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Abstract
This paper deals with the analysis of the internal control of a free-boundary problem
for the 1D heat equation with local and nonlocal nonlinearities. We prove a local null
controllability result with distributed controls, locally suported in space. The proof
is based on Schauder’s fixed point theorem combined with some appropriate specific
estimates.

Keywords Free-boundary problems · 1D nonlinear heat equation · Carleman
estimates

1 Introduction

Let T > 0, 0 < κ1 < κ2 < L∗ < L0 < B and y0 ∈ C2+ 1
2 ([0, L0]) be given. For any

function L ∈ C1+ 1
4 ([0, T ]) with 0 < L∗ ≤ L(t) ≤ B, t ∈ (0, T ) we will set

QL := {(x, t) : x ∈ (0, L(t)) and t ∈ (0, T )}.
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In this paper, we will investigate the null controllability properties of a free-
boundary problem for the nonlinear 1D parabolic equation of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt − β

(∫ L(t)

0
ydx

)

yxx + g(y, yx ) = v1ω, (x, t) ∈ QL ,

y(0, t) = 0; y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(1.1)

with the additional boundary condition

L(t) = L0 −
∫ t

0

[

β

(∫ L(s)

0
y(x, s)dx

)

yx (L(s), s)

]

ds, therefore,

−L ′(t) = β

(∫ L(t)

0
y(x, t)dx

)

yx (L(t), t), (1.2)

with t ∈ (0, T ) and L0 = L(0). Here y = y(x, t) is the state, v = v(x, t) is a control
function that acts on the system at any time through a nonempty open setω = (κ1, κ2),
and 1ω denotes the characteristic function of the ω. Regarding the functions β and g,
we make the following assumptions:

(A1) β : R → R is a C1 function that possesses bounded derivatives and satisfies

0 < β0 < β(r) < β1 < +∞, ∀r ∈ R.

(A2) g : R×R → R is a C2 function, with bounded derivatives, such that g(0, 0) = 0.

The main purpose of this paper is to prove the local null controllability result
of (1.1). To accomplish this goal, let us recall the following classical controllability
concept:

Definition 1.1 It will be said that (1.1) is null controllable at time T if there exist a
control v ∈ L2(ω × (0, T )), a function L ∈ C1+ 1

4 ([0, T ]) and an associated solution
y = y(x, t) satisfying (1.1), (1.2), and

y(x, T ) = 0, x ∈ (0, L(T )), (1.3)

for each y0 ∈ C2+ 1
2 ([0, L0]).

Definition 1.2 It will be said that (1.1) is approximately controllable at time T if there

exist a control v ∈ L2(ω × (0, T )), a function L ∈ C1+ 1
4 ([0, T ]) and an associated

state y = y(x, t) satisfying (1.1), (1.2) and

‖y(·, T )‖L2(0,L(T )) ≤ ε, (1.4)

for any y0 ∈ C2+ 1
2 ([0, L0]) and ε > 0.
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As we have already mentioned, we are interested in the local null controllability of
(1.1), that is, in other words, the system (1.1) is said to be locally null controllable at
any time T > 0 if, there exists δ > 0 such that, if ‖y0‖

C2+ 1
2 ([0,L0])

≤ δ, there exists a

triplet (L, v, y) with

{

L ∈ C1+ 1
4 ([0, T ]), L∗ ≤ L(t) ≤ B,

v ∈ L2(ω × (0, T )),
(1.5)

satisfying (1.1), (1.2), and (1.3).
In mathematics, the expression free-boundary problem (FBP) refers to a problem

in which one or several variables must be determined in different domains in space
or in space-time. In a brief definition, we can say that a FBP is a boundary value
problem defined in a domain that is not given a priori, therefore, a part of the unknown.
If the domains are known, the problem reduces to solve equations, usually partial
differential equations or ordinary differential equations. Free-boundary problems arise
in various mathematical models that encompass applications ranging from Physics to
Economics, Finances and biological phenomena where there is an extra effect of the
environment. This effect in general deals with a qualitative change of the environment
and an appearance of a phase transition; for example, ice to water, liquid to crystal,
purchases to sales (assets), active to inactive (biology).

Free-boundary problems similar to (1.1)–(1.2) are connected to several interesting
applications. We mention the following works:

• Tumor growth and other phenomena from mathematical biology; see Friedman
[23, 24].

• Fluid-solid interaction; see Doubova and Fernández-Cara [12], Vázquez and
Zuazua [36] and Liu et al. [31].

• Gas flow through porous media; see Aronson [2], Fasano [15] and Vázquez [35].
• Solidification and related Stefan problems; see Friedman [22].
• The analysis and computation of free surfaces flows; see Hermans [26, 27], Stoker
[33, 34] and Wrobel and Brebbia [38].

In the last years, there are many works addressing controllability problems of linear
and semilinear PDE’s. In particular, let us mention Fursikov and Imanuvilov [25],
Barbu [3], Fernández-Cara and Zuazua [20], Doubova et al. [13] and Xu Liu and
Xu Zhang [30] and the references therein in the context of bounded domains. In the
context of the linear and semilinear PDE’s, we also mention the following articles [11,
14, 16, 17, 21, 29].

For parabolic free-boundary problems, controllability questions have been con-
sidered only in a few papers; see for instance Fernández-Cara et al. in [18] and
Fernández-Cara and de Sousa in [19]. In both cited papers, the common point is
that the main operator is linear and the free-boundary condition is given by

− L ′(t) = yx (L(t), t), t ∈ (0, T ). (1.6)

In the present paper, with an extension in mind for another more realistic and
interesting problems, we have considered a nonlocal term in the main part of the
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partial derivative operator. In this way, the free-boundary condition (1.2) becomes
more general than condition (1.6). This is the main novelty in this work.

In addition, in [37] the authors studied the null controllability of a free-boundary
problem for the quasi-linear 1D parabolic equation.

The nonlocal term in (1.1) appears naturally in some physical models. For example,
they can arise in heat conduction in materials with memory, nuclear reactors, and
population dynamics, for instance the bacteria in a container, the diffusion coefficients
maydependon the total amount of individuals; see for instance [9, 39].Wealsomention
that, in the context of elasticity theory, terms in the form

β
(∫ L(t)

0
|y(x, t)|2dx

)
and

β
(∫ L(t)

0
|yx (x, t)|2dx

)

appear, respectively, in Carrier and Kirchhoff equations. These equations arise in
nonlinear vibration theory; see for instance [32].

Our main result is the following:

Theorem 1.1 Assume that T > 0 and 0 < κ1 < κ2 < L∗ < L0 < B. Under the pre-
vious assumptions on β and g, the nonlinear system (1.1) is locally null-controllable.

For the proof of this theorem,wewill first fix ε > 0 andprove the existenceof triplets
(Lε, yε, vε) that are uniformly bounded in an appropriate space and satisfy (1.1), (1.2)
and (1.4). To this end, we will introduce a fixed point reformulation relying suitable
linearized problems and we check that, if the initial data y0 is sufficiently small, than
the Schauder’s Fixed Point Theorem can be applied. Finally, we take limits as ε → 0
and we see that, at least for a subsequence, we get convergence to a solution of (1.1),
(1.2) and (1.3).

Throughout this paper, we denote by C a generic positive constant; for example:
C1, C2, etc. are other positive (specific) constants; when it makes sense.

The paper is organized as follows: Sect. 2 is devoted to recall some known results
and prove the approximate controllability of the linearized system (2.1). The Sect. 3
deals with the proof of Theorem 1.1. We present in Sect. 4 some open questions. In
Appendix A, we sketch the proof of a Carleman estimate and in Appendix B we prove
some relevant lemmas.

2 Analysis of the Controllability of the Linearized System in a
Non-cylindrical Domain and Regularity Property

Given L0 > 0, T > 0, and 0 < κ1 < κ2 < L∗ < L0 < B, and fixing y0 ∈ L2(�),

assume that L ∈ C1+ 1
4 ([0, T ]) is a prescribed function satisfying

0 < L∗ ≤ L(t) ≤ B, t ∈ (0, T ) .
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In this section we will prove that, for any (y, L) ∈ C2,1
x,t (QL) × C1+ 1

4 ([0, T ]) , the
linear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt − β

(∫ L(t)

0
y(x, t)dx

)

yxx + a(y, yx )y + b(y, yx )yx = ṽ1ω, (x, t) ∈ QL ,

y(0, t) = 0; y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

.(2.1)

is approximate controllable and also, that we can find a pair (vε, yε) satisfying
‖yε(·, T )‖L2(0,L(T )) ≤ ε

for ε > 0. In (2.1) we consider L∗ < L(t) < B, with L(0) = L0, 1̃ω ∈ C∞
0 (ω), with

1̃ω = 1 in ω1 ⊂⊂ ω and QL = {(x, t) : x ∈ (0, L(t)) and t ∈ (0, T )}.
We can verify that, for every v ∈ L2(ω × (0, T )) and every y0 ∈ L2(0, L0),

there exists a unique solution y to (2.1), with y ∈ L2(0, T ; H1
0 (0, L(t))) and yt ∈

L2(0, T ; H−1(0, L(t))). Consequently,

y ∈ C0([0, T ]; L2(0, L(t))) .

To this end, an appropriate change of variablew(ζ, t) := y(x, t) allows us to rewrite
(2.1) as a similar problem for a parabolic PDE of the form

wt − β(t)

L2(t)
wζζ + ã(ζ, t)w + b̃(ζ, t)wζ = G(ζ, t),

in a cylindrical domain, with bounded coefficients ã, b̃ ∈ C1/2,1/4
ξ,t (Q) and square-

integrable right hand side G ∈ L2(Q), where Q := (0, 1) × (0, T ) (see Sect. 2.4 for
the definition of ζ in Control Regularity).

As usual, the controllability of (2.1) is closely related to the properties of the
solutions to the associated adjoint state. In this case, the adjoint system is

⎧
⎨

⎩

−ϕt − β (t) ϕxx + a(x, t)ϕ + b(x, t)ϕx = F(x, t), (x, t) ∈ QL ,

ϕ(0, t) = 0;ϕ(L(t), t) = 0, t ∈ (0, T ),

ϕ(x, T ) = ϕT (x), x ∈ (0, L(T )),

(2.2)

where F ∈ L2(QL) and ϕT ∈ L2(0, L(T )).
Next, we sketch the points used in the proof of the null controllability of the

linearized system using an observability estimate. First, we use a global Carleman
estimate satisfied by the solutions of (2.2). Second, this estimate allows us to establish
an observability estimate. Third, we prove the approximate controllability of (2.1) by
using the observability estimate. Finaly, we establish a regularity property for the pair
control-state in a certain Hölder space.
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2.1 A Carleman Estimate for the Solutions to (2.2)

In this section, we will recall some Carleman estimates satisfied by the solutions to
(2.2).

Denote by �L := {(x, t) : x =0 or x = L(t) with 0 < t < T } the lateral boundary
of QL .

The following technical result, due toFursikov and Imanuvilov [25], is fundamental:

Lemma 2.1 Let ω0 be an arbitrary non-empty open subdomain with ω0 ⊂ ω. There
exists a function α0 ∈ C1

(
QL

)
with α0,xx ∈ C0

(
QL

)
such that

⎧
⎪⎪⎨

⎪⎪⎩

α0(x, t) = 0 ∀(x, t) ∈ �L ,

|α0,x | > 0 in QL\(ω0 × (0, T )),

α0(x, t) = 1 − x − b

L(t) − b
∀x ∈ (b, L(t)) and ∀t ∈ [0, T ].

The proof of this lemma can be found in [18] (see Lemma 2.1).
Let α1 and γ be real functions, and let ξ and α be weights defined by

α1(x, t) := α0(x, t) + 1, γ (t) := tk(T − t)k,

ξ(x, t) := eλα1(x,t)

γ (t)
, α(x, t) := e2λ‖α1‖∞ − eλα1(x,t)

γ (t)
, (2.3)

where λ > 0 and k ≥ 2 are real numbers.
The next result is a Carleman estimate for the solutions to adjoint system (2.2).

Theorem 2.1 Let α0 and γ , ξ , α be as defined as in Lemma 2.1 and (2.3), respectively.
There exist λ0, s0, and C0, positive constants, only depending on a, a′, L∗, ω, and T ,
such that, for any s ≥ s0, λ ≥ λ0, any F ∈ L2(QL), and any ϕT ∈ L2(0, L(T )), one
has the following inequality:

∫∫

QL

e−2sα
[
(sξ)−1(|ϕt |2 + |ϕxx |2) + (sξ)λ2|ϕx |2 + (sξ)3λ4|ϕ|2

]
dxdt

+sλ
∫ T

0

[
e−2sα(L(t),t)ξ(L(t), t)|ϕx (L(t), t)|2 + e−2sα(0,t)ξ(0, t)|ϕx (0, t)|2

]
dt

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

ω×(0,T )

e−2sα(sξ)3λ4|ϕ|2dxdt

)

, (2.4)

where ϕ is the corresponding solution to (2.2).

The proof is given in Appendix.
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2.2 An Observability Inequality

Consider the homogeneous adjoint system:

⎧
⎨

⎩

−ϕt − β (t) ϕxx + a(x, t)ϕ + b(x, t)ϕx = 0, (x, t) ∈ QL ,

ϕ(0, t) = 0;ϕ(L(t), t) = 0, t ∈ (0, T ),

ϕ(x, T ) = ϕT (x), x ∈ (0, L(T )),

(2.5)

where ϕT ∈ L2(0, L(T )).
Now, we will prove the observability inequality for weak solutions of the adjoint

system (2.5). Observe that it is a consequence of the previous Carleman inequality.

Proposition 2.1 There exists C > 0, only depending on‖a‖L∞(QL ),‖b‖L∞(QL ),‖L
′‖∞,

L∗, B, ω, and T , such that, for any ϕT ∈ L2(0, L(T )), the associated solution to (2.5)
satisfies

∫ L0

0
|ϕ(x, 0)|2dx ≤ C

∫∫

ω×(0,T )

e−2s0αξ3|ϕ|2dxdt . (2.6)

Proof Let us take λ = λ0 and s = s0 in (2.4). Then

∫ ∫

QL

e−2s0αξ3|ϕ|2 dx dt ≤ C
∫ ∫

ω×(0,T )

e−2s0αξ3|ϕ|2 dx dt

and, consequently,

∫ 3T /4

T /4

∫ L(t)

0
|ϕ|2 dx dt

≤ C
∫ 3T /4

T /4

∫ L(t)

0
e−2s0αξ3|ϕ|2 dx dt

≤ C
∫ ∫

ω×(0,T )

e−2s0αξ3|ϕ|2 dx dt . (2.7)

On the other hand, multiplying the PDE in (2.5) by ϕ and integrating in (0, L(t)),
we get the following identity

−1

2

d

dt

(∫ L(t)

0
|ϕ|2 dx

)

+1

2
L

′
(t) |ϕ(L(t), t)|2 +

∫ L(t)

0
β(t)|ϕx |2 dx

= −
∫ L(t)

0
a|ϕ|2 dx −

∫ L(t)

0
bϕϕx dx, ∀t ∈ (0, T ).
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Since ϕ(L(t), t) ≡ 0, we deduce that, for a small ε > 0,

−1

2

d

dt

(∫ L(t)

0
|ϕ(x, t)|2 dx

)

+
∫ L(t)

0
β(t)|ϕx |2 dx

≤ ca

∫ L(t)

0
|ϕ|2 dx + cb

4ε

∫ L(t)

0
|ϕ|2 dx + ε

∫ L(t)

0
|ϕx |2 dx,

and this implies that

− d

dt

(∫ L(t)

0
|ϕ(x, t)|2 dx

)

≤ 2M
∫ L(t)

0
|ϕ(x, t)|2 dx . (2.8)

Integrating (2.8) in time, we have

‖ϕ(·, 0)‖2L2(0,L(0)) ≤ e2MT ‖ϕ(·, t)‖2
L2(0,L(t))

, ∀t ∈ (0, T )

and
T

2

∫ L(0)

0
|ϕ(x, 0)|2 dx ≤

∫ 3T /4

T /4

∫ L(t)

0
e2MT |ϕ(x, t)|2 dx dt . (2.9)

From (2.7) and (2.9), we find (2.6) and the proof is done. �

2.3 Approximate Controllability of the Linearized System

The approximate controllability of system (2.1) is obtained as a consequence of the
observability inequality seen in Proposition 2.1.

Theorem 2.2 For any y0 ∈ L2(0, L0) and ε > 0, there exists pairs (vε, yε), with
yε ∈ C0([0, T ]; L2(0, L(t))) and vε ∈ L2(ω × (0, T )), satisfying (2.1) and

‖yε(·, T )‖L2(0,L(T )) ≤ ε . (2.10)

Furthermore, vε can be found such that

‖vε‖L2(ω×(0,T )) ≤ C1‖y0‖L2(0,L0)
, (2.11)

where C1 depends on ‖a‖L∞(QL ), ‖b‖L∞(QL ), ‖L
′‖∞, L∗, ω, and T .

Proof Thus, let y0 ∈ L2(0, L0) and ε > 0 be given and let us introduce the functional
Jε(·; a, b, L) with

Jε(ϕ
T ; a, b, L) = 1

2

∫∫

ω×(0,T )
e−2s0αξ3|ϕ|2dxdt

+ε‖ϕT ‖L2(0,L(T ))
+ (ϕ(·, 0), y0)L2(0,L0)

,
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for all ϕT ∈ L2(0, L(T )).
Here, ϕ is the solution of (2.2) associated to ϕT . Using (2.6), it is relatively easy to

check that Jε(·; a, b, L) is strictly convex, continuous, and coercive in L2(0, L(T )),
so it possesses a unique minimum ϕ̂T

ε ∈ L2(0, L(T )), whose associated solution is
denoted by ϕ̂ε.

Let us now introduce the control vε = e−2s0αξ3ϕ̂ε1̃ω and denote by yε the solution
to (2.1) associated to vε, that is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yε,t − β

(∫ L(t)

0
y(x, t)dx

)

yε,xx + a(y, yx )yε + b(y, yx )yε,x = vε 1̃ω, (x, t) ∈ QL ,

yε(x, t) = 0; yε(L(t), t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, L0),

.

(2.12)

Then, either ϕ̂T
ε = 0 or we can differentiate the functional at ϕ̂T

ε and obtain a
necessary condition to reach a minimum at ϕ̂T

ε :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫∫

ω×(0,T )

e−2s0αξ3ϕ̂εϕdxdt + ε

(
ϕ̂T

ε

‖ϕ̂T
ε ‖L2(0,L0)

, ϕT

)

L2(0,L(T ))

+ (ϕ̂ε(·, 0), y0)L2(0,L0)
= 0

∀ϕT ∈ L2(0, L(T ))

.

(2.13)

Furthermore, from the inequality Jε(ϕ̂
T
ε ) ≤ Jε(0) = 0 and (2.6), we deduce that

1

2

∫∫

ω×(0,T )

e−2s0αξ3|ϕ̂ε|2dxdt + ε‖ϕ̂T
ε ‖L2(0,L(T )) ≤ − (ϕ̂ε(0), y0)L2(0,L(T ))

≤ 1

4

∫∫

ω×(0,T )

e−2s0αξ3|ϕ̂ε|2dxdt + ‖y0‖2L2(0,L0)

and, consequently,

‖es0αξ−3/2vε‖2L2(ω×(0,T ))
≤

∫∫

ω×(0,T )

e−2s0αξ3|ϕ̂ε|2dxdt

+ε‖ϕ̂T
ε ‖2L2(0,L(T ))

≤ 4C‖y0‖2L2(0,L0)
. (2.14)

So,

‖es0αξ−3/2vε‖L2(ω×(0,T )) ≤ 2C‖y0‖L2(0,L0)
. (2.15)

It is not difficulty to check that vε = e−2s0αξ3ϕ̂ε1̃ω is a solution of

⎧
⎨

⎩

−ϕε,t − β (t) ϕε,xx + a(x, t)ϕε + b(x, t)ϕε,x = 0, (x, t) ∈ QL ,

ϕε(0, t) = 0;ϕε(L(t), t) = 0, t ∈ (0, T ),

ϕε(x, T ) = − 1
ε

yε(x, T ), x ∈ (0, L(T )).

; (2.16)
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Multiplying both sides of the first equation of (2.12) by ϕ̂ε and integrating it on QL ,
we obtain

1

ε

∫ L(T )

0
|yε(T )|2dx +

∫∫

ω×(0,T )

e−2s0αξ3|ϕ̂ε|2dxdt = −(ϕ̂ε(·, 0), y0)L2(0,L0)
,

which implies that

1

ε

∫ L(T )

0
|yε(T )|2dx +

∫∫

ω×(0,T )

e−2s0αξ3|ϕ̂ε|2dxdt ≤ C‖y0‖2L2(0,L0)
(2.17)

and therefore
‖yε‖L2(0,L(T )) ≤ ε C‖y0‖L2(0,L0)

. (2.18)

As ε → 0, yε(T ) → 0 in L2(0, L(T )) and therefore vε is an approximated null-
control for (2.1).

The proof of Theorem 2.2 is completed. �
An immediate consequence of Theorem 2.2 is the following null controllability:

Corollary 2.1 For any y0 ∈ L2(0, L0), there exists pairs (v, y), with y ∈
C0([0, T ]; L2(0, L(t))) and v ∈ L2(ω × (0, T )), satisfying (2.1) and y(x, T ) = 0,
∀x ∈ (0, L(T )). Furthermore, v can be found such that

‖v‖L2(ω×(0,T )) ≤ C2‖y0‖L2(0,L0)
, (2.19)

where C2 depends on ‖a‖L∞(QL ), ‖b‖L∞(QL ), ‖L
′‖∞, L∗, ω, and T .

2.4 A Regularity Property

Let (v, y) be a control-state pair furnished by Corollary 2.1. We will see in this section
that, for some θ ∈ [0, 1) only depending on ‖L

′‖∞, L∗, L∗, ω and T , one has

y ∈ C2+θ,1+θ/2
x,t

(
QL

)
and v ∈ C

θ, θ
2

x,t (QL) (2.20)

where Cm+θ,(m+θ)/2
x,t

(
QL

)
is the space of functions u : QL → R such that Dr

t Ds
x u(x, t)

is continuous in QL for 2r + s < m + θ , with m a non-negative integer, and the norm
is given by

‖u‖
Cm+θ,(m+θ)/2

x,t
(
QL

) =
∑

2r+s≤m

‖Dr
t Ds

x u(x, t)‖∞

+
∑

2r+s=m

⎛

⎝ sup
(x,t),(x ′,t ′)∈QL

|Dr
t Ds

x u(x, t) − Dr
t Ds

x u(x ′, t ′)|
|x − x ′|θ + |t − t ′|θ/2

⎞

⎠ < +∞.
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In the sequel, we recall some relevant Lemmas (their proofs will be given in
Appendix B):

Lemma 2.2 Assume that β ∈ C1
b(R), g ∈ C2

b (R2), L ∈ C1+ 1
4 ([0, T ]), and y ∈

C2,1
x,t (QL).

(i) If β(t) = β

(∫ L(t)

0
y(x, t) dx

)

, then β ∈ Cθ ([0, T ]), for all 0 ≤ θ < 1;

(ii) If a(x, t) =
∫ 1

0

∂g

∂s
(λy(x, t), λyx (x, t)) dλ and b(x, t) =

∫ 1

0

∂g

∂ p
(λy(x, t),

λyx (x, t)) dλ, then one has a, b ∈ Cθ,θ/2
x,t (QL), for all 0 ≤ θ < 1;

(iii) If ã(ξ, t) = a(L(t)ξ, t), then ã ∈ Cθ,θ/2
ξ,t (Q), for all 0 ≤ θ < 1. If we consider

the function b̃(ξ, t) = b(L(t)ξ, t) − ξ L ′

L
, with L ∈ C1+γ /2([0, T ]), then b̃ ∈

Cγ,γ /2
ξ,t (Q), for all 0 ≤ γ < 1.

Lemma 2.3 If L ∈ C1+ 1
4 ([0, T ]), y ∈ C2,1

x,t (QL) and β ∈ C1
b(R), then the function

L : [0, T ] → R given by

L(t) = L0 −
∫ t

0

[

β

(∫ L(s)

0
y(x, s)dx

)

yx (L(s), s)

]

ds

is such that L ∈ C1+θ ([0, T ]), with 0 < θ < 1.

Now, we will apply a standard technique that leads to the construction of a control-
state with the required regularity (similar ideas were used in [30]). In this way, let us
detail the following steps:
Step 1 Control regularity

From Sect. 2.3, vε := e−2s0αξ3ϕ̂ε1̃ω, where ϕ̂ε is solution to

⎧
⎨

⎩

−ϕ̂ε,t − β(t)ϕ̂ε,xx + a(x, t)ϕ̂ε + b(x, t)ϕ̂ε,x = 0, (x, t) ∈ QL ,

ϕ̂ε(0, t) = 0; ϕ̂ε(L(t), t) = 0, t ∈ (0, T ),

ϕ̂ε(x, T ) = ϕ̂T
ε (x), x ∈ (0, L0),

. (2.21)

Let us introduce:

α̃(x, t) = min
x∈(0,L(t))
0<t<T

{
e2λ0‖α1‖∞ − eλ0α1(x,t)

}
and α(x, t) = max

x∈(0,L(t))
0<t<T

{
e2λ0‖α1‖∞ − eλ0α1(x,t)

}
,

where α1 was given in (2.3). Let δ be a real number such that 0 < δ ≤ 1/4 with
2α̃ − (1 + δ)α > 0.
Thus, one has

α ≤ α

γ
≤ (1 + δ)

α

γ
.
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Let us consider zε = e−s0(1+δ) α
γ
1

γ 3 ϕ̂ε, such that zε satisfies:

⎧
⎨

⎩

−zε,t − β(t)zε,xx + a(x, t)zε + b(x, t)zε,x = Fε, (x, t) ∈ QL ,

zε(0, t) = 0; zε(L(t), t) = 0, t ∈ (0, T ),

zε(x, T ) = 0, x ∈ (0, L0),

, (2.22)

where Fε =
(

e−s0(1+δ) α
γ 1

γ 3

)

t
ϕ̂ε. Observe that

|Fε|2 =
∣
∣
∣
∣

(

e−s0(1+δ) α
γ
1

γ 3

)

t
ϕ̂ε

∣
∣
∣
∣

2

=
∣
∣
∣
∣e

−s0(1+δ) α
γ

(
γ ′

γ 2

1

γ 3 − 3γ ′

γ 4

)

ϕ̂ε

∣
∣
∣
∣

2

,

Then, we obtain

|Fε|2 ≤ C

∣
∣
∣
∣e

−2s0
α
γ

(
1

γ 5
e−s0δ

α
γ

)

ϕ̂ε

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣e

−2s0αξ3
(

e−s0δ
α
γ
1

γ 2

)

ϕ̂ε

∣
∣
∣
∣

2

≤ C1e−2s0αξ3|ϕ̂ε|2,
whence

∫∫

QL

|Fε|2dxdt ≤ C1

∫∫

QL

e−2s0αξ3|ϕ̂ε|2dxdt .

From Carleman inequality and (2.15), we have

∫∫

QL

|Fε|2dxdt ≤ C2

∫∫

ω×(0,T )

e−2s0αξ3|2ϕ̂ε|2dxdt ≤ C‖y0‖2L2(0,L0)
.

Let us now consider the following change of variables:

ζ = x

L(t)
, ã(ζ, t) = a(L(t)ζ, t), b̃(ζ, t) = b(L(t)ζ, t) − ζ

L ′(t)
L(t)

,

ηε(ζ, t) = zε(x, t) and Gε(ζ, t) = Fε(x, t).

We have ηε(ζ, t) is well defined in Q := (0, 1) × (0, T ) and, moreover,
⎧
⎪⎪⎨

⎪⎪⎩

−ηε,t − β(t)

L2(t)
ηε,ζ ζ + ã(ζ, t)ηε + b̃(ζ, t)ηε,ζ = Gε(ζ, t), (ζ, t) ∈ Q,

ηε(0, t) = 0; ηε(1, t) = 0, t ∈ (0, T ),

ηε(ζ, T ) = 0, ζ ∈ (0, 1),

. (2.23)

Since Gε(ζ, t) ∈ L2 ((0, 1) × (0, T )), then ηε(ζ, t) ∈ W 2,1
2 ((0, 1) × (0, T )), and

‖ηε‖W 2,1
2 (Q)

≤ C‖Gε‖L2(Q) ≤ C‖Fε‖L2(QL ).
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SinceW 2,1
2 ((0, 1) × (0, T )) ↪→ C1/2,1/4

ζ,t ([0, 1] × [0, T ]) is a continuous embedding,
then

‖ηε‖C1/2,1/4
ζ,t

(
Q
) ≤ C‖Fε‖L2(QL ) ≤ C‖y0‖L2(0,L0)

.

Therefore, from the change of variables, zε ∈ C1/2,1/4
x,t

(
Q
)
, and ‖zε‖C1/2,1/4

x,t
(
Q
) ≤

C‖y0‖L2(0,L0)
, thus, vε = e−2s0αξ3γ 3es0(1+δ) α

γ zε1̃ω ∈ C1/2,1/4
x,t

(
QL

)
. Observe that:

e−2s0αξ3γ 3es0(1+δ) α
γ ≤ ξ3γ 3e

−s0
γ (2α̃−(1+δ)α)

,

where the right-hand side of the last inequality is bounded, and consequently,

‖vε‖C1/2,1/4
x,t

(
QL

) ≤ C‖y0‖L2(0,L0)
.

Step 2 State regularity
If β ∈ C1(R), L ∈ C1+ 1

4 ([0, T ]), and y ∈ C2,1
x,t

(
QL

)
, then, from Lemma 2.2, the

functions

β(t) = β

(∫ L(t)

0
y(s, t)ds

)

, a(x, t) =
∫ 1

0

∂g

∂s

(
λy(x, t), λyx (x, t)

)
dλ,

and

b(x, t) =
∫ 1

0

∂g

∂ p

(
λy(x, t), λyx (x, t)

)
dλ

satisfy

β(t) ∈ Cθ ([0, T ]), and a(x, t), b(x, t) ∈ Cθ,θ/2
x,t

(
QL

)
, for all 0 ≤ θ < 1,

(2.24)

therefore, yε is solution to

⎧
⎨

⎩

yε,t − β (t) yε,xx + a(x, t)yε + b(x, t)yε,x = vε1̃ω, (x, t) ∈ QL ,

yε(0, t) = 0; yε(L(t), t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, L0),

(2.25)

Since L ∈ C1+1/4([0, T ]), from (2.24) and change of variables ζ = x

L(t)
, ã(ζ, t) =

a(L(t)ζ, t), and b̃(ζ, t) = b(L(t)ζ, t) − ζ
L ′(t)
L(t)

, we have

vε ∈ C1/2,1/4
x,t

(
QL

)
, ã, b̃ ∈ C1/2,1/4

ζ,t

(
Q
)
, and

β(t)

(L(t))2
∈ C1/4([0, T ]),
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thus, wε is solution to

⎧
⎪⎪⎨

⎪⎪⎩

wε,t − β(t)

L2(t)
wε,ζζ + ã(ζ, t)wε + b̃(ζ, t)wε,ζ = ṽε(ζ, t), (ζ, t) ∈ Q,

wε(0, t) = 0;wε(1, t) = 0, t ∈ (0, T ),

wε(ζ, 0) = y0(L(0)ζ, 0), ζ ∈ (0, 1),

.

From Theorem 5.2, Chap. IV, p. 320 [28], the functionwε ∈ C2+1/2,1+1/4
ζ,t

(
Q
)
and

‖wε‖C2+1/2,1+1/4
ζ,t

(
Q
) ≤ C

(

‖ṽε‖C1/2,1/4
ζ,t

(
Q
) + ‖y0‖C2+1/2(0,1)

)

Therefore, for θ = 1/2 fixed, we have yε ∈ C2+1/2,1+1/4
x,t

(
QL

)
and

‖yε‖C2+1/2,1+1/4
x,t

(
QL

) ≤ C
(‖y0‖L2(0,L0)

+ ‖y0‖C2+1/2(0,L0)

)
(2.26)

3 Main Result

This section is devoted to prove the main result, namely, TheoremReferences [11,
14, 16, 17, 21 and 29] were provided in the reference list; however, these were not
mentioned or cited in the manuscript. As a rule, if a citation is present in the text,
then it should be present in the list. Please provide the location of where to insert the
reference citation in the main body text. Kindly ensure that all references are cited
in ascending numerical order. 1.1. It will be a consequence of Theorem 2.2 and a
fixed-point argument (Fig. 1).

For this purpose, let (y, L) ∈ C2,1
x,t (QL) × C1+ 1

4 ([0, T ]) be given, with L∗ ≤
L(t) ≤ B, L(0) = L0 and y0 ∈ C2+ 1

2 ([0, L0]).

(a) Domain QL (b) Domain Q

Fig. 1 a Domain QL ; b Domain Q
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Next, we recall the problem given by (2.12) with an additional condition

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yε,t − β

(∫ L(t)

0
y(x, t)dx

)

yε,xx + a(y, yx )yε + b(y, yx )yε,x = vε 1̃ω, (x, t) ∈ QL ,

yε(0, t) = 0; yε(L(t), t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, L0),

‖yε(·, T )‖L2(0,L(T ))
≤ ε

.

(3.1)

Let us introduce the sets

Y =
{

y ∈ C2,1
x,t

(
QL

) : ‖y‖
C2,1

x,t

(
QL

) ≤ R

}

and

Z =
{

L ∈ C1+ 1
4 ([0, T ]) : L∗ ≤ L(t) ≤ B, L(0) = L0, ‖L‖

C1+ 1
4 ([0,T ]) ≤ R

}

.

where the constant R > 0 will be determined later.
Now, we set the mapping

Hε : Y × Z −→ C2,1
x,t (QL) × C1+ 1

4 ([0, T ])
(y, L) �−→ (yε, Lε)

,

where yε satisfies (3.1) for vε = e−2s0αξ3ϕ̂ε1̃ω, ϕ̂ε is the unique minimum of
Jε(·, g(y, yx ), L) and

Lε(t) = L0 −
∫ t

0

[

β

(∫ L(s)

0
y(x, s) dx

)

yε,x (L(s), s)

]

ds. (3.2)

Our goal is to prove that Hε satisfies the hypothesis of the Schauder’s Fixed Point
Theorem.We can verify from the results in Sect. 2 that the mappingHε is well defined.

For ‖y0‖
C2+ 1

2 ([0,L0])
sufficiently small, from (2.26) we have that

‖yε‖C2,1
x,t (QL )

≤ C

(

‖y0‖L2(0,L0)
+ ‖y0‖

C2+ 1
2 ([0,L0])

)

≤ C1‖y0‖
C2+ 1

2 ([0,L0])
≤ R1 .

Furthermore, we have the following estimate:

∣
∣
∣
∣

∫ L(s)

0
y(x, s) dx

∣
∣
∣
∣ ≤

∫ L(s)

0
‖y‖C0(QL ) dx

≤ ‖y‖C0(QL )‖L‖C0([0,T ])
≤ C‖y0‖

C2+ 1
2 ([0,L0])

.
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From the last estimate, one has

|Lε(t) − L0| ≤
∫ t

0
|β|

∣
∣
∣
∣

∫ L(s)

0
y(x, s) dx

∣
∣
∣
∣|yε,x (L(s), s)| ds

≤ C2‖y0‖
C2+ 1

2 ([0,L0])
T .

Moreover

|L ′
ε(t)| =

∣
∣
∣
∣β

(∫ L(s)

0
y(x, s) dx

)

yε,x (L(t), t)

∣
∣
∣
∣

≤ C3‖y0‖
C2+ 1

2 ([0,L0])
.

In view of the Lemma 2.3, we obtain

‖Lε‖
C1+ 1

4 ([0,T ]) ≤ C4‖y0‖
C2+ 1

2 ([0,L0])
.

Now, we take R = min
{

R1
C1

, L0−L∗
C2T , B−L0

C2T , R1
C4

}

Therefore, for ‖y0‖
C2+ 1

2 ([0,L0])
≤ R one has

‖yε‖C2,1
x,t (QL )

≤ R, ‖Lε‖
C1+ 1

4 ([0,T ]) ≤ R and L∗ ≤ Lε(t) ≤ B.

Thus, we verify that Hε maps Y × Z into itself, that is

Hε(Y × Z) ⊂ Y × Z .

Furthermore,

yε ∈ C
2+ 1

2 ,1+ 1
4

x,t (QL) ↪→ C2,1
x,t (QL) compactly embedded.

From Lemma 2.3, we have that

Lε ∈ C1+σ ([0, T ]) ↪→ C1+ 1
4 ([0, T ]) compactly embedded, for

1

4
< σ < 1 .

Therefore Hε maps Y × Z into a compact set of C2,1
x,t (QL) × C1+ 1

4 ([0, T ]).
In view of the previous properties of Hε, there exists δ > 0 (independent of ε) such

that, if ‖y0‖
C2+ 1

2 ([0,L0])
≤ δ, we can apply Schauder’s Fixed Point Theorem to the

mapping Hε : Y × Z �→ C2,1
x,t (QL) × C1+ 1

4 ([0, T ]).
Let (yε, Lε) be a fixed point of Hε for each ε > 0. Then, it is clear that (yε, Lε),

together with vε, satisfies (1.1),(1.2), (2.10) and (2.11).
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So, we can extract subsequences indexed by ε satisfying

⎧
⎨

⎩

yε → y in C2,1
x,t (QL)

Lε → L in C1([0, T ])
vε⇀v in L2(ω × (0, T )).

(3.3)

From(3.3),we can take limits in system (3.1) anddeduce that y is the state associated
to control v and (1.1)–(1.2) is locally null controllable.

Hence, Theorem 1.1 is proved.

4 Open Questions

As a first comment, an interest question concerns the global null controllability to
(1.1)–(1.2), which does not seem to be simple. To prove a global result, we would have
to use a global inverse mapping theorem, but this requires much more complicated
estimates, which do not seem to be accesible.

Other important topics arise from our current research:

• In the system (1.1), we can replace the nonlocal nonlinearity β
(∫ L(t)

0 ydx
)
by

β
(∫ L(t)

0 yx dx
)
, in order to analyze whether it is possible to prove results about

null controllability.
• An interesting case deals with the null controllability of the degenerate system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt −
(

β

(

x,

∫ L(t)

0
ydx

)

yx

)

x

+ g(y, yx ) = v1ω, (x, t) ∈ QL ,

y(0, t) = 0; y(L(t), t) = 0, t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(4.1)

with the additional boundary condition

−L ′(t) = β

(

x,

∫ L(t)

0
y(x, t)dx

)

yx (L(t), t),

where β is a separated variables function given by β(x, r) = �(r)a(x) and β

defines an operator which degenerates at x = 0 and has a nonlocal term. More
precisely, the function a behaves xα , with α ∈ (0, 1).
On the controllability of degenerate parabolic equations, for an instance, we men-
tion the following works: Cannarsa et al. [4–8], Alabau-Boussouira et al. [1] and
Demarque et al. [10].
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• Another interesting case is found when the control function acts on the free bound-
ary, as we can see in the system below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yt − β

(∫ L(t)

0
ydx

)

yxx + g(y, yx ) = 0, (x, t) ∈ QL ,

y(0, t) = 0; y(L(t), t) = v(t), t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L0),

(4.2)

together with (1.2) and (1.3).
However, this control problem needs a deeper analysis.
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Appendix A: Proof of Theorem 2.1

Let ψ be new variable defined by ϕ(x, t) := esα(x,t)ψ(x, t). It yields:

ϕt = sαt e
sαψ + esαψt , ϕx = sαx esαψ + esαψx and

ϕxx = esα
(
ψxx + s2α2

xψ + 2sαxψx + sαxxψ
)

.

The functions α and ξ yield:

αx = −ξx = −λα0,xξ, αxx = −λ2α2
0,xξ − λα0,xxξ,

αt = −k
T − 2t

(T − t)k+1tk+1

(
e2λ‖α1‖∞ − eλα1(x,t)

)
− λα0,tξ,

αx,t = kλξ

(
(T − 2t)

t(T − t)
α0,x − α0,t x

k
− λ

α0,tα0,x

k

)

and, for λ sufficiently large, one has:

|αx | ≤ Cλξ, |αxx | ≤ Cλ2ξ,

|αt | ≤ Cξ1+
1
k + Cλξ ≤ Cλξ

3
2 and

|αx,t | ≤ Cλξ2.

On the other hand, we have that ψ(x, 0) ≡ 0 in (0, L(0)) and ψ(x, T ) ≡ 0 in
(0, L(T )).
Moreover, replacing ϕ by esαψ in the PDE (2.2), it yields:

e−2sα(sαtψ + ψt ) + e−2sα
[
β (t) ψxx + β (t) s2α2

xψ + 2β (t) sαxψx
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+β (t) sαxxψ
]

+ esα(aψ) + esα
[
sαx (bψ) + (bψx )

]
= F(x, t),

therefore,

[
ψt + 2β (t) sαxψx

]
+

[
β (t) ψxx + β (t) s2α2

xψ
]

= −e−sα F(x, t) − sαtψ − β (t) sαxxψ − aψ − sαx bψ − bψx .

Considering the following notation

{
Uψ := ψt + 2β (t) sαxψx = (Uψ)1 + (Uψ)2
V ψ := β (t) ψxx + β (t) s2α2

xψ = (V ψ)1 + (V ψ)2
,

it yields:

Uψ + V ψ = G(x, t),

where

G(x, t) = −e−sα(x,t)F(x, t) − sαt (x, t)ψ(x, t) − β(t)sαxx (x, t)ψ(x, t)

−a(x, t)ψ(x, t) − sαx (x, t)b(x, t)ψ(x, t) − b(x, t)ψx (x, t).

Therefore,

‖Uψ‖2L2(QL )
+ ‖V ψ‖2L2(QL )

+ 2(Uψ, V ψ)L2(QL )

= ‖e−sα F + sαtψ + βsαxxψ + aψ + sαx bψ + bψx‖2L2(QL )

≤ C
(
‖e−2sα F‖2L2(QL )

+ ‖sαtψ‖2L2(QL )
+ ‖βsαxxψ‖2L2(QL )

+‖aψ‖2L2(QL )
+ ‖sαx bψ‖2L2(QL )

+ ‖bψx‖2L2(QL )

)

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

QL

s2|αt |2|ψ |2dxdt

+
∫∫

QL

βs2|αxx |2|ψ |2dxdt +
∫∫

QL

|a|2L∞(QL )|ψ |2dxdt

+
∫∫

QL

|b|2L∞(QL )s
2|αx |2|ψ |2dxdt +

∫∫

QL

|b|2L∞(QL )|ψx |2dxdt

)

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

QL

s2C̃λ2ξ3|ψ |2dxdt

+Cβ

∫∫

QL

s2C̃λ4ξ2|ψ |2dxdt + |a|2L∞(QL )

∫∫

QL

|ψ |2dxdt
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+|b|2L∞(QL )

∫∫

QL

s2λ2|α0,x |2ξ2|ψ |2dxdt + |b|2L∞(QL )

∫∫

QL

|ψx |2dxdt

)

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

QL

s2λ4ξ3|ψ |2dxdt +
∫∫

QL

|ψx |2dxdt

)

.

(4.3)

Let us compute (Uψ, V ψ)L2(QL ) and use the fact that
∫∫

QL

=
∫ T

0

∫ L(t)

0
.

I1 = ((Uψ)1, (V ψ)1)L2(QL ) =
∫ T

0

∫ L(t)

0
βψtψxx dxdt

=
∫ T

0
β

(

ψtψx

∣
∣
∣
L(t)

0
−

∫ L(t)

0
ψxψxt ds

)

dt

= −1

2

∫ T

0
β

∫ L(t)

0

d

dt
[ψx ]2dxdt

= −1

2

∫ T

0

[

β
d

dt

∫ L(t)

0
(ψx )

2dx − β
[
ψx (L(t), t)

]2
L

′
(t)

]

dt

= 1

2

∫ T

0

∫ L(t)

0
β ′(ψx )

2dxdt + 1

2

∫ T

0
β
[
ψx (L(t), t)

]2
L

′
(t)dt;

I2 = ((Uψ)1, (V ψ)2)L2(QL ) =
∫ T

0

∫ L(t)

0
s2βψtα

2
xψdxdt

=
∫ T

0

∫ L(t)

0
s2βψtα

2
xψdxdt

= s2

2

∫ T

0
β

∫ L(t)

0

d

dt
(ψ)2 α2

x dxdt

= − s2

2

∫ T

0

∫ L(t)

0

(
β ′α2

x + 2βαxαxt

)
ψ2dxdt;

I3 = ((Uψ)2, (V ψ)1)L2(QL ) =
∫ T

0

∫ L(t)

0
2sβ2αxψxψxx dxdt

=
∫ T

0

∫ L(t)

0
sβ2αx

d

dx
(ψx )

2 dxdt

= −
∫ T

0

∫ L(t)

0
sβ2αxxψ

2
x dxdt +

∫ T

0
sψ2

x (L(t), t)β2αx (L(t), t)dt

−
∫ T

0
sψ2

x (0, t)β2αx (0, t)dt;

I4 = ((Uψ)2, (V ψ)2)L2(QL ) =
∫ T

0

∫ L(t)

0
2s3β2α3

xψψx dxdt
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= s3
∫ T

0

∫ L(t)

0
β2α3

x
d

dx
(ψ)2dxdt = −3s3

∫ T

0

∫ L(t)

0
β2α2

xαxxψ
2dxdt .

Therefore,

(Uψ, V ψ)L2(QL ) = −
∫ T

0

∫ L(t)

0
sβ2αxxψ2

x dxdt − 3s3
∫ T

0

∫ L(t)

0
β2α2

xαxxψ2dxdt

− s2

2

∫ T

0

∫ L(t)

0
2βαxαxtψ

2dxdt +
∫ T

0
sψ2

x (L(t), t)β2αx (L(t), t)dt

+1

2

∫ T

0
β
[
ψx (L(t), t)

]2
L

′
(t)dt −

∫ T

0
sψ2

x (0, t)β2αx (0, t)dt

+1

2

∫ T

0

∫ L(t)

0
β ′(ψx )2dxdt − s2

2

∫ T

0

∫ L(t)

0
β ′α2

xψ2dxdt .

Now, computing ‖Uψ‖2L2(QL )
+ ‖V ψ‖2L2(QL )

+ 2(Uψ, V ψ)L2(QL ), we have:

(Uψ, V ψ)L2(QL ) = I1 + I2 + I3 + I4

≥ C

(
1

2

∫ T

0
βψ2

x (L(t), t)L
′
(t)dt + 1

2

∫ T

0
β ′

∫ L(t)

0
ψ2

x dxdt

)

+
(−s2

2

∫∫

QL

β ′α2
xψ2dxdt − C2s2λ2

∫∫

QL

ξ3|ψ |2dxdt

)

+
(

sC3

2

∫∫

QL

λ2ξ |ψx |2dxdt

−s
∫∫

ω0×(0,T )
λ2C3ξ |ψx |2dxdt + sλC3

∫ T

0

[
ξ(L(t), t)ψ2

x (L(t), t)

+ξ(0, t)ψ2
x (0, t)

]
dt

)

+
(

C4

∫∫

QL

s3λ4ξ3ψ2dxdt

−C
∫∫

ω0×(0,T )
s3λ4ξ3ψ2dxdt

)

; (4.4)

‖Uψ‖2L2(QL )
=

∫∫

QL

|ψt + 2βsαxψx |2dxdt =
∫∫

QL

∣
∣ψt + 2βs(λα0,x ξ)ψx

∣
∣2dxdt

≥ C

(∫∫

QL

|ψt |2dxdt −
∫∫

QL

s2λ2ξ2|ψx |2dxdt

)

≥ C̃

(∫∫

QL

(sξ)−1|ψt |2dxdt −
∫∫

QL

(sξ)λ2|ψx |2dxdt

)

; (4.5)

‖V ψ‖2L2(QL )
=

∫∫

QL

|βψxx + βs2α2
xψ |2dxdt

=
∫∫

QL

∣
∣βψxx − (−βs2λ2α2

0,x ξ2ψ)
∣
∣2dxdt

≥ C

(∫∫

QL

|ψxx |2dxdt −
∫∫

QL

s4λ4ξ4|ψ |2dxdt

)
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≥ C̃

(∫∫

QL

(sξ)−1|ψxx |2dxdt −
∫∫

QL

s3λ4ξ3|ψ |2dxdt

)

. (4.6)

Combining the estimates (4.3) and (4.4), they yield:

C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

QL

s2λ4ξ3|ψ |2dxdt +
∫∫

QL

|ψx |2dxdt

)

≥ ‖Uψ‖2L2(QL )
+ ‖V ψ‖2L2(QL )

+ 2(Uψ, V ψ)L2(QL )

‖Uψ‖2L2(QL )
+ ‖V ψ‖2L2(QL )

+
(∫ T

0
βψ2

x (L(t), t)L
′
(t)dt

+
∫ T

0
β ′

∫ L(t)

0
ψ2

x dxdt − s2
∫∫

QL

β ′α2
xψ

2dxdt

−s2λ2
∫∫

QL

ξ3|ψ |2dxdt + s
∫∫

QL

λ2ξ |ψx |2dxdt

+s
∫∫

ω0×(0,T )

λ2ξ |ψx |2dxdt + sλ
∫ T

0

[
ξ(L(t), t)ψ2

x (L(t), t)

− ξ(0, t)ψ2
x (0, t)

]
dt +

∫∫

QL

s3λ4ξ3ψ2dxdt −
∫∫

ω0×(0,T )

s3λ4ξ3ψ2dxdt

)

.

(4.7)

Also, given ε > 0, we have:

∫∫

ω0×(0,T )

(sξ)λ2|ψx |2dxdt ≤ ε

∫∫

QL

(sξ)−1|ψxx |2dxdt

+Cε

∫∫

ω0×(0,T )

(sξ)3λ4|ψ |2dxdt (4.8)

In fact,

∣
∣
∣
∣

∫∫

ω0×(0,T )

(sξ)λ2ψ2
x dxdt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫∫

ω0×(0,T )

sλ2(ξψx )xψdxdt

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫∫

ω0×(0,T )

sλ2ξxψxψdxdt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫∫

ω0×(0,T )

sλ2ξψxxψdxdt

∣
∣
∣
∣

≤ C

∣
∣
∣
∣

∫∫

ω0×(0,T )

(sξ)(λψx )(λ
2ψ)dxdt

∣
∣
∣
∣ +

∣
∣
∣
∣

∫∫

ω0×(0,T )

(sξ)ψxx (λ
2ψ)dxdt

∣
∣
∣
∣

≤ C

(

ε1

∫∫

ω0×(0,T )

(sξ)|λψx |2dxdt + 1

4ε1

∫∫

ω0×(0,T )

(sξ)|λ2ψ |2dxdt

)

+
(

ε2

∫∫

ω0×(0,T )

(sξ)−1|ψxx |2dxdt + 1

4ε2

∫∫

ω0×(0,T )

(sξ)3|λ2ψ |2dxdt

)

.
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Therefore,
∫∫

ω0×(0,T )

(sξ)λ2|ψx |2dxdt ≤ ε2

1 − Cε1

∫∫

ω0×(0,T )

(sξ)−1|ψxx |2dxdt

+Cε1ε2

∫∫

ω0×(0,T )

(sξ)3λ4|ψ |2dxdt

≤ ε2

1 − Cε1

∫∫

QL

(sξ)−1|ψxx |2dxdt

+Cε1ε2

∫∫

ω0×(0,T )

(sξ)3λ4|ψ |2dxdt .

Combining the inequalities (4.5)–(4.8), they yield:

∫∫

QL

(sξ)−1
[
|ψt |2 + |ψxx |2

]
dxdt +

∫∫

QL

[
(sξ)λ2|ψx |2 + (sξ)3λ4|ψ |2

]
dxdt

+(sλ)

∫ T

0

[
ξ(L(t), t)|ψx (L(t), t)|2 + ξ(0, t)|ψx (0, t)|2

]
dt

+
∫ T

0
β ′

∫ L(t)

0
|ψx |2dxdt

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

ω×(0,T )

s3λ4ξ3|ψ |2dxdt

+
∫∫

QL

|ψx |2dxdt +
∫∫

QL

β ′(sξ)2λ2|ψ |2dxdt

)

.

Therefore,
∫∫

QL

[
(sξ)−1(|ψt |2 + |ψxx |2) + (sξ)λ2|ψx |2 + (sξ)3λ4|ψ |2

]
dxdt

+sλ
∫ T

0

[
ξ(L(t), t)|ψx (L(t), t)|2 + ξ(0, t)|ψx (0, t)|2

]
dt

≤ C

(∫∫

QL

e−2sα|F |2dxdt +
∫∫

ω×(0,T )

(sξ)3λ4|ψ |2dxdt

)

.

Coming back to the original variable ϕ, we have (2.4).

Appendix B: Proof of Lemma 2.2 and 2.3

Proof of Lemma 2.2 (i) For all 0 ≤ θ < 1, we have:

|β(t1) − β(t2)|
|t1 − t2|θ = 1

|t1 − t2|θ ·
∣
∣
∣β

(∫ L(t1)

0
y(x, t1) dx

)

− β

(∫ L(t2)

0
y(x, t2) dx

)
∣
∣
∣
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≤ C

|t1 − t2|θ ·
∣
∣
∣

∫ L(t1)

0
y(x, t1) dx −

∫ L(t2)

0
y(x, t2) dx

∣
∣
∣

≤ C

|t1 − t2|θ ·
∣
∣
∣

∫ L(t1)

L(t2)
y(x, t1) dx +

∫ L(t2)

0
y(x, t1) − y(x, t2) dx

∣
∣
∣

≤ C

|t1 − t2|θ · (|L(t1) − L(t2)| + |t1 − t2|)

≤ C
|t1 − t2|
|t1 − t2|θ < ∞.

Then, β ∈ Cθ ([0, T ]), for all 0 ≤ θ < 1.
(ii) For all 0 ≤ θ < 1, one has:

|a(x1, t1) − a(x2, t2)|
(|x1 − x2| + |t1 − t2|1/2)θ

≤

∫ 1

0

∣
∣
∣
∂g

∂s
(λy(x1, t1), λyx (x1, t1)) − ∂g

∂s
(λy(x2, t2), λyx (x2, t2))

∣
∣
∣ dλ

(|x1 − x2| + |t1 − t2|1/2)θ
≤ C · (|y(x1, t1) − y(x2, t2)| + |yx (x1, t1) − yx (x2, t2)|)

(|x1 − x2| + |t1 − t2|1/2)θ
≤ C · (|x1 − x2| + |t1 − t2|)

(|x1 − x2| + |t1 − t2|1/2)θ < ∞.

Then, a ∈ Cθ,θ/2
x,t (QL), for all 0 ≤ θ < 1. The proof is analogous to b(x, t).

(iii) For all 0 ≤ θ < 1, one has:

|̃a(ξ1, t1) − ã(ξ2, t2)|
(|ξ1 − ξ2| + |t1 − t2|1/2)θ = |a(L(t1)ξ1, t1) − a(L(t2)ξ2, t2)|

(|ξ1 − ξ2| + |t1 − t2|1/2)θ
= |a(L(t1)ξ1, t1) − a(L(t2)ξ2, t2)|

(|L(t1)ξ1 − L(t2)ξ2| + |t1 − t2|1/2)θ ·
(|L(t1)ξ1 − L(t2)ξ2| + |t1 − t2|1/2)θ

(|ξ1 − ξ2| + |t1 − t2|1/2)θ ,

On the other hand, from (ii), we have

|a(L(t1)ξ1, t1) − a(L(t2)ξ2, t2)|
(|L(t1)ξ1 − L(t2)ξ2| + |t1 − t2|1/2)θ ≤ C .

Then, one has,

|̃a(ξ1, t1) − ã(ξ2, t2)|
(|ξ1 − ξ2| + |t1 − t2|1/2)θ

≤ C · (L(t1)|ξ1 − ξ2| + |ξ2|.|L(t1) − L(t2)| + |t1 − t2|1/2)θ
(|ξ1 − ξ2| + |t1 − t2|1/2)θ

≤ C1 · (|ξ1 − ξ2| + |L(t1) − L(t2)| + |t1 − t2|1/2)θ
(|ξ1 − ξ2| + |t1 − t2|1/2)θ
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< ∞, ∀θ ∈ [0, 1).

Then, ã ∈ Cθ,θ/2
ξ,t (Q), for all 0 ≤ θ < 1.

In a similar way, we obtain b̂(ξ, t) = b(L(t)ξ, t) ∈ Cθ,θ/2
ξ,t (Q). Let us analyse the

function b(ξ, t) = ξ
L ′(t)
L(t)

, for L ∈ C1+γ /2([0, T ]).
For all 0 ≤ γ < 1,

|b(ξ1, t1) − b(ξ2, t2)|
(|ξ1 − ξ2| + |t1 − t2|1/2)γ

= 1

(|ξ1 − ξ2| + |t1 − t2|1/2)γ ·
∣
∣
∣ξ1

L ′(t1)
L(t1)

− ξ2
L ′(t2)
L(t2)

∣
∣
∣

≤ C

(|ξ1 − ξ2| + |t1 − t2|1/2)γ ·
(

|ξ1 − ξ2| ·
∣
∣
∣

L ′(t1)
L(t1)

∣
∣
∣ + |ξ2| ·

∣
∣
∣

L ′(t1)
L(t1)

− L ′(t2)
L(t2)

∣
∣
∣

)

≤ C1 ·

(

|ξ1 − ξ2| + |L ′(t1) − L ′(t2)| 1

|L(t1)| + |L ′(t2)| · |L(t2) − L(t1)|
|L(t1)L(t2)|

)

(|ξ1 − ξ2| + |t1 − t2|1/2)γ

≤ C2 ·
(|ξ1 − ξ2| + |L ′(t1) − L ′(t2)| + |L(t2) − L(t1)|

)

(|ξ1 − ξ2| + |t1 − t2|1/2)γ < ∞,

since L ∈ C1+γ /2([0, T ]).
Then, b̃ ∈ Cγ,γ /2

ξ,t (Q), for all 0 ≤ γ < 1. �
Proof of Lemma 2.3 For 0 ≤ θ < 1, one has:

|L ′(t1) − L ′(t2)|
|t1 − t2|θ

= 1

|t1 − t2|θ ·
[

β

(∫ L(t1)

0
y(x, t1)dx

)

yx (L(t1), t1)

−β

(∫ L(t2)

0
y(x, t2)dx

)

yx (L(t2), t2)

]

= 1

|t1 − t2|θ ·
[

β

(∫ L(t1)

0
y(x, t1)dx

)

− β

(∫ L(t2)

0
y(x, t2)dx

)]

yx (L(t1), t1)

+ 1

|t1 − t2|θ · β

(∫ L(t2)

0
y(x, t2)dx

)

· [yx (L(t1), t1) − yx (L(t2), t2)
]

= I1 + I2

For 0 ≤ θ < 1, we obtain the following estimates for I1 and I2:

|I1| ≤ C

|t1 − t2|θ ·
∣
∣
∣

∫ L(t1)

0
y(x, t1) dx −

∫ L(t2)

0
y(x, t2) dx

∣
∣
∣
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≤ C

|t1 − t2|θ ·
∣
∣
∣

∫ L(t1)

L(t2)
y(x, t1) dx +

∫ L(t2)

0
y(x, t1) − y(x, t2) dx

∣
∣
∣

≤ C1

|t1 − t2|θ · |L(t1) − L(t2)| + c
∫ L(t2)

0

|y(x, t1) − y(x, t2)|
|t1 − t2|θ dx

≤ C2

(

sup
t1,t2∈[0,T ]

|L(t1) − L(t2)|
|t1 − t2|θ + sup

t1,t2∈[0,T ]
|y(x, t1) − y(x, t2)|

|t1 − t2|θ
)

< ∞,

and

|I2| ≤ C

|t1 − t2|θ · |yx (L(t1), t1) − yx (L(t2), t2)|

≤ C

|t1 − t2|θ · (|L(t1) − L(t2)| + |t1 − t2|) < ∞.

�

References

1. Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic oper-
ators with applications to null controllability. J. Evol. Equ. 2, 161–204 (2006)

2. Aronson, D.G.: Some properties of the interface for a gas flow in porous media , In: Fasano, A.,
Primicerio, M. (eds.) Free Boundary Problems: Theory and Applications, Research Notes Math., No.
78, vol. I, Pitman, London (1983)

3. Barbu, V.: Exact controllability of the superlinear heat equations. Appl. Math. Optim. 42, 73–89 (2000)
4. Cannarsa, P., Fragnelli, G.:Null controllability of semilinear degenerate parabolic equations in bounded

domains. Electron. J. Differ. Equ. 136, 1–20 (2006)
5. Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic operators with

drift. Netw. Heterog. Med. 2, 695–715 (2007)
6. Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic

operators. SIAM J. Control. Optim. 47, 1–19 (2008)
7. Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv.

Differ. Equ. 10, 153–190 (2005)
8. Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of

degenerate parabolic equations. Commun. Pure Appl. Anal. 3, 607–635 (2004)
9. Chipot, M., Valente, V., Caffarelli, G.: Remarks on a nonlocal problem involving the Dirichlet energy.

Rend. Semin. Mat. Univ. Padova 110, 199–220 (2003)
10. Demarque, R., Límaco, J., Viana, L.: Local null controllability for degenerate parabolic equations with

nonlocal term. Nonlinear Anal. 43, 523–547 (2018)
11. De Menezes, S.B., Límaco, J., Medeiros, L.A.: Remarks on null controllability for semilinear heat

equation in moving domains. Eletron. J. Qual. Theory Differ. Equ. 16, 1–32 (2003)
12. Doubova, A., Fernández-Cara, E.: Some control results for simplified one-dimensional of fluid-solid

interaction. Math. Models Methods Appl. Sci. 15(5), 783–824 (2005)
13. Doubova,A., Fernández-Cara, E., González-Burgos,M., Zuazua, E.: On the controllability of parabolic

systems with a nonlinear term involving the state and the gradient. SIAM J. Control. Optim. 41(3),
798–819 (2002)

14. Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. R.
Soc. Edinb. Sect. A 125, 31–61 (1995)

15. Fasano, A.: Mathematical models of some diffusive process with free boundaries , In: MAT, Series A:
Mathematical Conferences, Seminars and Papers, 11, Universidad Austral, Rosario (2005)

123



Applied Mathematics & Optimization (2023) 87 :11 Page 27 of 27 11

16. Fernández-Cara, E., Guerrero, S.: Global Carleman Inequalities for parabolic systems and applications
to controllability. SIAM J. Control Optim. 45(4), 1395–1446 (2006)

17. Fernández-Cara, E., Límaco, J., Hernández, F.: Local Null Controllability of a 1D Stefan Problem.
Bull Braz. Math, Soc (2018)

18. Fernández-Cara, E., Límaco, J., de Menezes, S.B.: On the controllability of a free-boundary problem
for the 1D heat equation. Syst. Control Lett. 87, 29–35 (2016)

19. Fernández-Cara, E., de Sousa, I.T.: Local null controllability of a free-boundary problem for the
semilinear 1D heat equation. Bull Braz. Math. Soc. New Ser. 48, 303–315 (2017)

20. Fernández-Cara, E., Zuazua, E.: Null and approximate controllability forweakly blowing up semilinear
heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 583–616 (2000)

21. Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear
case. Adv. Differ. Equ. 5(4–6), 465–514 (2000)

22. Friedman, A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)
23. Friedman, A. (ed.): Tutorials in mathematical biosciences III, Cell cycle, proliferation, and cancer.

Lecture Notes inMathematics,Mathematical Biosciences Subseries, vol. 1872. Springer, Berlin (2006)
24. Friedman, A.: PDE problems arising in mathematical biology. Netw. Heterog. Med. 7(4), 691–703

(2012)
25. Fursikov, A.V., Imanuvilov, O.Y.: Controllability of Evolution Equations, Lecture Note Series 34.

Research Institute of Mathematics. Seoul National University, Seoul (1996)
26. Hermans, A.J.: Water Waves and Ship Hydrodynamics, An Introduction, 2nd edn. Springer, Dordrecht

(2011)
27. Hermans, A.J.: Water waves and ship hydrodynamics, an introduction. Commun. Partial Differ. Equ.

28(9–10), 1705–1738 (2003)
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