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Abstract
In this paper, we consider constrained discounted stochastic games with a countably
generated state space and norm continuous transition probability having a density
function.We prove existence of approximate stationary equilibria and stationary weak
correlated equilibria. Our results imply the existence of stationary Nash equilibrium
in ARAT stochastic games.
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1 Introduction

ConstrainedMarkov decision processes and stochastic games have numerous applica-
tions in operations research, economics, computer sciences, consult with [2, 3, 28, 37]
and references cited therein. They arise in situations, in which a controller or player
has many objectives. For example, when she or he wants to minimise one type of
cost while keeping other costs lower than some given bounds. Constrained stochastic
games with finite state and action spaces were first studied by Altman and Shwartz
[3]. Their work was extended to some classes of games with countable state spaces in
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[4, 42] by finite state approximations. A more direct approach based on properties of
measures induced by strategies and occupation measures was presented in [28].

In this paper, we study discounted constrained stochastic games with a general
state space and the transition probability having a density function. Such two-person
games with additive rewards and additive transition structure (ARAT games) were
recently studied by Dufour and Prieto-Rumeau [13]. They established the existence of
stationary Nash equilibria generalising the result of Himmelberg et al. [25] proved for
unconstrained games. Moreover, their theorem also holds for N -person ARAT games
satisfying the standard Slater condition. As shown in a highly non-trivial example by
Levy and McLennan [29], the games under consideration in this paper may have no
stationary Nash equilibrium in the unconstrained case. It can be seen that this example
applies to the constrained case as well. Thus, results on approximate equilibria as in
[34, 41] became more valuable. They are stated for the unconstrained case, and in this
paper we extend the main result from [34] to a class of constrained games. In this way,
we establish the existence of approximate stationary equilbria for discounted stochastic
games with constraints and general state spaces. It should be noted that the existence
of stationary equilibria in discounted unconstrained games was proved only in some
special cases, for instance, for ARAT games [25] or games with transitions having no
conditional atoms [23]. For a survey of results on stationary and non-stationary Nash
equilibria the reader is referred to [26].

The other group of papers comprise the ones on stationary equilibria with public
signals, see [11, 22, 36]. Such solutions can be viewed as special communication or
correlated equilibria widely discussed in dynamic frameworks (repeated, stochastic
or extensive form games) in [20, 21, 31, 38, 39]. They were inspired by the seminal
papers of Aumann [5, 6]. A weaker version of correlated equilibrium was proposed
by Moulin and Vial [32]. According to their approach a correlated strategy in a finite
(bimatrix) game is a probability distribution ν on the set of pure strategy pairs. Every
player has to decide whether to accept ν or to use his or her individual strategy. If
player i uses an individual strategy and player j �= i obeys ν, then a pure action for
player j is selected by the marginal distribution of ν on his/her pure actions. Then
ν is an equilibrium, if no unilateral deviations from it are profitable. This solution is
called a weak correlated equilibrium or a correlated equilibrium with no exchange
of information [32]. In contrast to Aumann’s approach, the players who accepted ν

cannot change actions after using the lottery ν. The solution proposed by Moulin and
Vial [32] has an interesting property. Namely, the authors constructed a bimatrix game,
in which the equilibrium payoffs in their equilibrium concept strictly dominate in the
Pareto sense the payoffs in Aumann’s equilibrium, see [30, 32].

In [35] the concept of Moulin and Vial is used to an unconstrained discounted
stochastic game with a general state space. However, as shown by Solan and Vieille,
[39], the notion of a weak correlated equilibrium can be also regarded as a special case
of a general correlation scheme.

In this paper, we extend the result from [35] to a large class of discounted stochastic
games with so-called integral constraints. We apply our recent result from [28] for
games with discrete state spaces and use an approximation technique. A stationary
weak correlated equilibrium is obtained as a limit (in the weak* sense) of approximate
equilibria. Our result generalises the main theorem of Dufour and Prieto-Rumeau
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[13] given for ARAT games, if the action sets for players do not depend on the
state. We wish to emphasise that the considerations of other classes of correlated
equilibria in constrained stochastic games (like equilibria with public signals) seem to
be very challenging for many reasons. Firstly, the integral constraints are difficult to
apply. Secondly, the usual methods from dynamic programming (Bellman’s principle)
or backward and forward induction used in unconstrained cases are not applicable.
Perhaps further possible results can be obtained for other correlated equilibria but
under different type of constraints.

The paper is organised as follows. The model and main results on equilibria are
contained in Sect. 2. Section 3 presents the approximation technique and the proofs
of two main theorems. Section 4 is devoted to the proof on the existence of a weak
correlated equilibriumand a discussion on our assumptions. In Sect. 5,we show that the
example given in [29] canbe used to show that discounted constrained stochastic games
studied in this paper may not have stationary Nash equilibria. Section 6 discusses
a useful transformation that shows how to easily extend our results formulated for
bounded cost functions to unbounded ones. In Appendix (Sect. 7) we give a crucial
lemma on a replacement of a general strategy by a piecewise constant strategy. It is
used in the proofs of our main theorems on equilibria in constrained stochastic games.

2 The GameModel andMain Results

In this section, we describe constrained discounted stochastic games with general state
space and our basic assumptions. We provide our main results in three cases. Firstly,
we give a theorem on the existence of a stationary approximate equilibrium assuming
that the players play the game independently. Secondly, we drop the constraints and
give a theorem on the existence of a stationary ε-equilibrium for every initial state,
extending the main result in [34]. Finally, we show that the constrained stochastic
games under consideration possess stationary weak correlated equilibria introduced
in the static (bimatrix) case by Moulin and Vial [32].

2.1 Approximate Nash Equilibria in Constrained Discounted Stochastic Games

The non-zero-sum constrained stochastic game (CSG) is described by the following
objects:

• N = {1, 2, ..., N } is the set of players.
• X is a state space endowed with a countably generated σ -algebra F .

• Ai is a compact metric action space for player i ∈ N endowed with the Borel
σ -algebra. We put

A :=
∏

j∈N
A j and A−i :=

∏

j∈N\{i}
A j ,

Ki := {(x, ai ) : x ∈ X , ai ∈ Ai }, K := {(x,aaa) : x ∈ X , aaa = (a1, ..., an) ∈ A}.

123



23 Page 4 of 29 Applied Mathematics & Optimization (2023) 87 :23

• The real-valued functions c�
i : K → R, where i ∈ N , � ∈ L0 = L ∪ {0} with

L = {1, ..., L}, are product measurable. Here, c0i is the cost-per-stage function for
player i ∈ N , and for each � ∈ L, c�

i is a function used in the definition of the
�-th constraint for this player. It is assumed that there exists b > 0 such that

|c�
i (x,aaa)| ≤ b, for all i ∈ N , � ∈ L0, (x,aaa) ∈ K.

• p(dy|x,aaa) is the transition probability from x to y ∈ X , when the players choose
a profile aaa = (a1, a2, ..., aN ) of actions in A.

• η is the initial state distribution.
• α ∈ (0, 1) is the discount factor.
• κ�

i are constraint constants, i ∈ N , � ∈ L.

Let N = {1, 2, ...}. Define H1 = X and Ht+1 = K × Ht for t ∈ N. An element
ht = (x1,aaa1, . . . , xt ) of Ht represents a history of the game up to the t-th period,
where aaak = (ak1, . . . , a

k
N ) is the profile of actions chosen by the players in the state

xk on the k-th stage of the game, h1 = x1.
Strategies for the players are defined in the usual way. A strategy for player i ∈ N

is a sequence πi = (π t
i )t∈N, where each π t

i is a transition probability from Ht to Ai .

By 
i we denote the set of all strategies for player i . Let �i be the set of transition
probabilities from X to Ai . A stationary strategy for player i is a constant sequence
(ϕt

i )t∈N, where ϕt
i = ϕi for all t ∈ N and some ϕi ∈ �i . Furthermore, we shall

identify a stationary strategy for player i with the constant element ϕi of the sequence.
Thus, the set of all stationary strategies of player i is also denoted by �i . We define


 =
N∏

i=1


i and � =
N∏

i=1

�i .

Hence, 
 (�) is the set of all (stationary) multi-strategies of the players.
Let H∞ = K×K×· · · be the spaceof all infinite histories of the gameendowedwith

the product σ -algebra. For any multi-strategy πππ ∈ 
, a unique probability measure
P

πππ
η and a stochastic process (xt ,aaat )t∈N are defined on H∞ in a canonical way, see the

Ionescu-Tulcea theorem, e.g., Proposition V.1.1 in [33]. Themeasure Pπππ
η is induced by

πππ, the transition probability p and the initial distribution η. The expectation operator
with respect to Pπππ

η is denoted by E
πππ
η .

Let πππ ∈ 
 be any multi-strategy. For each i ∈ N and � ∈ L0, the discounted cost
functionals are defined as

J �
i (πππ) = (1 − α)Eπππ

η

[ ∞∑

t=1

αt−1c�
i (x

t ,aaat )

]
.

We assume that J 0i (πππ) is the expected discounted cost of player i ∈ N , who wishes
to minimise it over πi ∈ 
i in such a way that the following constraints are satisfied

J �
i (πππ) ≤ κ�

i for all � ∈ L.
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A multi-strategy πππ is feasible, if the above inequality holds for each i ∈ N , � ∈ L.

We denote by 
 the set of all feasible multi-strategies in the CSG.

As usual, for any πππ ∈ 
, we denote by π−iπ−iπ−i the multi-strategy of all players but
player i, that is,π−1π−1π−1 = (π2, ..., πN ), π−Nπ−Nπ−N = (π1, ..., πN−1), and for i ∈ N \ {1, N },

π−iπ−iπ−i = (π1, . . . , πi−1, πi+1, . . . , πN ).

We identify [π−iπ−iπ−i , πi ] with πππ. For each πππ ∈ 
, we define the set of feasible strategies
for player i with π−iπ−iπ−i as


i (π−iπ−iπ−i ) = {πi ∈ 
i : J �
i (πππ) = J �

i ([π−iπ−iπ−i , πi ]) ≤ κ�
i for all � ∈ L}.

Let πππ = (π1, π2, ..., πN ) ∈ 
 and σi ∈ 
i . By [π−iπ−iπ−i , σi ] we denote the multi-
strategy, where player i uses σi and every player j �= i uses π j .

Definition 2.1 A multi-strategy πππ∗ ∈ 
 is an approximate equilibrium in the CSG
(for given ε > 0), if for every i ∈ N and � ∈ L,

J �
i (πππ∗) ≤ κ�

i + ε, (2.1)

and for every i ∈ N ,

J 0i (πππ∗) − ε ≤ inf
σi∈
i (π

∗−iπ∗−iπ∗−i )
J 0i ([π∗−iπ∗−iπ∗−i , σi ]). (2.2)

A multi-strategy πππ∗ ∈ 
 is an ε-equilibrium in the CSG (for given ε ≥ 0), if (2.2)
holds and J �

i (πππ∗) ≤ κ�
i for every i ∈ N and � ∈ L. A 0-equilibrium is called a Nash

equilibrium in the CSG.

Note that, every ε-equilibrium is approximate, but not vice versa. For small ε > 0,
condition (2.1) allows for a slight violation of the feasibility ofπππ∗. Further comments
on this condition the reader will find in Remark 2.4.

We now formulate our basic assumptions.

Assumption A1 The functions c�
i (x, ·) are continuous on A for all x ∈ X , i ∈ N and

� ∈ L0.

Assumption A2 The transition probability p is of the form

p(B|x,aaa) =
∫

B
δ(x, y,aaa)μ(dy), B ∈ F ,

where μ is a probability measure on F and δ is a product measurable non-negative
(density) function such that, if aaan → aaa as n → ∞, then

∫

X
|δ(x, y,aaan) − δ(x, y,aaa)|μ(dy) → 0.
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This assumption means the norm continuity of p with respect to action profiles.

Assumption A3 For each stationary multi-strategy ϕϕϕ ∈ � and for each player i ∈ N ,

there exists πi ∈ 
i such that

J �
i ([ϕ−iϕ−iϕ−i , πi ]) ≤ κ�

i for all � ∈ L.

Assumption A3 is standard in the theory of constrained decision processes and
stochastic games [2, 3, 13, 28].

Remark 2.2 FromAssumptionA3, Lemma2.3 in [13] andLemma24 in [37], it follows
that the strategy πi ∈ 
i can be replaced a stationary strategy σi ∈ �i such that

J �
i ([ϕ−iϕ−iϕ−i , πi ]) = J �

i ([ϕ−iϕ−iϕ−i , σi ]) for all � ∈ L.

The proof of Lemma 24 in [37] on the equivalence of these strategies is formulated
for models with Borel state spaces. However, it is also valid in our framework (see pp.
307–309 in [37]) with the exception that we need an appropriate disintegration result.
In this matter, consult with Lemma 2.3 in [13] or Theorem 3.2 in [19].

We are ready to state our first main result.

Theorem 2.3 Assume A1, A2 and A3. Then, for each ε > 0, the CSG possesses a
stationary approximate equilibrium.

Remark 2.4 The proof of this result is given in Sect. 3. We prove that a stationary
approximate equilibrium for given ε > 0 consists of strategies that are piecewise con-
stant functions of the state variable. We observe that, under assumptions of Theorem
2.3, condition (2.1) with ε = 0 need not be satisfied by piecewise constant stationary
multi-strategies. Therefore, the existence of an ε-equilibrium in the CSG is an open
issue. We would like to emphasise that Theorem 2.3 is crucial in our proof of Theo-
rem 2.13 on weak correlated equilibria, where we apply an asymptotic approach when
ε → 0.

Remark 2.5 The only result in the literature on the existence of stationary Nash
equilibria in CSGs with general state space was given by Dufour and Prieto-
Rumeau [13]. It concerns so-called discounted additive rewards and additive transition
(ARAT ) stochastic games. In the two-person case the ARAT assumption means that
c�
i (x, a1, a2) = c�

1i (x, a1)+ c�
2i (x, a2) and p(·|x, a1, a2) = p1(·|x, a1)+ p2(·|x, a2),

where p1 and p2 are transition subprobabilities. The results in [13] are given for
two-person games satisfying the standard Slater condition (Assumption A3 with strict
inequalities). However, they can be easily extended by the same methods to N -person
ARAT stochastic games. A simple adaptation of the counterexample by Levy and
McLennan [29] given for unconstrained discounted stochastic games implies that sta-
tionary Nash equilibria may not exist in the constrained stochastic games studied in
this paper. For more details see Sect. 5.

Remark 2.6 We wish to emphasise that the Slater condition is not needed for the
establishing an approximate equilibrium in CSGs.
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2.2 An Update on Stationary Equilibria in Unconstrained Discounted Stochastic
Games

In this subsection, we drop the constraints. By the Ionescu–Tulcea theorem [33], any
multi-strategyπππ ∈ 
 and any initial state x ∈ X , induce a unique probability measure
P

πππ
x on H∞. The expectation operator with respect to P

πππ
x is denoted by E

πππ
x .

The discounted cost for player i ∈ N is defined as

J 0i (πππ)(x) = (1 − α)Eπππ
x

[ ∞∑

t=1

αt−1c0i (x
t ,aaat )

]
.

Definition 2.7 Let ε ≥ 0 be fixed. A multi-strategy πππ∗ ∈ 
 is an ε-equilibrium in the
unconstrained discounted stochastic game, if

J 0i (πππ∗) − ε ≤ inf
σi∈
i

J 0i ([πππ∗, σi ])

for every player i ∈ N and for all initial states x ∈ X . A 0-equilibrium is called a
Nash equilibrium.

Theorem 2.8 Under assumptions A1 and A2, for any ε > 0, the unconstrained dis-
counted stochastic game has a stationary ε-equilibrium.

The proof is given in Sect. 3.

Remark 2.9 Stationary Nash equilibria exist only in some special cases of stochastic
games satisfyingAssumptionsA1 andA2, see [25] (ARAT games), [23] (other classes
of games) and [26] (a survey). As shown by Levy andMcLennan [29] stationary Nash
equilibria need not exist in general under assumptions of Theorem 2.8.

Remark 2.10 Theorem 2.8 is an extension of Theorem 3.1 in [34], where additionally
it is assumed that

∫

X
sup
aaa∈A

δ(x, y,aaa)μ(dy) < ∞ for each x ∈ X . (2.3)

2.3 Weak Correlated Equilibria in Constrained Discounted Stochastic Games

Let � be the set of all transition probabilities from X to A, that is, ψ ∈ � if ψ(·|x) ∈
Pr(A) for every x ∈ X and ψ(D|·) is F-measurable for any Borel set D ⊂ A.

A stationary correlated strategy for the players in the CSG is a constant sequence
(ψ,ψ, . . .), where ψ ∈ �. As in the case of stationary strategies, we shall identify a
correlated strategy with the element ψ of this sequence.

By the Ionescu-Tulcea theorem [33], any correlated strategy ψ ∈ � and the initial
distribution η, induce a unique probability measure P

ψ
η on H∞. The expectation
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operator with respect to P
ψ
η is denoted by E

ψ
η . Then the discounted cost functionals

for player i ∈ N are defined as

J �
i (ψ) = (1 − α)Eψ

η

[ ∞∑

t=1

αt−1c�
i (x

t ,aaat )

]

for all � ∈ L0. Obviously, here at stage t the vector of actions aaat is chosen according
to a probability measure ψ(·|xt ).

Furthermore, let ψi and i denote the projections for any x 2 X of (jx) on Aψi and
Ai , respectively. For any player i ∈ N and a strategy πi ∈ 
i we denote by [ψ−i , πi ]
a multi-strategy, where player i uses a strategy πi and the other players act as one
player applying ψ−i . In this case, J 0i ([ψ−i , πi ]) denotes the expected discounted cost
for player i . Set


i (ψ−i ) = {πi ∈ 
i : J �
i ([ψ−i , πi ]) ≤ κ�

i for all � ∈ L}.

Definition 2.11 A strategy ψ∗ ∈ � is called a weak correlated equilibrium in the
CSG, if for every i ∈ N and � ∈ L, J �

i (ψ∗) ≤ κ�
i and for every i ∈ N ,

J 0i (ψ∗) ≤ inf
πi∈
i (ψ

∗−i )
J 0i ([ψ∗−i , πi ]). (2.4)

If all players but i ∈ N accept to use ψ∗ to select an action profile in any state
x and player i ∈ N decides to play independently of all of them by choosing a
feasible strategy πi , then the action profile for all players in N \ {i} is selected with
respect to the marginal probability distribution ψ∗−i (·|x) on A−i . When ψ∗ is a weak
correlated equilibrium, then inequality (2.4) says that unilateral deviations from ψ∗
are not profitable. This is an adaptation of the equilibrium concept, formulated by
Moulin and Vial [32] for static games, to our dynamic game model.

In order to state our third main result, we define �−i := ∏
j∈N \{i} � j and impose

the following condition.

Assumption A4 For each player i ∈ N ,

sup
ϕ−iϕ−iϕ−i∈�−i

min
σi∈�i

max
�∈L

(J �
i ([ϕ−iϕ−iϕ−i , σi ]) − κ�

i ) < 0.

This assumption implies the standard Slater condition (see Assumption A5 below)
widely used in the literature [2, 3, 13, 28].

Assumption A5 For each player i ∈ N and any ϕ−iϕ−iϕ−i ∈ �−i , there exists σi ∈ �i such
that

J �
i ([ϕ−iϕ−iϕ−i , σi ]) < κ�

i for all � ∈ L.
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AssumptionsA4 andA5may seemingly bemore general.Namely,we can formulate
them forπi ∈ 
i insteadofσi ∈ �i and replace the set�i by
i .However,Remark2.2
implies that these formulations are in fact equivalent.

Remark 2.12 From Assumption A4, it follows that there exists ζ > 0 such that for
every player i ∈ N ,

sup
ϕ−iϕ−iϕ−i∈�−i

min
σi∈�i

max
�∈L

(J �
i ([ϕ−iϕ−iϕ−i , σi ]) − κ�

i ) < −ζ,

and consequently that for each player i ∈ N and any ϕ−iϕ−iϕ−i ∈ �−i , there exists σi ∈ �i

such that

J �
i ([ϕ−iϕ−iϕ−i , σi ]) < κ�

i − ζ for all � ∈ L.

Theorem 2.13 Assume A1, A2 and A4. Then, the CSG possesses a stationary weak
correlated equilibrium.

The proof is given in Sect. 4.

Remark 2.14 The existence of a weak correlated equilibrium in an unconstrained case
was proved by Nowak [35] under additional integrability condition (2.3).

Remark 2.15 Ifψ∗ is a stationaryweak correlated equilibrium in an ARAT game, then
(ψ1, ψ2, ..., ψN ) is a stationary Nash equilibrium in this game. Thus, Theorem 2.13
implies the main result of Dufour and Prieto-Rumeau [13], if the action sets are
independent of the state. However, their proof is more direct in the sense that it is not
based on an approximation by games with discrete state spaces. Instead, they directly
apply a fixed point theorem. An extension to the case of action spaces depending on
the state variable raises some additional technical issues.

3 Approximating Games with Countable State Spaces and Proofs of
Theorems 2.3 and 2.8

In this section, we define a class of games that resemble stochastic games with a
countable state space. Using themwe can approximate the original game and apply the
results on existence of stationary equilibria in discounted games with countably many
states proved by Federgruen [15] (unconstrained case) and Jaśkiewicz and Nowak [28]
(constrained case).

Let C(A) be the Banach space of all real-valued continuous functions on A endowed
with themaximum norm ‖·‖.Let Cb = {w1, w2, ...} denote the countable dense subset
in the ball {w ∈ C(A) : ‖w‖ ≤ b} in C(A),where b ≥ |c�

i (x,aaa)| for all i ∈ N , � ∈ L0,

(x,aaa) ∈ K.

We write L1 to denote the Banach space L1(X ,F , μ) of all absolutely integrable
real-valued measurable functions on X with the norm

‖v‖1 =
∫

X
|v(y)|μ(dy), v ∈ L1.
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Let C(A,L1) be the space of all L1-valued continuous functions on A with the norm

‖λ‖c = max
aaa∈A

∫

X
|λ(y,aaa)|μ(dy).

Here an element of C(A,L1) is written as a product measurable function λ : X× A →
R such that λ(·,aaa) ∈ L1 for each aaa ∈ A and

‖λ(·,aaan) − λ(·,aaa)‖1 =
∫

X
|λ(y,aaan) − λ(y,aaa)|μ(dy) → 0 as aaan → aaa, n → ∞.

By Lemma 3.99 in [1], the space C(A,L1) is separable. Assumption A2 implies that
D := {δ(x, ·, ·) : x ∈ X} ⊂ C(A,L1) is also a separable space when endowed with
the relative topology. Therefore, there exists a subset {xk : k ∈ N} of the state space
X such that the set {δ(xk, ·, ·) : k ∈ N} is dense in D.

For any player i ∈ N , and positive integers mi�, � ∈ L0, we put mi =
(mi0,mi1, ...,miL ). Then, given any γ > 0, we define Bγ (i,mi ) as the set of all
states x ∈ X such that

L∑

�=0

‖c�
i (x, ·) − wmi�‖ < γ. (3.1)

For any k ∈ N, let

Bγ

k := {x ∈ X : ‖δ(x, ·, ·) − δ(xk, ·, ·)‖c
= max

aaa∈A

∫

X
|δ(x, y,aaa) − δ(xk, y,aaa)|μ(dy) < γ }. (3.2)

It is obvious that the sets Bγ

k and Bγ (i,mi ) belong to F and the union of all sets

Bγ

k ∩ Bγ (1,m1) ∩ . . . ∩ Bγ (N ,mN )

is the whole state space X . Indeed, if x ∈ X , then there exists k ∈ N such that x ∈ Bγ

k
and, for any player i ∈ N , there exist functions wmi� ∈ Cb, and thus mi such that
(3.1) holds.

Let ξ be a fixed one-to-one correspondence between the sets N and N × N
N (L+1).

Assuming that j ∈ N and ξ( j) = (k,m1, ...,mN ), we put

Y γ

j := Bγ

k ∩ Bγ (1,m1) ∩ . . . ∩ Bγ (N ,mN ).

We can assume without loss of generality that Y γ
1 �= ∅. Next, we set Xγ

1 = Y γ
1 and

Xγ
τ = Y γ

τ −
⋃

t<τ

Xγ
t , for τ ∈ N \ {1}.
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Omitting empty sets Xγ
τ we obtain a subset N0 ⊂ N such that

Pγ = {Xγ

j : j ∈ N0}

is a measurable partition of the state space X . Choose any n ∈ N0. Then, ξ(n) is
a unique sequence in N × N

N (L+1) that depends on n and, therefore, we can write
ξ(n) = (kn,mn

1, ...,m
n
N ) where mn

i = (mn
i0,m

n
i1, ...,m

n
iL ), i ∈ N . Next, for each

x ∈ Xγ
n , we define

δγ (x, y,aaa) := δ(xkn , y,aaa) for y ∈ X and c�,γ

i (x,aaa) := wmn
i,�

(aaa)

for all � ∈ L0, i ∈ N . (3.3)

From (3.1), (3.2) and (3.3), it follows that for each n ∈ N0 and x ∈ Xγ
n , we have

‖c�
i (x, ·) − c�,γ

i (x, ·)‖ < γ for all � ∈ L0 (3.4)

and

‖δ(x, ·, ·) − δγ (x, ·, ·)‖c = max
aaa∈A

∫

X
|δ(x, y,aaa) − δγ (x, y,aaa)|μ(dy) < γ. (3.5)

The original game defined in Sect. 2 is now denoted by G. We use Gγ to denote
the game, where the cost functions are c�,γ

i , � ∈ L0 and i ∈ N , and the transition
probability is

pγ (B|x,aaa) =
∫

X
δγ (x, y,aaa)μ(dy), B ∈ F .

Note that c�,γ

i (x,aaa) and pγ (B|x,aaa) are constant functions of x on every set Xγ
n .

The discounted expected costs in the game Gγ under a multi-strategy πππ ∈ 
 are
denoted by

J �,γ

i (πππ)(x) and J �,γ

i (πππ) =
∫

X
J �,γ

i (πππ)(x)η(dx).

Let

ε(γ ) := γ (1 − α + bα)

1 − α
. (3.6)

From (3.4), (3.5) and Lemma 4.4 in [34], we conclude the following auxiliary result.

Lemma 3.1 For each i ∈ N and � ∈ L0, we have

sup
x∈X

sup
πππ∈


|J �
i (πππ)(x) − J �,γ

i (πππ)(x)| ≤ ε(γ ).
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With Gγ we associate a stochastic game Gγ
c with the countable state spaceN0 ⊂ N,

the costs given by

ĉ�,γ

i (n,aaa) := c�,γ

i (x,aaa), x ∈ Xγ
n , n ∈ N0, aaa ∈ A, (3.7)

and transitions defined as

p̂γ (τ |n,aaa) := δγ (Xγ
τ |x,aaa), x ∈ Xγ

n , n, τ ∈ N0, aaa ∈ A. (3.8)

Note that the right-hand sides in (3.7) and (3.8) are independent of x in Xγ
n and thus

the costs and transitions above are well-defined. A stationary strategy for player i ∈ N
in the game Gγ

c is a transition probability fi from N0 to Ai . The set of all stationary
strategies for player i ∈ N in this game is denoted by Fi . We put F := ∏

i∈N Fi .
The expected discounted costs in the game Gγ

c under stationary multi-strategy πππ

are denoted by

Ĵ �,γ

i (πππ)(n), n ∈ N0, and Ĵ �,γ

i (πππ) =
∑

n∈N0

Ĵ �,γ

i (πππ)(n)η(Xγ
n ).

Let�γ

i be the set of all piecewise constant stationary strategies of player i ∈ N in the
game Gγ . A strategy ϕi ∈ �

γ

i , if, for each n ∈ N0, there exists a probability measure
νn on Ai such that ϕi (dai |x) = νn(dai ) for all x ∈ Xγ

n . We put �γ = ∏
i∈N �

γ

i .

Let fff = ( f1, ..., fN ) ∈ F and ϕϕϕ = (ϕ1, ..., ϕN ) ∈ �γ be such that

ϕi (dai |x) = fi (dai |n) for all i ∈ N , n ∈ N0, x ∈ Xγ
n . (3.9)

Then, for each i ∈ N , � ∈ L0, n ∈ N and x ∈ Xγ
n ,

J �,γ

i (ϕϕϕ)(x) = Ĵ �,γ

i ( fff )(n) (3.10)

and

J �,γ

i (ϕϕϕ) = Ĵ �,γ

i ( fff ). (3.11)

Equations (3.10) and (3.11) show that Gγ with the strategy sets �
γ

i can be recognised
as a game with a countable state space. This observation plays an important role in
the proof, because we can apply a result for games on countable state spaces.

Proof of Theorem 2.3 Let ε > 0 and i ∈ N . Choose γ > 0 in (3.6) such that ε(γ ) <

ε/2. By Assumption A3 and Remark 2.2 we imply that for any multi-strategyϕϕϕ ∈ �γ

there exists σi ∈ �i such that

J �
i ([ϕ−iϕ−iϕ−i , σi ]) ≤ κ�

i for all � ∈ L. (3.12)
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By Lemma 7.1 in Appendix, there exists a piecewise constant Markov strategy π i

such that

J �,γ

i ([ϕ−iϕ−iϕ−i , σi ]) = J �,γ

i ([ϕ−iϕ−iϕ−i , π i ])

for all � ∈ L0. By Lemma 3.1 and (3.12) we conclude that

J �,γ

i ([ϕ−iϕ−iϕ−i , π i ]) < κ�
i + ε

2
for all � ∈ L.

This means that the approximating game Gγ satisfies the Slater condition with the
constants κ�

i + ε
2 , � ∈ L. Note that the constraint constants in Gγ are also equal

κ�
i + ε

2 , � ∈ L. Therefore, the associated game Gγ
c also satisfies the Slater condition

with the same constants κ�
i + ε

2 , � ∈ L. Making use of Corollary 2 in [28], we infer
that the game Gγ

c possesses a stationary Nash equilibrium fff ∗ = ( f ∗
1 , ..., f ∗

N ). Define
ϕϕϕ∗ = (ϕ∗

1 , ..., ϕ
∗
N ) ∈ �γ as in (3.9) with ϕϕϕ = ϕϕϕ∗ and f = f ∗. Then,

J 0,γi (ϕϕϕ∗) ≤ J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , π̂i ])

for any piecewise constant strategy π̂i such that

J �,γ

i ([ϕ∗−iϕ∗−iϕ∗−i , π̂i ]) ≤ κ�
i + ε

2
for all � ∈ L.

We now show that ϕϕϕ∗ is an approximate equilibrium in the original game. Note that
for every player i ∈ N

J �,γ

i (ϕ∗ϕ∗ϕ∗) = J �,γ

i ([ϕ∗−iϕ∗−iϕ∗−i , ϕ
∗
i ]) ≤ κ�

i + ε

2
for all � ∈ L.

Hence, for every player i ∈ N

J �
i (ϕ∗ϕ∗ϕ∗) ≤ κ�

i + ε for all � ∈ L,

i.e., condition (2.1) holds. Consider any feasible strategy πi ∈ 
i (ϕ
∗−iϕ∗−iϕ∗−i ), i.e.,

J �
i ([ϕ∗−iϕ∗−iϕ∗−i , πi ]) ≤ κ�

i , for all � ∈ L. (3.13)

Applying Remark 2.2, we deduce that there exists a strategy σi ∈ �i such that

J �
i ([ϕ∗−iϕ∗−iϕ∗−i , πi ]) = J �

i ([ϕ∗−iϕ∗−iϕ∗−i , σi ]) for all � ∈ L0. (3.14)

Then, by Lemma 7.1 in Appendix, there exists a piecewise constant Markov strategy
π i such that

J �,γ

i ([ϕ∗−iϕ∗−iϕ∗−i , σi ]) = J �,γ

i ([ϕ∗−iϕ∗−iϕ∗−i , π i ]) for all � ∈ L0. (3.15)
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Moreover, by (3.15), Lemma 3.1, (3.14) and (3.13), for every � ∈ L, we have

J �,γ

i ([ϕ∗−iϕ∗−iϕ∗−i , π i ]) ≤ J �
i ([ϕ∗−iϕ∗−iϕ∗−i , σi ]) + ε

2
= J �

i ([ϕ∗−iϕ∗−iϕ∗−i , πi ]) + ε

2
≤ κ�

i + ε

2
.

In other words, π i is a feasible strategy in Gγ . Therefore, by Lemma 3.1, (3.15) and
(3.14), we infer

J 0i (ϕϕϕ∗) ≤ J 0,γi (ϕϕϕ∗) + ε

2
≤ J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , π i ]) + ε

2
= J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , σi ]) + ε

2
< J 0i ([ϕ∗−iϕ∗−iϕ∗−i , σi ]) + ε = J 0i ([ϕ∗−iϕ∗−iϕ∗−i , πi ]) + ε.

This fact together with (3.13) implies that (2.2) holds. ��
Proof of Theorem 2.8 Let ε > 0 be fixed. Choose γ > 0 in (3.6) such that ε(γ ) < ε/2.
By Theorem 2.3 in [15], the game Gγ

c has a stationary equilibrium fff ∗ = ( f ∗
1 , ..., f ∗

N ).

Define ϕϕϕ∗ = (ϕ∗
1 , ..., ϕ

∗
N ) ∈ �γ as in the proof of Theorem 2.3. Then we have

J 0,γi (ϕϕϕ∗)(x) = inf
φi∈�

γ
i

J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x), i ∈ N , x ∈ X . (3.16)

As in Lemma 4.1 in [34], we can prove that

inf
φi∈�

γ
i

J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x) = inf
φi∈�i

J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x), i ∈ N , x ∈ X . (3.17)

By (3.16) and (3.17), we get

J 0,γi (ϕϕϕ∗)(x) = inf
φi∈�i

J 0,γi ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x), i ∈ N , x ∈ X .

This equality and Lemma 3.1 imply that

J 0i (ϕϕϕ∗)(x) − ε ≤ inf
φi∈�i

J 0i ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x), i ∈ N , x ∈ X . (3.18)

By standard methods in discounted dynamic programming [8, 34], we have

inf
φi∈�i

J 0i ([ϕ∗−iϕ∗−iϕ∗−i , φi ])(x) = inf
σi∈
i

J 0i ([ϕ∗−iϕ∗−iϕ∗−i , σi ])(x), i ∈ N , x ∈ X .

This fact and (3.18) imply that

J 0i (ϕϕϕ∗)(x) − ε ≤ inf
σi∈
i

J 0i ([ϕ∗−iϕ∗−iϕ∗−i , σi ])(x), i ∈ N , x ∈ X ,

which completes the proof. ��
Remark 3.2 The proof of Theorem 2.8 is similar to that of Theorem 3.1 in [34], but it
has one important change implying that the restrictive condition (2.3) can be dropped.
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4 YoungMeasures and the Proof of Theorem 2.13

Letϑ := (η+μ)/2.A function c : K → R is Carathéodory, if it is productmeasurable
on K, c(x, ·) is continuous on A for each x ∈ X and

∫

X
max
aaa∈A

|c(x,aaa)|ϑ(dx) < ∞.

Let �ϑ be the space of all ϑ-equivalence classes of functions in �. The elements of
�ϑ are called Young measures. Note that the expected discounted cost functionals are
well-defined for all elements of �ϑ. More precisely, if ψϑ ∈ �ϑ, then J �

i (ψ) is the
same for all representatives ψ of ψϑ in � and we can understand J �

i (ψϑ) as J �
i (ψ).

We shall identify in notation ψϑ with its representative ψ and omit the superscript ϑ.

We assume that the space �ϑ is endowed with the weak* topology. Since F is
countably generated, �ϑ is metrisable. Moreover, since the set A is compact, �ϑ is
a compact convex subset of a locally convex linear topological space. For a detailed
discussion of these issues consult with [7] or Chapter 3 in [19]. Here, we recall that
ψn →∗ ψ0 in �ϑ as n → ∞ if and only if for every Carathéodory function c : K →
R, we have

lim
n→∞

∫

X

∫

A
c(x,aaa)ψn(daaa|x)ϑ(dx) =

∫

X

∫

A
c(x,aaa)ψ0(daaa|x)ϑ(dx).

We now choose εn > 0 such that εn ↘ 0 as n → ∞ and define

γn := εn(1 − α)

(1 − α + bα)
. (4.1)

In other words, ε(γn) = εn or γn = ε−1(εn). From Theorem 2.3, it follows that there
exists a profile of stationary piecewise constant strategies

ψnψnψn = (ψn
1 , . . . , ψn

N ) ∈ �γn ,

which comprises an approximate equilibrium in the CSG for εn and at the same time
an equilibrium in the corresponding constrained game Gγn with γn as in (4.1) and the
constraint constants κ�

i + εn
2 .

Define the product measure on A, for every x ∈ X and n ∈ N, as

ψn(·|x) := ψn
1 (·|x) ⊗ . . . ⊗ ψn

N (·|x). (4.2)

We useψn to denote the class in�ϑ whose representative is this transition probability.
Without loss of generality, we may assume that ψn converges in the weak* topology
to some ψ∗ ∈ �ϑ as n → ∞.

We shall need the following results. The first one is a consequence of Lemma 3.1
and the fact that J �,γn

i (ψnψnψn) = J �,γn
i (ψn) and J �

i (ψnψnψn) = J �
i (ψn).
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Lemma 4.1 For each i ∈ N and � ∈ L0, we have

sup
ψ∈�

|J �
i (ψ) − J �,γn

i (ψ)| ≤ εn,

sup
ψ−i∈�−i

sup
πi∈
i

|J �
i ([ψ−i , πi ]) − J �,γn

i ([ψ−i , πi ])| ≤ εn,

where γn is as in (4.1).

Lemma 4.2 If n → ∞, then for any � ∈ L0

(a) J �,γn
i (ψn) → J �

i (ψ∗) ,
(b) J �,γn

i ([ψn
−i , φi ]) → J �

i ([ψ∗−i , φi ]) for any φi ∈ �i .

Proof For part (a) we first use the triangle inequality

|J �,γn
i (ψn) − J �

i (ψ∗)| ≤ |J �,γn
i (ψn) − J �

i (ψn)| + |J �
i (ψn) − J �

i (ψ∗)|.

The first term on the right-hand side converges to 0 by Lemma 4.1 and the definition
of ψn, whereas the convergence to 0 of the the second term follows from Lemma 4.1
in [27] and the fact that |J �

i (·)| ≤ b for every i ∈ N and � ∈ L0. Part (b) is proved
as point (a) by using the Fubini theorem and noting that the elements in �ϑ induced
by ψn

−i in (4.2) and φi converge in the weak* sense to the element of �ϑ induced by
ψ∗−i and φi . � ��

Let i ∈ N . Consider a Markov decision process with player i as a decision maker
and the transition probability

qγn (dy|x, ai ) =
∫

A−i

pγn (dy|x, [a−ia−ia−i , ai ])ψn
−i (da−ia−ia−i |x), (x, ai ) ∈ Ki .

Let 1D be the indicator of the set D ⊂ X × A. The associated occupation measure,
when player i uses a stationary strategy ϕi ∈ �i is defined as follows

θγn
ϕi

(B × C) = (1 − α)

∞∑

t=1

αt−1Eϕi
η 1B×C (xt , ati ) (4.3)

for any B ∈ F and aBorel setC in Ai .Weuse the symbol Eϕi
η to denote the expectation

operator corresponding to the unique probability measure induced by ϕi ∈ �i , the
initial distribution η and the transition probability qγn . For � ∈ L0, x ∈ X and ai ∈ Ai ,

set

c�,γn
i (x, ai ) :=

∫

A−i

c�,γn
i (x, [a−ia−ia−i , ai ])ψn

−i (da−ia−ia−i |x).

Proof of Theorem 2.13 Observe that Assumption A4 implies A3. We consider the
weak* limit ψ∗ ∈ �ϑ mentioned above and denote its representative in � by the
same letter.
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We shall show thatψ∗ is aweak correlated equilibrium. ByTheorem2.3, J �
i (ψnψnψn) =

J �
i (ψn) ≤ κ�

i + εn for all i ∈ N and � ∈ L. Using Lemma 4.2(a), we conclude that

J �
i (ψ∗) = lim

n→∞ J �
i (ψn) ≤ κ�

i , i ∈ N , � ∈ L,

i.e., ψ∗ is feasible.
Take (if possible) any feasible strategy in the CSG for player i ∈ N , i.e., πi ∈ 
i

such that

J �
i ([ψ∗−i , πi ]) ≤ κ�

i for all � ∈ L.

By Remark 2.2 there exists a strategy φi ∈ �i such that

J �
i ([ψ∗−i , πi ]) = J �

i ([ψ∗−i , φi ]) for all � ∈ L0.

1◦ Assume first that

J �
i ([ψ∗−i , πi ]) = J �

i ([ψ∗−i , φi ]) < κ�
i for all � ∈ L. (4.4)

From this inequality and Lemma 4.2(b), we infer that there exists N1 ∈ N such that

J �,γn
i ([ψn

−i , φi ]) < κ�
i for all � ∈ L and n ≥ N1.

For every n ≥ N1 and Lemma 7.1 in Appendix we conclude the existence of a
piecewise constant Markov strategy π i (that may depend on n) such that

J �,γn
i ([ψn

−i , φi ]) = J �,γn
i ([ψn

−i , π i ]) for all � ∈ L0.

Hence, it must hold

J 0,γni (ψn) ≤ J 0,γni ([ψn
−i , π i ]) = J 0,γni ([ψn

−i , φi ]).

In other words, for every n ≥ N1 we have

J 0,γni (ψn) ≤ J 0,γni ([ψn
−i , φi ]).

Letting n → ∞ and making use of Lemma 4.2, we infer

J 0i (ψ∗) ≤ J 0i ([ψ∗−i , φi ]) = J 0i ([ψ∗−i , πi ])

for any feasible strategy πi ∈ 
i such that (4.4) holds.
2◦ Assume now that there is player i ∈ N and an index �0 ∈ L such that

J �0
i ([ψ∗−i , πi ]) = J �0

i ([ψ∗−i , φi ]) = κ
�0
i . (4.5)
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From the proof of Lemma 4.2(b), it follows that there exists a sequence en → 0 as
n → ∞, en > 0, such that

J �
i ([ψn

−i , φi ]) ≤ J �
i ([ψ∗−i , φi ]) + en ≤ κ�

i + en for all � ∈ L.

By Remark 2.12, we can find ζ > 0 such that for every n ∈ N there exists a strategy
σ n
i ∈ �i such that

J �
i ([ψn

−i , σ
n
i ]) < κ�

i − ζ for all � ∈ L.

Hence, by Lemma 4.1, we conclude

J �,γn
i ([ψn

−i , φi ]) − εn ≤ J �
i ([ψn

−i , φi ]) ≤ κ�
i + en for all � ∈ L

and

J �,γn
i ([ψn

−i , σ
n
i ]) − εn ≤ J �

i ([ψn
−i , σ

n
i ]) < κ�

i − ζ for all � ∈ L.

Let N2 ∈ N be such that εN2 < ζ for all n ≥ N2 set

ξn := εn + en
ζ + en

and observe that ξn → 0 as n → ∞ and ξn ∈ (0, 1) for all n > N2. Let θ
γn
φi

and θ
γn
σ n
i

be two occupation measures defined as in (4.3). By Proposition 3.9 in [13], we define
a sequence of occupation measures as follows

θn := ξnθ
γn
σ n
i

+ (1 − ξn)θ
γn
φi

.

Then, for all � ∈ L0 it holds

∫

X×Ai

c�,γn
i (x, ai )θ

n(dx × dai ) = ξn J
�,γn
i ([ψn

−i , σ
n
i ]) + (1 − ξn)J

�,γn
i ([ψn

−i , φi ]).
(4.6)

Hence, for n ≥ N2 and all � ∈ L, from (4.6), we have

∫

X×Ai

c�,γn
i (x, ai )θ

n(dx × dai ) ≤ ξn(κ
�
i + εn − ζ ) + (1 − ξn)(κ

�
i + εn + en)

= −ξn(en + ζ ) + κ�
i + εn + en ≤ κ�

i < κ�
i + εn

2
.

(4.7)

ByLemma2.3 in [13] or Theorem3.2 in [19] for every n ≥ N2, there exists a stationary

strategy χn
i ∈ �i such that θn can be written as in (4.3) with Eϕi

η replaced by Eχn
i

η . In
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other words θn = θ
γn
χn
i
. Therefore, for all � ∈ L0, we obtain

∫

X×Ai

c�,γn
i (x, ai )θ

n(dx × dai ) = J �,γn
i ([ψn

−i , χ
n
i ]). (4.8)

By Lemma 7.1 in Appendix for every n ∈ N there exists a piecewise constant Markov
strategy πn

i such that

J �,γn
i ([ψn

−i , χ
n
i ]) = J �,γn

i ([ψn
−i , π

n
i ]) for all � ∈ L0.

By (4.7) and (4.8)

J �,γn
i ([ψn

−i , χ
n
i ]) ≤ κ�

i < κ�
i + εn

2
for all � ∈ L.

Hence, it must hold

J 0,γni (ψn) ≤ J 0,γni ([ψn
−i , π

n
i ]) = J 0,γni ([ψn

−i , χ
n
i ]). (4.9)

We know that

J �,γn
i ([ψn

−i , χ
n
i ]) = ξn J

�,γn
i ([ψn

−i , σ
n
i ]) + (1 − ξn)J

�,γn
i ([ψn

−i , φi ]).

Therefore, by Lemma 4.2(b) and (4.8), we get

lim
n→∞ J �,γn

i ([ψn
−i , χ

n
i ]) = J �

i ([ψ∗−i , φi ])

for all � ∈ L0. This fact, (4.9) and Lemma 4.2(a) yield that

J 0i (ψ∗) ≤ J 0i ([ψ∗−i , φi ]) = J 0i ([ψ∗−i , πi ])

for any feasible strategy πi ∈ 
i for which (4.5) holds. ��
Let �ϑ

i be the space of ϑ-equivalence classes of strategies in �i endowed with the
weak* topology. Clearly, �ϑ

i is a compact metric space. The cost functionals J �
i (ϕϕϕ),

� ∈ L0 and i ∈ N , are well defined for any profile ϕϕϕ = (ϕ1, ..., ϕN ) ∈ �̂ϑ =∏
j∈N �ϑ

j .

Remark 4.3 From Example 3.16 in [14] based on Rademacher’s functions, it follows
that the weak* limit of the sequence of approximate equilibria in Theorem 2.13 need
not be a stationary Nash equilibrium. The same example can be used to see that the
cost functionals J �

i , � ∈ L0 and i ∈ N , may be discontinuous on �̂ϑ .

Consider the two-person game. It follows from Lemma 4.2 that J �
i (ϕ1, ϕ2) is sep-

arately continuous in ϕ1 and ϕ2. Therefore, the functions

R1(ϕ1) := min
ϕ2∈�ϑ

2

max
�∈L (J �

1 (ϕ1, ϕ2) − κ�
1) and R2(ϕ2) := min

ϕ1∈�ϑ
1

max
�∈L (J �

2 (ϕ1, ϕ2) − κ�
2)
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are upper semicontinuous on �ϑ
1 and �ϑ

2 , respectively.

Remark 4.4 Consider a two-person game satisfying the standard Slater condition A5.
Then, it follows

R1(ϕ1) < 0 and R2(ϕ2) < 0

for all ϕ1 ∈ �ϑ
1 and ϕ2 ∈ �ϑ

2 . Since R1 and R2 are upper semicontinuous on the
compact spaces �ϑ

1 and �ϑ
2 , respectively, we conclude that

max
ϕ1∈�ϑ

1

R1(ϕ1) < 0 and max
ϕ2∈�ϑ

2

R2(ϕ2) < 0. (4.10)

Obviously, ϕ1 and ϕ2 in inequalities (4.10) can be understood as representatives of
(denoted by the same letters) classes in �ϑ

1 and �ϑ
2 , respectively. Then, it is apparent

that A5 implies A4 for the considered two-person game.
Since in the N -person ARAT game the cost functionals are continuous on �̂ϑ with

the product topology [13], A5 implies A4 in this case.
Finally,we note that in the countable state space case, the weak* topology on �ϑ

i
is actually the topology of point-wise convergence and all cost functionals J �

i are
continuous on the compact space �̂θ with the product topology.Therefore, the standard
Slater condition A4 made in the literature for these games, see [3, 4, 28, 42], is
equivalent to A5.

5 Non-existence of Stationary Equilibria in Discounted Constrained
Games

In this section, we consider discounted stochastic games with the given initial state
distribution η. If c�

i = 0 and κ�
i = 1 for all i ∈ N and � ∈ L, then the game in this

class is trivially constrained and Assumption A3 automatically holds. Our aim is to
conclude from [29] that such a game may have no stationary Nash equilibrium. For
this, we need the following fact.

Proposition 5.1 Let A1 and A2 be satisfied and in addition let p(·|x,aaa) � η for
all (x,aaa) ∈ K. If ϕϕϕ = (ϕ1, . . . , ϕN ) ∈ � is a stationary Nash equilibrium in the
discounted stochastic game with the initial state distribution η, i.e.,

J 0i (ϕϕϕ) ≤ J 0i ([ϕ−iϕ−iϕ−i , πi ]) (5.1)

for all i ∈ N and πi ∈ 
i , then there exists a stationary Nash equilibrium ψψψ =
(ψ1, ..., ψN ) in the unconstrained stochastic game for all initial states, i.e.,

J 0i (ψψψ)(x) ≤ J 0i ([ψ−iψ−iψ−i , πi ])(x) (5.2)

for all i ∈ N , πi ∈ 
i and x ∈ X .Moreover, ϕi (dai |x) = ψi (dai |x) for η-a.e. x ∈ X
and for all i ∈ N .

123



Applied Mathematics & Optimization (2023) 87 :23 Page 21 of 29 23

We start with necessary notation. Let φφφ = (φ1, ..., φN ) ∈ �. Then

φ(daaa|x) := φ1(da1|x) ⊗ φ2(da2|x) ⊗ · · · ⊗ φN (daN |x)

is the product measure on A determined by φi (dai |x), i = 1, 2, ..., N . Recall that by
φ−i (da−ia−ia−i |x) we denote the projection of φ(daaa|x) on A−i . We put

c0i (x,φφφ) :=
∫

A
c0i (x,aaa)φ(daaa|x) and p(dy|x,φφφ) :=

∫

A
p(dy|x,aaa)φ(daaa|x).

If σi ∈ �i , then

c0i (x, [φ−iφ−iφ−i , σi ]) :=
∫

Ai

∫

A−i

c0i (x, [a−ia−ia−i , ai ])φ−i (da−ia−ia−i |x)σi (dai |x),

p(dy|x, [φ−iφ−iφ−i , σi ]) :=
∫

Ai

∫

A−i

p(dy|x, [a−ia−ia−i , ai ])φ−i (da−ia−ia−i |x)σi (dai |x).

If νi ∈ Pr(Ai ), then

c0i (x, [φ−iφ−iφ−i , νi ]) := c0i (x, [φ−iφ−iφ−i , σi ]) and p(dy|x, [φ−iφ−iφ−i , νi ]) := p(dy|x, [φ−iφ−iφ−i , σi ])

with σi (dai |x) = νi (dai ) for all x ∈ X .

Let vi , i = 1, 2, ..., N , be bounded measurable functions on X . For each x ∈ X ,

by �x (v1, ..., vN ) we denote the one-step N -person game, where the payoff (cost)
function for player i ∈ N is

(1 − α)c0i (x,aaa) + α

∫

X
vi (y)p(dy|x,aaa), where aaa = (a1, ..., aN ) ∈ A.

Proof of Proposition 5.1 From (5.1), it follows that for each set S ∈ F , we have

J 0i (ϕϕϕ) =
∫

X

(
(1 − α)c0i (x,ϕϕϕ) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x,ϕϕϕ)

)
η(dx)

≤
∫

S
min

νi∈Pr(Ai )

(
(1 − α)c0i (x, [ϕ−iϕ−iϕ−i , νi ]) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x, [ϕ−iϕ−iϕ−i , νi ])

)
η(dx)

+
∫

X\S

(
(1 − α)c0i (x,ϕϕϕ) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x,ϕϕϕ)

)
η(dx)

Hence, for each S ∈ F ,

∫

S

(
(1 − α)c0i (x,ϕϕϕ) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x,ϕϕϕ)

)
η(dx) ≤

∫

S
min

νi∈Pr(Ai )

(
(1 − α)c0i (x, [ϕ−iϕ−iϕ−i , νi ]) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x, [ϕ−iϕ−iϕ−i , νi ])

)
η(dx).
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Thus, for every i ∈ N , there exists Si ∈ F such that η(Si ) = 1 and for all x ∈ Si , we
have

(1 − α)c0i (x,ϕϕϕ) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x,ϕϕϕ) ≤

min
νi∈Pr(Ai )

(
(1 − α)c0i (x, [ϕ−iϕ−iϕ−i , νi ]) + α

∫

X
J 0i (ϕϕϕ)(y)p(dy|x, [ϕ−iϕ−iϕ−i , νi ])

)
. (5.3)

Let Ŝ := S1 ∩ S2 · · · ∩ SN . Now consider the game �x (v1, ..., vN ), where vi (y) =
J 0i (ϕϕϕ)(y), y ∈ X . By Lemma 5 in [36], there exists φφφ ∈ � such that φφφ(daaa|x) =
(φ1(da1|x), ..., φN (daN |x)) is a Nash equilibrium in the game �x (v1, ..., vN ) for
all x ∈ X \ Ŝ. For every i ∈ N , define ψi (dai |x) := ϕi (dai |x), if x ∈ Ŝ, and
ψi (dai |x) := φi (dai |x), if x ∈ X \ Ŝ. Then, using (5.3), we conclude thatψψψ(daaa|x) =
(ψ1(da1|x), ..., ψN (daN |x)) is a Nash equilibrium in the game �x (v1, ..., vN ) for all
x ∈ X . Define v0i (y) := vi (y) = J 0i (ϕϕϕ)(y) for each y ∈ Ŝ and

v0i (y) := (1 − α)c0i (y,ψψψ) + α

∫

X
J 0i (ϕϕϕ)(z)p(dz|y,ψψψ)

for each y ∈ X \ Ŝ. Then, η(X \ Ŝ) = 0 and our assumption p(·|x,aaa) � η(·),
(x,aaa) ∈ K, imply that �x (v

0
1, ..., v

0
N ) = �x (v1, ..., vN ) for all x ∈ X . Therefore, for

all x ∈ X , ψ(daaa|x) is a Nash equilibrium in the game �x (v
0
1, ..., v

0
N ) and

v0i (x) = (1 − α)c0i (x,ψψψ) + α

∫

X
v0i (y)(y)p(dy|x,ψψψ).

Using these facts and the Bellman equations for discounted dynamic programming [8,
24], we conclude that (5.2) holds. ��
Remark 5.2 Levy and McLennan [29] gave an example of a discounted stochastic
game with no constraints having no stationary Nash equilibrium. This is an 8-person
stochastic game with finite action sets for the players and X = [0, 1] as the state space.
The definitions of payoff functions and transition probabilities in their game are rather
complicated and are not given here. We only mention that the transition probabilities
are absolutely continuous with respect to the probability measure η1 = (λ1 + δ1)/2,
where λ1 is the Lebesgue measure on [0, 1] and δ1 is the Dirac measure concentrated
at the point 1. Assume that η1 is the initial state distribution in this game. If this game
had a stationary Nash equilibrium, then by Proposition 5.1, it would have a stationary
Nash equilibrium for all initial states. From [29], it follows that it is impossible.1

6 Remarks on Games with Unbounded Costs

Our results can be extended to a class of games with unbounded cost functions c�
i

under some uniform integrability condition introduced in [16]. The method for doing

1 We thank John Yehuda Levy for pointing out this fact.
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this relies on truncations of the costs and using an approximation by bounded games.
This was done in our paper [28] in the countable state space case. In a special situation,
described below and inspired by the work ofWessels [40] on dynamic programming, a
reduction to the bounded case can be obtained by the well-known data transformation
as described in Remark 2.5 in [12] or Sect. 10 in [17]. Following Wessels [40], we
make the following assumptions.

Assumption W

(i) There exist a measurable function ω : X → [1,∞) and c0 > 0 such that
|c�
i (x,aaa)| ≤ c0ω(x) for all x ∈ X , aaa ∈ A, i ∈ N and � ∈ L0.

(ii) There exists β > 1 such that αβ < 1 and

∫

X
ω(y)p(dy|x,aaa) ≤ βω(x)

for all x ∈ X , aaa ∈ A.

(iii) If aaan → aaa as n → ∞, then

∫

X
|δ(x, y,aaan) − δ(x, y,aaa)|ω(y)μ(dy) → 0.

To describe the equivalent model with bounded costs we extend the state space X
by adding an isolated absorbing state 0∗. All the costs at this absorbing state are zero.
Let c�,ω

i (x,aaa) := c�
i (x,aaa)

ω(x) , and

pω(B|x,aaa) :=
∫
B ω(y)p(dy|x,aaa)

βω(x)
, B ∈ F , x ∈ X , aaa ∈ A,

pω(0∗|x,aaa) := 1 −
∫
X ω(y)p(dy|x,aaa)

βω(x)
, x ∈ X , aaa ∈ A.

Now define the new initial state distribution as

η0(B) :=
∫
B ω(x)η(dx)

ηω
, where ηω =

∫

X
ω(x)η(dx).

Here, we assume that ηω < ∞. Then, we obtain primitive data for a bounded con-
strained stochastic game, in which the discount factor is αβ. We denote the expected
discounted costs in the bounded game under consideration by J �

i (πππ). It is easy to see
that

J �
i (πππ) = J �

i (πππ)

ηω
, for all i ∈ N , � ∈ L0, πππ ∈ 
.

Theorems 2.3 and 2.13 can be established for the bounded game described above
with minor modifications. For example, one has to define new constraint constants as
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κ�
i /ηω, i ∈ N , � ∈ L. Using the above transformation, we can immediately deduce
similar results for games with unbounded cost functions satisfying Assumption W.
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7 Appendix

In this section, we prove a lemma which plays an important role in the proofs of our
theorems.

Let player i ∈ N be fixed. We also fix γ > 0, the partition Pγ = {Xγ
n : n ∈ N0} of

the state space X , the cost functions c�,γ

i and the transition function pγ in the game
Gγ . We fix ϕ−iϕ−iϕ−i ∈ �

γ

−i = ∏
j∈N \{i} �

γ

j .

A piecewise constant Markov strategy for player i is a sequence πi = ( f t )t∈N,

where f t ∈ �
γ

i for all t ∈ N.

Lemma 7.1 For fixed ϕϕϕ ∈ �γ and each φi ∈ �i there exists a piecewise constant
Markov strategy πi = ( f t )t∈N for player i such that

J �,γ

i ([ϕ−iϕ−iϕ−i , φi ]) = J �,γ

i ([ϕ−iϕ−iϕ−i , πi ]) for all � ∈ L0.

For a proof we need some auxiliary results. Let d ∈ N.

Lemma 7.2 Assume that Y ∈ F and ρ0 is a probability measure on X such that
ρ0(Y ) = 1. Let v = (v0, ..., vd−1), where every v j : X → R is a bounded measurable
function. Then, there exist points y0, ..., yd ∈ Y and non-negative numbers β0, ..., βd

such that
∑d

j=0 β j = 1 and

∫

Y
v(x)ρ0(dx) =

d∑

j=0

β jv(y j ). (7.1)
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Proof Consider the distribution function of v defined by: ζv(B) := ρ0(v
−1(B)), where

B is any Borel set in R
d . Using Theorem 16.13 on page 229 in [9] and Lemma 3 on

page 74 in [18], we obtain

∫

Y
v(x)ρ0(dx) =

∫

Rd
zζv(z)dz ∈ co{v(y) : y ∈ X}.

Applying Carathéodory’s theorem, we find points y0, ..., yd ∈ Y and numbers
β0, ..., βd ≥ 0 such that

∑d
j=0 β j = 1 and (7.1) holds. ��

We use C(Ai ) to denote the space of all real-valued continuous functions on Ai and
Pr(Ai ) for the space of all probability measures on Ai .

Lemma 7.3 Let ρ be a probability measure on X. For each � ∈ L0 assume that
u� : X × Ai → R is a bounded function such that u�(x, ai ) = u�

n(ai ) for all x ∈ Xγ
n ,

ai ∈ Ai , where u�
n ∈ C(Ai ), n ∈ N0. Then, for any φi ∈ �i there exists f ∈ �

γ

i such
that

∫

X

∫

Ai

u�(x, ai )φi (dai |x)ρ(dx) =
∫

X

∫

Ai

u�(x, ai ) f (dai |x)ρ(dx) for all � ∈ L0.

(7.2)

Proof Assume first that ρ(Xγ
n ) > 0 and define ρ0(B) = ρ(B∩Xγ

n )

ρ(Xγ
n )

, B ∈ F . Applying

Lemma 7.2 with d = L + 1 and v = (u0, ..., uL ), we infer that there exist points
y0(n), ..., yL+1(n) in Xγ

n and β0(n), ..., βL+1(n) ≥ 0 such that
∑L+1

j=0 β j (n) = 1 and

1

ρ(Xγ
n )

∫

Xγ
n

∫

Ai

u�(x, ai )φi (dai |x)ρ(dx) = 1

ρ(Xγ
n )

∫

Xγ
n

∫

Ai

u�
n(ai )φi (dai |x)ρ(dx)

=
L+1∑

j=0

β j (n)

∫

Ai

u�
n(ai )φi (dai |y j (n)) for all � ∈ L0.

For each x ∈ Xγ
n , define f (dai |x) := νn(dai ), where νn ∈ Pr(Ai ) is given as

νn(dai ) :=
L+1∑

j=0

β j (n)φi (dai |y j (n)).

If ρ(Xγ
n ) = 0, then f (dai |x) is defined for all x ∈ Xγ

n by f (dai |x) = νn(dai ) where
νn is any fixed measure in Pr(Ai ). Note that, we have

∫

Xγ
n

∫

Ai

u�(x, ai )φi (dai |x)ρ(dx) =
∫

Ai

u�
n(ai )νn(dai )ρ(Xγ

n )

=
∫

Xγ
n

∫

Ai

u�(x, ai ) f (dai |x)ρ(dx),
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for all � ∈ L0, n ∈ N0. Hence,

∑

n∈N0

∫

Xγ
n

∫

Ai

u�(x, ai )φi (dai |x)ρ(dx) =
∑

n∈N0

∫

Xγ
n

∫

Ai

u�(x, ai ) f (dai |x)ρ(dx),

for all � ∈ L0, which implies (7.2). ��
Since i ∈ N , γ > 0, ϕ−iϕ−iϕ−i ∈ �

γ

−i and φi ∈ �i are fixed, the notation for the proof
of Lemma 7.1 can be simplified.

Let ϕ−i (da−ia−ia−i |x) be the product measure on A−i induced by ϕ j (da j |x)with j �= i .
For � ∈ L0, x ∈ X and ai ∈ Ai , we put

c�(x, ai ) :=
∫

A−i

c�,γ

i (x, [a−ia−ia−i , ai ])ϕ−i (da−ia−ia−i |x),

q(dy|x, ai ) :=
∫

A−i

pγ (dy|x, [a−ia−ia−i , ai ])ϕ−i (da−ia−ia−i |x).

Next, we put

c�
φi

(x) :=
∫

Ai

c�(x, ai )φi (dai |x),

and, for any bounded measurable function w : X → R,

Qφi w(x) :=
∫

Ai

w(y)q(dy|x, ai )φi (dai |x).

Similarly, we define c�
g(x) and Qgw(x) for any g ∈ �

γ

i .Next, if g1, g2, ..., gT ∈ �
γ

i ,

then

ηw =
∫

X
w(x)η(dx) and Qg1Qg2 · · · QgT w(x) = Qg1(Qg2 · · · QgT w)(x)

and

ηQg1Qg2 · · · QgT w :=
∫

X
Qg1Qg2 · · · QgT w(x)η(dx).

Note that ηQg1Qg2 · · · QgT is the probability distribution of the state xT+1 of the
process, when player i uses a Markov strategy (gt )t∈N.

We now introduce new notation for expected costs. Recalling that φi ∈ �i , we put

I �(φi )(x) := J �,γ

i ([ϕ−iϕ−iϕ−i , φi ])(x) and I �,η(φi ) :=
∫

X
I �(φi )(x)η(dx), � ∈ L0.

If πi = (gt )t∈N is a piecewise constant strategy for player i, then I �,η
T (πi ) =

I �,η
T (g1, ..., gT ) denotes the expected discounted cost in the T -step game Gγ under
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assumption that the other players useϕ−iϕ−iϕ−i . Then, the cost over the infinite time horizon
is

I �,η(πi ) = lim
T→∞ I �,η

T (πi ).

Proof of Lemma 7.1 We show by induction that for given φi ∈ �i there exists πi =
( f t )t∈N with f t ∈ �

γ

i for all t ∈ N such that for all T ∈ N, we have

I �,η(φi ) = I �,η( f 1, ..., f T ) + αT ηQ f 1 · · · Q f T ((1 − α)c�
φi

+ αQφi I
�(φi )).(7.3)

We shall use the following equation

I �(φi )(x) = (1 − α)c�
φi

(x) + αQφi I
�(φi )(x), for each x ∈ X .

Assume that T = 1. Then,

I �,η(φi ) = η((1 − α)c�
φi

+ αQφi I
�(φi ))

=
∫

X

∫

Ai

(
(1 − α)c�(x, ai ) + α

∫

X
I �(φi )(y)q(dy|x, ai )

)
φi (dai |x)η(dx).

Applying Lemma 7.3 with ρ = η and

u�(x, ai ) = (1 − α)c�(x, ai ) + α

∫

X
I �(φi )(y)q(dy|x, ai ) (7.4)

we obtain f 1 ∈ �
γ

i such that

∫

X

∫

Ai

u�(x, ai )φi (dai |x)η(dx) =
∫

X

∫

Ai

u�(x, ai ) f
1(dai |x)η(dx) for all � ∈ L0.

Then, we get

I �,η(φi ) = ηI �(φi ) = η((1 − α)c�
φi

+ αQφi I
�(φi ))

= η((1 − α)c�
f 1 + αQ f 1 I

�(φi )) = η(1 − α)c�
f 1 + αηQ f 1 I

�(φi )

= I �,η
1 ( f 1) + αηQ f 1((1 − α)c�

φi
+ αQφi I

�(φi )) fro all � ∈ L0.

We have obtained (7.3) for T = 1. Assume now that (7.3) holds for T = m with some
m ≥ 1. Then we have for some f 1, ..., f m ∈ �

γ

i that

I �,η(φi ) = I �,η( f 1, ..., f m) + αmηQ f 1 · · · Q f m ((1 − α)c�
φi

+ αQφi I
�(φi ))
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for all � ∈ L0. Applying Lemma 7.3 with u�(x, ai ) given by (7.4) and ρ =
ηQ f 1 · · · Q f m , we obtain f m+1 ∈ �

γ

i such that

ηQ f 1 · · · Q f m ((1 − α)c�
φi

+ αQφi I
�(φi ))

= ηQ f 1 · · · Q f m ((1 − α)c�
f m+1 + αQ f m+1 I �(φi ))

= ηQ f 1 · · · Q f m (1 − α)c�
f m+1 + αηQ f 1 · · · Q f m Q f m+1((1 − α)c�

φi
+ αQφi I

�(φi )).

Thus for all � ∈ L0 we get

I �,η(φi ) = I �,η( f 1, ..., f m) + αmηQ f 1 · · · Q f m (1 − α)c�
f m+1

+αm+1ηQ f 1 · · · Q f m Q f m+1((1 − α)c�
φi

+ αQφi I
�(φi ))

= I �,η( f 1, ..., f m+1) + αm+1ηQ f 1 · · · Q f m Q f m+1((1 − α)c�
φi

+ αQφi I
�(φi )).

This finishes the induction step. Taking the limit in (7.3) as T → ∞, we obtain

I �,η(φi ) = I �,η(πi ) with πi = ( f 1, f 2, ...)

for all � ∈ L0. Going back to our original notation, we deduce that this is the assertion
of Lemma 7.1. ��
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