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Abstract
In this paper, we deal with the following double phase problem

⎧
⎪⎪⎨

⎪⎪⎩

−div
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

) = γ

( |u|p−2u

|x |p
+ a(x)

|u|q−2u

|x |q
)

+ f (x, u) in �,

u = 0 in ∂�,

where � ⊂ R
N is an open, bounded set with Lipschitz boundary, 0 ∈ �, N ≥ 2,

1 < p < q < N , weight a(·) ≥ 0, γ is a real parameter and f is a subcritical function.
By variational method, we provide the existence of a non-trivial weak solution on the
Musielak-Orlicz-Sobolev space W 1,H

0 (�), with modular function H(t, x) = t p +
a(x)tq . For this, we first introduce the Hardy inequalities for space W 1,H

0 (�), under
suitable assumptions on a(·).
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1 Introduction

In the present paper, we study the following problem

⎧
⎪⎪⎨

⎪⎪⎩

−div
(|∇u|p−2∇u + a(x)|∇u|q−2∇u

) = γ

( |u|p−2u

|x |p
+ a(x)

|u|q−2u

|x |q
)

+ f (x, u) in �,

u = 0 in ∂�,

(1.1)
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where � ⊂ R
N is an open, bounded set with Lipschitz boundary, 0 ∈ �, N ≥ 2, γ is

a real parameter, 1 < p < q < N and

q

p
< 1 + 1

N
, a : � → [0,∞) is Lipschitz continuous. (1.2)

Here, we assume that f : � × R → R is a Carathéodory function verifying

( f1) there exists an exponent r ∈ (q, p∗), with the critical Sobolev exponent p∗ =
N p/(N − p), such that for any ε > 0 there exists δε = δ(ε) > 0 and

| f (x, t)| ≤ qε |t |q−1 + rδε |t |r−1

holds for a.e. x ∈ � and any t ∈ R;
( f2) there exist θ ∈ (q, p∗), c > 0 and t0 ≥ 0 such that

c ≤ θ F(x, t) ≤ t f (x, t)

for a.e. x ∈ � and any |t | ≥ t0, where F(x, t) =
∫ t

0
f (x, τ )dτ .

The existence of r in ( f1) is assured by (1.2) and q > 1, which yield N (q − p) < p <

qp so that q < p∗. The function f (x, t) = φ(x)
(
θ tθ−1 + r tr−1

)
, with φ ∈ L∞(�)

and φ > 0 a.e. in �, verifies all assumptions ( f1) − ( f2).
Problem (1.1) is driven by the so-called double phase operator, which switches

between two different types of elliptic rates, according to the modulating function
a(·). The functionals with double phase were introduced by Zhikov in [29–32] in
order to describe models for strongly anisotropic materials and provide examples
of Lavrentiev’s phenomenon. Other physical applications can be found for instance
on transonic flow [2], quantum physics [4] and reaction diffusion systems [8]. Also,
(1.1) falls into the class of problems driven by operators with non-standard growth
conditions, according toMarcellini’s definition given in [18, 19]. Following this direc-
tion, Mingione et al. prove different regularity results for minimizers of double phase
functionals in [3, 10, 11]. See also [7, 25] for regularity results in more generalized
situations. In [9], Colasuonno and Squassina analyze the eigenvalue problem with
Dirichlet boundary condition of the double phase operator. In particular, in [9,Sect.
2] they provide the basic tools to solve variational problems like (1.1), introducing
the standard condition (1.2). Recently, Mizuta and Shimomura study Hardy–Sobolev
inequalities in the unit ball for double phase functionals in [20]. Concerning nonlinear
problems driven by the double phase operator, we refer to [13, 16, 17, 22, 24] where
existence and multiplicity results are provided via variational techniques. While, in
[15, 27, 28] the double phase operator interacts with a convection term depending on
the gradient of the solution, causing a non-variational characterization of the problem.

Inspired by the above papers, we provide an existence result for (1.1) by variational
method. The main novelty, as well as the main difficulty, of problem (1.1) is the
presence of a double phase Hardy potential. Indeed, such term is responsible of the
lack of compactness of the Euler-Lagrange functional related to (1.1). In order to
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handle the double phase potential in (1.1), our weight function a : � → [0,∞)

satisfies

(a) a(λx) ≤ a(x) for any λ ∈ (0, 1] and any x ∈ �.

A simple example of Lipschitz continuous function verifying (a) is given by a(x) =
|x |. Also, we control parameter γ with the Hardy constants

Hm :=
(

m

N − m

)−m

, (1.3)

when m = p and m = q. Thus, we are ready to introduce the main result of the paper.

Theorem 1.1 Let � ⊂ R
N be an open, bounded set with Lipschitz boundary, 0 ∈ �

and N ≥ 2. Let 1 < p < q < N and a(·) satisfy (1.2) and (a). Let ( f1) − ( f2) hold
true. Then, for any γ ∈ (−∞,min{Hp, Hq}) problem (1.1) admits a non-trivial weak
solution.

The proof of Theorem 1.1 is based on the application of the classical mountain
pass theorem, see for example [23]. Also, Theorem 1.1 generalizes [17,Theorem 1.3],
where the authors consider problem (1.1) with γ = 0. However, our situation with
γ 
= 0 is much more delicate than [17], because of the lack of compactness, as well
explained in Remark 3.1.

The paper is organized as follows. In Sect. 2, we introduce the basic properties
of the Musielak–Orlicz and Musielak–Orlicz–Sobolev spaces, including also the new
Hardy inequalities, and we set the variational structure of problem (1.1). In Sect. 3,
we prove Theorem 1.1.

2 Preliminaries

The function H : � × [0,∞) → [0,∞) defined as

H(x, t) := t p + a(x)tq , for a.e. x ∈ � and for any t ∈ [0,∞),

with 1 < p < q and 0 ≤ a(·) ∈ L1(�), is a generalized N-function (N stands for
nice), according to the definition in [12, 21], and satisfies the so called (�2) condition,
that is

H(x, 2t) ≤ tqH(x, t), for a.e. x ∈ � and for any t ∈ [0,∞).

Therefore, by [21] we can define the Musielak–Orlicz space LH(�) as

LH(�) := {u : � → R measurable : �H(u) < ∞} ,

endowed with the Luxemburg norm

‖u‖H := inf
{
λ > 0 : �H

(u

λ

)
≤ 1

}
,
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where �H denotes the H-modular function, set as

�H(u) :=
∫

�

H(x, |u|)dx =
∫

�

(|u|p + a(x)|u|q)
dx . (2.1)

By [9, 12], the space LH(�) is a separable, uniformly convex, Banach space. While,
by [17,Proposition 2.1] we have the following relation between the norm ‖ · ‖H and
theH-modular.

Proposition 2.1 Assume that u ∈ LH(�), {u j } j ⊂ LH(�) and c > 0. Then

(i) for u 
= 0, ‖u‖H = c ⇔ �H
( u

c

) = 1;
(ii) ‖u‖H < 1 (resp. = 1, > 1) ⇔ �H(u) < 1 (resp. = 1, > 1);

(iii) ‖u‖H < 1 ⇒ ‖u‖q
H ≤ �H(u) ≤ ‖u‖p

H;
(iv) ‖u‖H > 1 ⇒ ‖u‖p

H ≤ �H(u) ≤ ‖u‖q
H;

(v) lim
j→∞ ‖u j‖H = 0 (∞) ⇔ lim

j→∞ �H(u j ) = 0 (∞).

The related Sobolev space W 1,H(�) is defined by

W 1,H(�) :=
{

u ∈ LH(�) : |∇u| ∈ LH(�)
}

,

endowed with the norm

‖u‖1,H := ‖u‖H + ‖∇u‖H, (2.2)

where we write ‖∇u‖H = ‖|∇u|‖H to simplify the notation. We denote by W 1,H
0 (�)

the completion of C∞
0 (�) in W 1,H(�) which can be endowed with the norm

‖u‖ := ‖∇u‖H,

equivalent to the norm set in (2.2), thanks to [9,Proposition 2.18(iv)] whenever (1.2)
holds true.

For any m ∈ [1,∞) we indicate with Lm(�) the usual Lebesgue space equipped
with the norm ‖ · ‖m . Then, by [9,Proposition 2.15(ii)-(iii)] we have the following
embeddings.

Proposition 2.2 Let (1.2) holds true. For any m ∈ [1, p∗] there exists Cm =
C(N , p, q, m,�) > 0 such that

‖u‖m
m ≤ Cm‖u‖m

for any u ∈ W 1,H
0 (�). Moreover, the embedding W 1,H

0 (�) ↪→ Lm(�) is compact for
any m ∈ [1, p∗).
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We denote by Lq
a(�) the weighted space of all measurable functions u : � → R

with the seminorm

‖u‖q,a :=
(∫

�

a(x)|u|qdx

)1/q

< ∞.

Using this further notation, in the next result we provide the Hardy inequalities for
space W 1,H

0 (�). The proof of the lemma is inspired by [14,Lemma 2.1].

Lemma 2.1 Let (1.2) and (a) hold true. Then, for any u ∈ W 1,H
0 (�) we have

Hp‖u‖p
Hp

≤ ‖∇u‖p
p, with ‖u‖Hp :=

∫

�

|u|p

|x |p
dx

Hq‖u‖q
Hq,a

≤ ‖∇u‖q
q,a, with ‖u‖Hq,a :=

∫

�

a(x)
|u|q
|x |q dx,

where Hp and Hq are given in (1.3).

Proof By [14,Lemma 2.1], (2.1) and Proposition 2.1, we know that

‖u‖p
Hp

≤
(

p

N − p

)p

‖∇u‖p
p,

for any u ∈ W 1,H
0 (�). Now, taking inspiration from [14,Lemma 2.1], let u ∈ C∞

0 (�).
Then, we have

|u(x)|q = −
∫ ∞

1

d

dλ
|u(λx)|qdλ = −q

∫ ∞

1
|u(λx)|q−2u(λx)∇u(λx) · x dλ

a.e. in RN . Hence, by Hölder inequality, (a) and trivially extending a(·) in the whole
space RN

∫

�

a(x)
|u(x)|q
|x |q dx =

∫

RN
a(x)

|u(x)|q
|x |q dx

= −q
∫ ∞

1

∫

RN
a(x)

|u(λx)|q−2u(λx)

|x |q−1 ∇u(λx) · x

|x |dx dλ

= −q
∫ ∞

1

∫

RN

1

λN+1−q
a

( y

λ

) |u(y)|q−2u(y)

|y|q−1 ∇u(y) · y

|y|dy dλ

≤ q
∫ ∞

1

dλ

λN+1−q

∫

RN
a(y)

|u(y)|q−1

|y|q−1 |∇u(y)|dy

≤ q

N − q

(∫

�

a(y)
|u(y)|q
|y|q dy

)(q−1)/q (∫

�

a(y)|∇u(y)|qdy

)1/q

.
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From this, we obtain

‖u‖q
Hq,a

≤
(

q

N − q

)q

‖∇u‖q
q,a,

which holds true for any u ∈ W 1,H
0 (�) by density, (2.1) and Proposition 2.1. ��

We are now ready to introduce the variational setting for problem (1.1). We say that
a function u ∈ W 1,H

0 (�) is a weak solution of (1.1) if

∫

�

(
|∇u|p−2 + a(x)|∇u|q−2

)
∇u · ∇ϕdx

= γ

∫

�

( |u|p−2u

|x |p
+ a(x)

|u|q−2u

|x |q
)

ϕdx +
∫

�

f (x, u)ϕdx,

for any ϕ ∈ W 1,H
0 (�). Clearly, the weak solutions of (1.1) are exactly the critical

points of the Euler-Lagrange functional Jγ : W 1,H
0 (�) → R, given by

Jγ (u) := 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,a − γ

(
1

p
‖u‖p

Hp
+ 1

q
‖u‖q

Hq,a

)

−
∫

�

F(x, u)dx,

which is well defined and of class C1 on W 1,H
0 (�).

3 Proof of Theorem 1.1

Throughout the sectionwe assume that� ⊂ R
N is an open, bounded setwith Lipschitz

boundary, 0 ∈ �, N ≥ 2, 1 < p < q < N , (1.2) and (a) hold true, without further
mentioning. Also, we denote with t+ = max{t, 0} and t− = max{−t, 0} respectively
the positive and negative parts of a number t ∈ R.

We recall that functional Jγ : W 1,H
0 (�) → R fulfills the Palais-Smale condition

(P S) if any sequence {u j } j ⊂ W 1,H
0 (�) satisfying

{Jγ (u j )} j is bounded and J ′
γ (u j ) → 0 in

(
W 1,H

0 (�)
)∗

as j → ∞, (3.1)

possesses a convergent subsequence in W 1,H
0 (�).

The verification of the (P S) condition for Jγ is fairly delicate, considering
the contribution of the double phase Hardy potential. Indeed, even if
W 1,H

0 (�) ↪→ L p(�, |x |−p) and W 1,H
0 (�) ↪→ Lq(�, a(x)|x |−q) by Lemma 2.1,

these embeddings are not compact. For this, we exploit a suitable tricky step analysis
combined with the celebrated Brézis and Lieb lemma in [6,Theorem 1], which can be
applied in W 1,H

0 (�) if we first prove the convergence ∇u j (x) → ∇u(x) a.e. in �, as
j → ∞.
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Proposition 3.1 Let ( f1) − ( f2) hold true. Then, for any γ ∈ (−∞,min{Hp, Hq})
the functional Jγ verifies the (P S) condition.

Proof Let us fix γ ∈ (−∞,min{Hp, Hq}) and let {u j } j ⊂ W 1,H
0 (�) be a sequence

satisfying (3.1).
We first show that {u j } j is bounded in W 1,H

0 (�), arguing by contradiction. Then,
going to a subsequence, still denoted by {u j } j , we have lim

j→∞ ‖u j‖ = ∞ and ‖u j‖ ≥ 1

for any j ≥ n, with n ∈ N sufficiently large. Thus, according to ( f2) and Lemma 2.1,
we get

Jγ (u j ) − 1

θ
〈J ′

γ (u j ), u j 〉 =
(
1

p
− 1

θ

)

‖∇u j‖p
p +

(
1

q
− 1

θ

)

‖∇u j ‖q
q,a − γ

(
1

p
− 1

θ

)

‖u j ‖p
Hp

− γ

(
1

q
− 1

θ

)

‖u j ‖q
Hq,a

−
∫

�

[

F(x, u j ) − 1

θ
f (x, u j )u j

]

dx

≥
(
1

p
− 1

θ

) (

1 − γ +

Hp

)

‖∇u j ‖p
p +

(
1

q
− 1

θ

) (

1 − γ +

Hq

)

‖∇u j ‖q
q,a

−
∫

�t0

[

F(x, u j ) − 1

θ
f (x, u j )u j

]+
dx

≥
(
1

q
− 1

θ

) (

1 − γ +

min{Hp, Hq }
)

�H(∇u j ) − D,

(3.2)

since θ > q > p by ( f2), where

�t0 = {
x ∈ � : |u j (x)| ≤ t0

}
and D = |�| sup

x∈�,|t |≤t0

[

F(x, t) − 1

θ
f (x, t)t

]+
< ∞,

with the last inequality which is consequence of ( f1). Thus, by (3.1) there exist c1,
c2 > 0 such that (3.2) and Proposition 2.1 yield at once that as j → ∞,

c1 + c2‖u j‖ + o(1) ≥
(
1

q
− 1

θ

)(

1 − γ +

min{Hp, Hq}
)

‖u j‖p − D

giving the desired contradiction, since θ > q > p > 1 and γ < min{Hp, Hq}.
Hence, {u j } j is bounded in W 1,H

0 (�). By Propositions 2.1–2.2, Lemma 2.1,

[5,Theorem 4.9] and the reflexivity of W 1,H
0 (�), there exist a subsequence, still

denoted by {u j } j , and u ∈ W 1,H
0 (�) such that

u j⇀u in W 1,H
0 (�), ∇u j⇀∇u in

[
LH(�)

]N
,

u j⇀u in L p(�, |x |−p), u j⇀u in Lq(� \ A, a(x)|x |−q),

‖u j − u‖p
Hp

+ ‖u j − u‖q
Hq,a

→ �, u j → u in Lm(�),

u j (x) → u(x) a.e. in �, |u j (x)| ≤ h(x) a.e. in �, (3.3)
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as j → ∞, with m ∈ [1, p∗), h ∈ Lq(�) and A is the nodal set of weight a(·),
given by

A := {x ∈ � : a(x) = 0} .

Indeed, since a(·) is a Lipschitz continuous function by (1.2), then � \ A is an open
subset ofRN . Also, h ∈ Lq(�) by Proposition 2.2 and [5,Theorem 4.9], since q < p∗
by (1.2).

Now, we claim that

∇u j (x) → ∇u(x) a.e. in �, as j → ∞. (3.4)

Let ϕ ∈ C∞(RN ) be a cut-off function with 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B(0, 1/2) and
ϕ ≡ 0 in B(0, 1). Then, we define ψR(x) = 1 − ϕ(x/R) for any R > 0, so that
ψR ∈ C∞(RN ) with 0 ≤ ψR ≤ 1, ψR ≡ 1 in R

N \ B(0, R), ψR ≡ 0 in B(0, R/2)
and the sequence {ψRu j } j is bounded in W 1,H

0 (�), thanks to Proposition 2.1. By
simple calculation, for any j ∈ N we have

〈J ′
γ (u j ), ψR(u j − u)〉 =

∫

�
ψR

(
|∇u j |p−2∇u j + a(x)|∇u j |q−2∇u j

)
· (∇u j − ∇u)dx

+
∫

�

(
|∇u j |p−2∇u j + a(x)|∇u j |q−2∇u j

)
· ∇ψR(u j − u)dx

− γ

∫

�
ψR

( |u j |p−2u j

|x |p + a(x)
|u j |q−2u j

|x |q
)

(u j − u)dx

−
∫

�
ψR f (x, u j )(u j − u)dx .

(3.5)

Of course, all integrals in (3.5) are zero whenever � ⊂ B(0, R/2), since ψR ≡ 0
in B(0, R/2). Thus, let us consider R > 0 sufficiently small such that

[
R

N \ B(0, R/2)
]

∩ � 
= ∅. (3.6)

By Hölder inequality, (3.3), the facts that ψR ∈ C∞(RN ), a(·) is continuous in � and
{u j } j is bounded in W 1,H

0 (�), we get

∫

�

(
|∇u j |p−2∇u j + a(x)|∇u j |q−2∇u j

)
· ∇ψR(u j − u)dx

≤ C
(
‖∇u j ‖p−1

p ‖u j − u‖p + ‖∇u j ‖q−1
q,a ‖u j − u‖q,a

)
≤ C̃

(‖u j − u‖p + ‖u j − u‖q
) → 0,

(3.7)
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as j → ∞, for suitable C , C̃ > 0. Similarly, by considering also ( f1) with ε = 1, we
obtain

∣
∣
∣
∣

∫

�

ψR f (x, u j )(u j − u)dx

∣
∣
∣
∣ ≤

∫

�

(
q|u j |q−1 + rδ1|u j |r−1

)
|u j − u|dx

≤ C
(‖u j − u‖q + ‖u j − u‖r

) → 0
(3.8)

as j → ∞, for a suitable C > 0. Furthermore, by (3.3) and [1,Proposition A.8],
considering that a(·) > 0 in � \ A, we have

|u j |p−2u j⇀|u|p−2u in L p′
(�, |x |−p),

|u j |q−2u j⇀|u|q−2u in Lq ′
(� \ A, a(x)|x |−q)

so that

lim
j→∞

∫

�

ψR
|u j |p−2u j

|x |p
udx =

∫

�

ψR
|u|p

|x |p
dx,

lim
j→∞

∫

�

ψR a(x)
|u j |q−2u j

|x |q udx = lim
j→∞

∫

�\A
ψR a(x)

|u j |q−2u j

|x |q udx

=
∫

�\A
ψR a(x)

|u|q
|x |q dx

=
∫

�

ψR a(x)
|u|q
|x |q dx .

(3.9)

While, by (3.3) it follows that

ψR(x)
|u j (x)|p

|x |p
≤

(
2

p

)p

|u j (x)|p ≤
(
2

p

)p

h p(x) a.e in � \ B(0, R/2),

so that, since ψR ≡ 0 in B(0, R/2), the dominated convergence theorem gives

lim
j→∞

∫

�

ψR
|u j |p

|x |p
dx = lim

j→∞

∫

�\B(0,R/2)
ψR

|u j |p

|x |p
dx =

∫

�\B(0,R/2)
ψR

|u|p

|x |p
dx

=
∫

�

ψR
|u|p

|x |p
dx . (3.10)

Similarly, by using also (1.2), for a suitable constant L > 0 we get

ψR(x)a(x)
|u j (x)|q

|x |q ≤ L

(
2

q

)q

hq(x) a.e in � \ B(0, R/2),

which yields joint with the dominated convergence theorem

lim
j→∞

∫

�

ψR a(x)
|u j |q
|x |q dx =

∫

�

ψR a(x)
|u|q
|x |q dx . (3.11)
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Thus, by (3.1), (3.5), (3.7)–(3.11), we obtain

lim
j→∞

∫

�

ψR

(
|∇u j |p−2∇u j + a(x)|∇u j |q−2∇u j

)
· (∇u j − ∇u)dx = 0.

By Hölder inequality and being ψR ≤ 1, we see that functional

G : g ∈
[

LH(�)
]N �→

∫

�

ψR

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· g dx

is linear and bounded. Hence, by (3.3) we have

lim
j→∞

∫

�

ψR

(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
· (∇u j − ∇u)dx = 0,

so that, denoting �R := {x ∈ � : |x | > R} for any R > 0, we get

lim
j→∞

∫

�R

[
|∇u j |p−2∇u j − |∇u|p−2∇u

+a(x)
(
|∇u j |q−2∇u j − |∇u|q−2∇u

)]
·(∇u j − ∇u)dx

≤ lim
j→∞

∫

�

ψR

[
|∇u j |p−2∇u j − |∇u|p−2∇u

+a(x)
(
|∇u j |q−2∇u j − |∇u|q−2∇u

)]
·(∇u j − ∇u)dx

= 0

(3.12)

since ψR ≡ 1 in R
N \ B(0, R). Now, we recall the well known Simon inequalities,

see [26], such that

|ξ − η|m ≤

⎧
⎪⎨

⎪⎩

κm (|ξ |m−2ξ − |η|m−2η) · (ξ − η), if m ≥ 2,

κm
[
(|ξ |m−2ξ − |η|m−2η) · (ξ − η)

]m/2
(|ξ |m + |η|m)(2−m)/2 , if

1 < m < 2,

(3.13)

for any ξ , η ∈ R
N , with κm > 0 a suitable constant. Therefore, if p ≥ 2 by (3.13) we

have

∫

�R

|∇u j − ∇u|pdx

≤ κp

∫

�R

(
|∇u j |p−2∇u j − |∇u|p−2∇u

)
· (∇u j − ∇u)dx . (3.14)
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While, if 1 < p < 2 by (3.13) and the Hölder inequality we obtain

∫

�R

|∇u j − ∇u|pdx

≤ κp

∫

�R

[(|∇u j |p−2∇u j − |∇u|p−2∇u
) · (∇u j − ∇u)

]p/2 (|∇u j |p + |∇u|p)(2−p)/2
dx

≤ κp

[∫

�R

(|∇u j |p−2∇u j − |∇u|p−2∇u
) · (∇u j − ∇u)dx

]p/2 (‖∇u j ‖p
p + ‖∇u‖p

p
)(2−p)/2

≤ κ̃p

[∫

�R

(|∇u j |p−2∇u j − |∇u|p−2∇u
) · (∇u j − ∇u)dx

]p/2

(3.15)

where the last inequality follows by the boundedness of {u j } j in W 1,H
0 (�) and

Proposition 2.1, with a suitable new κ̃p > 0. Also, by convexity and since a(x) ≥ 0
a.e. in � by (1.2), we have

a(x)
(
|∇u j |q−2∇u j − |∇u|q−2∇u

)
· (∇u j − ∇u) ≥ 0 a.e. in �. (3.16)

Thus, combining (3.12), (3.14)–(3.16) we prove that ∇u j → ∇u in [L p(�R)]N as
j → ∞, whenever R > 0 satisfies (3.6). However, when � ⊂ B(0, R/2) we have
�R = ∅. Thus, for any R > 0 the sequence ∇u j → ∇u in [L p(�R)]N as j → ∞,
and by diagonalization we prove claim (3.4).

Since the sequence {|∇u j |p−2∇u j } j is bounded in L p′
(�), by (3.4) we get

lim
j→∞

∫

�

|∇u j |p−2∇u j · ∇u dx = ‖∇u‖p
p. (3.17)

While, since {|∇u j |q−2∇u j } j is bounded in Lq ′
(� \ A, a(x)), by (3.4) and

[1,Proposition A.8]

lim
j→∞

∫

�

a(x)|∇u j |q−2∇u j · ∇u dx = lim
j→∞

∫

�\A
a(x)|∇u j |q−2∇u j · ∇u dx

= ‖∇u‖q
q,a . (3.18)

Also, arguing as in (3.8) and (3.9), we can prove

lim
j→∞

∫

�

f (x, u j )(u j − u)dx = 0,

lim
j→∞

∫

�

( |u j |p−2u j

|x |p
u + a(x)

|u j |q−2u j

|x |q u

)

dx = ‖u‖p
Hp

+ ‖u‖q
Hq,a

.

(3.19)
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Furthermore, using (3.3), (3.4) and the Brézis and Lieb lemma in [6,Theorem 1], we
obtain

‖∇u j‖p
p − ‖∇u j − ∇u‖p

p = ‖∇u‖p
p + o(1),

‖∇u j‖q
q,a − ‖∇u j − ∇u‖q

q,a = ‖∇u‖q
q,a + o(1),

‖u j‖p
Hp

− ‖u j − u‖p
Hp

= ‖u‖p
Hp

+ o(1),

‖u j‖q
Hq,a

− ‖u j − u‖q
Hq,a

= ‖u‖q
Hq,a

+ o(1)

(3.20)

as j → ∞. Thus, by (3.1), (3.17), (3.18) and (3.19), we get

o(1)=
〈
J ′
γ (u j ), u j − u

〉
=

∫

�

(
|∇u j |p−2∇u j+a(x)|∇u j |q−2∇u j

)
· (∇u j−∇u)dx

− γ

∫

�

( |u j |p−2u j

|x |p
+ a(x)

|u j |q−2u j

|x |q
)

(u j − u)dx

−
∫

�

f (x, u j )(u j − u)dx

= ‖∇u j‖p
p − ‖∇u‖p

p + ‖∇u j‖p
q,a − ‖∇u‖p

q,a

− γ
(
‖u j‖p

Hp
− ‖u‖p

Hp
+ ‖u j‖q

Hq,a
− ‖u‖q

Hq,a

)
+ o(1)

(3.21)

as j → ∞. Hence, by (3.20) it follows that

‖∇u j − ∇u‖p
p + ‖∇u j − ∇u‖q

q,a = γ
(
‖u j − u‖p

Hp
+ ‖u j − u‖q

Hq,a

)
+ o(1)

= γ � + o(1) (3.22)

as j → ∞. Now, assume for contradiction that � > 0. Then, from Lemma 2.1, (3.22)
and the fact that γ < min{Hp, Hq}, we have

lim
j→∞ ‖∇u j − ∇u‖p

p + lim
j→∞ ‖∇u j − ∇u‖q

q,a

≤ γ +
(

lim
j→∞ ‖u j − u‖p

Hp
+ lim

j→∞ ‖u j − u‖q
Hq,a

)

< min{Hp, Hq }
(

lim
j→∞ ‖u j − u‖p

Hp
+ lim

j→∞ ‖u j − u‖q
Hq,a

)

≤ lim
j→∞ ‖∇u j − ∇u‖p

p + lim
j→∞ ‖∇u j − ∇u‖q

q,a

which is impossible. Therefore � = 0, so that by (3.22) we have ∇u j → ∇u in
[
L p(�) ∩ Lq

a(�)
]N

as j → ∞, implying that u j → u in W 1,H
0 (�) thanks to (2.1)

and Proposition 2.1. This concludes the proof.
��

Now,we complete the proof of Theorem1.1, proving first that functional Jγ satisfies
the geometric features of the mountain pass theorem.
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Lemma 3.1 Let ( f1) holds true. Then, for any γ ∈ (−∞,min{Hp, Hq}) there exist

ρ = ρ(γ ) ∈ (0, 1] and α = α(ρ) > 0 such that Jγ (u) ≥ α for any u ∈ W 1,H
0 (�),

with ‖u‖ = ρ.

Proof Let us fix γ ∈ (−∞,min{Hp, Hq}). By ( f1), for any ε > 0 we have a δε > 0
such that

|F(x, t)| ≤ ε|t |q + δε|t |r , for a.e. x ∈ � and any t ∈ R. (3.23)

Thus, by (3.23), Lemma 2.1, Propositions 2.1 and 2.2, for any u ∈ W 1,H
0 (�) with

‖u‖ ≤ 1, we obtain

Jγ (u) ≥ 1

p

(

1 − γ +

Hp

)

‖∇u‖p
p + 1

q

(

1 − γ +

Hq

)

‖∇u‖q
q,a − ε‖u‖q

q − δε‖u‖r
r

≥ 1

q

(

1 − γ +

min{Hp, Hq}
)

�H(∇u) − εCq‖u‖q − δεCr‖u‖r

≥
[
1

q

(

1 − γ +

min{Hp, Hq}
)

− εCq

]

‖u‖q − δεCr‖u‖r ,

since q > p and γ < min{Hp, Hq}. Therefore, choosing ε > 0 sufficiently small so
that

σε = 1

q

(

1 − γ +

min{Hp, Hq}
)

− εCq > 0,

for any u ∈ W 1,H
0 (�) with ‖u‖ = ρ ∈ (

0,min{1, [σε/(2δεCr )]1/(r−q)}], we get

Jγ (u) ≥ (
σε − δεCrρ

r−q)
ρq := α > 0.

This completes the proof. ��
Lemma 3.2 Let ( f1) − ( f2) hold true. Then, for any γ ∈ R there exists e ∈ W 1,H

0 (�)

such that Jγ (e) < 0 and ‖e‖ > 1.

Proof Let us fix γ ∈ R. By ( f1) and ( f2), there exist d1 > 0 and d2 ≥ 0 such that

F(x, t) ≥ d1|t |θ − d2 for a.e. x ∈ � and any t ∈ R. (3.24)

Thus, if ϕ ∈ W 1,H
0 (�) with ‖ϕ‖ = 1, then by Proposition 2.1 also �H(∇ϕ) = 1, so

that by (3.24), for any t ≥ 1 we have

Jγ (tϕ) ≤ tq

p
− t p γ −

p
‖ϕ‖p

Hp
− tq γ −

q
‖ϕ‖q

Hq,a
− tθd1‖ϕ‖θ

θ − d2|�|.

Since θ > q > p by ( f2), passing to the limit as t → ∞ we get Jγ (tϕ) → −∞.
Thus, the assertion follows by taking e = t∞ϕ, with t∞ sufficiently large. ��
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Proof of Theorem 1.1 Since Jγ (0) = 0, by Proposition 3.1, Lemmas 3.1–3.2 and the
mountain pass theorem, we prove the existence of a non-trivial weak solution of (1.1).

��
We conclude this section with a result of independent interest, which shows how

(3.4) allows us to cover the complete situation in Theorem 1.1, with 1 < p < q < N

and γ ∈ (−∞,min{Hp, Hq}). For this, let Lγ : W 1,H
0 (�) →

(
W 1,H

0 (�)
)∗

be an

operator such that

〈Lγ (u), v〉 :=
∫

�

(
|∇u|p−2 + a(x)|∇u|q−2

)
∇u · ∇vdx

−γ

∫

�

( |u|p−2u

|x |p
v + a(x)

|u|q−2u

|x |q v

)

dx,

for any u, v ∈ W 1,H
0 (�).

Lemma 3.3 Let 2 ≤ p < q < N and γ ∈ (−∞,min{Hp, Hq}/max{κp, κq}), with
κp and κq given by (3.13). Then, the operator Lγ is a mapping of (S) type, that is if

u j⇀u in W 1,H
0 (�) and

lim
j→∞〈Lγ (u j ) − Lγ (u), u j − u〉 = 0, (3.25)

then u j → u in W 1,H
0 (�).

Proof Let us fix 2 ≤ p < q < N and γ ∈ (−∞,min{Hp, Hq}/max{κp, κq}). Let
{u j } j be a sequence in W 1,H

0 (�) such that u j⇀u in W 1,H
0 (�) and (3.25) holds true.

Then, up to a subsequence {u j } j is bounded in W 1,H
0 (�) and by Lemma 2.1 and

[5,Theorem 4.9], we obtain

‖u j − u‖p
Hp

+ ‖u j − u‖q
Hq,a

→ �, u j (x) → u(x) a.e. in �,

as j → ∞. Thus, by [6,Theorem 1] we get

‖u j‖p
Hp

− ‖u j − u‖p
Hp

= ‖u‖p
Hp

+ o(1),

‖u j‖q
Hq,a

− ‖u j − u‖q
Hq,a

= ‖u‖q
Hq,a

+ o(1) (3.26)

as j → ∞. While, by (3.13) we have

∫

�

[(|∇u j |p−2∇u j − |∇u|p−2∇u
) + a(x)

(|∇u j |q−2∇u j − |∇u|q−2∇u
)] · (∇u j − ∇u)dx

≥ 1

max{κp, κq }
(‖u j − u‖p

p + ‖u j − u‖q
q,a

)
(3.27)
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for any j ∈ N. Hence, combining (3.25)–(3.27), as j → ∞

1

max{κp, κq}‖∇u j − ∇u‖p
p + ‖∇u j − ∇u‖q

q,a

= γ
(
‖u j − u‖p

Hp
+ ‖u j − u‖q

Hq,a

)
+ o(1) = γ � + o(1),

which recalls (3.22), up to a constant. From this point, we can argue as in the end of
the proof of Proposition 3.1, proving that u j → u in W 1,H

0 (�). ��
Remark 3.1 When 2 ≤ p < q < N and γ ∈ (−∞, K p,q min{Hp, Hq}), with

K p,q := min

{

1,
1

max{κp, κq}
}

,

we can prove Proposition 3.1 arguing as in [17,Lemma 5.1] and using Lemma 3.3
instead of (3.4).
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