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Abstract
This paper deals with the analysis of the internal control of a free-boundary problem
for the 1D heat equation with local and nonlocal nonlinearities. We prove a local null
controllability result with distributed controls, locally suported in space. The proof
is based on Schauder’s fixed point theorem combined with some appropriate specific
estimates.

Keywords Free-boundary problems - 1D nonlinear heat equation - Carleman
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1 Introduction

LetT >0,0<k) <kp <Ly <Lo< Bandyy e C2+%([O, L)) be given. For any
function L € CH%([O, T withO < L, <L) <B, t € (0,T) we will set

O :={(x,t):x € (0, L) and t € (0, T)}.
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In this paper, we will investigate the null controllability properties of a free-
boundary problem for the nonlinear 1D parabolic equation of the form

L(t)
yi—B (/0 ydx> Yax +8(0v, yx) = vy, (x,1) € O,

1.1
y(0,1) =0; y(L(t),t) =0, te(0,7), @b
y(x,0) = yo(x), x € (0, Lo),
with the additional boundary condition
1 L(s)
L(t)=Ly— / |:,B (/ y(x, s)dx) vy (L(s), s):| ds, therefore,
0 0
L(1)
—L'(t)=p (/0 y(x, t)dX> yx(L(2), 1), (1.2)

witht € (0, T) and Lo = L(0). Here y = y(x, ¢) is the state, v = v(x, t) is a control
function that acts on the system at any time through a nonempty open set w = (k1, k2),
and 1, denotes the characteristic function of the w. Regarding the functions 8 and g,
we make the following assumptions:

(A1) B:R — Risa C! function that possesses bounded derivatives and satisfies
0 < Bo<pBr)<p) <400, Vr e R,

(A2) g:RxR — Risa C? function, with bounded derivatives, such that £(0,0) =0.

The main purpose of this paper is to prove the local null controllability result
of (1.1). To accomplish this goal, let us recall the following classical controllability
concept:

Definition 1.1 It will be said that (1.1) is null controllable at time 7T if there exist a

control v € Lz(a) x (0,T)), a function L € CH’% ([0, T']) and an associated solution
y = y(x, t) satisfying (1.1), (1.2), and

y(x,T)=0, x € (0, L(T)), (1.3)

for each yo € C>+2 ([0, Lo]).
Definition 1.2 It will be said that (1.1) is approximately controllable at time 7 if there
exist a control v € L%(w x (0, T)), a function L € C1+% ([0, T]) and an associated
state y = y(x, ) satisfying (1.1), (1.2) and

lyC Dllz20,L(ry) = & (1.4)

for any yg € C2+%([O, LoD and € > 0.
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As we have already mentioned, we are interested in the local null controllability of
(1.1), that is, in other words, the system (1.1) is said to be locally null controllable at
any time 7' > 0 if, there exists § > 0 such that, if || y0||C < &, there exists a

23 ([0,Lo])
triplet (L, v, y) with

LeC™i((0,T), L.<L@) <B, L5)
ve L*(wx(0,7)), '
satisfying (1.1), (1.2), and (1.3).

In mathematics, the expression free-boundary problem (FBP) refers to a problem
in which one or several variables must be determined in different domains in space
or in space-time. In a brief definition, we can say that a FBP is a boundary value
problem defined in a domain that is not given a priori, therefore, a part of the unknown.
If the domains are known, the problem reduces to solve equations, usually partial
differential equations or ordinary differential equations. Free-boundary problems arise
in various mathematical models that encompass applications ranging from Physics to
Economics, Finances and biological phenomena where there is an extra effect of the
environment. This effect in general deals with a qualitative change of the environment
and an appearance of a phase transition; for example, ice to water, liquid to crystal,
purchases to sales (assets), active to inactive (biology).

Free-boundary problems similar to (1.1)—(1.2) are connected to several interesting
applications. We mention the following works:

e Tumor growth and other phenomena from mathematical biology; see Friedman
[23, 24].

Fluid-solid interaction; see Doubova and Ferndndez-Cara [12], Vizquez and
Zuazua [36] and Liu et al. [31].

Gas flow through porous media; see Aronson [2], Fasano [15] and Vazquez [35].
Solidification and related Stefan problems; see Friedman [22].

The analysis and computation of free surfaces flows; see Hermans [26, 27], Stoker
[33, 34] and Wrobel and Brebbia [38].

In the last years, there are many works addressing controllability problems of linear
and semilinear PDE’s. In particular, let us mention Fursikov and Imanuvilov [25],
Barbu [3], Fernandez-Cara and Zuazua [20], Doubova et al. [13] and Xu Liu and
Xu Zhang [30] and the references therein in the context of bounded domains. In the
context of the linear and semilinear PDE’s, we also mention the following articles [11,
14,16, 17, 21, 29].

For parabolic free-boundary problems, controllability questions have been con-
sidered only in a few papers; see for instance Fernidndez-Cara et al. in [18] and
Ferndndez-Cara and de Sousa in [19]. In both cited papers, the common point is
that the main operator is linear and the free-boundary condition is given by

—L'(t) = ye(L(1), 1), t € (0, T). (1.6)

In the present paper, with an extension in mind for another more realistic and
interesting problems, we have considered a nonlocal term in the main part of the
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partial derivative operator. In this way, the free-boundary condition (1.2) becomes
more general than condition (1.6). This is the main novelty in this work.

In addition, in [37] the authors studied the null controllability of a free-boundary
problem for the quasi-linear 1D parabolic equation.

The nonlocal term in (1.1) appears naturally in some physical models. For example,
they can arise in heat conduction in materials with memory, nuclear reactors, and
population dynamics, for instance the bacteria in a container, the diffusion coefficients
may depend on the total amount of individuals; see for instance [9, 39]. We also mention
that, in the context of elasticity theory, terms in the form

L)
5(/0 ly(x, t)|2dx> and

aq bt Pa)

appear, respectively, in Carrier and Kirchhoff equations. These equations arise in
nonlinear vibration theory; see for instance [32].
Our main result is the following:

Theorem 1.1 Assume that T > 0and 0 < k| < kp < Ly < Lo < B. Under the pre-
vious assumptions on B and g, the nonlinear system (1.1) is locally null-controllable.

For the proof of this theorem, we will firstfix e > 0 and prove the existence of triplets
(Lg, ye, ve) that are uniformly bounded in an appropriate space and satisfy (1.1), (1.2)
and (1.4). To this end, we will introduce a fixed point reformulation relying suitable
linearized problems and we check that, if the initial data yy is sufficiently small, than
the Schauder’s Fixed Point Theorem can be applied. Finally, we take limits as ¢ — 0
and we see that, at least for a subsequence, we get convergence to a solution of (1.1),
(1.2) and (1.3).

Throughout this paper, we denote by C a generic positive constant; for example:
C1, Cy, etc. are other positive (specific) constants; when it makes sense.

The paper is organized as follows: Sect. 2 is devoted to recall some known results
and prove the approximate controllability of the linearized system (2.1). The Sect. 3
deals with the proof of Theorem 1.1. We present in Sect. 4 some open questions. In
Appendix A, we sketch the proof of a Carleman estimate and in Appendix B we prove
some relevant lemmas.

2 Analysis of the Controllability of the Linearized System in a
Non-cylindrical Domain and Regularity Property

Given Ly > 0,7 > 0,and 0 < k1 < k2 < L, < Lo < B, and fixing yy € LZ(Q),
assume that L € C I+3 ([0, T]) is a prescribed function satisfying

O<L,<L(t)<B,te(,T).
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In this section we will prove that, for any (¥, L) e C)%jtl (Q_z) X CH% ([0, T]) , the
linear system

110 N
yi—pB </(; yix, t)dx) Yxx +a(y, )y + b3, ¥ )yx = vlw, (x,1) € OF,

v(0,1) = 0; y(Z(t), t)=0, te(0,7),
y(x,0) = yo(x), x € (0, Ly),

(2.1)

is approximate controllable and also, that we can find a pair (v, y.) satisfying
Iy Dl 20 2y <
for & > 0.1In (2.1) we consider L, < L(t) < B, with L(0) = LO,T € Cgo(a)), with
1w =linw; CCwand Q7 = {(x,1) : x € (0, L(t))andr € (0, T)}.

We can verify that, for every v € L*(w x (0,T)) and every yp € L%(0, Ly),
there exists a unique solution y to (2.1), with y € L0, T; HO1 0, L(1))) and y: €
L%(0, T; H~'(0, L(r))). Consequently,

y € C%([0, T1; L*(0, L(1))) .

To this end, an appropriate change of variable w(¢, t) := y(x, t) allows us to rewrite
(2.1) as a similar problem for a parabolic PDE of the form

B()

G )wgg‘i‘a(i Hw + b, Hwe = G(E, 1),

Wy —

in a cylindrical domain, with bounded coefficients d, b e C 1/ 21 4(Q) and square-

integrable right hand side G € L?*(Q), where Q := (0, 1) x (O, T) (see Sect. 2.4 for
the definition of ¢ in Control Regularity).

As usual, the controllability of (2.1) is closely related to the properties of the
solutions to the associated adjoint state. In this case, the adjoint system is

_§0t_,B(t)(pxyc_+a(xvt)‘p+b(xvt)‘ﬂxZF(xat)v (X,I)E QLa
00,1) =0; (L(t),t) =0, t € (0, T_) 2.2)
o, T) =" (x), x € (0, L(T)),

where F € L?(Q7) and T € L?(0, L(T)).

Next, we sketch the points used in the proof of the null controllability of the
linearized system using an observability estimate. First, we use a global Carleman
estimate satisfied by the solutions of (2.2). Second, this estimate allows us to establish
an observability estimate. Third, we prove the approximate controllability of (2.1) by
using the observability estimate. Finaly, we establish a regularity property for the pair
control-state in a certain Holder space.
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2.1 A Carleman Estimate for the Solutions to (2.2)

In this section, we will recall some Carleman estimates satisfied by the solutions to
(2.2).

Denote by X7 :={(x,1) : x=0o0rx=L(¢) withO < ¢t < T} the lateral boundary
of Qz.

The following technical result, due to Fursikov and Imanuvilov [25], is fundamental:

Lemma 2.1 Let wg be an arbitrary non-empty open subdomain with @y C w. There
exists a function og € C 1 (Qz) with ag xx € C 0 @Z) such that

ap(x, 1) =0 V(x_,t) € X7,
oo, x| > 0 in Q7 \(wo x (0, 7)),
1) =1— % Vx € (b, L(t)) and Vt € [0, T].

The proof of this lemma can be found in [18] (see Lemma 2.1).
Let oy and y be real functions, and let § and o be weights defined by

a1 (x, 1) = ag(x, )+ 1, y(@) =T = )k,
Ao (x,1) 2Mlalloo — pAorg(x,1)
¢ ale, 1) = ¢ , (2.3)

s n=—rn ()

where A > 0 and k > 2 are real numbers.
The next result is a Carleman estimate for the solutions to adjoint system (2.2).

Theorem 2.1 Letagandy, &, o be as defined as in Lemma 2.1 and (2.3), respectively.
There exist Lo, so, and Cy, positive constants, only depending on a, a’, Ly, w, and T,
such that, for any s > so, A > Ao, any F € LZ(QZ), and any (pT € LZ(O, Z(T)), one
has the following inequality:

R (e R R T e R R P

L

T —
+sh / [ EODE 1), Dlga (L0, OF + e 72“CV8(0, )l (0, 0 | di
0

<C / / e XY F2dxdt + / / e 2 (se) 0 gPdxdt |, (2.4)
or wx(0,T)

where @ is the corresponding solution to (2.2).
The proof is given in Appendix.
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2.2 An Observability Inequality

Consider the homogeneous adjoint system:

_‘Pt_:3(t)QDX)r_+a(xst)(p+b(xst)§0x :Os (x7t)€ va
©0,1) =0; (L(t),t) =0, 1€(0,7), (2.5)
o(x, T) =" (x), x € (0, L(T)),
where ¢! € L2(0, L(T)).
Now, we will prove the observability inequality for weak solutions of the adjoint

system (2.5). Observe that it is a consequence of the previous Carleman inequality.

Proposition 2.1 There exists C > 0, only depending on lallLeop), ||b||L00(QZ),||Z/||OO,

Ly, B, w, and T, such that, for any (pT € L2(O, Z(T)), the associated solution to (2.5)
satisfies

Lo
f lp(x, 0)?dx < C f / e 2%0E3 g2 dxdt. (2.6)
0 wx(0,T)

Proof Let us take . = Ag and s = sq in (2.4). Then

// e M3 |? dx dt 50// e M0Eg|? dx dt
or wx(0,T)

and, consequently,

3T/4 ,L(1)
/ lp|? dx dt
0

T /4
3T/4 ,L(1)
<C / e72%0%E3 |12 dx dt
T/4 Jo
< C// e 20E3 9> dx dt. 2.7
wx(0,T)

On the other hand, multiplying the PDE in (2.5) by ¢ and integrating in (O, Z(t)),
we get the following identity

1d ([to
“odr (/0 lpl dx)
[ 2
5T 0 @0, 1) +/O Bl dx

L(t) L)
= —/ a|g0|2dx —/ by dx, vt € (0, 7).
0 0
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Since ¢(L(1), 1) = 0, we deduce that, for a small € > 0,

1d L(1) s L) )
—_— D d t d
> _/0 lp(x, )]” dx +/0 B@®)|ox|”dx
L) ¢ L) L)
sca/ |<o|2dx+—b/ |<o|2dx+e/ oy | dx,
0 de Jo 0

and this implies that

d L) 5 L) 5
-2 / oG, D2 dx szM/ o, 02 dx. 2.8)
t \Jo 0

Integrating (2.8) in time, we have

oG 0720, L0y < €TI0 D20 74y V1€ O.T)

and _
T (LO 3T/4 ,L(t)
—[ lo(x, 0))*dx < f / M p(x, 1) dx dt. (2.9)
2 Jo T/4 Jo
From (2.7) and (2.9), we find (2.6) and the proof is done. O

2.3 Approximate Controllability of the Linearized System

The approximate controllability of system (2.1) is obtained as a consequence of the
observability inequality seen in Proposition 2.1.

Theorem 2.2 For any Yo € L2(0, Ly) and ¢ > 0, there exists pairs (Ve, Ye), with
ye € CO([0, T1; L?(0, L(t))) and ve € L*(w x (0, T)), satisfying (2.1) and

lye (-, T)||L2(0,Z(T)) <e. (2.10)
Furthermore, v can be found such that
”Ue”Lz(wx(O,T)) = Cl||)’0||L2(0,LO)a (2.11)

—
where Cy depends on ||allL>0p), 1blL~0p), IL lloo, L, @, and T.

Proof Thus, let yg € L2(0, Lo) and ¢ > O be given and let us introduce the functional
Je(-;a, b, L) with

— 1
Jete" a0, T) = 5 / / gy ¢ el s
wx (0,

+ello” 20,2y + @6 00, Y0 12(0, 1) »
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for all o7 € L2(0, L(T)).

Here, ¢ is the solution of (2.2) associated to ¢’ . Using (2.6), it is relatively easy to
check that J.(-; a,b, L) is strictly convex, continuous, and coercive in L2(0,L(T)),
SO it possesses a unique minimum @T € L%(0, L(T)), whose associated solution is
denoted by @.

Let us now introduce the control v, = 6_2*'0“53@10 and denote by y, the solution
to (2.1) associated to v, that is

L(1) ~
Ye,r — B /0 y(x, t)dx) Yexx +a(¥, Y, )ye + bV, V)Y x = Velw, (x,1) € Qfs

ye(x, 1) = 05 ye (L(1), 1) = 0, €0, 1),
Ye(x, 0) = yo(x), x € (0, Ly),
(2.12)

Then, either ! = 0 or we can differentiate the functional at ¢! and obtain a
necessary condition to reach a minimum at @ :

~
_ ~ 4 o
// e G pdxdt + & | ———— . 97 + @5 0. 0 120,L9) =0

wx(0,T) ”(05 ”LZ(O.L()) LZ(O,L(T)) .

Vol e L2(0, L(T))
(2.13)

Furthermore, from the inequality J, (@T ) < J.(0) = 0 and (2.6), we deduce that
1 s —~ ~ —~
B // e 2A0a$3|‘/’8|2dxa?t + 8”905”1‘2((),{(]*)) < —(¢:(0), yO)LZ(o’Z(T))
wx(0,T)

1 // —2s 3~ 2 2
<= e TE2 o |Fdxdt + || yoll5 2
4 ) Joxo.1) ’ 1oL

and, consequently,

e 20,12, o S f f =303, Pdxdr
wx(0,T)
+e 8] 17200, 1ry) < 4C13001520, 100 214
So,
lle*“& = v 2 <2C|yoll (2.15)
el L2(wx0,T) = YollL2(0,Lo)- :
It is not difficulty to check that v, = 3_230“5 3@Tw is a solution of
—@et — B (1) Qe xx +alx, e +b(x,Dpex =0, (x,1) € Of,
@e(0,1) = 0; g (L(t), 1) =0, te(0,7), i (2.16)

Qe (x, T) = =1y (x, T), x € (0, L(T)).

@ Springer



11 Page 10 of 27 Applied Mathematics & Optimization (2023) 87:11

Multiplying both sides of the first equation of (2.12) by @, and integrating it on O,
we obtain

L(T)
! / ye(T)Pdx + / / ¢35, Pdxdt = —(@a( 0). 30) 120,10 -
€ Jo wx(0,T)

which implies that

L(T)
—/ |y (T)[*dx + // e PN Pdxdt < Cllyoll o, 217
€ Jo wx(0,T) 0

and therefore
”yé‘”LZ(()’Z(T)) =¢€ C||)’0||L2(0,L0) . (2.18)

Ase — 0, y.(T) — 0in L2(0, L(T)) and therefore v, is an approximated null-
control for (2.1).
The proof of Theorem 2.2 is completed. O

An immediate consequence of Theorem 2.2 is the following null controllability:

Corollary 2.1 For any yy € L%(0, Lo), there exists pairs (v,y), with y €
CO([0, T1; L*(0, L(1))) and v € L*(w x (0, T)), satisfying (2.1) and y(x, T) = 0,
Vx € (0, L(T)). Furthermore, v can be found such that

Il 22@wx©,1y) = C2llyoll20, L) (2.19)

—/
where Cy depends on ||lalL~ o), 1bIlL>0p) IIL lloo, Ly, @, and T.

2.4 A Regularity Property

Let (v, y) be a control-state pair furnished by Corollary 2.1. We will see in this section
that, for some 6 € [0, 1) only depending on ||Z/||oo, L, Ly, wand T, one has

246,146/2 0,9 —
ye o2 (0r) and wve (0D (2.20)

where C;’fj_e’(mw)/z ( QZ) is the space of functions u : Q_Z — R such that D! DSu(x, 1)
is continuous in Q_Z for 2r + s < m + 6, with m a non-negative integer, and the norm

is given by
lull gmsomorzgoy = D 107 D3ux, Dlloo
' 2r4s<m

|DI DSu(x, 1) — DI DSu(x’, )]
lx — x/|e + |t - t/|0/2

+ Z sup < +00.

2rs=m \ (5.0, 1)e0
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In the sequel, we recall some relevant Lemmas (their proofs will be given in
Appendix B):

Lemma 2.2 Assume that B € C}(R), g € CZ(R?), L € C*i([0,T)), and 5 €
2,1, ~—
Ce (O

L(1)
QO Ifp@)=gp </ y(x, 1) dx), then B € c?(|o, TD, forall0 <6 < 1;
0

1

. g . _ - Yog
(11) I.fa(-xat) 2/ _()LY(XJ‘),)\)’X(X’[)) d) and b(-xat) Zf _()\'y(-x’t)v
0o Os o Op
0,0/2

Ay (x,1)) dA, then one has a,b € C,; (Q_Z),for all0 <6 < 1;

(iii) If@(E. 1) = a(L(E. 1), then @ € CL}/*(Q). for all 0 < 0 < 1. If we consider
U

o~ §L° 14y /2 >
the function b(§,t) = b(L(t)§,t) — T with L € CY/2([0, T)), then b €
cll*(@) forall0 <y < 1.

Lemma23 [T € C'*i([0, T1), ¥ € C21(Qp) and B € CL(R), then the function
L :[0,T] — R given by

t L(s) N
L(t)=Lo— / [ﬂ (f y(x, s)dx) yx (L(s), s)} ds
0 0

is such that L € C1T9([0, T1), with0 < 6 < 1.

Now, we will apply a standard technique that leads to the construction of a control-
state with the required regularity (similar ideas were used in [30]). In this way, let us
detail the following steps:

Step 1 Control regularity
From Sect. 2.3, v, := e 20£35,.T,,, where @, is solution to

_as,t - ﬁ(t)as,xx +a(x, t)as + b(x, t)ae,x =0, (x,t) € Or,

?:(0,1) = 0; @ (L(1),1) =0, te©,T), . (221
Pe(x,T) =9 (x), x € (0, Lo),

Let us introduce:

&(x,H)= min {62A0||a1\|oo_exoa1(x,r>} and @(x,f) = max {62}»0”051“00_e)hoal(xyf)},
xe(0,L(1)) x€(0,L(1))
0<t<T 0<t<T

where a1 was given in (2.3). Let § be a real number such that 0 < § < 1/4 with
20 — (1+8)a > 0.
Thus, one has

a<Z<a+8
Y Y
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. @ .
Let us consider z, = ¢ 01797 ., such that z, satisfies:

—Zet — ,B(t)zs,xx +a(x,)ze + b(x, t)Zs,x =F, (x,1) € O,
2¢(0,1) = 0; ze(L(2), 1) =0, te(0,7),

. (2.22)
2e(x, T) =0, x € (0, L),

where F, = (eﬂ"(l%)%%) ©.. Observe that
t

2

_ T "1 39"\
|t (52
Yoy 14

Then, we obtain

2
|Fl> < C

250 & 1 s ~
e <_se WSV)%
14
—2spag3 [ —s508% 1 ?
< Cle %" (e v —

)@
Y

“25000£31A 12
< Cie 77| |7,

whence

// |F8|2dxdt§C1// e 20E3 |5 Pdxdt.
oL oL

From Carleman inequality and (2.15), we have

/ / |Fe|*dxdt < Cy / f e PE PG Pdxdt < Cllyollja 1)
or wx(0,T) 0

Let us now consider the following change of variables:

X o Lo

L)’
ne(¢,1) = ze(x,1) and G.(¢,t) = Fe(x, 1).
We have 1. (¢, t) is well defined in Q := (0, 1) x (0, T) and, moreover,
B ~ ~ B
“Ner — LT(Z)%,;*; +d(g, e + b, Dner = Ge(g, 1), (£, 1) € O,
ne(0,1) = 0; ne(1,1) =0, te©.7), (2.23)

ne(¢, T) =0, te@OD,

Since G¢(¢, 1) € L2((0, 1) x (0, T)), then 1¢ (¢, 1) € W' ((0, 1) x (0, T)), and
17wy < ClIGelL20) < CllEell 20,
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Since W' ((0. 1) x (0, 7)) = ¢//2/*

then

([0, 17 x [0, T]) is acontinuous embedding,

IITIaIICZl/tz,IM@) = CllFellz2c0,) = Cliyollz2(0,14)-

Therefore, from the change of variables, z, € Cl/2 174 (Q), and ”Zg“Cl/Z Vig) =

Cllyollz2(0.1,)» thus, ve = e 20 g3y, 3 30(1+8)Vz 1, € Cl/2 174 (Or)- Observe that:

e—2soa§.2y3 so(1+8) % =0 (25— (1+5)0t)

y < g % e Y

where the right-hand side of the last inequality is bounded, and consequently,
”veHCl,/rz’l“(Q*z) < Cllyollz2(0,1¢)-

Step 2 State regularity

If g € C'(R), L € C'*i ([0, T]), and ¥ € C2} (Q7), then, from Lemma 2.2, the
functions

L(1) Ly
ﬂ(t)=ﬂ(f i(s,t)ds>, a(x,t)=/ ;g(ky(x,t),kix(x,t))d’\
0 0 N
and
1
b(x,1) =/ 9 (A (x, 1), Ay (x, 1)) dA
0o dp

satisfy

B(t) € C?([0, T1), and a(x, 1), b(x, 1) € CL7* (07), forall0 <6 < 1,

(2.24)

therefore, y. is solution to
Vet = B (1) Yexx +ax, 1)ye +b(x, 1) yer = Velw, (x,1) € Op,
y£(0,1) = 05 ye (L(2),1) =0, t€(0,7), (2.25)
yé‘(-xa O) :yo(x), X € (Oa L0)5

Since L € C'*1/4([0, T1), from (2.24) and change of variables { = m ,a, ) =
~ L'(1)
a(L(t)¢,t),and b(¢, 1) = b(L()¢, 1) — ¢ Lo we have

v e /(0. abec/ ' (Q). and % e c'4(0, 1),
t
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thus, w; is solution to

W — f%ws,;; L AQ Dwe 4 BE Dweg = T2, 1), (0.1) € O,
we(0,1) =0; we(1,1) =0, te,T), -
we (7. 0) = yo(L(0)Z, 0), ce ),

From Theorem 5.2, Chap. IV, p. 320 [28], the function w,  C;+/>"*'/* (@) and

- -
||wa||cgjl/2~l+l/4(§) =C <”U‘€”C§,/,2’l/4@ + ||y0||c2+1/2(o,1))

Therefore, for 6 = 1/2 fixed, we have y, € ijl/z’lﬂ/“ (Q_Z) and

||y£||cff;l/2,l+l/4(gfz) < C(IyollL20.1y) + 10l c2+120.15)) (2.26)

3 Main Result

This section is devoted to prove the main result, namely, TheoremReferences [11,
14, 16, 17, 21 and 29] were provided in the reference list; however, these were not
mentioned or cited in the manuscript. As a rule, if a citation is present in the text,
then it should be present in the list. Please provide the location of where to insert the
reference citation in the main body text. Kindly ensure that all references are cited
in ascending numerical order. 1.1. It will be a consequence of Theorem 2.2 and a
fixed-point argument (Fig. 1).

For this purpose, let (y, L) € C)%:,l (Q_Z) X CH'%([O, T]) be given, with L, <

L(t) < B, L(0) = Lo and yp € C**2([0, Lo]).

t4 t

P —————— - -

0 Ki1Kgo L.Ly, LT)B * 0
(a) Domain Qp, (b) Domain Q

Fig. 1 a Domain Q ; b Domain Q
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Next, we recall the problem given by (2.12) with an additional condition

L) ~
Vet — B ([) yix, t)dx) Yexx +a(3, Y )ye +b(V. V) Vex = velw, (x,1) € OF,
ye(0,1) = 0; ye(L(1), 1) = 0, 1€(0,7),
Ye(x, 0) = yo(x), x € (0, Ly),
”y&‘ ('v T)”LZ(O,Z(T)) <e&
3.1

Let us introduce the sets

_ 217\ . 1—
Y= {y € Cyy (QZ) : ”y”C)%:tl (?Z) < R} and

Tl . i L L
7_ {L €C4(0, T : Ly < L) = B, LO) = Lo, ITll 1oy gy = R} '

where the constant R > 0 will be determined later.
Now, we set the mapping

He: Y x Z — €7/ (Qp) x Ci([0, T])
O, L) —> (ye, Le)

’

where y, satisﬁes 3.1) for v, = 6_230“§3$8Tw, @ is the unique minimum of
J8('9 g(yv yx)s L) and

t L(s)
Le(t) = Lo — / [ﬂ </ y(x,s) dx) Yex (L(s), s)} ds. (3.2)
0 0

Our goal is to prove that H, satisfies the hypothesis of the Schauder’s Fixed Point
Theorem. We can verify from the results in Sect. 2 that the mapping H, is well defined.
For || y0||C2 +% (0.L0) sufficiently small, from (2.26) we have that
s L0

—— <C <C < R;y.
ebeziign = € (000 + D0l g ) = Colboll s g = R

Furthermore, we have the following estimate:

L(s) L(s)
x,s) dx| < / 171l corgm, dx
‘/0 0 CY (0D

< ¥l coigr I Lllcoqo.r

<C .
< Clyoll oy o
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From the last estimate, one has

t L(s) o
[Le(2) — Lol = /0 Iﬁl‘/o Y(x, ) dx|lyex(L(s), )| ds

<C
< 2||y0||cz+%([0’L0])

Moreover

L(s) N
IL (1) = ‘ﬁ (/(; y(x,s) dx) Yex(L(2), 1)

<C .
< 3”y0”cz+%([0,LO])

In view of the Lemma 2.3, we obtain

L <C .
I sllcl+%([07T]) = 4||yollcz+%([0’L0])

— min{ Bt Lo=Ls B-Lo R,
Now, we take R = mm{cI S TOT G 64}

Therefore, for < R one has
”y()”c“%([o,LO]) <

I¥ellc2igm < R MLell sy oy S R and Lo < Loo) < B.

Thus, we verify that H, maps Y x Z into itself, that is
H (Y xZ)CYXxZ.

Furthermore,

Lyl _
Ve € Cijz’lﬂ (07) <= ij,l(Qz) compactly embedded.

From Lemma 2.3, we have that

L. € C'*9([0, T]) < C'*4([0, T]) com !
P , , pactly embedded, for ) <o <l1.

Therefore H; maps Y x Z into a compact set of Ci’tl (Q_z) X C1+% (0, T).
In view of the previous properties of H,, there exists § > 0 (independent of ¢) such
that, if || yo||c < §, we can apply Schauder’s Fixed Point Theorem to the

242 ([0, Lo))
mapping H, : Y x Z — Ci’tl (0p) x CH%([O, ).

Let (y¢, L) be a fixed point of H, for each ¢ > 0. Then, it is clear that (y., L¢),
together with v, satisfies (1.1),(1.2), (2.10) and (2.11).
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So, we can extract subsequences indexed by ¢ satisfying

ye =y in €7} (0D
L. — L in CY([0,T]) (3.3)
ve—v in L%*(w x (0, T)).

From (3.3), we can take limits in system (3.1) and deduce that y is the state associated
to control v and (1.1)—(1.2) is locally null controllable.
Hence, Theorem 1.1 is proved.

4 Open Questions

As a first comment, an interest question concerns the global null controllability to
(1.1)—(1.2), which does not seem to be simple. To prove a global result, we would have
to use a global inverse mapping theorem, but this requires much more complicated
estimates, which do not seem to be accesible.

Other important topics arise from our current research:

e In the system (1.1), we can replace the nonlocal nonlinearity 8 ( OL(I) ydx) by
B ( fOL(t) yxdx), in order to analyze whether it is possible to prove results about
null controllability.

e An interesting case deals with the null controllability of the degenerate system

L(t)
Ve — (/3 <X/ ydx) )’x) +8(y,yx) =vly, (x,1) € O,
0 x 4.1)

v(0,1) =0; y(L(1), 1) =0, te(0,7),
y(x,0) = yo(x), x € (0, Lo),

with the additional boundary condition

L(1)
-L'(t)=p (X/O y(x, t)dX> yx(L(1), 1),

where S is a separated variables function given by B(x,r) = £(r)a(x) and B
defines an operator which degenerates at x = 0 and has a nonlocal term. More
precisely, the function a behaves x*, with o € (0, 1).

On the controllability of degenerate parabolic equations, for an instance, we men-
tion the following works: Cannarsa et al. [4-8], Alabau-Boussouira et al. [1] and
Demarque et al. [10].
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e Another interesting case is found when the control function acts on the free bound-
ary, as we can see in the system below:

L(t)
ye—B /0 ydx) Yix 80, yx) =0, (x,1) € O,

v(0,1) =0; y(L(®), 1) =v(), t € (0,7),
y(x,0) = yo(x), x € (0, Lo),

“4.2)

together with (1.2) and (1.3).
However, this control problem needs a deeper analysis.

Funding The authors have not disclosed any funding.
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Appendix A: Proof of Theorem 2.1
Let ¥ be new variable defined by ¢(x, 1) := @Dy (x, ). It yields:

0 = sa %Y + ey, @ = sae’* Y + e** Y and
Pxx = e’ (fox + Sza)%w + 250, Yy + S“xxW) .

The functions « and & yield:

oy = =& = —)»ao,xg, Qxx = —Azdg,xé - )»Olo,xxé,
r—2 2l lloo _ et (6,0)
4= T = kR <e e ) Aok,
(T —21) g, rx Q1 000, x
Uyt =kAE| —————oapgy — —— — A——
re = KAE <t(T —n T Tk k

and, for X sufficiently large, one has:

x| < A, | < CA%E,
;| < CEM*E 4 Cag < CAE>  and
x| < C2E%.
On the other hand, we have that ¥ (x,0) = 0 in (0, L(0)) and ¥ (x,T) = 0 in

(0, L(T)).
Moreover, replacing ¢ by e*“v in the PDE (2.2), it yields:

N s+ Y) + €72 B () Yrea + B (1) 7Y + 28 (1) seata
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1

B (1) s | + € @) + s (0¥ + by | = Flx, 1),
therefore,
[+ 28 () s |+ [ B Y + B (1) 5%y ]
= —e YF(x,1) — sy — B (1) sy — ayr — saby — by,

Considering the following notation

{ Uy o= Y, + 2B (1) saxye = (UY)1 + (U)o
Vo= B (1) Yex + B (1) %02y = (V)1 + (V)

it yields:
Uy +Vy =Gx, 1),
where

G(x,1) = —e S *CDF(x, 1) — soy(x, DY (x, 1) — B(E)sayy (x, DY (x, 1)
—a(x, )Y (x,t) —sax(x, )b(x, )Y (x,t) — b(x, )Y, (x,1).

Therefore,
2 2
1Yo, + IV, + 20, V)20,
= ™" F +seqyy + Bseixx ¥ +ay + soxb¥ + b¥eljz o
—2sa 2 2 2
S C<||e F||L2(QZ) + ”SC(IWHLZ(QZ) + ||,3S01xx‘ﬂ||L2(Qz)

Hlaw g, + lsacbir 122 + 109132, )

= C(// e_zm|F|2dxdt+// %oy |* || Pdxdt
or or
+// Bl Py Pdxdt + // lalfeo o ¥ *dxdt
or or
+// |b|%oo(Qz)52|ax|2|w|2dxdl‘ + // |b|%‘OO(QL)|IpX|2dxdt)
or or
< C(/f e‘z“’lFlzdxerr// s2CA2E3 Y Pdxdt
or or

L

+Cg // s25K4§2|¢|2dxdl + |a|%oc(QZ) //Q |¢|2dxdt
L Z

o1
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2 242 262 2 2 2
+|b|L°°(Q*) ST |C(0,x| E |'(/f| dxdt+ |b|L°C(Q*) |’(/fx| d.xdt
o I or
2 2

< C(// e—zm|F|2dxdr+/f s2A4g3|w|2dxdt+f/ |¢x|2dxdr).
or or or

(4.3)

T pL(1)
Let us compute (U, V‘/f)LZ(Qf) and use the fact that // = / / .
07 o Jo

T pL®)
I = ((Uy)n, (VW)I)LZ(QZ) = /0 /(; BYi¥xxdxdt

T o) L(t)

- / o = [ vevds | ar
0 0
1 77 L) d 5

= —5/0 /3/0 E[l/fx] dxdt

1 T d Z(t) 5 o 92—y
= ——/ ﬂd—/ (Yx)dx — B [Ye (L), )] L' (t) | dt
0 tJo

0

2
1 T L) ) 1 1T — 2 —
= —/ / B’ (Yy) dxdt + —/ B (L(t), 0] L (t)dr;
2Jo Jo 2 Jo

T rL@)
L = (UY)1, V¥ 1200, = /0 /0 s By ydxdt

T pL(1)
=/ / Szﬁlflta)%l/fdxdl‘
0 0
2 rT L) d .
s2 T Z(t) L 5 5 .
= —5/0 /0 (ﬁ o —{—Zﬂaxax,) Yedxdt;
T pL@)
Iz = ((UY),, (VI//)l)LZ(QZ) Z/(; /(; Zsﬂzaxwxwxdedt
T pL(1) d
= / / sBrax— (W)  dxdt
0 0 dx
T ,L®) T _ _
= - / / Bl Yidxdt + / sYLL@), DB (L(1), 1)dt
0 0 0
T
—/ sY2(0, 1) B2y (0, 1dr;
0
T pL(1)
I = (U2, (Vi) 120, = /O /0 253 B2y dxdt
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T L) @)
= 53/ / (w)dedl —3s° f / Bola, idxdt.
o Jo

Therefore,

L(r) L)
Uy Vi) oo, =~ / / sBaxy Y 2dxdt — 353 / / B2 oy, ¥2dxdt
10) _
-5 / / 2Baxopdxdt + / sY2(L(0), 1) B2y (L(1), )d1
0 0 0

T

T
+%‘/0 B [‘/’x(z(l), Z)]zz/(z)dt —[) sw}%((), f)ﬂ20{x(0, 1t

1 T rL® 2 T L@
5 / / B () dxdt — — / / BaZy’dxdt.
2Jo Jo 2 Jo Jo

Now, computing ||U1ﬂ||iz(Qz) + |l V‘ﬂ”iz@z) +2(U, VW)Lz(QZ), we have:

(U]l’7 VW)LZ(Q,) = 1] + 12 + 13 =+ 14

()
> C( / BU2(L(t), O (1)t + ~ / / w%um)
+<1 // ﬁ’aﬁwzdxdt—czszszf §3|1p|2dxdt>
2 or ot
Vel 2dxdt
2 /o,
T
—s f / A2C3&|Yc|Pdxdt + sAC3 / [s(Z(t),r)wg(Z(t),t)
wox(0,T)
+E0, Y20, 1) dz) <C4 / / sSate3y2dxdr

-C / f s3k4$3w2dxdt>; (4.4)
wox(0,T)

||U‘//|| 2 [V + Zﬂsaxlllx|2dxdt = |1//, + zﬂs(kao,xé)l//ﬂzdxdt
L20p) ~ 0, 0,
> C(// Illlezdxdt—[/ 521252|¢x|2dxdt>
or or
> 5( / / (&) "y [Pdxdr — / (SE)AZwalzdxdz>; (4.5)
or or
VY1720, = //Q BYxx + Bs’az vl dxdt
L
=/f |BYax — (—Bs222ad €2y Pdxdr
ot ’

c wx|2dxdr — 44t 2dd>
> (/fQwa Pdxdt //QLskswn rdi

@ Springer



11 Page22of27 Applied Mathematics & Optimization (2023) 87:11

> 5(// (ss)_lwxxlzdxdt—// s3A4§3|1p|2dxdt). (4.6)
or or

Combining the estimates (4.3) and (4.4), they yield:

c(/f e—2m|F|2dxdr+f/ s2k4§3|1ﬁ|2dxdt+// Ilpxlzdxdt>
ot or or

2 U720 + 1V V1720, + 20UV V20

T
U2 + IV IZ2 0, + ( /O BUT(L(1), HL (1)

T L(r)
+ / g f Y2dxdt — s? / / Blay’dxdt
0 0 o7
—s22? // §3|1p|2dxdt+s// A2E | |Pdxdt
or or

T
+s // x2g|wx|2dxdt+m/ [g(Z(x),:)w)%(Z(z),t)
wo x(0,T) 0

— £(0, )y (0, z)] dt+// s3x4g3w2dxdt—// s3)\4s3w2dxdt>.
or @0x(0.7)
(4.7)

Also, given ¢ > 0, we have:

/ / (&)1 2y Pdxdt <6 / / (58) s Pdxdi
0% (0.T) or

+C, / f (&2 Pdxdt  (4.8)
wox(0,T)

In fact,

' [ centyiasar| = ’ [ siupdsar
wox(0,T) wox(0,T)
/ / sA2E Y yrdxdt +‘ f / sA2EY Ydxdt
wox(0,T) wox(0,T)
< c‘ / f (&) (M) A2y )dxdt +‘ / f (&) Yrex (W) xdt
wox(0,T) wox(0,T)
2 RS 2,12
< c(el / / (sE) i Pdxdr + [ / (s&) A2y | dxdt)
wox(0,T) der JJwox©0.1)

1
+<52 // (s&) Wy |Pdxdt + —// (ss)3|,\2¢|2dxdt>.
wox(0,T) der J Jwox(0.7)
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Therefore,

f/ (sE)A2 s Pdxdt < —22 /f (58) ™ s Pdxdt
wox(0,T) 1 —Cer JJwyx,1)

+Ceyes / / (s&)* A4y | dxdt
wo % (0,7)

/ (SS) YepxPdxdt

l—Ce

+Cee, f/ (s&) )»4|1ﬂ|2dxdt.
wox(0,T)

Combining the inequalities (4.5)—(4.8), they yield:
J[ ot [l ] axde+ [ [ontn? + o6t R avar
or or

T
+(52) /O (@@ DY T, D + 0. DIy 0,0 | di

T L)
+/ ﬂ’/ |Ve |2 dxdt
0 0
<C <// e YN F2dxdt + f/ sSAYE3 |y Pdxdt
Qz wx(0,T)

+/f |1ﬂx|2dxdt+f ﬁ/(sg)zmwzdxdr).
or or

Therefore,

/ /Q 6O R+ ) + ORI + (583 | dxds

T
+s [ [6@a. 010 @0 0F + 60, Dl 0.0

<C (// e 2 FPdxdt +// (s§)3k4|w|2dxdt>.
o7 wx(0,T)

Coming back to the original variable ¢, we have (2.4).

Appendix B: Proof of Lemma 2.2 and 2.3

Proofof Lemma 2.2 (i) For all 0 < 6 < 1, we have:

1B(t1) — B()| L) L)
th—nl® |- t2|9 ‘/3 (/ y(x, t1) dx) - B (/0 Y(x, 1) dx ‘
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C L(n) L(n)
<o | [ s dx = [ st ax]
It — le 0

L(t) L(t2)
< — ‘/ (x,t1)dx+/ y(x, 1) —y(x, 12) dx‘
[t — t2| ) 0

“(IL(t) — L®)| + |t1 — 2])

S —
|71 —t2|
[t — 12|
I — )¢

Then, 8 € C?([0, T]), forall0 < 6 < 1.
(ii) For all 0 < 0 < 1, one has:

la(xy, t1) — a(x2, 1)|
(Jx1 — x2| + [t1 — 12]1/2)?

/ ‘a—(ly(xl 1), Ay, (x1,11)) — —(M’(Xz,lz) AV (x2, 02))| dA

(Ix1 — x2| + |11 — 1o 1/2)?
Iy, 1) — y(x2, )|+ [y, (x1, 11) — Y (x2, 22)])

<C-
(Jx1 — x2| + |11 — 12]1/2)0
(i —x[+]n—n)) -
- (Ix1 — x2| + |1 — 02| 1/2)0
Then, a € Ce G/Z(QL), for all 0 < 6 < 1. The proof is analogous to b(x, t).
(iii) For all 0 < 9 < 1, one has:
a1, n) —d(&, n)| _ la@@)ér. 1) — a(L(2)8, 1)
(&1 — &l + 1t —n]1/2)0 (161 — &l + 11 — 12]1/2)?

_la(L@)é,n) —a(L(n)6, 0)|
— (L@(DE — L& + |t — n]'/?)?
(IL(t)E — L()&| + 11 — 1] V/2)?
(161 — &2l + |11 — 1] 1/2)9

’

On the other hand, from (ii), we have

la(L(t1)&1, t1) — a(L(t2)&2, 1) -
(IL(1)&1 — L()&| + 111 — 1| 1/2)0 —

Then, one has,

@, n) —aE, 0l _ o (L@l =&l + &l ILe) - L) +1n - ]!/
(&1 — &l + 1t —n]V/2)P — (&1 — &l + |ty — 12]1/2)?
(51— &I+ LG — L@)| + | — 0]’
(&1 = &l + 10 — 12]1/2)?
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<000, YO el0,1).

Then, @ € C7/"*(Q). forall 0 <6 < 1.

In a similar way, we obtain b(§ t) =b(L(t)&, 1) € C

function b(£,1) = & L(( ))

Forall0 <y < 1,

0 9/2(Q). Let us analyse the

for L € C1/2([0, TY).

1b(&1, 1) — b(&2, )]
(&1 — &| + |1 — w12y

_ 1 . ‘ L'(t) L’(tz)
(&1 — &l + |11 — n]1/2)Y L(t)) L(tz)
C L'(t1) L'(t1) L'(rn)
=06 —Bl+in—n77 ('5‘ ~&l| L | Tl | L) L) D

/ / 1 ) IL(t2) — L(t)]
_ L'(t)—L L CTILaGOLO
(|sl fal +IL'0) = L' ()l + 1L/ ()] |L(t1)L(t2)|>

(&1 — &l + |t — |2y
(1&1 — &1+ |L' (1) — L' (12)| + |L(12) — L(11)])
< 0
(&1 — &l + |t — |2y

<C;-

<Cy-

since L € C117/2([0, TY).
Then, b € C/;//*(Q). forall 0 < y < 1. O

Proof of Lemma 2.3 For 0 < 6 < 1, one has:

[L'(t1) — L'(12)]
I — )¢

1 L) _
T B /0 y(x, r)dx ) ye (L(11), 1)
L(n) _
—B /0 y(x, n)dx | yx(L(t2), 12)
1 L) L(1) _
=—73"|8 / y(x, tdx | — B f y(x, )dx | | yx(L(t1), t1)
ln — 12 0 0

1
+
lt1 — 12
=L+Dh

L(12) _ _
7 B / y(x, )dx | - [y (L), 11) — ye(L(12), 12) ]

For 0 < 6 < 1, we obtain the following estimates for /] and /I»:

C L(t) L(ty)
| = —— - ‘/ y(x, 1) dx —/ y(x, 1) dx
[t — 1] 0 0
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and

C z(ll)_ z(tz)_ B
<< \ﬁ y(x,tl)dx—f-/ F(x, 1) — F(x, 1) dx
[t — 12 L(6) 0

dx

c - — L®) |y(x, 1) — Y(x, )]
< ———|L(t) — L()| +c/ -
|t1 — 1] 0 |t — 1]

|L(t1) — L(t2)] o ) =5 bl
nneo.r] 1t —nl? 11,6€[0,T] |t — 12]?

IA

G

| 12] 5 (L0, 11) = ye (L(02), 1)

[t — 12

C _ _
ol (IL(t1) — L(©2)| + |11 — 12]) < o0.
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