1(D) ≤ ∥∥ι∗[B(ξ)u] + ι∗[b(ξ)]∥∥H1(D)∗ .
(29)

Using calculus for adjoint operators [49, p. 235] and ι = (ι∗)∗,wefind that (ι∗ B(ξ))∗ =
ιB̃(ξ)∗ι∗ι. Consequently, the gradient formula (6) yields

∇ Ĵ1(u, ξ) = −ι[B̃(ξ)∗ι∗ιz(u, ξ)].

We choose K = −ι and M(u, ξ) = B̃(ξ)∗ι∗ιz(u, ξ). Using the implicit func-
tion theorem and [47, Proposition 4.3], we find that z is a Carathéodory mapping.
Combined with (29), we obtain that M(·, ξ) is continuous for each ξ ∈ �. Fix f ,
v ∈ H1(D)∗. Using [8, Theorem 8.2.9], we can show that ξ �→ B̃(ξ) f is mea-
surable. Hence ξ �→ 〈v, B̃(ξ) f 〉H1(D)

∗
,H1(D) is measurable [35, Theorem 1.1.6].

Since 〈B̃(ξ)∗v, f 〉H1(D),H1(D)∗ = 〈v, B̃(ξ) f 〉H1(D)
∗
,H1(D) for all ξ ∈ �, the map-

ping ξ �→ B̃(ξ)∗v is measurable [35, Theorem 1.1.6]. Since H1(D) is separable,
ξ �→ B̃(ξ)∗ is strongly measurable [35, Theorem 1.1.6]. Combined with the compo-
sition rules [35, Proposition 1.1.28 and Corollary 1.1.29], we can show that M(u, ·)
is measurable.

Using (29) and the fact that Uad is nonempty, we find that there exists u0 ∈ Uad
with E

[
Ĵ (u0, ξ)

]
< ∞. Let BV ρ

ad(u0)
be an open, bounded ball about zero containing

V ρ
ad(u0) and let Rad be its radius. We define the random variable

ζ(ξ) = 1
min{κmin,gmin}

(
‖1‖L2(D) + ‖b(ξ)‖L2(D)

+ 1
min{rmin,1} Rad

min{κmin,gmin}
)

.

Our assumptions and Hölder’s inequality ensure that ζ is integrable.
Combined with the stability estimates (28) and (29), we conclude that Assumption

4 holds true.

5 Discussion

The analysis of the SAAapproach for PDE-constrained optimization under uncertainty
is complicated by the fact that the feasible sets are generally noncompact, stopping
us from directly applying the consistency results developed in the literature on M-
estimation and stochastic programming. Inspired by the consistency results in [70,
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72], we constructed compact subsets of the feasible set that contain the solutions to
the stochastic programs and eventually those to their SAA problems, allowing us to
establish consistency of the SAA optimal values and SAA solutions. To construct
such compact sets, we combined the adjoint approach, optimality conditions, and
PDE stability estimates. We applied our framework to three risk-neutral nonlinear
PDE-constrained optimization problems.

We comment on four limitations of our approach. First, our construction of the com-
pact sets exploits the positivity of the regularization parameterα, limiting our approach
at first to PDE-constrained optimization problems with strongly convex control regu-
larization. However, we can add (α/2) ‖·‖2L2(D)

with α > 0 to the objective function,
allowing us to establish the consistency of regularized SAA solutions. If Uad is con-
tained in a ball with radius rad > 0, ε > 0, and α = 2ε/r2ad, then solutions to the
regularized SAA problem provide ε-optimal solutions to the non-regularized SAA
problem (2).1 Second, the analysis developed here demonstrates the consistency of
SAA optimal values and SAA optimal solutions, but not of SAA critical points. Since
the risk-neutral PDE-constrained optimization problems considered here are generally
nonconvex, a consistency analysis of SAA critical points would be desirable. How-
ever, even though risk-neutral nonlinear PDE-constrained optimization problems and
their SAA problems are generally nonconvex, significant progress has been made in
establishing convexity properties of nonlinear PDE-constrained optimization prob-
lems [22, 31] and in developing verifiable conditions that can be used to certify global
optimality of critical points [2]. Third, the construction of the compacts subsets per-
formed in Sect. 3 exploits the fact that the feasible set (3) of the SAA problems is
the same as that of the risk-neutral problem. Therefore, our approach does not allow
for a consistency analysis for SAA problems defined by random constraints, such as
those resulting from sample-based approximations of expectation constraints [72, pp.
168–170]. Fourth, our analysis does not apply to risk-averse PDE-constrained opti-
mization problems, as it exploits smoothness of the expectation function. However,
our approach may be generalized to allow for the consistency analysis of risk-averse
PDE-constrained programs, such as those defined via the superquantile/conditional
value-at-risk [43].
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Appendix A: Lack of Inf-Compactness

Besides the feasible set’s lack of compactness, the set of ε-optimal solutions to the
SAA problem and the level sets of the SAA problem’s objective function may be
noncompact for risk-neutral PDE-constrained optimization problems. We illustrate
this observation on the semilinear PDE-constrained problem

min
u∈Uad

(1/2)E
[
‖S(u, ξ)‖2L2(D)

]
+ (α/2) ‖u‖2L2(D)

, (30)

where α > 0, Uad = { u ∈ L2(D) : ‖u‖L2(D) ≤ 2}, D ⊂ R
2 is a bounded Lipschitz

domain, and� is as in Sect. 3. For each (u, ξ) ∈ L2(D)×�, the state S(u, ξ) ∈ H1
0 (D)

is the solution to the semilinear PDE: find y ∈ H1
0 (D) with

(κ(ξ)∇ y,∇v)L2(D)2 + (y3, v)L2(D) = (u, v)L2(D) for all v ∈ H1
0 (D). (31)

We assume that κ : � → L∞(D) is strongly measurable and that there exists κmin > 0
with κ(ξ) ≥ κmin for all ξ ∈ �. The SAA problem of (30) is given by

min
u∈Uad

1

2N

N∑

i=1

∥∥∥S(u, ξ i )

∥∥∥
2

L2(D)
+ (α/2) ‖u‖2L2(D)

, (32)

where ξ1, ξ2, . . ., are as in Sect. 3.
Let F̂N be the objective function of (32) and let CD be Friedrichs’ constant of the

domain D. For each (u, ξ) ∈ L2(D)×�, we have the stability estimate (cf. [24, eqns.
(2.11)])

‖S(u, ξ)‖H1
0 (D) ≤ (CD/κmin) ‖u‖L2(D) . (33)

The optimal value of the risk-neutral problem (30) and those of the corresponding
SAA problems (32) are zero, as S(0, ξ) = 0 for all ξ ∈ � and 0 ∈ Uad. We define
εmax = (C2

D/κmin)
2 + α. Let ε > 0 satisfy ε ≤ εmax. We define Vε = {

u ∈
L2(D) : ‖u‖2

L2(D)
≤ 2ε

(C2
D/κmin)2+α

}
. It holds that Vε ⊂ Uad. For each u ∈ Vε, the

stability estimate (33) and Friedrichs’ inequality yield

1

2N

N∑

i=1

∥∥∥S(u, ξ i )

∥∥∥
2

L2(D)
+ (α/2) ‖u‖2L2(D)

≤ (1/2)(C2
D/κmin)

2 ‖u‖2L2(D)
+ (α/2) ‖u‖2L2(D)

≤ 0 + ε.

Hence each u ∈ Vε is an ε-optimal solution to the SAA problem (32). The set Vε is
a closed ball about zero with positive radius because ε > 0. Since L2(D) is infinite
dimensional, this set is noncompact [49, Theorem 2.5-5]. Therefore, as long as ε̃ > 0,
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the level sets of the SAA objective function, { u ∈ Uad : F̂N (u) ≤ ε̃ }, are noncompact,
as they contain the noncompact set Vε with ε = min{ε̃, εmax}. In this case, an inf-
compactness condition (see [72, p. 166]) is violated.
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