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Abstract

In this paper, we consider constrained discounted stochastic games with a countably
generated state space and norm continuous transition probability having a density
function. We prove existence of approximate stationary equilibria and stationary weak
correlated equilibria. Our results imply the existence of stationary Nash equilibrium
in ARAT stochastic games.
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1 Introduction

Constrained Markov decision processes and stochastic games have numerous applica-
tions in operations research, economics, computer sciences, consult with [2, 3, 28, 37]
and references cited therein. They arise in situations, in which a controller or player
has many objectives. For example, when she or he wants to minimise one type of
cost while keeping other costs lower than some given bounds. Constrained stochastic
games with finite state and action spaces were first studied by Altman and Shwartz
[3]. Their work was extended to some classes of games with countable state spaces in
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[4, 42] by finite state approximations. A more direct approach based on properties of
measures induced by strategies and occupation measures was presented in [28].

In this paper, we study discounted constrained stochastic games with a general
state space and the transition probability having a density function. Such two-person
games with additive rewards and additive transition structure (ARAT games) were
recently studied by Dufour and Prieto-Rumeau [13]. They established the existence of
stationary Nash equilibria generalising the result of Himmelberg et al. [25] proved for
unconstrained games. Moreover, their theorem also holds for N-person ARAT games
satisfying the standard Slater condition. As shown in a highly non-trivial example by
Levy and McLennan [29], the games under consideration in this paper may have no
stationary Nash equilibrium in the unconstrained case. It can be seen that this example
applies to the constrained case as well. Thus, results on approximate equilibria as in
[34, 41] became more valuable. They are stated for the unconstrained case, and in this
paper we extend the main result from [34] to a class of constrained games. In this way,
we establish the existence of approximate stationary equilbria for discounted stochastic
games with constraints and general state spaces. It should be noted that the existence
of stationary equilibria in discounted unconstrained games was proved only in some
special cases, for instance, for ARAT games [25] or games with transitions having no
conditional atoms [23]. For a survey of results on stationary and non-stationary Nash
equilibria the reader is referred to [26].

The other group of papers comprise the ones on stationary equilibria with public
signals, see [11, 22, 36]. Such solutions can be viewed as special communication or
correlated equilibria widely discussed in dynamic frameworks (repeated, stochastic
or extensive form games) in [20, 21, 31, 38, 39]. They were inspired by the seminal
papers of Aumann [5, 6]. A weaker version of correlated equilibrium was proposed
by Moulin and Vial [32]. According to their approach a correlated strategy in a finite
(bimatrix) game is a probability distribution v on the set of pure strategy pairs. Every
player has to decide whether to accept v or to use his or her individual strategy. If
player i uses an individual strategy and player j # i obeys v, then a pure action for
player j is selected by the marginal distribution of v on his/her pure actions. Then
v is an equilibrium, if no unilateral deviations from it are profitable. This solution is
called a weak correlated equilibrium or a correlated equilibrium with no exchange
of information [32]. In contrast to Aumann’s approach, the players who accepted v
cannot change actions after using the lottery v. The solution proposed by Moulin and
Vial [32] has an interesting property. Namely, the authors constructed a bimatrix game,
in which the equilibrium payoffs in their equilibrium concept strictly dominate in the
Pareto sense the payoffs in Aumann’s equilibrium, see [30, 32].

In [35] the concept of Moulin and Vial is used to an unconstrained discounted
stochastic game with a general state space. However, as shown by Solan and Vieille,
[39], the notion of a weak correlated equilibrium can be also regarded as a special case
of a general correlation scheme.

In this paper, we extend the result from [35] to a large class of discounted stochastic
games with so-called integral constraints. We apply our recent result from [28] for
games with discrete state spaces and use an approximation technique. A stationary
weak correlated equilibrium is obtained as a limit (in the weak* sense) of approximate
equilibria. Our result generalises the main theorem of Dufour and Prieto-Rumeau
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[13] given for ARAT games, if the action sets for players do not depend on the
state. We wish to emphasise that the considerations of other classes of correlated
equilibria in constrained stochastic games (like equilibria with public signals) seem to
be very challenging for many reasons. Firstly, the integral constraints are difficult to
apply. Secondly, the usual methods from dynamic programming (Bellman’s principle)
or backward and forward induction used in unconstrained cases are not applicable.
Perhaps further possible results can be obtained for other correlated equilibria but
under different type of constraints.

The paper is organised as follows. The model and main results on equilibria are
contained in Sect. 2. Section 3 presents the approximation technique and the proofs
of two main theorems. Section 4 is devoted to the proof on the existence of a weak
correlated equilibrium and a discussion on our assumptions. In Sect. 5, we show that the
example given in [29] can be used to show that discounted constrained stochastic games
studied in this paper may not have stationary Nash equilibria. Section 6 discusses
a useful transformation that shows how to easily extend our results formulated for
bounded cost functions to unbounded ones. In Appendix (Sect. 7) we give a crucial
lemma on a replacement of a general strategy by a piecewise constant strategy. It is
used in the proofs of our main theorems on equilibria in constrained stochastic games.

2 The Game Model and Main Results

In this section, we describe constrained discounted stochastic games with general state
space and our basic assumptions. We provide our main results in three cases. Firstly,
we give a theorem on the existence of a stationary approximate equilibrium assuming
that the players play the game independently. Secondly, we drop the constraints and
give a theorem on the existence of a stationary e-equilibrium for every initial state,
extending the main result in [34]. Finally, we show that the constrained stochastic
games under consideration possess stationary weak correlated equilibria introduced
in the static (bimatrix) case by Moulin and Vial [32].

2.1 Approximate Nash Equilibria in Constrained Discounted Stochastic Games

The non-zero-sum constrained stochastic game (C SG) is described by the following
objects:

o N ={1,2,..., N}is the set of players.

e X is a state space endowed with a countably generated o -algebra F.

e A; is a compact metric action space for player i € N endowed with the Borel
o -algebra. We put

A=]]A; and A= [] 4.

JjeN JeN\{i}
K :={(x,a)):x € X, a; € A}, Ki={(x,a):xe X, a=(ay,..,a,) € A}.

@ Springer



23 Page4of29 Applied Mathematics & Optimization (2023) 87:23

e The real-valued functions cf : K — R, wherei e N, £ € Lo = LU {0} with
L = {1, ..., L}, are product measurable. Here, c? is the cost-per-stage function for
player i € NV, and for each ¢ € L, cf is a function used in the definition of the
£-th constraint for this player. It is assumed that there exists b > 0 such that

|cf(x,a)| <b, forall i eN, £eLy (x,a)eK.

e p(dyl|x, a) is the transition probability from x to y € X, when the players choose
aprofilea = (ay, az, ..., ay) of actions in A.

e 1) is the initial state distribution.

e o € (0, 1) is the discount factor.

° Kf are constraint constants, i € N, £ € L.

Let N = {1,2,...}. Define H! = X and H't! = K x H' for t € N. An element
ht = (x',a', ..., x") of H' represents a history of the game up to the z-th period,
where a¥ = (a’f, cee, af‘v) is the profile of actions chosen by the players in the state
x¥ on the k-th stage of the game, 1! = x'.

Strategies for the players are defined in the usual way. A strategy for playeri € N/
is a sequence ; = (71[.’ )eN, Where each ni’ is a transition probability from H' to A;.
By I1; we denote the set of all strategies for player i. Let ®; be the set of transition
probabilities from X to A;. A stationary strategy for player i is a constant sequence
(gof),eN, where <pl? = ¢; for all t € N and some ¢; € ®;. Furthermore, we shall
identify a stationary strategy for player i with the constant element ¢; of the sequence.
Thus, the set of all stationary strategies of player i is also denoted by ®;. We define

N

N
O=[]m and ®=]]:.
i=I

i=1

Hence, IT (®) is the set of all (stationary) multi-strategies of the players.

Let H® = KxKx- - - bethe space of all infinite histories of the game endowed with
the product o -algebra. For any multi-strategy & € I, a unique probability measure
IP’%’ and a stochastic process (x’, a’);cn are defined on H* in a canonical way, see the
Ionescu-Tulcea theorem, e.g., Proposition V.1.1 in [33]. The measure ]P”,j is induced by
m, the transition probability p and the initial distribution n. The expectation operator
with respect to P77 is denoted by E7.

Let & € II be any multi-strategy. For each i € N and ¢ € Ly, the discounted cost
functionals are defined as

Jf@) = (1 - a)E] [Z a' et (xf, a’):| .
=1

We assume that Jio (7r) is the expected discounted cost of playeri € N, who wishes
to minimise it over r; € I1; in such a way that the following constraints are satisfied

Ji@) <k} forall e L.
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A multi-strategy 7 is feasible, if the above inequality holds for eachi € N/, £ € L.
We denote by A the set of all feasible multi-strategies in the CSG.

As usual, for any & € I, we denote by w—; the multi-strategy of all players but
player i, thatis,m_y = (2, ..., 7n), T—N = (71, ..., Tn—1), and fori € A"\ {1, N},

A= (T, .. W1, Tigl, -, TTN).

We identify [m_;, m;] with ar. For each w € I1, we define the set of feasible strategies
for player i with m_; as

Aimoi) ={m e : Ji@) = Jf (=i, m]) < «} forall €e L}.

Letmr = (m, mp, ...,mny) € Il and o; € II;. By [m—;, 0;] we denote the multi-
strategy, where player i uses o; and every player j # i uses 7;.

Definition 2.1 A multi-strategy =* € II is an approximate equilibrium in the CSG
(for given ¢ > 0), if foreveryi € N and £ € L,

Jra*) <«kf +e, @.1)
and for every i € \,
E*y—e< inf  JO([x*;, 0. (2.2)
oi €A (w*;)

A multi-strategy w* € I1 is an g-equilibrium in the CSG (for given ¢ > 0), if (2.2)
holds and Jf (") < Kf forevery i € N and £ € L. A 0-equilibrium is called a Nash
equilibrium in the CSG.

Note that, every e-equilibrium is approximate, but not vice versa. For small ¢ > 0,
condition (2.1) allows for a slight violation of the feasibility of 7 *. Further comments
on this condition the reader will find in Remark 2.4.

We now formulate our basic assumptions.

Assumption A1 The functions cf (x, -) are continuous on A forall x € X, i € N and
l e L:o.

Assumption A2 The transition probability p is of the form

p<B|x,a>=/Ba(x,y,a>u<dy), BeF,

where u is a probability measure on F and § is a product measurable non-negative
(density) function such that, if a” — a as n — oo, then

[x 8(x, y,a") = 8(x, y,@)|u(dy) — 0.
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This assumption means the norm continuity of p with respect to action profiles.

Assumption A3 For each stationary multi-strategy ¢ € ® and for each playeri € A\,
there exists 77; € I1; such that

T i mi]) <« forall £e L.

Assumption A3 is standard in the theory of constrained decision processes and
stochastic games [2, 3, 13, 28].

Remark 2.2 From Assumption A3, Lemma?2.3in[13] and Lemma 24 in [37], it follows
that the strategy m; € I1; can be replaced a stationary strategy o; € ®; such that

T (o_i. ) = JL(lp_i.0;]) forall €€ L.

The proof of Lemma 24 in [37] on the equivalence of these strategies is formulated
for models with Borel state spaces. However, it is also valid in our framework (see pp.
307-309 in [37]) with the exception that we need an appropriate disintegration result.
In this matter, consult with Lemma 2.3 in [13] or Theorem 3.2 in [19].

We are ready to state our first main result.

Theorem 2.3 Assume A1, A2 and A3. Then, for each ¢ > 0, the CSG possesses a
stationary approximate equilibrium.

Remark 2.4 The proof of this result is given in Sect. 3. We prove that a stationary
approximate equilibrium for given & > 0 consists of strategies that are piecewise con-
stant functions of the state variable. We observe that, under assumptions of Theorem
2.3, condition (2.1) with ¢ = 0 need not be satisfied by piecewise constant stationary
multi-strategies. Therefore, the existence of an e-equilibrium in the CSG is an open
issue. We would like to emphasise that Theorem 2.3 is crucial in our proof of Theo-
rem 2.13 on weak correlated equilibria, where we apply an asymptotic approach when
e — 0.

Remark 2.5 The only result in the literature on the existence of stationary Nash
equilibria in CSGs with general state space was given by Dufour and Prieto-
Rumeau [13]. It concerns so-called discounted additive rewards and additive transition
(ARAT) stochastic games. In the two-person case the ARAT assumption means that
¢ (x.a1, @) = cf;(x,a1) + 3 (x, az) and p(-|x, ar, az) = pi(-lx, @)+ pa(clx, @),
where p; and p, are transition subprobabilities. The results in [13] are given for
two-person games satisfying the standard Slater condition (Assumption A3 with strict
inequalities). However, they can be easily extended by the same methods to N-person
ARAT stochastic games. A simple adaptation of the counterexample by Levy and
McLennan [29] given for unconstrained discounted stochastic games implies that sta-
tionary Nash equilibria may not exist in the constrained stochastic games studied in
this paper. For more details see Sect. 5.

Remark 2.6 We wish to emphasise that the Slater condition is not needed for the
establishing an approximate equilibrium in CSGs.
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2.2 An Update on Stationary Equilibria in Unconstrained Discounted Stochastic
Games

In this subsection, we drop the constraints. By the Ionescu—Tulcea theorem [33], any
multi-strategy w € IT and any initial state x € X, induce a unique probability measure
PT on H®. The expectation operator with respect to PT is denoted by ET .

The discounted cost for playeri € N is defined as

J,'O(ﬂ)(x) =(1- OI)EZ [Za’_lc?(xt,at)] .

t=1

Definition 2.7 Let ¢ > 0 be fixed. A multi-strategy &* € I is an g-equilibrium in the
unconstrained discounted stochastic game, if

Jox*) —e < inf JO([m*, 0y])
o; ell;

i

for every player i € A and for all initial states x € X. A 0-equilibrium is called a
Nash equilibrium.

Theorem 2.8 Under assumptions Al and A2, for any ¢ > 0, the unconstrained dis-
counted stochastic game has a stationary e-equilibrium.

The proof is given in Sect. 3.

Remark 2.9 Stationary Nash equilibria exist only in some special cases of stochastic
games satisfying Assumptions Al and A2, see [25] (ARAT games), [23] (other classes
of games) and [26] (a survey). As shown by Levy and McLennan [29] stationary Nash
equilibria need not exist in general under assumptions of Theorem 2.8.

Remark 2.10 Theorem 2.8 is an extension of Theorem 3.1 in [34], where additionally
it is assumed that

/ supé(x, y,a)u(dy) < oo foreach x € X. 2.3)
X

acA

2.3 Weak Correlated Equilibria in Constrained Discounted Stochastic Games

Let W be the set of all transition probabilities from X to A, thatis, ¢ € Wif ¢ (-|x) €
Pr(A) for every x € X and v (D]-) is F-measurable for any Borel set D C A.
A stationary correlated strategy for the players in the CSG is a constant sequence
(¥, ¥, ...), where ¥ € W. As in the case of stationary strategies, we shall identify a
correlated strategy with the element v of this sequence.

By the Ionescu-Tulcea theorem [33], any correlated strategy ¥ € W and the initial

distribution 7, induce a unique probability measure IP’:/{ on H®°. The expectation
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operator with respect to IP’U’// is denoted by ]Enw Then the discounted cost functionals
for player i € N are defined as

@) =1 - )Y [Za[_lcf(xt,at)}

t=1

for all £ € L. Obviously, here at stage  the vector of actions a’ is chosen according
to a probability measure ¥ (-|x").

Furthermore, let v; and i denote the projections for any x 2 X of (jx) on Ay; and
A;, respectively. For any player i € N and a strategy m; € I1; we denote by [¥_;, ;]
a multi-strategy, where player i uses a strategy m; and the other players act as one
player applying v_;. In this case, Jio([w_i, m;]) denotes the expected discounted cost
for player i. Set

Ai(W-i) = {m € T JE([W—i, mi]) <« forall € e L}.

Definition 2.11 A strategy v* € W is called a weak correlated equilibrium in the
CSG,if foreveryi e Nand £ € L, Jl-e(lﬂ*) < /cf and for every i €

T €A (Y,

I < inf : T, mil). (24)
If all players but i € N accept to use ¥r* to select an action profile in any state
x and player i € N decides to play independently of all of them by choosing a
feasible strategy 7;, then the action profile for all players in A\ {i} is selected with
respect to the marginal probability distribution *, (:|x) on A_;. When y* is a weak
correlated equilibrium, then inequality (2.4) says that unilateral deviations from ¥ *
are not profitable. This is an adaptation of the equilibrium concept, formulated by
Moulin and Vial [32] for static games, to our dynamic game model.
In order to state our third main result, we define ®_; := [ JeN\(i) ®; and impose
the following condition.

Assumption A4 For each playeri € N,

sup  min max (J{ ([p—i, o;]) — k¥) < 0.
p_icd_; o;e®; tel

This assumption implies the standard Slater condition (see Assumption A5 below)
widely used in the literature [2, 3, 13, 28].

Assumption A5 For each playeri € A and any ¢_; € ®_;, there exists o; € ®; such
that

Jiﬁ([ﬁo—i, oi]) < Kf forall ¢ e L.
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Assumptions A4 and A5 may seemingly be more general. Namely, we can formulate
themform; € I1; instead of o; € ®; andreplace the set ®; by I1;. However, Remark 2.2
implies that these formulations are in fact equivalent.

Remark 2.12 From Assumption A4, it follows that there exists ¢ > 0 such that for
every playeri € N,

sup min max (Jf([(p_,-, oil) — K,-K) < =,
o_icd_; 0, €d; tel

and consequently that for each playeri € A and any ¢_; € ®_;, there exists o; € ®;
such that

Jf([(o_,-, oi]) < Kf —¢ forall £e L.

Theorem 2.13 Assume Al, A2 and A4. Then, the CSG possesses a stationary weak
correlated equilibrium.

The proof is given in Sect. 4.

Remark 2.14 The existence of a weak correlated equilibrium in an unconstrained case
was proved by Nowak [35] under additional integrability condition (2.3).

Remark 2.15 If y* is a stationary weak correlated equilibriuminan ARAT game, then
(Y1, ¥, ..., ¥n) is a stationary Nash equilibrium in this game. Thus, Theorem 2.13
implies the main result of Dufour and Prieto-Rumeau [13], if the action sets are
independent of the state. However, their proof is more direct in the sense that it is not
based on an approximation by games with discrete state spaces. Instead, they directly
apply a fixed point theorem. An extension to the case of action spaces depending on
the state variable raises some additional technical issues.

3 Approximating Games with Countable State Spaces and Proofs of
Theorems 2.3 and 2.8

In this section, we define a class of games that resemble stochastic games with a
countable state space. Using them we can approximate the original game and apply the
results on existence of stationary equilibria in discounted games with countably many
states proved by Federgruen [15] (unconstrained case) and Jaskiewicz and Nowak [28]
(constrained case).

Let C(A) be the Banach space of all real-valued continuous functions on A endowed
with the maximum norm || ||. Let C;, = {wy, wy, ...} denote the countable dense subset
intheball {w € C(A) : ||w|] < b}inC(A), where b > |cf(x,a)| foralli e N, ¢ € Ly,
(x,a) e K.

We write £! to denote the Banach space £' (X, F, u) of all absolutely integrable
real-valued measurable functions on X with the norm

||v||1=/x|v<y)|u(dy), ver,
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Let C(A, L") be the space of all £'-valued continuous functions on A with the norm
il = max [ 20v. @)@,
acA Jx

Here an element of C(A, £1) is written as a product measurable function A : X x A —
R such that A(-,a) € £! for eacha € A and

IAC,a") = AC, )|l = /X A(y.a") = A(y.@)|udy) - 0 as a" —a, n— oo.

By Lemma 3.99 in [1], the space C(A, £') is separable. Assumption A2 implies that
D= {8(x,-,) : x € X} C C(A, L") is also a separable space when endowed with
the relative topology. Therefore, there exists a subset {x; : k € N} of the state space
X such that the set {6 (xk, -, -) : k € N} is dense in D.

For any player i € N, and positive integers m;y, £ € Ly, we put m; =
(mjo, mj1, ...,m;r). Then, given any y > 0, we define BY (i, m;) as the set of all
states x € X such that

L
D et e, ) = wa Il < v 3.1)
£=0
For any k € N, let
Bl :=={xeX:[8(x, ) —8(xk )l

= max/ 16(x, y,@) = 8(xk, y, @)|lu(dy) < y}. (3.2)
acA Jx

It is obvious that the sets B,l/ and BY (i, m;) belong to F and the union of all sets
B! NBY(1,m)N...N BY(N,my)

is the whole state space X. Indeed, if x € X, then there exists k € N such that x € BZ
and, for any player i € A/, there exist functions Wi;, € Cp, and thus 7; such that
(3.1) holds.

Let £ be a fixed one-to-one correspondence between the sets N and N x NV(Z+D,
Assuming that j € N and £(j) = (k,my, ..., my), we put

Y}/ ;= B/ NBY(1,m)N...N BY(N,my).

We can assume without loss of generality that Yf/ # (. Next, we set X ’f =Y f/ and

X{:Y,}’—UX}’, for T eN\{1}.

1<t
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Omitting empty sets X/ we obtain a subset Ny C N such that

PV:{XJV. . j € No}
is a measurable partition of the state space X. Choose any n € Np. Then, £(n) is
a unique sequence in N x NVZ+D that depends on n and, therefore, we can write

£(n) :V (k",m7, ...,mYy) where m} = (mly, m},,...m!;), i € N.Next, for each
x € X, , we define

87 (x.y.a) 1= 8(xr,y. @) forye X and ¢;”(x.a):=wy (@)
foralll € Ly, i e N. (3.3)

From (3.1), (3.2) and (3.3), it follows that for each n € Ny and x € X}, we have
||cf(x, ) — cf’y(x, Il <y foralll € Ly (3.4)

and
18Cx, - ) — 8" (x, -, e = Teaﬁ(/ [8(x, y,a@) — 8" (x,y,a)luldy) <y. (3.5)
X

The original game defined in Sect. 2 is now denoted by G. We use G? to denote

the game, where the cost functions are cf’y, £ € Loandi € N, and the transition
probability is

pY (Blx,a) =/ 8V (x,y,a)u(dy), BeF.
X

Note that cf’y (x,a) and pY (B|x, a) are constant functions of x on every set X} .
The discounted expected costs in the game G¥ under a multi-strategy & € IT are
denoted by

JO @)(x) and JOV(w) = / JE ) (o (dx).
X

Let

y(l —oa+ba)

o (3.6)

e(y) ==

From (3.4), (3.5) and Lemma 4.4 in [34], we conclude the following auxiliary result.

Lemma3.1 Foreachi € N and £ € Ly, we have

sup sup |J£ (@) (x) — J7 (@)(x)] < e(y).

xeXmell
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With G we associate a stochastic game GY with the countable state space Ng C N,
the costs given by

SV (na)i=cV(x,a), xeX), neNy, acA, (3.7)
and transitions defined as
P (z|n,a) := 8" (XY|x,a), x¢€ XY, n,teNy, aceA. 3.8)
Note that the right-hand sides in (3.7) and (3.8) are independent of x in X ¥ and thus
the costs and transitions above are well-defined. A stationary strategy for playeri € N
in the game G/ is a transition probability f; from Ny to A;. The set of all stationary
strategies for player i € A in this game is denoted by F;. We put F := [, Fi-

The expected discounted costs in the game G) under stationary multi-strategy
are denoted by

ﬁ’y(n)(n), n €Ny, and jf’y(n) = Z j;e'y(n)(n)fl(XZ).

nENO

Let CIJE/ be the set of all piecewise constant stationary strategies of playeri € N inthe
game GY. A strategy ¢; € Cbg’, if, for each n € Ny, there exists a probability measure
v, on A; such that g; (da;|x) = v, (da;) for all x € X;,. We put & =[], ©7.

Let f = (f1, ..., fn) € Fand ¢ = (¢, ..., py) € ®” be such that

@i(da;|x) = fi(da;|n) forall i e N, ne Ny, x € x7r. (3.9
Then, for eachi € N, £ € Lo, n € Nand x € X},
I @) = I () (3.10)
and
17 @) =T (). (3.11)

Equations (3.10) and (3.11) show that G¥ with the strategy sets CDZ,/ can be recognised
as a game with a countable state space. This observation plays an important role in
the proof, because we can apply a result for games on countable state spaces.

Proof of Theorem 2.3 Let ¢ > O and i € N. Choose y > 0 in (3.6) such that (y) <

€/2. By Assumption A3 and Remark 2.2 we imply that for any multi-strategy ¢ € Y
there exists o; € ®; such that

T (p=i, 0i]) <k} forall € € L. (3.12)
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By Lemma 7.1 in Appendix, there exists a piecewise constant Markov strategy 7;
such that

¢, L, —_
I (=i i) = J; " (lp=i i)
forall £ € £y. By Lemma 3.1 and (3.12) we conclude that
e
T (lg—i, i) < «f + 5 forallte L.
This means that the approximating game G" satisfies the Slater condition with the
constants Kf + 5, £ € L. Note that the constraint constants in G” are also equal
fci’Z + %, £ € L. Therefore, the associated game gZ also satisfies the Slater condition
with the same constants Kf + % ¢ € L. Making use of Corollary 2 in [28], we infer
that the game G possesses a stationary Nash equilibrium f* = ( fis s ). Define
0" = (¢}, ..., 0y) € @ asin (3.9) withgp = ¢* and f = f*. Then,
0, 0, A
I @) < 37T (et i)
for any piecewise constant strategy 77; such that

Jf’y([‘Pii’ i) < kf + % forall £ € L.

We now show that ¢* is an approximate equilibrium in the original game. Note that
for every playeri € N

TEY (@) =I5 (9. f]) < kf + ; forall ¢ € L.
Hence, for every playeri € N’
Jig((p*) < /c;Z +¢ forallt e L,
i.e., condition (2.1) holds. Consider any feasible strategy m; € A; ((pfi), ie.,
Ji(le*;, mi]) <«f, forall €€ L. (3.13)
Applying Remark 2.2, we deduce that there exists a strategy o; € ®; such that
T (p*;, miD) = JE (¥, 0i]) forall € e Lo. (3.14)

Then, by Lemma 7.1 in Appendix, there exists a piecewise constant Markov strategy
7; such that

TV (et o) = 77 (g%, 7)) forall £ € Lo. (3.15)
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Moreover, by (3.15), Lemma 3.1, (3.14) and (3.13), for every £ € L, we have
€

I (g D) < Tt o) + 2

£
5= T (g%, mil) + 5 = it +

In other words, 77; is a feasible strategy in G”. Therefore, by Lemma 3.1, (3.15) and
(3.14), we infer

0, e 0, — € 0, 3
I@*) < I (@) + 5= V(¥ T + 3= V(¥ o) + 3
< Be*;. o) +e = I, m]) + e
This fact together with (3.13) implies that (2.2) holds. O

Proof of Theorem 2.8 Lete > 0 be fixed. Choose y > 0in (3.6) such thate(y) < &/2.
By Theorem 2.3 in [15], the game G! hasa stationary equilibrium f* = (f", ..., fy)-
Define ¢* = (¢7, ..., ¢5) € @7 as in the proof of Theorem 2.3. Then we have

I @M x) = inf 1PV (e*;, ¢ (x), €N, x€X. (3.16)
pie®]

As in Lemma 4.1 in [34], we can prove that

inf JY7 ([@*;, piD(x) = inf IV ([p*, 4iD(x), ie€N, xeX. 3.17)
pied®’ Pied;

By (3.16) and (3.17), we get

17 @) (x) = ot I (¥ ¢iD@). i €N, x €X.
This equality and Lemma 3.1 imply that

T (x) —e < Jnf, TP (9% oD (x), ieN, xeX. (3.18)
By standard methods in discounted dynamic programming [8, 34], we have

Jnf JP(e% D) = inf JP((eY; o)), P €N, x e X.

This fact and (3.18) imply that

J@H0 —e = inf St D), i €N, x€X,
which completes the proof. O

Remark 3.2 The proof of Theorem 2.8 is similar to that of Theorem 3.1 in [34], but it
has one important change implying that the restrictive condition (2.3) can be dropped.
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4 Young Measures and the Proof of Theorem 2.13

Let? := (n+wn)/2. Afunctionc : K — Ris Carathéodory, if it is product measurable
on K, c¢(x, -) is continuous on A for each x € X and

/ max |c(x,a)|?(dx) < oo.
X acA

Let W? be the space of all 9-equivalence classes of functions in W. The elements of
W? are called Young measures. Note that the expected discounted cost functionals are
well-defined for all elements of 7. More precisely, if ” € W?, then J/ () is the
same for all representatives ¥ of ¥ in W and we can understand Jf(lﬁ”) as Jf ).
We shall identify in notation ” with its representative v and omit the superscript 1.

We assume that the space W” is endowed with the weak* topology. Since F is
countably generated, W is metrisable. Moreover, since the set A is compact, v s
a compact convex subset of a locally convex linear topological space. For a detailed
discussion of these issues consult with [7] or Chapter 3 in [19]. Here, we recall that
Y —* ¢%in W? as n — oo if and only if for every Carathéodory function ¢ : K —
R, we have

n—oo

lim //c(x,a)tﬂ"(dalx)z?(dx):/fc(x,a)wo(da|x)ﬂ(dx).
xJA xJa

We now choose ¢, > 0 such that &, N\ 0 as n — oo and define

o oal—-—o @)
fa = 1—a+ba) '

In other words, €(y,) = €, or y, = € ' (¢,). From Theorem 2.3, it follows that there
exists a profile of stationary piecewise constant strategies

Y=, Yy) € O

which comprises an approximate equilibrium in the CSG for ¢, and at the same time
an equilibrium in the corresponding constrained game G"* with y,, as in (4.1) and the
constraint constants /cf + 3.

Define the product measure on A, forevery x € X andn € N, as

Y Cx) =Y Cl) @ . @ P Gl (4.2)

We use /" to denote the class in W¥ whose representative is this transition probability.
Without loss of generality, we may assume that ¥ converges in the weak™* topology
to some ¥* € W¥ asn — oo.

We shall need the following results. The first one is a consequence of Lemma 3.1

and the fact that J7" (y") = J*7" (") and JE@W™) = TEYm).
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Lemma4.1 Foreachi € N and £ € Ly, we have

sup |JE (W) — IO ()] < e,

Yew
es n
sup  sup |JE (Wi, ) — I (Wi, D] < e
Y_ieV_; mell;

where y, is as in (4.1).

Lemma4.2 [fn — oo, then for any £ € Ly
(@) 7" () > JE),
(b) J,-Z’y"([llffi, ¢il) = JEY* . ¢i)) for any ¢ € @;.

Proof For part (a) we first use the triangle inequality

IOy — TR < [T @) = TEQM ]+ TR = TE@H)I.

The first term on the right-hand side converges to 0 by Lemma 4.1 and the definition
of ¥", whereas the convergence to 0 of the the second term follows from Lemma 4.1
in [27] and the fact that |Ji€(.)| < bforeveryi € N and £ € L. Part (b) is proved
as point (a) by using the Fubini theorem and noting that the elements in ¥? induced
by ¥ ; in (4.2) and ¢; converge in the weak™ sense to the element of W7 induced by
Y*, and ;. a O

Leti € N. Consider a Markov decision process with player i as a decision maker
and the transition probability

q’”"(dylx,ai)=/ pl(dylx, la=i, ai)y" ;(da—i|x), (x,q;) € K;.

—i

Let 1p be the indicator of the set D C X x A. The associated occupation measure,
when player i uses a stationary strategy ¢; € ®; is defined as follows

9]
0 (BxC)=0—-)) o 1&g ctx'.a)) 4.3)

t=1

forany B € F and aBorel set C in A;. We use the symbol 5;,’0 " to denote the expectation
operator corresponding to the unique probability measure induced by ¢; € &;, the
initial distribution n and the transition probability ¢¥". For £ € Ly, x € X anda; € A;,
set

cf’y" (x,a;) = / Cig’y"(x, la—i, ;DY (da—i|x).

Proof of Theorem 2.13 Observe that Assumption A4 implies A3. We consider the
weak* limit ¢* € W” mentioned above and denote its representative in W by the
same letter.
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We shall show that 1/ * is a weak correlated equilibrium. By Theorem 2.3, Jf W™ =
Jf W < /cl‘Z + ¢, foralli € N and £ € L. Using Lemma 4.2(a), we conclude that

JEW) = lim JE(y") <«f, ieN, LeL,
n— o0
i.e., ¥* is feasible.
Take (if possible) any feasible strategy in the CSG for playeri € N, i.e., m; € IT;
such that
JE*,, D) < k! forall €e L.
By Remark 2.2 there exists a strategy ¢; € ®; such that
JEWE i) = JE (W, ¢i]) forall £ € Lo.
1° Assume first that
14 * _ 1L * £
St m) = J (¥E, ¢il) <«k; forall £e L. 4.4)
From this inequality and Lemma 4.2(b), we infer that there exists N1 € N such that
Ty, ¢il) < k! forall €€ L and n > Nj.

For every n > N; and Lemma 7.1 in Appendix we conclude the existence of a
piecewise constant Markov strategy 77; (that may depend on n) such that

JET Yt 4D = ISt 7)) forall € € Lo
Hence, it must hold
O’Vn n O,J’n n — OaVn n
JorWh <oy ) = AV ¢il)-
In other words, for every n > N; we have
0,¥n n 0,y n .
Jo W < 1L éiD).
Letting n — oo and making use of Lemma 4.2, we infer
0/, % 0 * 1 — 70 * .
Ji W) < J,‘ ([‘/f_,‘, i) = J,’ ([w_,», ;1)

for any feasible strategy m; € I1; such that (4.4) holds.
2° Assume now that there is player i € A and an index £y € L such that

TOY* ) = IOy, ¢il) = k0. (4.5)
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From the proof of Lemma 4.2(b), it follows that there exists a sequence e, — 0 as
n — 00, e, > 0, such that

JEW™, o) < TEAW*, i) +en <kf +e,  forall £e L.

By Remark 2.12, we can find ¢ > 0 such that for every n € N there exists a strategy
o/' € ®; such that

JHW", o) <«f —¢ forall €e L.
Hence, by Lemma 4.1, we conclude
TEPU i) — e < JEAW™ i) < kf e, forall €€l
and
JE Ay, o) — e < JLAW", o) <kl — ¢ forall €€ L.
Let N» € Nbe such that ey, < ¢ foralln > N, set

&n +ey
¢ +en

& =
and observe that§, — Oasn — ocoand &, € (0, 1) forall n > N». Let 97” and OVZ

be two occupation measures defined as in (4.3). By Proposition 3.9 in [1 3] we define
a sequence of occupation measures as follows

"= 600+ (1= §)0).
Then, for all £ € L it holds

/ ctT (L a6 (dx x dai) = E, IS YL o) + (1= ENIST (W, di)).
XXA[
(4.6)

Hence, for n > N, and all £ € L, from (4.6), we have

/ clT(x, a0 (dx x dai) < &,k + 60 — £) + (1 — E) (i + 0 + €n)
X><Al'

4 0 0 En
—Enlen +8) + K +ent+ey <k <k +?.

4.7)

ByLemma?2.3in[13]or Theorem 3.21in [19] forevery n > N,, there exists a stationary

strategy x;' € ®; such that 6" can be written as in (4.3) with é’,‘f " replaced by 5,),( " In
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other words 6" = 9;’_7,. Therefore, for all £ € Ly, we obtain

/ ) i1 (x, a0 (dx x dap) = JOT (WL XD (4.8)
XX i

By Lemma 7.1 in Appendix for every n € N there exists a piecewise constant Markov
strategy 7} such that

AT ) = It D) forall € Lo,
By (4.7) and (4.8)
Ji&yn ", x') <! <!+ %" forall €€ L.
Hence, it must hold
Ty < 3Oyt T = 0T X 4.9)
We know that
T 0D = & T o ) + (L= 6T Y i),

Therefore, by Lemma 4.2(b) and (4.8), we get
lim Jf’y"([lﬁfi, XD = JEE i)
n—o0
for all £ € L. This fact, (4.9) and Lemma 4.2(a) yield that
0/ % 0 * _ 70 *
W) = P (WZL e = I (Y, )

for any feasible strategy m; € I1; for which (4.5) holds. O

Let \Ilf be the space of ¥-equivalence classes of strategies in ®; endowed with the

weak* topology. Clearly, \Ilf is a compact metric space. The cost functionals Jl.e (p),
¢ € Loand i € N, are well defined for any profile ¢ = (¢1, ..., py) € v =
l_[je./\/' \I'}?.
Remark 4.3 From Example 3.16 in [14] based on Rademacher’s functions, it follows
that the weak* limit of the sequence of approximate equilibria in Theorem 2.13 need
not be a stationary Nash equilibrium. The same example can be used to see that the
cost functionals Jie, ¢ € Loandi € N, may be discontinuous on U?,

Consider the two-person game. It follows from Lemma 4.2 that Jf (o1, 2) is sep-
arately continuous in ¢ and ¢,. Therefore, the functions

Ri(p1) := min max (J{ (g1, ¢2) —«}) and Ra(gz) := min max (J5 (g1, 92) — k3)
wzg\pé? el </71€‘~1’is el
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are upper semicontinuous on \I!i’ and \112’9 , respectively.

Remark 4.4 Consider a two-person game satisfying the standard Slater condition AS.
Then, it follows

Ri(¢1) <0 and Ra(¢2) <0

for all ¢ € \Il{? and ¢, € \Ilg . Since R; and R; are upper semicontinuous on the
compact spaces ‘Ilf and \Ilg, respectively, we conclude that

max Ri(p;) <0 and max Ra(gp2) < 0. (4.10)
w]e‘l’lﬁ (pze\l/g

Obviously, ¢; and ¢; in inequalities (4.10) can be understood as representatives of
(denoted by the same letters) classes in lllf and \Dg , respectively. Then, it is apparent
that AS implies A4 for the considered two-person game.

Since in the N-person ARAT game the cost functionals are continuous on U7 with
the product topology [13], A5 implies A4 in this case.

Finally,we note that in the countable state space case, the weak* topology on \Ilf
is actually the topology of point-wise convergence and all cost functionals Jf are
continuous on the compact space ¥ with the product topology. Therefore, the standard
Slater condition A4 made in the literature for these games, see [3, 4, 28, 42], is
equivalent to AS.

5 Non-existence of Stationary Equilibria in Discounted Constrained
Games

In this section, we consider discounted stochastic games with the given initial state
distribution 7. If cf = 0 and Kie = 1foralli € N and £ € L, then the game in this
class is trivially constrained and Assumption A3 automatically holds. Our aim is to
conclude from [29] that such a game may have no stationary Nash equilibrium. For
this, we need the following fact.

Proposition 5.1 Let Al and A2 be satisfied and in addition let p(-|x,a) <K n for
all (x,a) € K. If ¢ = (¢1,...,9n) € ® is a stationary Nash equilibrium in the
discounted stochastic game with the initial state distribution n, i.e.,

I2@) < I (lg—i. miD) (5.1)
foralli € N and 7; € T1;, then there exists a stationary Nash equilibrium ¥ =
(Y1, ..., ¥n) in the unconstrained stochastic game for all initial states, i.e.,

1)) < (Wi 1D () (5.2)

foralli € N', m; € T; and x € X. Moreover, g; (da;|x) = v; (da;|x) for n-a.e. x € X
and foralli € N.
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We start with necessary notation. Let ¢ = (¢, ..., ¢n) € ©. Then

¢(dalx) := ¢1(dailx) @ ¢2(daz|x) ® - - - ® pn(dan|x)

is the product measure on A determined by ¢; (da;|x), i =1, 2, ..., N. Recall that by
¢—_i(da—i|x) we denote the projection of ¢ (da|x) on A_;. We put

Ox, 9) = /A (v, a)p(dalx) and p(dylx,$) = /A p(dylx, a)p (dalx).
If 0; € ®;, then
(x, [poi. 0i]) = /A | /A ] (x, ai, ai)¢-i(dai|x)o; (dai x),
pdylx, [p-i oi]) = /A | /A P fat, @i (dasboor o)
If v; € Pr(A;), then

x, [9—i, vi]) = c(x, [$—i,0;]) and p(dyl|x, (i, vi]) := p(dylx, (i, oi])

with o;(da;|x) = vi(da;) forall x € X.

Letv;,i = 1,2, ..., N, be bounded measurable functions on X. For each x € X,
by I'y(vy, ..., vy) we denote the one-step N-person game, where the payoff (cost)
function for playeri € N is

(1 —oz)c?(x,a) +a/ vi(y)p(dy|x,a), where a = (ai,...,ay) € A.
X

Proof of Proposition 5.1 From (5.1), it follows that for each set S € F, we have

@) = /X ((1 — ) (x, 9) +a/XJ,v0(<p)(y)p(dy|x,¢)> n(dx)

<[ min ((1 —a)cd(x, [p—i, vi]) + / J@) ) p@ylx, [p—i, w])) n(dx)
s viePr(A;) X

+f ((1 —a)C?(x,fp)Jraf J,-O(fp)(y)p(dylx,w)> n(dx)
X\S X

Hence, for each S € F,

/S<(1—a)c?(x,fp)+oz/XJ,-°(<o)(y)p(dylx,fp)> n(dx) <

min ((1 — ) (x, [p—i, vi]) +a / 1@ () pdylx, [p—i, w])) n(dx).
s viePr(A;) X

@ Springer



23 Page22o0f29 Applied Mathematics & Optimization (2023) 87:23

Thus, for every i € A, there exists S; € F such that n(S;) = 1 and for all x € S;, we
have

(1 —a)c)(x, ) +a/XJ,-°(¢)(y)p(dylx,¢) <

min ((1—a>c?<x, [p—i, vi]) + /X TI2@)(y) p(dylx, [qo_i,vi])).(s.:«s)

Vi EPI‘(A,')

Let S := S1 NSy ---N Sy. Now consider the game Iy (vq, ..., vy), where v;(y) =
Jl.o(go)(y), y € X. By Lemma 5 in [36], there exists ¢ € P such that ¢(da|x) =
(p1(day|x), ..., pn(day|x)) is a Nash equilibrium in the game I'y(vy, ..., vy) for
all x € X\ S. For every i € N, define ¥;(dai|x) := ¢i(dai|x), if x € S, and
Yi(daij|x) ;= ¢i(da;|x),ifx € X\§. Then, using (5.3), we conclude that ¢ (da|x) =
(Y1(daq|x), ..., ¥n(dan|x)) is a Nash equilibrium in the game 'y (v1, ..., vy) for all
x € X. Define v?(y) = (y) = Jio((p)(y) foreach y € S and

W) =1 —a)d(y,¢) +a /X J@) () pdzly, ¥)

for each y € X \ S. Then, n(X \ §) = 0 and our assumption p(:|x,a) < n(),
(x,a) € K, imply that Fx(v(l), s v?v) =TIy (vy, ..., vy) forall x € X. Therefore, for
all x € X, ¥ (dalx) is a Nash equilibrium in the game Fx(v?, s v?\,) and

000 = (1— )0, %) + o /X W) pdylx. ¥).

Using these facts and the Bellman equations for discounted dynamic programming [8,
241, we conclude that (5.2) holds. O

Remark 5.2 Levy and McLennan [29] gave an example of a discounted stochastic
game with no constraints having no stationary Nash equilibrium. This is an 8-person
stochastic game with finite action sets for the players and X = [0, 1] as the state space.
The definitions of payoff functions and transition probabilities in their game are rather
complicated and are not given here. We only mention that the transition probabilities
are absolutely continuous with respect to the probability measure 1 = (A1 + 81)/2,
where A is the Lebesgue measure on [0, 1] and §; is the Dirac measure concentrated
at the point 1. Assume that 1 is the initial state distribution in this game. If this game
had a stationary Nash equilibrium, then by Proposition 5.1, it would have a stationary
Nash equilibrium for all initial states. From [29], it follows that it is impossible.l

6 Remarks on Games with Unbounded Costs

Our results can be extended to a class of games with unbounded cost functions cf

under some uniform integrability condition introduced in [16]. The method for doing

! We thank John Yehuda Levy for pointing out this fact.
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this relies on truncations of the costs and using an approximation by bounded games.
This was done in our paper [28] in the countable state space case. In a special situation,
described below and inspired by the work of Wessels [40] on dynamic programming, a
reduction to the bounded case can be obtained by the well-known data transformation
as described in Remark 2.5 in [12] or Sect. 10 in [17]. Following Wessels [40], we
make the following assumptions.

Assumption W

(i) There exist a measurable function w : X — [1,00) and ¢y > O such that
lcf(x,a)| < coo(x) forallx € X,a € A, i € N and ¢ € L.
(ii) There exists 8 > 1 such that ¢ < 1 and

/X w()pdylx.a) < fo(x)

forallx € X,a € A.
(iii) If a" — a as n — oo, then

/x 8(x, y,a") = 8(x, y, @)|o(y)u(dy) — 0.

To describe the equivalent model with bounded costs we extend the state space X

by adding an isolated absorbing state 0*. All the costs at this absorbing state are zero.
cf (x,a)

Let cf’w(x,a) = L5, and
w dy|x,a
p?(Blx,a) := fB W)p(dy] ), BeF,xeX, acA,
B (x)
w dy|x,a
P01, a) =1 — [xoOpdyixa) e a
Bw(x)
Now define the new initial state distribution as
w(x)n(dx
no(B) := Jpon@do nw=/ w()n(dx).
nw X

Here, we assume that nw < oco. Then, we obtain primitive data for a bounded con-
strained stochastic game, in which the discount factor is «8. We denote the expected
discounted costs in the bounded game under consideration by jf (). It is easy to see
that

Jx
Tt = i ), forall i e N, ¢ e Ly, m eIl
nw

Theorems 2.3 and 2.13 can be established for the bounded game described above
with minor modifications. For example, one has to define new constraint constants as
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/cf /nw, i € N, £ € L. Using the above transformation, we can immediately deduce
similar results for games with unbounded cost functions satisfying Assumption W.
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7 Appendix

In this section, we prove a lemma which plays an important role in the proofs of our
theorems.

Let playeri € N be fixed. We also fix y > 0, the partition P¥ = {X} : n € Ng} of
the state space X, the cost functions cf’y and the transition function p? in the game
gr. Wefixg_i € ®, =TT;cnn ) o7

A piecewise constant Markov strategy for player i is a sequence 7; = (f")sen,
where f' € ! forall 7 € N.

Lemma 7.1 For fixed ¢ € ®Y and each ¢; € ®; there exists a piecewise constant
Markov strategy i = (f")ren for player i such that

L, L,
I (p—is ¢i]) = J; 7 (lp—i, i) forall €€ Ly.
For a proof we need some auxiliary results. Let d € N.
Lemma7.2 Assume that Y € F and po is a probability measure on X such that
po(Y) =1.Letv = (vy, ..., vg—1), where everyv; : X — Ris a bounded measurable

function. Then, there exist points Yo, ..., Ya € Y and non-negative numbers By, ..., Ba
d
such that 3 5_o Bj = 1 and

d
/Yv(x)po(dx) =Y Biv(y)). (7.1)

Jj=0
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Proof Consider the distribution function of v defined by: ¢, (B) := po(v~1(B)), where
B is any Borel set in R?. Using Theorem 16.13 on page 229 in [9] and Lemma 3 on
page 74 in [18], we obtain

/ v(x)po(dx) = / 26(2)dz € colu(y) : y € X).
Y R4

Applying Carathéodory’s theorem, we find points yg, ..., ys € Y and numbers
Bo. ... o = 0 such that Y"4_, B; = 1 and (7.1) holds. o

We use C(A;) to denote the space of all real-valued continuous functions on A; and
Pr(A;) for the space of all probability measures on A;.

Lemma7.3 Let p be a probability measure on X. For each ¢ € Ly assume that
ut : X x A; — Ris a bounded function such that u®(x, a;) = uﬁ (a;) forall x € X}/,
a; € A;, where uﬁ € C(A;}), n € Ny. Then, for any ¢; € ®; there exists [ € CIDZ?/ such
that

/ / ut(x, ;)i (dai|x)p(dx) = / / ut(x, a;) f(dai|x)p(dx) forall € € Lo.
X JA; X JA;

(7.2)
Proof Assume first that p(X}) > 0 and define po(B) = 2 ([’z;‘f;’) B € F. Applying
Lemma 7.2 withd = L + 1 and v = (°, ..., u), we infer that there exist points

3001), s Vo1 (1) in XL and Bo(n), ..., By1 (n) = O such that Y2130 B;(n) = 1 and

1 1
) / , f u (x, i dail)p (@) = s fx ) /A (@i (dailx)p(d)

L+1

= Zﬂj(n)/ ul(ai)gi(daily;(n)) forall € € Lo.

For each x € X}/, define f(dailx) :==v,(da;), where v, € Pr(A;) is given as

L+1

va(da) ==Y Bj(n)gi(daily;(n)).

=0

If p(X)) =0, then f(da;|x) is defined for all x € X}, by f(da;|x) = v,(da;) where
vy, is any fixed measure in Pr(A;). Note that, we have

/ / u®(x, ap)pi (da;|x) p(dx) = f ul (ai)va(dap) p(X})
X7 JA;

A;

= / / ut(x, a;) f(dai|x)p(dx),
Xy Ja;

@ Springer



23 Page 26 of 29 Applied Mathematics & Optimization (2023) 87:23

forall £ € Ly, n € Ny. Hence,

> [ wwarsaioan =3 [ [ uteafaaiooa,
X7 Ja; x5 Ja;

neNy neNy

for all £ € Ly, which implies (7.2). ]

Sincei e N,y > 0,¢_; € CDL. and ¢; € ®; are fixed, the notation for the proof
of Lemma 7.1 can be simplified.

Let ¢_;(da—;|x) be the product measure on A_; induced by ¢; (da|x) with j # i.
For ¢ € Ly, x € X and aq; € A;, we put

(x,q) = / 7 (x, [ai, ailg—i (dai|x),

q(dylx, a;) 1=/ p’(dylx, la-i, aiDg-i(da—i|x).

—i

Next, we put

cg, (x) :=/ ' (x, ai)¢i(dai|x),

i

and, for any bounded measurable function w : X — R,

0 w(x) = / w0yl ai)i(dail).

A

Similarly, we define cg(x) and Q,w(x) forany g € CI>2./. Next, ifgl, gz, s gT € CDg/,
then

nw=/xw(x)n(dX) and Qg1 Q2+ Qurw(x) = Qg1 (Qy2 -+ Qurw)(x)
and
anngz~-~Qgrw::/Xleng~-~Qgrw(x)n(dx).

Note that nQ,1 Qg2 - Q,r is the probability distribution of the state x7 of the
process, when player i uses a Markov strategy (g")/en.
We now introduce new notation for expected costs. Recalling that ¢; € ®;, we put

1)) := I (lg—i, diD(x) and 157(¢y) := /x 1Y(¢))(x)n(dx), € e Lo.

If 1; = (g")ren is a piecewise constant strategy for player i, then Iﬁ’n(ni) =
Iﬁ’n(gl, ..., g1) denotes the expected discounted cost in the T-step game G under
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assumption that the other players use ¢_;. Then, the cost over the infinite time horizon
is

1%y = lim 152" (m;).
T—o0

Proof of Lemma 7.1 We show by induction that for given ¢; € ®; there exists 7; =
(fHren with [ € <I>3/ for all + € N such that for all T € N, we have

19(g) = 197(f1 s T +a Qg 0 pr (1 = a)cl, + Qg 1°(¢1))(7.3)
We shall use the following equation
I(¢)(x) = (1 — a)ch (x) + @ Qg I°(¢i)(x), foreach x e X.
Assume that T = 1. Then,
197(¢) = n((1 — a)cy, +a Qg I°($0)
= /X/A ((1 — o)t (x, a;) +a/){1‘<¢,~>(y>q(dy|x,ai)) ¢i(dai|x)n(dx).
Applying Lemma 7.3 with p = 5 and

u(x,a) = (1 —a)ct(x, a) + a/ (¢ (Mg (dylx, ap) (7.4)
X

we obtain f! e dDZ.’ such that

// uf(x,ai)¢i(dai|x)n(dx):// u®(x, a)) f'(dai|x)n(dx) forall £ e Lo.
X i X JA;
Then, we get

19(¢i) = 1" (¢i) = n((1 — a)cy, + Qg I°(¢))
= (1 —a)ch +a Q1)) = n(1 —a)cl +anQ 1 (¢)
=1/ (fY) +anQ (1 — a)ch +a Q4 14(¢) froall € e Lo.

We have obtained (7.3) for T = 1. Assume now that (7.3) holds for T = m with some
m > 1. Then we have for some f!, ..., f" CI>3' that

197y = 19T (f s f™) + 0™ Qg1 -+ Qg (1 — @)y, + @ Qg 1°(¢1)
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for all £ € Lo. Applying Lemma 7.3 with u’(x, ;) given by (7.4) and p =
nQ -+ Qpm, weobtain f"*! € @/ such that

nQ i+ Qpm((1 —a)ch +aQpI(¢)
=1Qp1 - Qpn((L = )iy +Q pmit [°(61))
= anl Ce Qf’"(l — O[)C?m+l +05an1 Qfm Qfm+1((1 — Ot)Cs;i —I—O[Q(pilz(d)i)).

Thus for all £ € Ly we get

1) = 1°(f 1o ™M 4@ Q g1 Qpn (1= @)l
+0{m+1an1 R Qf’" Qf’"“((] —o()cgi +O‘Q¢i 16(4)[))
= ]l,fl(fl7 - fm+l) +Olm+177Qf1 .. Qfm Qme((I _ a)céi +aQ¢ill(¢i))~

This finishes the induction step. Taking the limit in (7.3) as T — oo, we obtain
1) = 1) with 7 = (f', 2.0

for all £ € Ly. Going back to our original notation, we deduce that this is the assertion
of Lemma 7.1. O
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