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Abstract
This paper is devoted to proving the strong averaging principle for slow–fast stochas-
tic partial differential equations with locally monotone coefficients, where the slow
component is a stochastic partial differential equations with locally monotone coeffi-
cients and the fast component is a stochastic partial differential equations with strongly
monotone coefficients. The result is applicable to a large class of examples, such as the
stochastic porous medium equation, the stochastic p-Laplace equation, the stochas-
tic Burgers type equation and the stochastic 2D Navier–Stokes equation, which are
the nonlinear stochastic partial differential equations. The main techniques are based
on time discretization and the variational approach to stochastic partial differential
equations.
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1 Introduction

For i = 1, 2, let (Hi , ‖·‖Hi )be a separableHilbert spaceswith inner product 〈·, ·〉Hi and
H∗

i its dual. Let (Vi , ‖·‖Vi )be a reflexiveBanach space, such thatVi ⊆ Hi continuously
and densely. Then for its dual space V ∗

i it follows that H∗
i ⊆ V ∗

i continuously and
densely. Identifying Hi and H∗

i via the Riesz isomorphism we have that

Vi ⊆ Hi ≡ H∗
i ⊆ V ∗

i

is a Gelfand triple. Let V ∗
i
〈 , 〉Vi be the dualization between V ∗

i and Vi . Then it follows
that

V ∗
i
〈zi , vi 〉Vi = 〈zi , vi 〉Hi , for all zi ∈ Hi , vi ∈ Vi .

For i = 1, 2, let {W i
t }t�0 be a cylindricalFt -Wiener process in a separable Hilbert

space (Ui , ‖ · ‖Ui ) on a probability space (�,F ,P) with natural filtration Ft . Let
L2(Ui , Hi ) be the space of Hilbert-Schmidt operator from Ui → Hi . The norm on
L2(Ui , Hi ) is defined by

‖S‖2L2(Ui ,Hi )
:=

∑

k∈N
‖Sei,k‖2Hi

, S ∈ L2(Ui , Hi ),

where {ei,k}k∈N is an orthonormal basis of Ui . We also assume the processes {W 1
t }t�0

and {W 2
t }t�0 are independent.

In this paper, we consider the following abstract stochastic partial differential equa-
tions (SPDEs)

⎧
⎪⎪⎨

⎪⎪⎩

d Xε
t = [

A(Xε
t ) + F(Xε

t , Y ε
t )

]
dt + G1(Xε

t )dW 1
t ,

dY ε
t = 1

ε
B(Xε

t , Y ε
t )dt + 1√

ε
G2(Xε

t , Y ε
t )dW 2

t ,

Xε
0 = x ∈ H1, Y ε

0 = y ∈ H2,

(1.1)

where ε > 0 is a small parameter describing the ratio of the time scale between the
slow component Xε

t and the fast component Y ε
t , and the coefficients

A : V1 → V ∗
1 ; F : H1 × H2 → H1; G1 : V1 → L2(U1; H1);

and

B : H1 × V2 → V ∗
2 ; G2 : H1 × V2 → L2(U2; H2)

are measurable.
The averaging principle has a long and rich history in multiscale models, which has

wide applications in material sciences, chemistry, fluid dynamics, biology, ecology
and climate dynamics, see, e.g., [1, 10, 17, 22] and the references therein. Usually, a
multiscale model can be described through coupled equations, which correspond to
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the "slow" and "fast" component, respectively. The averaging principle is essential to
describe the asymptotic behavior of the slow component, i.e., the slow component will
convergence to the so-called averaged equation. Bogoliubov and Mitropolsky [2] first
studied the averaging principle for deterministic systems, which then was extended to
stochastic differential equations by Khasminskii [18].

Since the averaging principle for a general class of stochastic reaction-diffusion
systems with two time-scales were investigated by Cerrai and Freidlin in [6], the aver-
aging principle for slow–fast SPDEs has initiated further studies in the past decade,
including other types of SPDEs, variousways of convergence and rates of convergence.
For instance, Bréhier obtained the strong and weak orders in averaging for stochastic
evolution equation of parabolic type with slow and fast time scales in [3]. Fu, Wan and
Liu proved the strong averaging principle for stochastic hyperbolic-parabolic equa-
tions with slow and fast time-scales in [13]. Cerrai and Lunardi studied the averaging
principle for nonautonomous slow–fast systems of stochastic reaction-diffusion equa-
tions in [7]. For some further results on this topic, we refer to [4, 11, 12, 21, 24, 25]
and the references therein.

However, the references we mentioned above always assume that the coefficients
satisfy Lipschitz conditions, and there are few results on the average principle for
SPDEswith nonlinear terms. For example, stochastic reaction-diffusion equationswith
polynomial coefficients [5], stochastic Burgers equation [9], stochastic two dimen-
sional Navier–Stokes equations [19], stochastic Kuramoto-Sivashinsky equation [14],
stochastic Schrödinger equation [15] and stochastic Klein-Gordon equation [16]. But
all these papers consider semilinear SPDEs (i.e., for operators A = A1 + A2 with A1
a linear operator and A2 a nonlinear perturbation), and use the mild solution approach
to SPDEs exploiting the smoothing properties of the C0- semigroup eA1t generated by
the linear operator A1 in an essential way. To the best of our knowledge, the case of
the operator A has no linear part hasn’t been studied yet, such as the porous medium
operator and the p-Laplace operator.

Hence, the main purpose of this paper is to prove the strong averaging principle for
slow–fast SPDEs within the (generalized) variational framework, i.e., locally mono-
tone and strongly monotone coefficients for the slow and fast equations respectively.
Our result covers a large class of examples (see [20, Sects. 4 and 5]), especially for
the case that the slow equation is a quasilinear SPDEs, such as the stochastic porous
medium equation or the stochastic p-Laplace equation. Our result is also applicable
to the stochastic Burgers type equation and stochastic two dimensional Navier–Stokes
equation, whose coefficients only satisfy the local monotonicity conditions.

The main difficulty here is how to avoid applying the techniques which only work
in the case of the mild solution approach, and use the techniques from the variational
approach. More precisely, we will use the variational approach to estimate the integral
of the time increment of Xε

t instead of studying the Hölder continuity of time, which
is strong enough for our purpose. We will also use the variational approach to obtain
some apriori estimates of the solution, which are crucial to construct a proper stopping
time to deal with the nonlinear terms.

The rest of the paper is organized as follows. In Sect. 2, under some suitable
assumptions, we formulate our main result. Section 3 is devoted to proving the main
result. In Sect. 4, we will give some examples to illustrate the wide applicability of our
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result. In the Appendix, we give the detailed proof of the existence and uniqueness of
solutions to system (1.1).

Throughout the paper,C ,CT andC p,T denote positive constants whichmay change
from line to line, where CT and C p,T are used to emphasize that the constants depend
on T and p, T respectively.

2 Main Result

For the coefficients of the slow equation, we suppose that there exist constants α ∈
(1,∞), β ∈ [0,∞), θ ∈ (0,∞) and C > 0 such that the following conditions hold
for all u, v, w ∈ V1, u1, v1 ∈ H1 and u2, v2 ∈ H2:

A1 (Hemicontinuity) The map λ → V ∗
1
〈A(u + λv),w〉V1 is continuous on R.

A2 (Local monotonicity)

2V ∗
1
〈A(u) − A(v), u − v〉V1 + ‖G1(u) − G1(v)‖2L2(U1,H1)

� ρ(v)‖u − v‖2H1
.

where ρ : V1 → [0,∞) is a measurable hemicontinuous function satisfying

|ρ(v)| � C
[
(1 + ‖v‖α

V1
)(1 + ‖v‖β

H1
)
]
.

Furthermore,

‖F(u1, u2) − F(v1, v2)‖H1 � C(‖u1 − v1‖H1 + ‖u2 − v2‖H2). (2.1)

A3 (Coercivity)

V ∗
1
〈A(v), v〉V1 � C‖v‖2H1

− θ‖v‖α
V1

+ C .

A4 (Growth)

‖A(v)‖
α

α−1
V ∗
1

� C(1 + ‖v‖α
V1

)(1 + ‖v‖β
H1

)

and

‖G1(v)‖L2(U1,H1) � C(1 + ‖v‖H1).

For the coefficients of the fast equation, we suppose that there exist constants
κ ∈ (1,∞), γ, η ∈ (0,∞), ζ ∈ (0, 1) and C > 0 such that the following conditions
hold for all u, v, w ∈ V2, u1, v1 ∈ H1:

B1 (Hemicontinuity) The map λ →V ∗
2

〈B(u1 + λv1, u + λv),w〉V2 is continuous
on R.
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B2 (Strong monotonicity)

2V ∗
2
〈B(u1, u) − B(v1, v), u − v〉V2 + ‖G2(u1, u) − G2(v1, v)‖2L2(U2,H2)

� −γ ‖u − v‖2H2
+ C‖u1 − v1‖2H1

. (2.2)

B3 (Coercivity)

V ∗
2
〈B(u1, v), v〉V2 � C‖v‖2H2

− η‖v‖κ
V2

+ C(1 + ‖u1‖2H1
).

B4 (Growth)

‖B(u1, v)‖V ∗
2

� C

(
1 + ‖v‖κ−1

V2
+ ‖u1‖

2(κ−1)
κ

H1

)

and

‖G2(u1, v)‖L2(U2,H2) � C(1 + ‖u1‖H1 + ‖v‖ζ
H2

). (2.3)

Remark 2.1 We here give some comments for the assumptions above.

• Condition (2.2) is also called the dissipativity condition, which guarantees that
there exists a unique invariant measure for the frozen equation and the exponential
ergodicity holds.

• The ζ ∈ (0, 1) in condition (2.3) is used to prove the p-th moments of the solution
(Xε

t , Y ε
t ) are finite, when p is large enough, which could be removed if we assume

the Lispchitz constant of G2 is sufficiently small.

Now, we recall the definition of a variational solution in [20].

Definition 2.2 For any given ε > 0, a continuous H1× H2-valuedFt -adapted process
(Xε

t , Y ε
t )t∈[0,T ] is called a solution of system (1.1), if for its dt ⊗ P-equivalence class

(X̌ε, Y̌ ε) we have X̌ε ∈ Lα([0, T ] × �, dt ⊗ P; V1) ∩ L2([0, T ] × �, dt ⊗ P; H1)

with α as in A3, Y̌ ε ∈ Lκ([0, T ]×�, dt ⊗P; V2)∩ L2([0, T ]×�, dt ⊗P; H2) with
κ as in B3 and P-a.s.

⎧
⎨

⎩
Xε

t = Xε
0 +

∫ t

0
A(X̃ε

s )ds +
∫ t

0
F(Xε

s , Y ε
s )ds +

∫ t

0
G(X̃ε

s )dW 1
s ,

Y ε
t = Y ε

0 + 1
ε

∫ t
0 B(Xε

s , Ỹ ε
s )ds + 1√

ε

∫ t
0 G2(Xε

s , Ỹ ε
s )dW 2

s ,
(2.4)

where (X̃ε, Ỹ ε) is any V1 × V2-valued progressively measurable dt ⊗ P-version of
(X̌ε, Y̌ ε).

Using the variational approach in infinite dimensional space, we have the following
well-posedness result, whose proof will be presented in the Appendix.

Theorem 2.3 Assume the conditions A1–A4, B1–B4 hold. Then for any ε > 0 and
initial values (x, y) ∈ H1 × H2, the system (1.1) has a unique solution (Xε, Y ε).
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The following is the main result of this work.

Theorem 2.4 Assume the conditions A1–A4, B1–B4 hold. Then for any initial values
(x, y) ∈ H1 × H2, p � 1 and T > 0, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0, (2.5)

where X̄t is the solution of the corresponding averaged equation:

{
d X̄t = A(X̄t )dt + F̄(X̄t )dt + G1(X̄t )dW 1

t ,

X̄0 = x,
(2.6)

with the average F̄(x) = ∫
H2

F(x, y)μx (dy). μx is the unique invariant measure of
the transition semigroup of the frozen equation

{
dYt = B(x, Yt )dt + G2(x, Yt )dW̄ 2

t ,

Y0 = y,

where {W̄ 2
t }t�0 is a F̃t -cylindrical Wiener process in a separable Hilbert space U2

on another probability space, with natural filtration F̃t .

Remark 2.5 The advantage of using the variational approach is that it can cover some
nonlinear SPDEs for slow component, such as stochastic power law fluids, and some
quasilinear SPDEs for slow component, such as the stochastic porous medium equa-
tion and the stochastic p-Laplace equation, which can not be handled by the mild
solution approach and thus have not been studied yet. Furthermore, our result also
generalizes some known results of the cases that the slow component is a semilin-
ear stochastic partial differential equation, such as the stochastic Burgers equation
(see [9]) and stochastic two dimensional Navier–Stokes equation (see [19]). Besides
some known results, our result can also be applied to many other unstudied hydrody-
namical models in [8], such as the stochastic magneto-hydrodynamic equations, the
stochastic Boussinesq model for the Bénard convection, the stochastic 2D magnetic
Bénard problem, the stochastic 3D Leray-α model and some stochastic shell models
of turbulence.

3 Proof of theMain Result

This section is devoted to proving Theorem 2.4. The proof consists of the following
four subsections: In Sect. 3.1, we give some apriori estimates for the solution (Xε

t , Y ε
t ).

Using the apriori estimates, we get an estimate for the time increments for Xε
t , which

plays an important role in the proof of the main result. In Sect. 3.2, we will use
the technique of time discretization to construct an auxiliary process Ŷ ε

t and give an
estimate of the difference process Y ε

t − Ŷ ε
t . In Sect. 3.3, by constructing a stopping
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time τR , we prove that Xε
t strongly converges to X̄t for t < τR . Finally, the apriori

estimates for the solution control the difference Xε
t − X̄t after the stopping time. Note

that we always assume conditions A1–A4 and B1–B4 hold and from now on we fix
an initial value (x, y) ∈ H1 × H2 in this section.

3.1 Some Apriori Estimates of (X"t , Y
"
t )

At first, we prove uniform bounds with respect to ε ∈ (0, 1) for the moments of the
solution (Xε

t , Y ε
t ) to the system (1.1).

Lemma 3.1 For any T > 0 and p � 1, there exists a constant C p,T > 0 such that

sup
ε∈(0,1)

E

(
sup

t∈[0,T ]
‖Xε

t ‖2p
H1

)
+ sup

ε∈(0,1)
E

(∫ T

0
‖Xε

t ‖2p−2
H1

‖X̃ε
t ‖α

V1
dt

)

� C p,T

(
1 + ‖x‖2p

H1
+ ‖y‖2p

H2

)
(3.1)

and

sup
ε∈(0,1)

sup
t∈[0,T ]

E‖Y ε
t ‖2p

H2
� C p,T

(
1 + ‖x‖2p

H1
+ ‖y‖2p

H2

)
. (3.2)

Proof Applying Itô’s formula (see e.g. [20, Theorem 6.1.1]), we have

‖Y ε
t ‖2H2

= ‖y‖2H2
+ 2

ε

∫ t

0
V ∗
2
〈B(Xε

s , Ỹ ε
s ), Ỹ ε

s 〉V2ds

+1

ε

∫ t

0
‖G2(Xε

s , Ỹ ε
s )‖2L2(U2,H2)

ds + 2√
ε

∫ t

0
〈G2(Xε

s , Ỹ ε
s )dW 2

s , Y ε
s 〉H2 .

Then applying Itô’s formula for f (z) = (z)p with zt = ‖Y ε
t ‖2H2

, and taking expectation
on both sides, we obtain

E‖Y ε
t ‖2p

H2
= ‖y‖2p

H2
+ 2p

ε
E

[∫ t

0
‖Y ε

s ‖2p−2
H2 V ∗

2
〈B(Xε

s , Ỹ ε
s ), Ỹ ε

s 〉V2ds

]

+ p

ε
E

[∫ t

0
‖Y ε

s ‖2p−2
H2

‖G2(Xε
s , Ỹ ε

s )‖2L2(U2,H2)
ds

]

+2p(p − 1)

ε
E

[∫ t

0
‖Y ε

s ‖2p−4
H2

‖G2(Xε
s , Ỹ ε

s )∗Y ε
s ‖2U2

ds

]

By conditions B2–B4 and a similar argument in the proof of [20, Lemma 4.3.8], there
exists a constant γ̂ ∈ (0, γ ) such that for any u ∈ H1, v ∈ V2,

2V ∗
2
〈B(u, v), v〉V2 � −γ̂ ‖v‖2H2

+ C(1 + ‖u‖2H1
). (3.3)
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Then applying Young’s inequality and estimate (3.3), we get

d

dt
E‖Y ε

t ‖2p
H2

= 2p

ε
E

[
‖Y ε

t ‖2p−2
H2 V ∗

2
〈B(Xε

t , Ỹ ε
t ), Ỹ ε

t 〉V2

]

+ p

ε
E

[
‖Y ε

t ‖2p−2
H2

‖G2(Xε
t , Ỹ ε

t )‖2L2(U2,H2)

]

+2p(p − 1)

ε
E

[
‖Y ε

t ‖2p−4
H2

‖G2(Xε
t , Ỹ ε

t )∗Y ε
t ‖2U2

]

� 2p

ε
E

[
‖Y ε

t ‖2p−2
H2

(−γ̂ ‖Y ε
t ‖2H2

+ C‖Xε
t ‖2H2

+ C)
]

+C p

ε
E

[
‖Y ε

t ‖2p−2
H2

(1 + ‖Xε
t ‖2H1

+ ‖Y ε
t ‖2ζH2

)
]

� −C p

ε
E‖Y ε

t ‖2p
H2

+ C p

ε
E‖Xε

t ‖2p
H1

+ C p

ε
.

Multiplication by the integrating factor e
C pt
ε yields that

d

dt

(
e

C pt
ε E‖Y ε

t ‖2p
H2

)
� C p

ε
e

C pt
ε

(
1 + E‖Xε

t ‖2p
H1

)
.

Integrate this from 0 to t , we get

E‖Y ε
t ‖2p

H2
� ‖y‖2p

H2
e− C p

ε
t + C p

ε

∫ t

0
e− C p

ε
(t−s)

(
1 + E‖Xε

s ‖2p
H1

)
ds. (3.4)

On the other hand, applying Itô’s formula, we also have

‖Xε
t ‖2p

H1
= ‖x‖2p

H1
+ 2p

∫ t

0
‖Xε

s ‖2p−2
H1 V ∗

1
〈A(X̃ε

s ), X̃ε
s 〉V1ds

+2p
∫ t

0
‖Xε

s ‖2p−2
H1

〈F(Xε
s , Y ε

s ), Xε
s 〉H1ds

+2p
∫ t

0
‖Xε

s ‖2p−2
H1

〈Xε
s , G1(X̃ε

s )dW 1
s 〉H1

+p
∫ t

0
‖Xε

s ‖2p−2‖G1(X̃ε
s )‖2L2(U1,H1)

ds

+2p(p − 1)
∫ t

0
‖Xε

s ‖2p−4
H1

‖G1(X̃ε
s )

∗ Xε
s ‖2U1

ds.

Note that

{∫ t

0
‖Xε

s ‖2p−2
H1

〈F(Xε
s , Y ε

s ), Xε
s 〉H1ds

}

0�t�T
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is a local martingale, then applying Burkholder-Davis-Gundy inequality (see e.g. [20,
Theorem 6.1.2]), conditions A2–A4 and (3.4), we get

E

(
sup

t∈[0,T ]
‖Xε

t ‖2p
H1

)
+ 2pθE

(∫ T

0
‖Xε

t ‖2p−2
H1

‖X̃ε
t ‖α

V1
dt

)

� CP (‖x‖2p
H1

+ 1) + C p

∫ T

0
E‖Xε

t ‖2p
H1

dt + C p

∫ T

0
E‖Y ε

t ‖2p
H2

dt

� C p(‖x‖2p
H1

+ ‖y‖2p
H2

+ 1)

+C p

∫ T

0
E‖Xε

t ‖2p
H1

dt + C p

ε

∫ T

0

∫ t

0
e− C p

ε
(t−s)

(
1 + E‖Xε

s ‖2p
H1

)
dsdt

� C p(‖x‖2p
H1

+ ‖y‖2p
H2

+ 1) + C p

∫ T

0
E‖Xε

t ‖2p
H1

dt .

Hence, applying Gronwall’s inequality (see e.g. [23, Exercise 5.17]), we obtain

E

(
sup

t∈[0,T ]
‖Xε

t ‖2p
H1

)
+ 2pE

(∫ T

0
‖Xε

t ‖2p−2
H1

‖X̃ε
t ‖α

V1
dt

)

� C p,T (‖x‖2p
H1

+ ‖y‖2p
H2

+ 1),

which also gives that

sup
t∈[0,T ]

E‖Y ε
t ‖2p

H2
� C p,T

(
1 + ‖x‖2p

H1
+ ‖y‖2p

H2

)
.

The proof is complete. ��

Because the method of time discretization is used in this paper, the following esti-
mate about the integral of the time increment plays an important role in the proof of
our main result, which has been proved in the case of the stochastic 2D Navier–Stokes
equation in [19].

Lemma 3.2 For any T > 0, ε ∈ (0, 1) and δ > 0 small enough, there exist constants
CT , m > 0 such that

E

[∫ T

0
‖Xε

t − Xε
t(δ)‖2H1

dt

]
� CT (1 + ‖x‖m

H1
+ ‖y‖m

H2
)δ1/2, (3.5)

where t(δ) := [ t
δ
]δ and [s] denotes the largest integer which is smaller than s.
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Proof Note that

E

[∫ T

0
‖Xε

t − Xε
t(δ)‖2H1

dt

]

= E

(∫ δ

0
‖Xε

t − x‖2H1
dt

)
+ E

[∫ T

δ

‖Xε
t − Xε

t(δ)‖2H1
dt

]

� C(1 + ‖x‖2H1
+ ‖y‖2H2

)δ + 2E

(∫ T

δ

‖Xε
t − Xε

t−δ‖2H1
dt

)

+2E

(∫ T

δ

‖Xε
t(δ) − Xε

t−δ‖2H1
dt

)
. (3.6)

Then applying Itô’s formula we have

‖Xε
t − Xε

t−δ‖2H1
= 2

∫ t

t−δ
V ∗
1
〈A(X̃ε

s ), X̃ε
s − X̃ε

t−δ〉V1ds

+2
∫ t

t−δ

〈F(Xε
s , Y ε

s ), Xε
s − Xε

t−δ〉H1ds

+
∫ t

t−δ

‖G1(X̃ε
s )‖2L2(U1,H1)

ds

+2
∫ t

t−δ

〈Xε
s − Xt−δ, G1(X̃ε

s )dW 1
s 〉H1

:= I1(t) + I2(t) + I3(t) + I4(t). (3.7)

For the term I1(t), by condition A4 and applying Hölder’s inequality, there exist
constants m, CT > 0 such that

E

(∫ T

δ

|I1(t)|dt

)
� CE

(∫ T

δ

∫ t

t−δ

‖A(X̃ε
s )‖V ∗

1
‖X̃ε

s − X̃ε
t−δ‖V1dsdt

)

� C

[
E

∫ T

δ

∫ t

t−δ

‖A(X̃ε
s )‖

α
α−1
V ∗
1

dsdt

] α−1
α

[
E

∫ T

δ

∫ t

t−δ

‖X̃ε
s − X̃ε

t−δ‖α
V1

dsdt

] 1
α

� C

[
δE

∫ T

0
(1 + ‖X̃ε

s ‖α
V1

)(1 + ‖Xε
s ‖β

H1
)ds

] α−1
α

·
[
δE

∫ T

0
‖X̃ε

s ‖α
V1

ds

] 1
α

� CT (1 + ‖x‖m
H1

+ ‖y‖m
H2

)δ, (3.8)

where we applied Fubini’s theorem and (3.1) in the third and fourth inequality respec-
tively.
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For terms I2(t) and I3(t), by condition (2.1), estimates (3.1) and (3.2), we get

E

(∫ T

δ

|I2(t)|dt

)

� CE

[∫ T

δ

∫ t

t−δ

(1 + ‖Xε
s ‖H1 + ‖Y ε

s ‖H2)(‖Xε
s ‖H1 + ‖Xε

t−δ‖H1)dsdt

]

� CδE

[
sup

s∈[0,T ]
(1 + ‖Xε

s ‖2H1
)

]

+CE

[
sup

s∈[0,T ]
‖Xε

s ‖H1

∫ T

δ

∫ t

t−δ

‖Y ε
s ‖H2dsdt

]

� CδE

[
sup

s∈[0,T ]
(1 + ‖Xε

s ‖2H1
)

]

+CT δ1/2E

[
sup

s∈[0,T ]
‖Xε

s ‖2H1

]1/2

E

(∫ T

δ

∫ t

t−δ

‖Y ε
s ‖2H2

dsdt

)1/2

� CT δ(1 + ‖x‖2H1
+ ‖y‖2H2

) (3.9)

and

E

(∫ T

δ

|I3(t)|dt

)
� CE

(∫ T

δ

∫ t

t−δ

(1 + ‖Xε
s ‖2H1

)dsdt

)

� CT δE

[
sup

s∈[0,T ]
(1 + ‖Xε

s ‖2H1
)

]

� CT δ
(
1 + ‖x‖2H1

+ ‖y‖2H2

)
. (3.10)

For the term I4(t), note that

{∫ u

t−δ

〈Xε
s − Xt−δ, G1(X̃ε

s )dW 1
s 〉H1

}

t−δ�u�T

is a local martingale, then applying Burkholder-Davies-Gundy inequality, it follows

E

(∫ T

δ

|I4(t)|dt

)
� CE

∫ T

δ

[∫ t

t−δ

‖G1(X̃ε
s )‖2L2(U1,H1)

‖Xε
s − Xε

t−δ‖2H1
ds

]1/2
dt

� CT

[
E

∫ T

δ

∫ t

t−δ

(1 + ‖Xε
s ‖2H1

)‖Xε
s − Xε

t−δ‖2H1
dsdt

]1/2

� CT δ1/2

[
E sup

s∈[0,T ]

(
1 + ‖Xε

s ‖4H1

)]1/2

� CT δ1/2(1 + ‖x‖2H1
+ ‖y‖2H2

). (3.11)
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Combining estimates (3.8)–(3.11), we obtain

E

(∫ T

δ

‖Xε
t − Xε

t−δ‖2H1
dt

)
� CT (1 + ‖x‖m

H1
+ ‖y‖m

H2
)δ1/2. (3.12)

By the same argument above, we also have

E

(∫ T

δ

‖Xε
t(δ) − Xε

t−δ‖2H1
dt

)
� CT (1 + ‖x‖m

H1
+ ‖y‖m

H2
)δ1/2. (3.13)

Hence, the result (3.5) holds by estimates (3.6), (3.12) and (3.13). The proof is com-
plete. ��

3.2 Construction of the Auxiliary Process

Based on themethod of time discretization, which is inspired by [18], we first construct
an auxiliary process Ŷ ε

t ∈ H2 satisfying the following equation

dŶ ε
t = 1

ε
B

(
Xε

t(δ), Ŷ ε
t

)
dt + 1√

ε
G2

(
Xε

t(δ), Ŷ ε
t

)
dW 2

t , Ŷ ε
0 = y ∈ H2,

where δ is a fixed positive number depending on ε and will be chosen later. Then for its

dt ⊗P-equivalence class ˇ̂Y ε we have ˇ̂Y ε ∈ Lκ([0, T ]×�, dt ⊗P; V2)∩ L2([0, T ]×
�, dt ⊗ P; H2) with κ as in B3, and for any k ∈ N and t ∈ [kδ,min((k + 1)δ, T )],
P-a.s.

Ŷ ε
t = Ŷ ε

kδ + 1

ε

∫ t

kδ

B(Xε
kδ,

˜̂Y ε
s )ds + 1√

ε

∫ t

kδ

G2(Xε
kδ,

˜̂Y ε
s )dW 2

s , (3.14)

where ˜̂Y ε is any V2-valued progressively measurable dt ⊗ P-version of ˇ̂Y ε.
By the construction of Ŷ ε

t , we obtain the following estimates, which will be used
later.

Lemma 3.3 For any T > 0 and ε ∈ (0, 1), there exist a constant CT > 0 and m ∈ N

such that

sup
t∈[0,T ]

E‖Ŷ ε
t ‖2H2

� CT (1 + ‖x‖2H1
+ ‖y‖2H2

) (3.15)

and

E

(∫ T

0
‖Y ε

t − Ŷ ε
t ‖2H2

dt

)
� CT

(
1 + ‖x‖m

H1
+ ‖y‖m

H2

)
δ1/2. (3.16)

Proof Because the proof of estimate (3.15) follows almost the same steps as in the
proof of Lemma 3.1, we omit its proof and only prove (3.16) here.
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Note that

Y ε
t − Ŷ ε

t = 1

ε

∫ t

0

[
B(Xε

s , Ỹ ε
s ) − B(Xε

s(δ),
˜̂Y ε
s )

]
ds

+ 1√
ε

∫ t

0

[
G2(Xε

s , Ỹ ε
s ) − G2(Xε

s(δ),
˜̂Y ε
s )

]
dW 2

s .

Applying Itô’s formula, we obtain

E‖Y ε
t − Ŷ ε

t ‖2H2
= 2

ε
E

∫ t

0
V ∗
2
〈B(Xε

s , Ỹ ε
s ) − B(Xε

s(δ),
˜̂Y ε
s ), Ỹ ε

s − ˜̂Y ε
s 〉V2ds

+1

ε
E

∫ t

0
‖G2(Xε

s , Ỹ ε
s ) − G2(Xε

s(δ),
˜̂Y ε
s )‖2L2(U2,H2)

ds.

Then by condition B2, there exists γ > 0 such that

d

dt
E‖Y ε

t − Ŷ ε
t ‖2H2

� −γ

ε
E‖Y ε

t − Ŷ ε
t ‖2H2

+ C

ε
E‖Xε

t − Xε
t(δ)‖2H1

.

The the same argument used in (3.4), we have

E‖Y ε
t − Ŷ ε

t ‖2H2
� C

ε

∫ t

0
e− γ (t−s)

ε E‖Xε
s − Xε

s(δ)‖2H1
ds.

Then applying Fubini’s theorem, for any T > 0,

E

(∫ T

0
‖Y ε

t − Ŷ ε
t ‖2H2

dt

)
� C

ε

∫ T

0

∫ t

0
e− β(t−s)

ε E‖Xε
s − Xε

s(δ)‖2H1
dsdt

= C

ε
E

[∫ T

0
‖Xε

s − Xε
s(δ)‖2H1

(∫ T

s
e− β(t−s)

ε dt

)
ds

]

� CE

(∫ T

0
‖Xε

s − Xε
s(δ)‖2H1

ds

)
.

Therefore, by Lemma 3.2, we obtain

E

(∫ T

0
‖Y ε

t − Ŷ ε
t ‖2H2

dt

)
� CT (1 + ‖x‖m

H1
+ ‖y‖m

H2
)δ1/2.

The proof is complete. ��
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3.3 The Ergodicity of the Frozen Equation

The frozen equation associated to the fast motion for fixed slow component x ∈ H1
is as follows,

{
dYt = B(x, Yt )dt + G2(x, Yt )dW̄ 2

t ,

Y0 = y ∈ H2,
(3.17)

where {W̄ 2
t }t�0 is a cylindrical F̃t -Wiener process in a separable Hilbert space U2 on

another probability space (�̃, F̃ , P̃) with natural filtration F̃t .
Under the assumptions B1–B4, for any fixed x ∈ H1 and initial data y ∈ H2,

equation (3.17) has a unique variational solution Y x,y
t in the sense of Definition 2.2,

i.e., for its dt ⊗ P̃-equivalence class Ŷ we have Ŷ x,y ∈ Lκ([0, T ] × �̃, dt ⊗ P̃; V2) ∩
L2([0, T ] × �̃, dt ⊗ P̃; H2) with κ as in B3, we have P̃-a.s.

Y x,y
t = y +

∫ t

0
B(x, Ỹ x,y

s )ds +
∫ t

0
G2(x, Ỹ x,y

s )dW̄ 2
s , (3.18)

where Ỹ x,y is any V2-valued progressively measurable dt ⊗ P̃-version of Ŷ x,y . By the
same arguments as in the proof of Lemma 3.1, it is easy to prove that

sup
t�0

Ẽ‖Y x,y
t ‖2H2

� C(1 + ‖x‖2H1
+ ‖y‖2H2

).

Let {Px
t }t�0 be the transition semigroup of the Markov process {Y x,y

t }t�0, that is,
for any bounded measurable function ϕ on H2,

Px
t ϕ(y) = Ẽ

[
ϕ

(
Y x,y

t
)]

, y ∈ H2, t > 0,

where Ẽ is the expectation on (�̃, F̃ , P̃). Then we have the following asymptotic
behavior of Px

t , whose proof can be founded in [20, Theorem 4.3.9].

Proposition 3.4 The transition semigroup {Px
t }t�0 has a unique invariant measure

μx . Moreover, there exists a constant C > 0 such that for any Lipschitz function
ϕ : H2 → R,

∣∣∣Px
t ϕ(y) −

∫

H2

ϕ(z)μx (dz)
∣∣∣ � C(1 + ‖x‖H1 + ‖y‖H2)e

− γ t
2 ‖ϕ‖Lip, (3.19)

where ‖ϕ‖Lip = supy1 �=y2∈H2

|ϕ(y1)−ϕ(y2)|
‖y1−y2‖H2

.
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3.4 The Averaged Equation

We consider the corresponding averaged equation, i.e.

{
d X̄t = A(X̄t )dt + F̄(X̄t )dt + G1(X̄t )dW 1

t ,

X̄0 = x ∈ H1,
(3.20)

with the averaged coefficient

F̄(x) :=
∫

H2

F(x, y)μx (dy), x ∈ H1,

where μx is the unique invariant measure for the transition semigroup {Px
t }t�0.

Since F is Lipschitz continuous, it is easy to check F̄ is also Lipschitz continuous,
i.e.

‖F̄(u) − F̄(v)‖H1 � C‖u − v‖H1 , u, v ∈ H1.

Then equation (3.20) has a unique variational solution X̄ in the sense of Definition

2.2, i.e.,for its dt ⊗P-equivalence class ˇ̄X we have ˇ̄X ∈ Lα([0, T ]×�, dt ⊗P; V1)∩
L2([0, T ] × �, dt ⊗ P; H1) with α as in A3, we have P-a.s.

X̄t = x +
∫ t

0
A( ˜̄Xs)ds +

∫ t

0
F̄(X̄s)ds +

∫ t

0
G1(

˜̄Xs)dW 1
s , (3.21)

where ˜̄X is any V1-valued progressively measurable dt ⊗ P-version of ˇ̄X . Moreover,
we also have the following estimates. Because their proofs follows almost the same
steps in the proof of Lemmas 3.1 and 3.2, we omit them here.

Lemma 3.5 For any T > 0, p � 1, there exist constants C p,T , CT > 0 and m > 0
such that for any x ∈ H1,

E

(
sup

t∈[0,T ]
‖X̄t‖2p

H1

)
+ E

(∫ T

0
‖X̄t‖2p−2

H1
‖ ˜̄Xt‖α

V1
dt

)
� C p,T (1 + ‖x‖2p

H1
)

and

E

[∫ T

0
‖X̄t − X̄t(δ)‖2H1

dt

]
� CT δ1/2(1 + ‖x‖m

H1
). (3.22)

Next, we intend to prove that Xε
t strongly converges to X̄t for t < τR firstly, then the

proof of the main result will follow from the fact that the difference process Xε
t − X̄t

after the stopping time is sufficient small when R is large enough, whose proof is given
in Sect. 3.5.
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Proposition 3.6 For any (x, y) ∈ H1 × H2, T , R > 0 and ε ∈ (0, 1), then there exist
constants CR,T , m > 0 such that

E

(
sup

t∈[0,T ∧τR ]
‖Xε

t − X̄t‖2H1

)

� CR,T (1 + ‖x‖m
H1

+ ‖y‖m
H1

)

(
ε

δ
+ ε1/2

δ1/2
+ δ1/2 + δ1/4

)
, (3.23)

where

τR := inf

{
t � 0 :

∫ t

0
(1 + ‖ ˜̄Xs‖α

V1
)(1 + ‖X̄s‖β

H1
)ds � R

}
.

Proof We will divide the proof into three steps.
Step 1 We note that

Xε
t − X̄t =

∫ t

0

[
A(X̃ε

s ) − A( ˜̄Xs)
]

ds + [
F(Xε

s , Y ε
s ) − F̄(X̄s)

]
ds

+
[
G1(X̃ε

s ) − G1(
˜̄Xs)

]
dW 1

s .

Applying Itô’s formula, we have

‖Xε
t − X̄t‖2H1

= 2
∫ t

0
V ∗
1
〈A(X̃ε

s ) − A( ˜̄Xs), X̃ε
s − ˜̄Xs〉V1ds

+
∫ t

0
‖G1(X̃ε

s ) − G1(
˜̄Xs)‖2L2(U1,H1)

ds

+2
∫ t

0

〈[
F(Xε

s , Y ε
s ) − F̄(X̄s)

]
, Xε

s − X̄s
〉
H1

ds

+2
∫ t

0
〈Xε

s − X̄s , [G1(X̃ε
s ) − G1(

˜̄Xs)]dW 1
s 〉H1

= 2
∫ t

0
V ∗
1
〈A(X̃ε

s ) − A( ˜̄Xs), X̃ε
s − ˜̄Xs〉V1ds

+
∫ t

0
‖G1(X̃ε

s ) − G1(
˜̄Xs)‖2L2(U1,H1)

ds

+2
∫ t

0

〈[
F̄(Xε

s ) − F̄(X̄s)
]
, Xε

s − X̄s
〉
H1

ds

+2
∫ t

0

〈[
F(Xε

s , Y ε
s ) − F̄(Xε

s ) − F(Xε
s(δ), Ŷ ε

s ) + F̄(Xε
s(δ))

]
, Xε

s − X̄s

〉

H1
ds

+2
∫ t

0

〈[
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ))
]
, Xε

s − Xε
s(δ) − X̄s + X̄s(δ)

〉

H1
ds

+2
∫ t

0

〈[
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ))
]
, Xε

s(δ) − X̄s(δ)

〉

H1
ds

+2
∫ t

0
〈Xε

s − X̄s , [G1(X̃ε
s ) − G1(

˜̄Xs)]dW 1
s 〉H1 .
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Then conditions A2 and A3 imply P-a.s.,

‖Xε
t − X̄t‖2H1

� C
∫ t

0
‖Xε

s − X̄s‖2H1
(1 + ‖ ˜̄Xs‖α

V1
)(1 + ‖X̄s‖β

H1
)ds

+C
∫ t

0

(
‖Xε

s − Xε
s(δ)‖2H1

+ ‖Y ε
s − Ŷ ε

s ‖2H2
+ ‖X̄s − X̄s(δ)‖2H1

)
ds

+C

[∫ t

0
‖F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ))‖2H1
ds

]1/2

×
[∫ t

0

(
‖Xε

s − Xε
s(δ)‖2H1

+ ‖X̄s − X̄s(δ)‖2H1

)
ds

]1/2

+2

∣∣∣∣
∫ t

0

〈[
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ))
]
, Xε

s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

+2

∣∣∣∣
∫ t

0
〈Xε

s − X̄s, [G1(Xε
s ) − G1(

˜̄Xs)]dW 1
s 〉H1

∣∣∣∣ .

Applying Gronwall’s inequality and the definition of the stopping time τR , we deduce
that

sup
t∈[0,T ∧τR ]

‖Xε
t − X̄t‖2H1

� CR,T

{∫ T

0

(
‖Xε

s − Xε
s(δ)‖2H1

+ ‖Y ε
s − Ŷs‖2H2

+ ‖X̄s − X̄s(δ)‖2H1

)
ds

+
[∫ T

0

(
1 + ‖Xε

s(δ)‖2H1
+ ‖Ŷ ε

s ‖2H2

)
ds

]1/2

×
[∫ t

0
‖Xε

s − Xε
s(δ)‖2H1

+ ‖X̄s − X̄s(δ)‖2H1
ds

]1/2

+ sup
t∈[0,T ]

∣∣∣∣
∫ t

0

〈[
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ))
]
, Xε

s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

+ sup
t∈[0,T ∧τR ]

∣∣∣∣
∫ t

0
〈Xε

s − X̄s, [G1(Xε
s ) − G1(

˜̄Xs)]dW 1
s 〉H1

∣∣∣∣

}
.

Note that

{∫ t

0
〈Xε

s − X̄s, [G1(Xε
s ) − G1(

˜̄Xs)]dW 1
s 〉H1

}

0�t�T

is a local martingale and T ∧ τR is a stopping time, thus applying Burkholder-Davis
inequality (see e.g. [20, Proposition D.0.1]), estimates (3.5), (3.16) and (3.22), there
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exists m > 0 such that

E

(
sup

t∈[0,T ∧τR ]
‖Xε

t − X̄t‖2H1

)

� CR,T
(
1 + ‖x‖m

H1
+ ‖y‖m

H2

)
δ1/4

+1

2
E

(
sup

t∈[0,T ∧τR ]
‖Xε

t − X̄t‖2H1

)

+CR,TE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

]

+CR,TE

(∫ T ∧τR

0
‖Xε

t − X̄t‖2H1
dt

)
,

which implies

E

(
sup

t∈[0,T ∧τR ]
‖Xε

t − X̄t‖2H1

)

� CR,T
(
1 + ‖x‖m

H1
+ ‖y‖m

H2

)
δ1/4

+CR,TE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

]

+CR,T

∫ T

0
E

(
sup

s∈[0,t∧τR ]
‖Xε

s − X̄s‖2H1

)
dt .

Applying Gronwall’s inequality, we finally get

E

(
sup

t∈[0,T ∧τR ]
‖Xε

t − X̄t‖2H1

)

� CR,T
(
1 + ‖x‖m

H1
+ ‖y‖m

H2

)
δ1/4

+CR,TE

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

]
.

Hence, the proof will be completed by the following estimate:

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

]

� CT

(
1 + ‖x‖2H1

+ ‖y‖2H2

)(
ε

δ
+ ε1/2

δ1/2
+ δ1/2

)
, (3.24)

whose proof will be given in Step 2.
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Step 2 We note that

∣∣∣∣
∫ t

0
〈F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)〉H1ds

∣∣∣∣

=
∣∣∣∣∣∣

[t/δ]−1∑

k=0

∫ (k+1)δ

kδ

〈F(Xε
s(δ), Ŷ ε

s ) − F̄(Xε
s(δ)), Xε

s(δ) − X̄s(δ)〉H1ds

+
∫ t

t(δ)
〈F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)〉H1ds

∣∣∣∣

�
[t/δ]−1∑

k=0

∣∣∣∣∣

∫ (k+1)δ

kδ

〈F(Xε
s(δ), Ŷ ε

s ) − F̄(Xε
s(δ)), Xε

s(δ) − X̄s(δ)〉H1ds

∣∣∣∣∣

+
∣∣∣∣
∫ t

t(δ)
〈F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)〉H1ds

∣∣∣∣

:= J1(t) + J2(t). (3.25)

For the term J2(t), it is easy to see

E

[
sup

t∈[0,T ]
J2(t)

]
� C

[
E sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

]1/2

[
E sup

t∈[0,T ]

∣∣∣∣
∫ t

t(δ)
(1 + ‖Xε

s(δ)‖H1 + ‖Ŷ ε
s ‖H2)ds

∣∣∣∣
2
]1/2

� C

[
E sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

]1/2

[
E

∫ T

0
(1 + ‖Xε

s(δ)‖2H1
+ ‖Ŷ ε

s ‖2H2
)ds

]1/2
δ1/2

� CT (‖x‖2H1
+ ‖y‖2H2

+ 1)δ1/2. (3.26)

For the term J1(t), we have

E

[
sup

t∈[0,T ]
J1(t)

]
� E

[T /δ]−1∑

k=0

∣∣∣∣∣

∫ (k+1)δ

kδ

〈F(Xε
kδ, Ŷ ε

s ) − F̄(Xε
kδ), Xε

kδ − X̄kδ〉H1ds

∣∣∣∣∣

� CT

δ
max

0�k�[T /δ]−1
E

∣∣∣∣∣

∫ (k+1)δ

kδ

〈F(Xε
kδ, Ŷ ε

s ) − F̄(Xε
kδ), Xε

kδ − X̄kδ〉H1ds

∣∣∣∣∣

� CT ε

δ
max

0�k�[T /δ]−1

[
E‖Xε

kδ − X̄kδ‖2H1

]1/2

⎡

⎣E

∥∥∥∥∥

∫ δ
ε

0
F(Xε

kδ, Ŷ ε
sε+kδ) − F̄(Xε

kδ)ds

∥∥∥∥∥

2

H1

⎤

⎦
1/2
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� CT (1 + ‖x‖H1 + ‖y‖H2)ε

δ
max

0�k�[T /δ]−1

[∫ δ
ε

0

∫ δ
ε

r
�k(s, r)dsdr

]1/2

,

where for any 0 � r � s � δ
ε
,

�k(s, r) := E

[
〈F(Xε

kδ, Ŷ ε
sε+kδ) − F̄(Xε

kδ), F(Xε
kδ, Ŷ ε

rε+kδ) − F̄(Xε
kδ)〉H1

]
,

and

�k(s, r) � CT (‖x‖2H1
+ ‖y‖2H2

+ 1)e− (s−r)γ
2 , (3.27)

whose proof will be presented in Step 3. Hence, we get

E

[
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

〈
F(Xε

s(δ), Ŷ ε
s ) − F̄(Xε

s(δ)), Xε
s(δ) − X̄s(δ)

〉

H1
ds

∣∣∣∣

]

� CT (‖x‖2H1
+ ‖y‖2H2

+ 1)
ε

δ

[∫ δ
ε

0

∫ δ
ε

r
e− (s−r)γ

2 dsdr

]1/2

+CT (‖x‖2H1
+ ‖y‖2H2

+ 1)δ1/2

= CT (‖x‖2H1
+ ‖y‖2H2

+ 1)
ε

δ

( δ

γ ε
− 1

γ 2

+ 1

γ 2 e− γ δ
ε

)1/2 + CT (‖x‖2H1
+ ‖y‖2H2

+ 1)δ1/2

� CT (‖x‖2H1
+ ‖y‖2H2

+ 1)

(
ε

δ
+ ε1/2

δ1/2
+ δ1/2

)
,

which completes the proof of estimate (3.24).
Step 3 For any s > 0, and any Fs-measurable H1-valued random variable X and

H2-valued random variable Y , we consider the following equation:

⎧
⎨

⎩
dYt = 1

ε
B(X , Yt )dt + 1√

ε
G2(X , Yt )dW 2

t , t � s,

Ys = Y ,

which has a unique solution Ỹ ε,s,X ,Y
t . Then by the construction of Ŷ ε

t , for any k ∈ N∗
and t ∈ [kδ, (k + 1)δ] we have P-a.s.,

Ŷ ε
t = Ỹ

ε,kδ,Xε
kδ,Ŷ

ε
kδ

t ,
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which implies

�k(s, r) = E

[
〈F(Xε

kδ, Ỹ
ε,kδ,Xε

kδ,Ŷ
ε
kδ

sε+kδ ) − F̄(Xε
kδ), F(Xε

kδ, Ỹ
ε,kδ,Xε

kδ,Ŷ
ε
kδ

rε+kδ ) − F̄(Xε
kδ)〉H1

]

=
∫

�

E

[
〈F(Xε

kδ, Ỹ
ε,kδ,Xε

kδ,Ŷ
ε
kδ

sε+kδ ) − F̄(Xε
kδ),

F(Xε
kδ, Ỹ

ε,kδ,Xε
kδ,Ŷ

ε
kδ

rε+kδ ) − F̄(Xε
kδ)〉H1 |Fkδ

]
(ω)P(dω)

=
∫

�

E

[
〈F(Xε

kδ, Ỹ
ε,kδ,Xε

kδ(ω),Ŷ ε
kδ(ω)

sε+kδ ) − F̄(Xε
kδ(ω)) ,

F(Xε
kδ(ω), Ỹ

ε,kδ,Xε
kδ(ω),Ŷ ε

kδ(ω)

rε+kδ ) − F̄(Xε
kδ(ω))〉H1

]
P(dω),

where the last equality comes from the fact that Xε
kδ and Ŷ ε

kδ areFkδ-measurable, and

for any fixed (x, y) ∈ H1 × H2, {Ỹ ε,kδ,x,y
sε+kδ }s�0 is independent ofFkδ .

By the definition of process Ỹ ε,kδ,x,y
t , for its dt ⊗P-equivalence class ˇ̃Y ε,kδ,x,y we

have ˇ̃Y ε,kδ,x,y ∈ Lκ([kδ, T ] × �, dt ⊗ P; V2) ∩ L2([kδ, T ] × �, dt ⊗ P; H2) with κ

as in B3 and P-a.s.

Ỹ ε,kδ,x,y
sε+kδ = y + 1

ε

∫ sε+kδ

kδ

B(x,
˜̃Y ε,kδ,x,y
r )dr + 1√

ε

∫ sε+kδ

kδ

G2(x,
˜̃Y ε,kδ,x,y
r )dW 2

r

= y + 1

ε

∫ sε

0
B(x,

˜̃Y ε,kδ,x,y
r+kδ )dr + 1√

ε

∫ sε

0
G2(x, Ỹ ε,kδ,x,y

r+kδ )dW 2,kδ
r

= y +
∫ s

0
B(x,

˜̃Y ε,kδ,x,y
rε+kδ )dr +

∫ s

0
G2(x, Ỹ ε,kδ,x,y

rε+kδ )dŴ 2,kδ
r , (3.28)

where ˜̃Y ε,kδ,x,y is any V2-valued progressively measurable dt ⊗P-version of ˇ̃Y ε,kδ,x,y ,
{W 2,kδ

r := W 2
r+kδ − W 2

kδ}r�0 and {Ŵ 2,kδ
t := 1√

ε
W 2,kδ

tε }t�0.
The uniqueness of the solution of equations (3.28) and (3.18) implies that the

distribution of (Ỹ ε,kδ,x,y
sε+kδ )0�s�δ/ε coincides with the distribution of (Y x,y

s )0�s�δ/ε.
Then by Proposition 3.4, estimates (3.1) and (3.15), we have

�k(s, r) =
∫

�

[
Ẽ
〈
F

(
Xε

kδ(ω), Y
Xε

kδ(ω),Ŷ ε
kδ(ω)

s

)
− F̄(Xε

kδ(ω)),

F

(
Xε

kδ(ω), Y
Xε

kδ(ω),Ŷ ε
kδ(ω)

r

)
− F̄(Xε

kδ(ω))
〉
H1

]
P(dω)

=
∫

�

∫

�̃

〈
Ẽ

[
F

(
Xε

kδ(ω), Y
Xε

kδ(ω),Y
Xε

kδ
(ω),Ŷ ε

kδ
(ω)

r (ω̃)

s−r

)
− F̄(Xε

kδ(ω))
]
,

F

(
Xε

kδ(ω), Y
Xε

kδ(ω),Ŷ ε
kδ(ω)

r (ω̃)

)
− F̄(Xε

kδ(ω))
〉
H1
P̃(dω̃)P(dω)
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�
∫

�

∫

�̃

[
1 + ‖Xε

kδ(ω)‖H1 + ‖Y
Xε

kδ(ω),Ŷ ε
kδ(ω)

r (ω̃)‖H2

]
e− (s−r)γ

2

·
[
(1 + ‖Xε

kδ(ω)‖H1 + ‖Y
Xε

kδ(ω),Ŷ ε
kδ(ω)

r (ω̃)‖H2

]
P̃(dω̃)P(dω)

� CT

∫

�

[
(1 + ‖Xε

kδ(ω)‖2H1
+ ‖Ŷ ε

kδ(ω)‖2H2
)
]
P(dω)e− (s−r)γ

2

� CT (‖x‖2H1
+ ‖y‖2H2

+ 1)e− (s−r)γ
2 ,

which gives estimate (3.27). The proof is complete. ��

3.5 Proof of Theorem 2.4:

Applying Chebyshev’s inequality, Lemmas 3.1 and 3.5, we have

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1
1{T >τR}

)
�

[
E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖4H1

)]1/2

· [P (T > τR)]1/2

�
CT (1 + ‖x‖2H1

+ ‖y‖2H2
)√

R

×
[
E

∫ T

0
(1 + ‖ ˜̄Xs‖α

V1
)(1 + ‖X̄s‖β

H1
)ds

]1/2

�
CT (1 + ‖x‖m

H1
+ ‖y‖m

H2
)√

R
, (3.29)

where m is a positive constant. Then taking δ = ε
2
3 , estimates (3.23) and (3.29) give

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

)
� E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1
1{T �τR}

)

+E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1
1{T >τR}

)

� CR,T (1 + ‖x‖m
H1

+ ‖y‖m
H2

)ε
1
6

+CT (1 + ‖x‖m
H1

+ ‖y‖m
H2

)√
R

.

Now, letting ε → 0 first, then R → ∞, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

)
= 0. (3.30)
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Note that for any p > 1, by Lemmas 3.1 and 3.5, it is easy to see that

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= E

[
sup

t∈[0,T ]

(
‖Xε

t − X̄t‖H1‖Xε
t − X̄t‖2p−1

H1

)]

� C p

[
E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

)]1/2

[
E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖4p−2
H1

)]1/2

� C p,T (1 + ‖x‖2p−1
H1

+ ‖y‖2p−1
H2

)
[
E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2H1

)]1/2

.

Hence, by (3.30), we finally get

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0.

The proof is complete. ��

4 Application to Examples

In this section we will apply our main result to establish the averaging principle for
stochastic porous medium equations, p-Laplace equations, Burgers equations and 2D
Navier–Stokes equations with slow and fast time-scales. Note that we here mainly
focus on the nonlinear operator A, so we take the stochastic porous medium equation,
p-Laplace equations, Burgers equations, or 2D Navier–Stokes equations for the slow
component and stochastic heat equation with Lipschitz drift for the fast component
for the simplicity.

Let � ⊂ R
d be an open bounded domain and � be the Laplace operator on � with

Dirichlet boundary conditions, and for p ∈ [1,∞) we use L p(�) and Hn,p
0 to denote

the space of p-Lebesgue integrable functions on � and the Sobolev space of order n
in L p(�) with Dirichlet boundary conditions. Recall that X∗ denotes the dual space
of a Banach space X .

4.1 Stochastic Porous Medium Equations

Let � : R → R be a function having the following properties :

(�1) � is continuous.
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(�2) For all s, t ∈ R

(t − s)(�(t) − �(s)) � 0.

(�3) There exist p ∈ [2,∞), c1 ∈ (0,∞), c2 ∈ [0,∞) such that for all s ∈ R

s�(s) � c1|s|p − c2.

(�4) There exist c3, c4 ∈ (0,∞) such that for all s ∈ R

|�(s)| � c3|s|p−1 + c4,

where p is as in (�3).
Considering the Gelfand triple for the slow equation

V1 := L p(�) ⊆ H1 := (H1,2
0 (�))∗ ⊆ V ∗

1 := (L p(�))∗

and the Gelfand triple for the fast equation

V2 := H1,2
0 (�) ⊆ H2 := L2(�) ⊆ V ∗

2 := (H1,2
0 (�))∗.

Then we introduce the porous medium operator A(u) : V1 → V ∗
1 (see [20, Sect. 4.1]

for details) by

A(u) = ��(u), u ∈ V1.

Now, we consider the slow–fast stochastic porous medium-heat equations

⎧
⎪⎪⎨

⎪⎪⎩

d Xε
t = [

��(Xε
t ) + F(Xε

t , Y ε
t )

]
dt + G1(Xε

t )dW 1
t ,

dY ε
t = 1

ε

[
�Y ε

t + B2(Xε
t , Y ε

t )
]

dt + 1√
ε

G2(Xε
t , Y ε

t )dW 2
t ,

Xε
0 = x ∈ H1, Y ε

0 = y ∈ H2,

(4.1)

where

F : H1 × H2 → H1; G1 : V1 → L2(U1; H1);

are measurable mappings and

B2 : H1 × V2 → V ∗
2 ; G2 : H1 × V2 → L2(U2; H2)
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are Lipschitz continuous. More precisely,

‖F(u1, u2) − F(v1, v2)‖H1 � C(‖u1 − v1‖H1 + ‖u2 − v2‖H2); (4.2)

‖G1(u) − G1(v)‖2L2(U1,H1)
� C‖u − v‖2H1

; (4.3)

‖B2(u1, u2) − B2(v1, v2)‖H2 � C‖u1 − v1‖H1 + L B2‖u2 − v2‖H2; (4.4)

‖G2(u1, u) − G2(v1, v)‖L2(U2,H2) � C‖u1 − v1‖H1 + LG2‖u − v‖H2 . (4.5)

Moreover, there exists ζ ∈ (0, 1) such that

‖G2(u1, v)‖L2(U2,H2) � C(1 + ‖u1‖H1 + ‖v‖ζ
H2

) (4.6)

and for the smallest eigenvalue λ1 of −� in H2, the Lipschitz constants L B2 , LG2

satisfy

2λ1 − 2Lg − L2
σ2

> 0. (4.7)

It is well known that the porous medium operator A satisfies the monotonicity
and coercivity properties (see, e.g., [20, pp. 87–88]). So it is easy to check all the
conditions A1–A4 hold. Furthermore, the condition B2 holds by condition (4.7) and
the conditions B1,B3 and B4 hold obviously. Hence, by Theorem 2.4, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0, ∀p � 1,

where X̄t is the solution of the corresponding averaged equation.

4.2 Stochastic p-Laplace Equation

Now we consider the stochastic p-Laplace equation (p � 2). We choose the Gelfand
triple for the slow equation

V1 := H1,p
0 (�) ⊆ H1 := L2(�) ⊆ V ∗

1 := (H1,p
0 (�))∗

and the Gelfand triple for the fast equation

V2 := H1,2
0 (�) ⊆ H2 := L2(�) ⊆ V ∗

2 := (H1,2
0 (�))∗

and let A : V1 → V ∗
1 be

A(u) := div(|∇u|p−2∇u), u ∈ V1.

More precisely, given u ∈ V1, we define

V ∗
1
〈A(u), v〉V1 := −

∫

�

|∇u(ξ)|p−2〈∇u(ξ),∇v(ξ)〉dξ, v ∈ V1.
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Here A is called the p-Laplace operator, also denoted by �p. Note that �2 = �.
Now, we consider the slow–fast stochastic p-Laplace-heat equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d Xε
t =

[
div(|∇ Xε

t |p−2∇ Xε
t ) + F(Xε

t , Y ε
t )

]
dt + G1(Xε

t )dW 1
t ,

dY ε
t = 1

ε

[
�Y ε

t + B2(Xε
t , Y ε

t )
]

dt + 1√
ε

G2(Xε
t , Y ε

t )dW 2
t ,

Xε
0 = x ∈ H1, Y ε

0 = y ∈ H2,

(4.8)

where the coefficients F, G1, B2 and G2 satisfy conditions (4.2)–(4.7).
It iswell known that the p-Laplaceoperator satisfies themonotonicity and coercivity

properties (see, e.g., [20, Example 4.1.9]). So it is easy to check that all the conditions
A1–A4 and B1–B4 hold. Hence, by Theorem 2.4, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0, ∀p � 1,

where X̄t is the solution of the corresponding averaged equation.
Note that in the above two examples both the porous medium and the p-Laplace

operators are globally monotone. But our result also applies to many merely locally
monotone operators. For illustration, we will consider the stochastic Burgers and
stochastic 2D Naiver-Stokes equation below (see [20, Sects. 4.1 and 5.1] for a number
of other examples).

4.3 Stochastic Burgers Equation

Nowwe consider the stochastic Burgers equation. Taking� = (0, 1) ⊂ R, we choose
the Gelfand triple for the slow equation

V1 := H1,2
0 (�) ⊆ H1 := L2(�) ⊆ V ∗

1 := (H1,2
0 (�))∗

and the Gelfand triple for the fast equation

V2 := H1,2
0 (�) ⊆ H2 := L2(�) ⊆ V ∗

2 := (H1,2
0 (�))∗

and let A : V1 → V ∗
1 be

A(u) := �u + u∇u, u ∈ V1.

Now, we consider the slow–fast stochastic Burgers-heat equations

⎧
⎪⎪⎨

⎪⎪⎩

d Xε
t = [

�Xε
t + Xε

t ∇ Xε
t + F(Xε

t , Y ε
t )

]
dt + G1(Xε

t )dW 1
t ,

dY ε
t = 1

ε

[
�Y ε

t + B2(Xε
t , Y ε

t )
]

dt + 1√
ε

G2(Xε
t , Y ε

t )dW 2
t ,

Xε
0 = x ∈ H1, Y ε

0 = y ∈ H2,

(4.9)
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where the coefficients F, G1, B2 and G2 satisfy conditions (4.2)–(4.7).
It is well known that the operator A satisfies the monotonicity and coercivity prop-

erties (see, e.g., [20, Lemma 5.1.6]). So it is easy to check that all the conditions
A1–A4 and B1–B4 hold. Hence, by Theorem 2.4, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0, ∀p � 1,

where X̄t is the solution of the corresponding averaged equation.

4.4 Stochastic 2D Navier–Stokes Equation

Now we consider the stochastic 2D Navier–Stokes equation. Let � be a bounded
domain in R2 with smooth boundary, denote

V1 = {v ∈ H1,2
0 (�;R2) : ∇ · v = 0 a.s.in �}, ‖v‖2V1

:=
∫

�

|∇v(ξ)|2dξ,

and let H1 be the closure of V1 in L2(�;R2). We choose the Gelfand triple for the
slow equation

V1 ⊆ H1 ⊆ V ∗
1

and the Gelfand triple for the fast equation

V2 := H1,2
0 (�) ⊆ H2 := L2(�) ⊆ V ∗

2 := (H1,2
0 (�))∗

and let A : V1 → V ∗
1 be

A(u) := PH �u − PH [(u · ∇)u], u ∈ V1,

where PH is theHelmholtz–Leray projection andu·∇ = ∑2
i=1 ui∂i withu = (u1, u2).

Now, we consider the slow–fast stochastic 2D Navier–Stokes-heat equation

⎧
⎪⎪⎨

⎪⎪⎩

d Xε
t = [

A(Xε
t ) + F(Xε

t , Y ε
t )

]
dt + G1(Xε

t )dW 1
t ,

dY ε
t = 1

ε

[
�Y ε

t + B2(Xε
t , Y ε

t )
]

dt + 1√
ε

G2(Xε
t , Y ε

t )dW 2
t ,

Xε
0 = x ∈ H1, Y ε

0 = y ∈ H2,

(4.10)

where the coefficients F, G1, B2 and G2 satisfy conditions (4.2)–(4.7).
It is well known that the operator A satisfies the monotonicity and coercivity prop-

erties (see, e.g., [20, Example 5.1.10]). So it is easy to check that all the conditions
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A1–A4 and B1–B4 hold. Hence, by Theorem 2.4, we have

lim
ε→0

E

(
sup

t∈[0,T ]
‖Xε

t − X̄t‖2p
H1

)
= 0, ∀p � 1,

where X̄t is the solution of the corresponding averaged equation.
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5 Appendix

At the end of this section, we give the proof of Theorem 2.3 based on the techniques
used in [20, Theorem 5.1.3].

Proof of Theorem 2.3 Let H := H1 × H2 be the product Hilbert space. For any φ =
(φ1, φ2), ϕ = (ϕ1, ϕ2) ∈ H, we denote the scalar product and the induced norm by

〈φ, ϕ〉H = 〈φ1, ϕ1〉H1 + 〈φ2, ϕ2〉H2 , ‖φ‖H = √〈φ, φ〉H =
√

‖φ1‖2H1
+ ‖φ2‖2H2

.

Similarly, we also define V := V1 × V2. Then V is a reflexive Banach space with the
following norm:

‖φ‖V =
√

‖φ1‖2V1
+ ‖φ2‖2V2

.

Now we rewrite the system (1.1) for Z ε
t = (Xε

t , Y ε
t ) as

d Z ε
t = Ã(Z ε

t )dt + G(Z ε
t )dWt , Z ε

0 = (x, y) ∈ H, (5.1)

where Wt := (W 1
t , W 2

t ), which is a U1 × U2-valued cylindrical-Wiener process and

Ã(Z ε
t ) =

(
A(Xε

t ) + F(Xε
t , Y ε

t ),
1

ε
B(Xε

t , Y ε
t )

)
,

G(Z ε
t ) =

(
G1(Xε

t ),
1√
ε

G2(Xε
t , Y ε

t )

)
.

Moreover, G is an operator fromV to L2(U ,H), whereU := U1×U2 and L2(U ,H) is
the space of Hilbert-Schmidt operators from U toH. The norm in L2(U ,H) is defined
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by

‖G(z)‖L2(U ,H) =
√

‖G1(x)‖2L2(U1,H1)
+ 1

ε
‖G2(x, y)‖2L2(U2,H2)

, z = (x, y) ∈ V.

Let V∗ be the dual space of V and we consider the following Gelfand triple V ⊂
H ≡ H∗ ⊂ V∗. It is easy to see that the following mappings

Ã : V → V∗, G : V → L2(U ,H)

are well defined. To complete the proof, we only check whether the new coefficients
in equation (5.1) satisfy the local monotonicity, coercivity and growth properties by
[20, Theorem 5.1.3].

Indeed, for any w1 = (u1, v1), w2 = (u2, v2) ∈ V , by conditions A2 and B2, we
have

2V∗〈 Ã(w1) − Ã(w2), w1 − w2〉V + ‖G(w1) − G(w2)‖2L2(U ,H)

= 2V ∗
1
〈A(u1) − A(u2), u1 − u2〉V1 + 〈F(u1, v1) − F(u2, v2), u1 − u2〉H1

+2

ε
V ∗
2
〈B(u1, v1) − B(u2, v2), v1 − v2〉V2 + ‖G1(u1) − G1(u2)‖2L2(U1,H1)

+1

ε
‖G2(u1, v1) − G2(u2, v2)‖2L2(U2,H2)

� C
[
(1 + ‖u2‖α

V1
)(1 + ‖u2‖β

H1
)
]
‖u1 − u2‖2H1

− γ

2ε
‖v1 − v2‖2H2

+Cε‖u1 − u2‖2H1
+ C‖u1 − u2‖H1‖v1 − v2‖H2

� Cε

[
(1 + ‖w2‖α

V )(1 + ‖w2‖β

H)
]
‖w1 − w2‖2H,

which implies that the local monotonicity condition holds.
For any w = (u, v) ∈ V , there exist constants Cε > 0 and C > 0 such that

2V∗〈 Ã(w),w〉V + ‖G(w)‖2L2(U ,H)

= 2V ∗
1
〈A(u), u〉V1 + 2

ε
V ∗
2
〈B(u, v), v〉V2 + 〈F(u, v), u〉H1

+‖G1(u)‖2L2(U1,H1)
+ 1

ε
‖G2(u, v)‖2L2(U2,H2)

� C‖u‖2H1
− θ‖u‖α

V1
+ C + 1

ε

[
C(1 + ‖u‖2H1

+ ‖v‖2H2
) − η‖v‖κ

V2

]

� Cε(1 + ‖w‖2H) − Cε(‖u‖α
V1

+ ‖v‖κ
V2

)

and

‖ Ã(w)‖V∗ � ‖A(u)‖V ∗
1

+ 1

ε
‖B(u, v)‖V ∗

2
+ ‖F(u, v)‖H1
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� C(1 + ‖u‖α−1
V1

)(1 + ‖u‖
β(α−1)

α

H1
)

+C

ε

(
1 + ‖u‖H1 + ‖v‖H2 + ‖u‖

2(κ−1)
κ

H1

)
+ C

ε

(
1 + ‖v‖κ−1

V2

)

� Cε(1 + ‖u‖α−1
V1

+ ‖v‖κ−1
V2

)(1 + ‖w‖β̃

H),

for some β̃ > 0, which implies that the coercivity and growth conditions hold. ��
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