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Abstract
Weuse convex duality techniques to study a spatial Pareto problemwith transport costs
and derive a spatial secondwelfare theorem. The existence of an integrable equilibrium
distribution of quantities is nontrivial and established under general monotonicity
assumptions. Our variational approach also enables us to give a numerical algorithm
à la Sinkhorn and present simulations for equilibrium prices and quantities in one-
dimensional domains and a network of French cities.

Keywords Exchange economy Pareto optimality · Optimal transport · Convex
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1 Introduction

The present article proposes a simple model of efficient spatial trade in an exchange
economy subject to transportation costs. The notion of efficiency we consider com-
prises two quite different aspects: efficiency of the transport (import/export) process
and efficiency in the Pareto sense of the distribution of goods after import/export
has taken place. We take as primitives the spatial (initial) distribution of goods, the
transportation cost for these goods and the agent’s preferences, given by a (possibly
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location dependent) utility function. The unknown is the (final) distribution of goods
after trade among the different locations. Our approach is based on the maximization
of a global criterion which is a weighted average of the utility of final consumption
(Pareto efficiency) net of the minimal total transport cost taking into account mass
conservation constraints (optimal transport).

Our model relies to a large extent on optimal transport theory which has been the
object of an intensive and fruitful stream of research in the last three decades and
has found numerous applications in PDEs, functional inequalities, probability theory,
economics and more recently machine learning, see the textbooks of Villani [1] and
Santambrogio [2], and for an overview of optimal transport methods in economics and
econometrics, see Galichon [3]. Optimal transport aims at explaining how to transport
mass efficiently (i.e. so as to minimize a total cost) between two given measures with
the same total mass. A cornerstone of this theory is the Kantorovich duality which
characterizes optimal plans in terms of a pair of dual variables which are naturally
interpreted as prices.

In a spatially distributed exchange economy where various goods are available in
different quantities according to location, agents located at different locationsmayhave
an interest to trade and they will certainly do so if they can all increase their utility for
a small transport cost. Possible utility improvements is then the reason why somemass
is actually transported. To fix ideas, think of two locations A and B, all the resources in
water are concentrated at A and all the resources in food are concentrated at B, agents
located at B will then import some water from A and export some food to B but the
precise amount of water/food transported will depend on: (i) the initial endowments
of A and B, (ii) the preferences of agents located at A and B and (iii) on how costly
transporting these goods from one location to another is. If we fix the demand for water
of B and the demand for food of A, this is a simple optimal transport problem but
these demands result from a Pareto (weighted utility maximization) problem between
these two locations. A dual version of the problem consists in looking for prices for
which markets clear and also reflect the cost of transporting the goods as efficiently
as possible.

We propose a simple variational model that combines optimal transport (that is how
to transport the goods) with Pareto efficiency requirements (that is why some goods
are actually transported). The variational problem we consider to find Pareto efficient
distributions involves separable optimal transport terms and a joint concave utility
term. Interestingly, this has a somehow similar structure as steps of the celebrated
JKO scheme of Jordan, Kinderlehrer and Otto [4] for Wasserstein gradient flows, see
Ambrosio, Gigli and Savaré [5] for a detailed account of this theory. Convex duality
also enables us to derive supporting prices and to prove a sort of spatial second welfare
theorem. From a mathematical point, the existence of integrable Pareto optimal final
resource distributions is non trivial andweprovide a complete proof using quite general
monotonicity properties. We also prove existence of continuous prices supporting
these Pareto distribution of the goods. The fact that the analysis resorts on convex
minimization and duality enables us to use state of the art solvers based on the Sinkhorn
algorithm for entropic optimal transport, see Cuturi [6], Benamou et al. [7], Cuturi and
Peyré [8], Peyré [9].We illustrate the practical use of ourmodel by solving numerically
one-dimensional examples aswell as a graphmodel representing some cities in France.
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The paper is organized as follows. Our variational spatial Pareto model and our
assumptions are introduced inSect. 2. Section 3 is concernedwith existence and duality
results. Primal-dual optimality conditions are further analysed and a second welfare
theorem is derived from the latter in Sect. 4. Finally, Sect. 5 presents an algorithm for
the entropic regularization of the problem and numerical simulations for equilibrium
prices and quantities in one-dimensional domains and a graph representing a network
of French cities.

2 Assumptions and Notations

We consider a region denoted by X whichwe assume to be a compact metric space.We
consider agents populating X having initial endowments of N goods, given by non-
negative Borel measures (μ1, . . . , μN ) ∈ M+(X)N . Choosing a reference measure
m ∈ M+(X) such thatμi is absolutely continuous with respect to m for i = 1, . . . , N
(e.g. m = ∑N

i=1 μi ) we denote by αi the density of μi with respect to m i.e.

μi = αi m, αi ∈ L1(X , m).

Assumption A1 A1 For each good i , there is a transport cost ci ∈ C(X × X) which
satisfies

ci (x, y) ≥ 0, ci (x, x) = 0,∀(x, y) ∈ X2.

The quantity ci (x, y) represents the cost of transporting one unit of mass of good i
from x to y.

The image (or pushforward) of a Borel measure θ by a Borel map T will be denoted
T#θ in the sequel. More precisely, if Y and Z are compact metric spaces, if θ ∈ M(Y )

(i.e. θ is a Borel measure on Y ) and if T : Y → Z is Borel, then T#θ is defined
by T#θ(B) = θ(T −1(B)) for every Borel subset B of Z . Equivalently, using test-
functions, T#θ is defined by

∫

Z
ϕdT#θ =

∫

Y
ϕ ◦ T dθ, ∀ϕ ∈ C(Z).

In particular, if γ ∈ M+(X × X), the marginals of γ are proj1#γ and proj2#γ , where
(proj1(x, y), proj2(x, y)) = (x, y) denote the canonical projections. Given νi a Borel
measure on X , we set

Tci (μi , νi ) := {minγi ∈�(μi ,νi )

∫
X×X ci (x, y)dγi (x, y) if νi ≥ 0 and νi (X) = μi (X)

+∞ otherwise

where �(μi , νi ) is the set of transport plans between μi and νi i.e. the set of non-
negative Borel measures on X × X having μi and νi as marginals (so that γi (A × B)

represents the amount of mass of good i initially in A transported to a location in B).
In our model, transporting goods is costly but may be worth because it may result in
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some improvement in terms of the agent’s preferences. These preferences are given
by a (space-dependent) utility function U : X ×R

N+ → R∪{−∞}, on which we make
the following assumptions:

Assumption A2 A2 For m-a.e. x ∈ X , β ∈ R
N+ 	→ U (x, β) is usc, concave and

nondecreasing1,

Assumption A3 A3 For every β ∈ R
N+ , x ∈ X 	→ U (x, β) is m-measurable.

Assumption A4 A4 The map (x, β) 	→ U (x, β) is sublinear with respect to β uni-
formly in x ∈ X , meaning that for every δ > 0 there exists Cδ such that for m-a.e.
x ∈ X one has

U (x, β) ≤ δ

N∑

i=1

βi + Cδ, ∀β ∈ R
N+ .

Assumption A5 A5 There exists (α1, . . . , αN ) ∈ L1(X , m)N such that

αi ≥ 0,
∫

X
αidm =

∫

X
αidm, i = 1, . . . , N , (2.1)

and
∫

X
U (x, α1(x), . . . , αN (x))dm(x) > −∞.

A typical utility which satisfies the above assumptions (as well as the stronger version
(A5’) of (A5) introduced in Sect. 3.3) is the Cobb–Douglas utility:

U (x, β) = w(x)

N∏

i=1

β
ai
i

withw, a positivemeasurable and boundedweight function and ai > 0 and
∑N

i=1 ai <

1.
Now, Given ν := (ν1, . . . , νN ) ∈ M+(X)N , let us define

U(ν) :=
{∫

X U (x, β1(x), . . . , βN (x))dm(x) ifνi = βi m, fori = 1, . . . , m

−∞ otherwise

and

Tμ(ν) :=
N∑

i=1

Tci (μi , νi ).

1 by nondecreasing we mean that β − β ′ ∈ R
N+ implies U (x, β) ≥ U (x, β ′).
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We are here interested in allocations which maximize the average utility (Pareto effi-
ciency) taking into account transportation cost of the different goods and therefore
consider

sup
{
U(ν) − Tμ(ν), ν = (ν1, . . . νN ) ∈ M+(X)N

}
(2.2)

which can also be expressed as

sup
β∈L1(X ,m)N

{∫

X
U (x, β(x))dm(x) −

N∑

i=1

Tci (αi m, βi m)

}

(2.3)

which incorporates the mass conservation constraints

∫

X
βi (x)dm(x) =

∫

X
αi (x)dm(x), i = 1, . . . , N . (2.4)

Note that (A5) and (A4) ensure that the value of the maximization problem (2.2) is
finite.

3 Existence and Duality

3.1 Existence of L1 Optimizers

Notice that the existence of an optimizer in L1 for (2.2) is not totally straighforward,
and this is the object of the next result.

Proposition 3.1 Assuming (A1)–(A5), the maximization problem (2.2) admits at least
one solution. If, in addition, there exists 
 ⊂ X, Borel, such that m(
) > 0 and
U (x, .) is strictly concave on R

N+ for every x ∈ 
 then the solution is unique.

Proof Let νn = βnm be a maximizing sequence for (2.2). Since βn
i ≥ 0 and

∫
X βn

i dm = μi (X), (βn)n is bounded in L1(X , m)N . It therefore follows from Kom-
los’ Theorem [10], that there exists a (not relabeled) subsequence such that the Cesaro
means

1

n

n∑

k=1

βk

converges m-a.e. to some β = (β1, . . . , βN ). Since both U and −Tμ are concave,
the above sequence of Cesaro means is also a maximizing sequence, hence, slightly
abusing notations by calling again βn this new sequence we may assume that

βn
i (x) → βi (x) for m − a.e.x ∈ X , for i = 1, . . . , N . (3.1)
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Let δ > 0, the sublinearity assumption (A4), together with (3.1), the semicontinuity
of U (x, .) and Fatou’s Lemma yield

lim inf
n

∫

X
(δ

N∑

i=1

βn
i (x) − U (x, βn(x)))dm(x)

= δ

N∑

i=1

μi (X) − lim sup
n

∫

X
U (x, βn(x)))dm(x)

d ≥
∫

X
(δ

N∑

i=1

βi (x) − U (x, β(x))dm(x)

by letting δ → 0+, we thus get

lim sup
n

∫

X
U (x, βn(x))dm(x) ≤

∫

X
U (x, β(x))dm(x). (3.2)

Moreover, νn = βnm being bounded in M+(X)N , we can assume (again passing to
a subsequence if necessary) that it converges weakly-∗ to some ν = (ν1, . . . , νN ) ∈
M+(X)N

νn
i := βn

i m
∗
⇀ νi , i = 1, . . . , N . (3.3)

Notice that νi (X) = μi (X), and that Tci (μi , .) is sequentially weakly-∗ lsc (as a
consequence of the well-known Kantorovich duality formula for optimal transport,
see [2]) so that

lim inf
n

Tμ(νn) ≥ Tμ(ν). (3.4)

From (3.2)–(3.4) and the fact that νn is a maximizing sequence, we deduce:

sup(2.2) =
∫

X
U (x, β(x))dm(x) − Tμ(ν). (3.5)

Since β and ν may be different and β may violate the mass preservation constraints
(2.4), the identity (3.5) is not enough to conclude that (2.2) has a solution. To obtain a
solution of (2.2), we shall use some monotonicity arguments relying on the assump-
tions (A1) and (A2).
Let f ∈ C(X) with f ≥ 0. For all M > 0, we have,

∫

X
f (x)dνn

i (x) ≥
∫

X
f (x)min(βn

i (x), M)dm(x).
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Letting n → +∞, using (3.1), Lebesgue’s dominated convergence Theorem and (3.3),
we deduce

∫

X
f (x)dνi (x) ≥

∫

X
f (x)min(βi (x), M)dm(x),

so that, letting M → ∞, by monotone convergence, we obtain

νi ≥ βi m, for i = 1, . . . , N . (3.6)

Thanks to the Radon-Nikodym Theorem, we can decompose each measure νi as

νi = βa
i m + νs

i with βa
i ∈ L1(X , m) and νs

i ⊥ m. (3.7)

Since νs
i andm are mutually singular there exists a Borel subset of X , which we denote

Ai , such that m(X \ Ai ) = νs
i (Ai ) = 0 so that for every Borel subset B of X , there

holds

(βa
i m)(B) = νi (B ∩ Ai ), νs

i (B) = νi (B \ Ai ). (3.8)

As a consequence, with (3.6), we also have

βi ≤ βa
i , m-a.e. fori = 1, . . . , N . (3.9)

Let now γi ∈ �(μi , νi ) be such that Tci (μi , νi ) = ∫
X×X cidγi and let us decompose

γi as γi = γ a
i + γ s

i where γ a
i and γ s

i are defined by

∫

X×X
ϕdγ a

i :=
∫

X×Ai

ϕdγi ,

∫

X×X
ϕdγ s

i :=
∫

X×(X\Ai )

ϕdγi ,

for every ϕ ∈ C(X × X). By construction, we have

proj2#γ
a
i = βa

i m, proj2#γ
s
i = νs

i

and one can decompose μi = αi m = proj1#γi as proj1#γ
a
i + proj1#γ

s
i . Since these

two terms are absolutely continuous with respect to m, we can write them as

αa
i m := proj1#γ

a
i , αs

i m := proj1#γ
s
i (hence αi = αa

i + αs
i , m − a.e).

Now let us define

γ̃i := γ a
i + (id, id)#α

s
i m (3.10)

and observe that

proj1#γ̃i = αa
i m + αs

i m = αi m = μi
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and

proj2#γ̃i = β̃i m where β̃i := βa
i + αs

i

so that γ̃i ∈ �(μi , β̃i m). Using (A1) and the definition of γ̃i in (3.10), we have

Tci (μi , β̃i m) ≤
∫

X×X
cidγ̃i =

∫

X×X
cidγ

a
i

≤
∫

X×X
cidγi = Tci (μi , νi ).

Setting β̃ = (β̃1, . . . , β̃N ) we thus have

Tμ(β̃m) ≤ Tμ(ν)

and since β̃i ≥ βa
i , from (3.9), we deduce that β̃ ≥ β, hence from the monotonicity

part in assumption (A2), we get

U(β̃m) ≥ U(βm).

Together with (3.5), this implies that β̃ solves (2.2). Of course, this solution is unique
as soon as U is strictly concave since Tμ is convex. ��
Remark 3.2 The proof above shows that if ν ∈ M+(X)N is such that νi (X) = μi (X)

for i = 1, . . . , N , and writing the Lebesgue decomposition of νi with respect to m as

νi = νa
i + νs

i = βa
i m + νs

i with νs
i ⊥ m,

there exists β̃i ∈ L1(X , m) such that

β̃i ≥ βa
i ,

∫

X
β̃a

i dm = μi (X) and Tci (μi , β̃i m) ≤ Tci (μi , νi ).

This, together with the monotonicity of U , shows that

U(βam) − Tμ(ν) ≤ U(β̃m) − Tμ(β̃m)

therefore we have

sup
β∈L1((X ,m))N

{
U(βm) − Tμ(βm)

} = sup
ν∈M+(X)N

{
U(νa) − Tμ(ν)

}
(3.11)

where in the right-hand side νa = (νa
1 , . . . , νa

N ) denotes the absolutely continuous
part of ν with respect to m.
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3.2 Duality

The Pareto problem (2.2) appears naturally as the dual of a convex minimization
problem over continuous functions which we now describe. Let us first introduce for
(x, ϕ) = (x, ϕ1, . . . , ϕN ) ∈ X × R

N :

V (x, ϕ) := sup
β∈RN+

{U (x, β) −
N∑

i=1

βiϕi }. (3.12)

Note that each V (x, .) is convex, lsc, nonincreasing and that ϕ ∈ R
N+ whenever

V (x, ϕ) < +∞. Let us then consider the convex integral functional

V(ϕ) :=
∫

X
V (x, ϕ1(x), . . . , ϕN (x))dm(x), ∀ϕ ∈ C(X)N ,

and observe that, thanks to (A4), one has

min
i=1,...,N

min
x∈X

ϕi (x) = δ > 0 ⇒ V(ϕ) ≤ Cδm(X) < +∞. (3.13)

Recall that, for any i = 1, . . . , N and givenψ ∈ C(X), the ci -transform ofψ , denoted
by ψci , is defined by

ψci (x) := min
y∈X

{ci (x, y) − ψ(y)}. (3.14)

For ϕ := (ϕ1, . . . , ϕN ) ∈ C(X)N , let us set

K (ϕ) := −
N∑

i=1

∫

X
ϕ

ci
i dμi =

N∑

i=1

∫

X
max
y∈X

{ϕi (y) − ci (x, y)}dμi (x)

so that K is convex and everywhere continuous w.r.t the uniform norm. Finally, let us
consider the convex minimization problem

inf
ϕ∈C(X ,R)N

{K (ϕ) + V(ϕ)} . (3.15)

It is easy to deduce, from (A5) and the fact that ci is bounded, that K + V is bounded
from below. Hence, (3.13) together with the continuity of K implies that the value of
(3.15) is finite and that the Fenchel-Rockafellar Theorem applies to (3.15). Identifying
the dual of C(X)N withM(X)N , the Fenchel-Rockafellar dual of (3.15) reads

sup
ν∈M(X)N

{−V∗(−ν) − K ∗(ν)
}
, (3.16)
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where K ∗ and V∗ respectively stand for the Legendre transform of K and V (for
the duality between continuous functions and Radon measures), i.e. for every ν ∈
M(X)N :

K ∗(ν) : = sup
ϕ∈C(X)N

{
N∑

i=1

∫

X
ϕidνi − K (ϕ)

}

,

V∗(−ν) = sup
ϕ∈C(X)N

{

−
N∑

i=1

∫

X
ϕidνi − V(ϕ)

}

.

It turns out that (3.16) is nothing but (2.2), slightly in disguise, as expressed by the
next result.

Lemma 3.3 Let ν ∈ M(X)N , there holds

K ∗(ν) = Tμ(ν), V∗(−ν) =
{

−U(νa) if ν ∈ M+(X)N ,

+∞ otherwise
(3.17)

where νa is the absolutely continuous part of ν with respect to m. Moreover, we have

inf(3.15) = max(2.2). (3.18)

Proof The fact that K ∗(ν) = Tμ(ν) is a consequence of the well-known Kantorovich
duality formula for optimal transport (see for instance [2]). As for the Legendre trans-
form of V , it follows from the seminal results of Rockafellar [11, 12] for convex
integral functionals. More precisely, thanks to Theorem 4 in [12] and our assumptions
on U , we have:

V∗(−ν) = inf
θ∈L1(X ,m)N

{ ∫

X
V ∗(x,−θ(x))dm(x)

+ sup
ϕ∈C(X)N : V(ϕ)<+∞

N∑

i=1

∫

X
ϕid(θi − νi )

}
.

On the one hand, by the Fenchel-Moreau Theorem and the convexity and lower semi-
continuity of −U (x, .) we have

V ∗(x,−θ) = sup
ϕ∈RN

{−θ · ϕ − V (x, ϕ)} =
{

−U (x, θ) if θ ∈ R
N+ ,

+∞ otherwise.

On the other hand, since V(ϕ) < +∞ whenever each ϕi is strictly positive and
V(ϕ) < +∞ implies that each ϕi is nonnegative, we have

sup
ϕ∈C(X)N : V(ϕ)<+∞

N∑

i=1

∫

X
ϕid(θi − νi ) =

{
0 ifθi ≤ νi , fori = 1, . . . , N

+∞ otherwise.
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As a consequence, using the monotonicity of U (x, .) and the fact that for θi ∈
L1(X , m), 0 ≤ θi ≤ νi is equivalent to 0 ≤ θi ≤ νa

i , we get

V∗(−ν) = inf

{

−
∫

X
U (x, θ(x))dm(x) : θ ∈ L1(X , m), 0 ≤ θi ≤ νi , i = 1, . . . , N

}

=
{

−U(νa) if ν ∈ M+(X)N

+∞ otherwise.

By the Fenchel-Rockafellar Theorem (see [13]), together with the continuity of K and
the fact that V is lsc and V(ϕ) is finite whenever the components of ϕ are bounded
from below by a positive constant, we get

inf(3.15) = max
ν∈M+(X)N

{U(νa) − Tμ(ν)}

from which we deduce (3.18) thanks to proposition 3.1 and (3.11). ��

3.3 Existence for the Primal

Let us consider the following qualification condition which is a strengthening of (A5):
Assumption A5’ There exists α ∈ L1(X , m)N such that (2.1) holds and there exists
ε ∈ (0, 1) such that

∫

X
U (x, (1 − ε)α1(x), . . . , (1 − ε)αN (x))dm(x) > −∞.

We then have an existence result for (3.15):

Proposition 3.4 Assuming (A1)–(A5’), the minimization problem (3.15) admits at least
one solution.

Proof Let ϕn = (ϕn
1 , . . . , ϕn

N ) be a minimizing sequence for (3.15), let us then define
ϕ̃n := (ϕ̃n

1 , . . . , ϕ̃n
N ) by

ϕ̃n
i (y) := min

x∈X
{ci (x, y) − (ϕn

i )ci (x)}, ∀y ∈ X . (3.19)

It is well-known that (ϕ̃n
i )ci = (ϕn

i )ci and that ϕ̃n
i ≥ ϕn

i so that K (ϕ̃n) = K (ϕn)

and (since V (x, .) is nonincreasing) V(ϕ̃n) ≤ V(ϕn). Hence ϕ̃n is also a minimizing
sequence for (3.15). Now the advantage of working with the minimizing sequence ϕ̃n

i
is that it is uniformly equicontinuous (indeed, thanks to (3.19), a modulus of continuity
of ci is also a modulus of ϕ̃n

i for every n). Since V(ϕ̃n) is finite, ϕ̃n
i ≥ 0, let us then set

δn
i := minX ϕ̃n

i ≥ 0, and let us prove that δn
i is bounded. First, from the equicontinuity,

there is a constant C ≥ 0 such that for every i ∈ {1, . . . , N } and every n, one has

ϕ̃n
i ≤ δn

i + C . (3.20)
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Now fix, M such that

M ≥ K (ϕ̃n) + V(ϕ̃n), ∀n. (3.21)

Since ϕ̃n
i ≥ δn

i , thanks to (A1) we have K (ϕ̃n) ≥ ∑N
i=1(δ

n
i − minX×X ci )μi (X) =

∑N
i=1 δn

i μi (X). Moreover, by the very definition of V and (3.20)

V (x, ϕ̃n(x)) ≥ U (x, (1 − ε)α(x)) − (1 − ε)

N∑

i=1

αi (x)ϕ̃n
i (x)

≥ U (x, (1 − ε)α(x)) − (1 − ε)

N∑

i=1

αi (x)(δn
i + C).

Integrating and using (A5’), this yields that for some constant C ′, V(ϕ̃n) ≥ C ′ − (1−
ε)

∑N
i=1 δn

i μi (X). Thanks to (3.21), we therefore get

M ≥ C ′ + ε

N∑

i=1

δn
i μi (X)

which shows that δn
i is bounded so that ϕ̃n is uniformly bounded. Applying Ascoli’s

Theorem, we may therefore assume that ϕ̃n converges uniformly to some ϕ̃, so that
K (ϕ̃n) converges to K (ϕ̃), and since for some constant C ′′, one has V (x, ϕ̃n(x)) ≥
U (x, α(x)) − C ′′, one deduces from (A5) and Fatou’s lemma that lim infn V(ϕ̃n) ≥
V(ϕ̃) which finally proves that ϕ̃ solves (3.15). ��

4 Optimality Conditions and a SecondWelfare Theorem

4.1 Primal-Dual Extremality Conditions

Now that we know that, under the assumptions of proposition 3.4, there exist solutions
both to (2.2) and its primal (3.15), we can easily use (3.18) to deduce a characterization
of these solutions. Indeed, by construction, we have

V (x, ϕ) ≥ U (x, β) − ϕ · β = U (x, β) −
N∑

i=1

ϕiβi , ∀(ϕ, β) ∈ R
N+ × R

N+ (4.1)

and for every i , β := (β1, . . . , βN ) ∈ L1(X , m)N such that βi ≥ 0 and
∫

X βi m =
μi (X) and every ϕ := (ϕ1, . . . , ϕN ) ∈ C(X)N , we have

Tci (μi , βi m) ≥
∫

X
ϕ

ci
i αi m +

∫

X
ϕiβi m. (4.2)
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Now if ϕ solves (3.15) and β solves (2.2), from (3.18), we obtain

V(ϕ) − U(βm) +
∫

X
ϕ · βm + Tμ(βm) −

N∑

i=1

∫

X
ϕ

ci
i αi m −

∫

X
ϕ · βm = 0

so that with (4.1), we get

V (x, ϕ(x)) = U (x, β(x)) − ϕ(x) · β(x) for m − a.e. x . (4.3)

Likewise, with (4.2), we get for every i ,

Tci (μi , βi m) =
∫

X
ϕ

ci
i αi m +

∫

X
ϕiβi m

so that

∃γi ∈ �(αi m, βi m) such that ϕci
i (x) + ϕi (y) = ci (x, y) for γi − a.e.(x, y).

(4.4)

By continuity of ϕi and ci , this means that, whenever (x, y) is in the support of γi ,
one has

ϕi (y) − ci (x, y) ≥ ϕi (z) − ci (x, z), ∀z ∈ X . (4.5)

Note in particular that (4.3) implies that for m-a.e. x , ϕ(x) is a supergradient of
U (x, .) at β(x) and then

∀β ∈ R
N+ , ϕ(x) · β ≤ ϕ(x) · β(x) ⇒ U (x, β) ≤ U (x, β(x)). (4.6)

4.2 A SecondWelfare Theoremwith Transport Costs

The optimality conditions (4.4)–(4.6) can easily be interpreted in terms of equilibrium
conditions as we shall now explain. Imagine that there is a representative agent at each
location x , with utility U (x, .) and an initial endowment α(x) for the goods 1, . . . , N .
Assume also that this agent has a given (monetary) endowment w(x). In an exchange
economy, where the agent located at y can trade with agents located at any location
x , an equilibrium for the monetary endowment w is a system of prices y 	→ p(y)

together with a final endowment y 	→ β(y) of the goods, satisfying:

• There is free-mobility of tradeGiven the price, system p, and a location x , agents
located at x exporting one unit of good i to location y, get a profit pi (y)−ci (x, y),
so that their total profit is

π(x) · α(x) =
N∑

i=1

πi (x)αi (x), πi (x) = max
y∈Y

{pi (y) − ci (x, y)} = −pci
i (x),
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• Consumers maximize utility Agents located at y maximize their utility U (y, β)

subject to their budget constraint that expenditure p(y) · β is smaller than their
total revenue which isw(y) augmented by their export profit π(y) ·α(y), i.e. β(y)

should solve

max{U (y, β) : p(y) · β ≤ π(y) · α(y) + w(y)}

• Markets clear which means that for every i , one can find a plan γi (γi (A × B)

represents the quantity of good i transported from a location in A to a location
in B), such that γi ∈ �(αi m, βi m) (i.e. demand and supply match) and πi (x) =
pi (y) − ci (x, y) for every (x, y) in the support of γi (which means that this plan
is consistent with free-mobility of trade).

We then straighforwardly deduce from the optimality conditions (4.4)–(4.6), a sort
of second welfare theorem with transport costs

Theorem 4.1 Let ϕ and β solves (3.15) and (2.2) respectively. Define then

pi := ϕi , πi := −pci
i , w := p · β − π · α

then (β, p) is an equilibrium with monetary endowment w.

5 Algorithm and Simulations

In this final section, we describe the entropic approximation of (3.15) and its dual
(2.2). Since the influential paper of Cuturi [6], entropic optimal transport has become
a popular and efficient tool for computational optimal transport thanks to Sinkhorn’s
celebrated scaling algorithm, and we refer to [8] for a comprehensive exposition. The
algorithm detailed in the next paragraph is based on a variant of the Sinkhorn algorithm
introduced by Peyré [9] in the context of Wasserstein gradient flows. We finally give
numerical results in the one-dimensional case and in the case of a network of cities.

5.1 An Entropic Approximation Algorithm

From now on, we assume that X is finite, take the counting measure m as reference
measure on X , and denote by αi (x) > 0 the inital endowment of location x ∈ X in
the good i ∈ {1, . . . , N }. Problem (3.15) thus takes the form:

inf
ϕ∈RX×N

∑

y∈X

V (y, ϕ(y)) +
N∑

i=1

∑

x∈X

αi (x)max
y∈X

{ϕi (y) − ci (x, y)}. (5.1)

123



Applied Mathematics & Optimization (2023) 87 :45 Page 15 of 29 45

Given a regularization parameter ε > 0, we consider the smooth approximation of
(5.1) where maxima are replaced by soft maxima2:

inf
ϕ∈RX×N

∑

y∈X

V (y, ϕ(y)) + ε

N∑

i=1

∑

x∈X

αi (x) log
( ∑

y∈X

e
ϕi (y)−ci (x,y)

ε

)
. (5.2)

Now, let us observe that (5.2) can be conveniently reformulated by considering the
convex function

�(ϕ,ψ) :=
∑

y∈X

V (y, ϕ(y)) −
N∑

i=1

∑

x∈X

αi (x)ψi (x) + ε

N∑

i=1

∑

(x,y)∈X2

e
ψi (x)+ϕi (y)−ci (x,y)

ε

for (ψ, ϕ) ∈ R
X×N × R

X×N . Indeed, for fixed ϕ, the minimizer of ψ 	→ �(ϕ,ψ) is
explicitly given by

ψi (x) = ε log(αi (x)) − ε log
( ∑

y∈X

e
ϕi (y)−ci (x,y)

ε

)
(5.3)

so replacing in �, we get

inf
ψ

�(ϕ,ψ) = C +
∑

y∈X

V (y, ϕ(y)) + ε

N∑

i=1

∑

x∈X

αi (x) log
( ∑

y∈X

e
ϕi (y)−ci (x,y)

ε

)

where C is the constant

C := ε

N∑

i=1

∑

x∈X

αi (x)(1 − log(αi (x))).

Optimality system in primal and dual form The optimality condition for (5.2)
(which is the minimization of the sum of a convex lsc function with a smooth convex
function) writes:

− β(y) ∈ ∂V (y, ϕ(y)), ∀y ∈ X (5.4)

where β(y) = (β1(y), . . . , βN (y)) is given by

βi (y) =
∑

x∈X

αi (x)
e

ϕi (y)−ci (x,y)

ε

∑
z∈X e

ϕi (z)−ci (x,z)
ε

. (5.5)

2 It is worth noticing here that the soft max approximation can be given a micro foundation by considering
a Gumbel random term affecting transport costs, see [3, 14].
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Defining

γi (x, y) := αi (x)
e

ϕi (y)−ci (x,y)

ε

∑
z∈X e

ϕi (z)−ci (x,z)
ε

we thus have γi ∈ �(αi , βi ) and γi solves the entropic optimal transport problem

T ε
ci
(αi , βi ) := inf

γ∈�(αi ,βi )

∑

(x,y)∈X2

(ci (x, y) + ε log(γ (x, y))γ (x, y).

It is then easy to check that (5.4)–(5.5) is equivalent to the fact that β solves the dual
of (5.2):

sup
β∈RX×N+

∑

y∈X

U (y, β(y)) −
N∑

i=1

T ε
ci
(αi , βi ), (5.6)

which is the entropic regularization of (2.2) with regularization parameter ε.
Coordinate descent/Sinkhorn We can find the (regularized) prices ϕ by solv-

ing (5.2) and then the optimal quantities β by using (5.5). As noted above, (5.2) is
equivalent to

inf
(ψ,ϕ)∈RX×N ×RX×N

�(ϕ,ψ) (5.7)

which can be solved by coordinate descent as follows. Starting from (ψ0, ϕ0), we
recursively compute (ψk+1, ϕk+1) by:

ψk+1 = argminψ∈RX×N �(ϕk, ψ)

which, using (5.3), gives totally explicit Sinkhorn-like updates:

ψk+1
i (x) = ε log(αi (x)) − ε log

( ∑

y∈X

e
ϕk

i (y)−ci (x,y)

ε

)
(5.8)

for i = 1, . . . , N and every x ∈ X . Then, we update the prices by:

ϕk+1
1 = argminϕ1∈RN �(ϕ1, ϕ

k
2 , . . . ϕ

k
N , ψk+1)

which is the same as solving a one-dimensional strictly convex minimization problem
for each y ∈ X :

ϕk+1
1 (y) = argmint V (y, t, ϕk

2(y), . . . , ϕk
N (y)) + εe

t
ε

∑

x∈X

e
ψ

k+1
1 (x)−c1(x,y)

ε . (5.9)
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This boils down to a strictly monotone equation (if V is differentiable, see the Cobb–
Douglas case below) or inclusion (if V is nonsmooth) in t which can be solved
efficiently by dichotomy for instance. The next price updates are performed similarly
by iteratively solving for, i = 2, . . . , N − 1 and every y ∈ X :

ϕk+1
i (y) = argmint

{
V (y, ϕk+1

1 (y), . . . , ϕk+1
i−1 (y), t, ϕk

i+1(y), . . . , ϕk
N (y))

+ εe
t
ε

∑

x∈X

e
ψ

k+1
i (x)−ci (x,y)

ε

} (5.10)

and for i = N

ϕk+1
N (y) = argmint

{
V (y, ϕk+1

1 (y), . . . , ϕk+1
N−1(y), t)

+ εe
t
ε

∑

x∈X

e
ψ

k+1
N (x)−cN (x,y)

ε

}
.

(5.11)

The Cobb–Douglas case If we further specify the utility to be of Cobb–Douglas
form3 :

U (β) =
N∏

i=1

β
ai
i , ∀β ∈ R

N+ , ai > 0, a :=
N∑

i=1

ai < 1,

then a direct computation gives

V (ϕ) = (1 − a)

∏N
i=1 a

ai
1−a
i

∏N
i=1 ϕ

ai
1−a
i

. (5.12)

Hence, each minimization step as (5.10) amounts, for some parameter A > 0 and
exponent b, to finding the root t of the strictly monotone equation

et tb = A

which can be solved efficiently with a few steps of a dichotomy method. We can also
notice that since V is smooth and locally strongly convex on its domain, the linear
convergence of the coordinate scheme described above is guaranteed by the results of
Beck and Tetruashvili [15].

5.2 Numerical Results

We now present some simulations using the entropic approximation algorithm
described in the previous paragraph.

3 for simplicity, we takeU independent of the location but there is no extra difficulty in having a dependence
in y in a multiplicative prefactor or even in the exponents ai .
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5.2.1 One-Dimensional Experiments

We first consider the one dimensional case X = [0, 1] (suitably discretized), assume
there are twoo goods and that the utility is a Cobb-Douglas function with parameters
a1 and a2. As for the transport cost, we take a power of the distance:

Cλ,p(x, y) = λ
|x − y|p

p
,∀(x, y) ∈ [0, 1]2.

When λ is large, transport is costly and β1, β2 tend to be close to the initial distributions
α1 and α2. On the contrary, when λ is small, the utility term dominates and β1 and β2
tend to be constant.

In our first three simulations,α1 andα2 are gaussians of expected values respectively
μ1 = 0.25 and μ2 = 0.75 and standard deviations σ1 = σ2 = 0.2, (a1, a2) =
(0.49, 0.49) and ε = 0.01. The three simulations correspond to different exponents p
for the cost: a concave cost with p = 0.3 (Fig. 1), the linear cost p = 1 (Fig. 2) and
the quadratic cost p = 2 (Fig. 3). In the first row, α appears in light grey and β in dark
grey, the prices (ϕ1, ϕ2) are plotted in the second row. The third row represents the
convergence of the algorithm: we plot the decay of the functional � and the evolution
of the error ||∂V (ϕ(·)) + β(·)||2 for the first order necessary and sufficient condition
(5.4).

Themost strikingphenomenon shownby these simulations is the emergence of extra
modes in the final distributions whereas the initial distributions are single peaked. This
phenomenon seems to be related to the concavity of the transport cost. In the concave
case of Fig. 1, β exhibits three local maxima, the linear case of Fig. 2 exhibits two
modes and in the quadratic case of case of Fig. 3, initial and final distributions roughly
have the same unimodal shape.

In order to further explore numerically the impact of the various parameters on the
structure of the Pareto optimum, we present in Figs. 4 and 5, the case of mixture of
three gaussians for α1 and of two gaussians for α2 for different values of a1 and a2 (in
Fig. 4, a1 + a2 is close to 1 and in Fig. 5, a1 + a2 = 0.5).

5.2.2 A Network Model

Our next application concerns a connected network of French cities. The nodes of this
network (see Fig. 6) are the nine French cities: Brest, Lille, Lyon, Marseille, Nantes,
Paris, Rennes, St-Malo and Strasbourg. The cost between two neighbouring cities is
given by the distance as the crow flies 4 and more generally the cost between two cities
is given by the shortest path distance between them. To take into account population
differences between these cities, we have weighted the Cobb–Douglas utility by a
weight w(x) for city x :

4 given by the website https://www.coordonnees-gps.fr/distance.
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Fig. 1 Gaussian distributions with concave cost
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Fig. 2 Gaussian distributions with homogeneous cost
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Fig. 3 Gaussian distributions with convex cost
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Fig. 4 Another example with a1 + a2 close to 1
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Fig. 5 Another example with a1 + a2 far from 1
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Fig. 6 French network with ε = 0.1
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Fig. 7 French network with ε = 0.1
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Fig. 8 French network with ε = 0.01
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Fig. 9 French network with ε = 0.01
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City Brest Lyon Marseille Paris Strasbourg Rennes Lille Saint-
Malo

Nantes

w (thousands) 139 518 868 2175 285 217 233 46 314

This leads to the weighted utility

U (x, β1, β2, β3) = w(x)β
a1
1 (x)β

a2
2 (x)β

a3
3 (x),

and the corresponding conjugate term (see (3.12)):

V (x, ϕ) = w(x)
1

1−a

∏3
i=1 a

ai
1−a
i

∏3
i=1 ϕ

ai
1−a
i

with a = a1 + a2 + a3 < 1. In our examples, we have taken (a1, a2, a3) =
(0.4, 0.1, 0.2). In Figs. 6, 7, 8 and 9, we have represented the initial and final dis-
tributions as well as the optimal transport plans between the cities. Note that the larger
ε, the stronger the diffusion effect in the transport plan, which explains why we see
more connections in Figs. 6 and 7 (large diffusion with ε = 0.1) than in Figs. 8 and
9 (ε = 0.01). We also give the prices of the goods in the different cities and analyze
the convergence of the algorithm both in terms of the decay of the objective function
� and in the residuals for the optimality condition.
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