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Abstract
In this paper, we analyze linear-quadratic stochastic differential games with a contin-
uum of players interacting through graphon aggregates, each state being subject to
idiosyncratic Brownian shocks. The major technical issue is the joint measurability of
the player state trajectories with respect to samples and player labels, which is required
to compute for example costs involving the graphon aggregate. To resolve this issue
we set the game in a Fubini extension of a product probability space. We provide
conditions under which the graphon aggregates are deterministic and the linear state
equation is uniquely solvable for all players in the continuum. The Pontryagin max-
imum principle yields equilibrium conditions for the graphon game in the form of a
forward-backward stochastic differential equation, for which we establish existence
and uniqueness. We then study how graphon games approximate games with finitely
many players over graphs with random weights. We illustrate some of the results with
a numerical example.
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1 Introduction

Large systems suffer from a growth of complexity with system size that often makes
them practically intractable. These challenges arise in control theory, game theory,
as well as in many applications in applied mathematics, economics, and engineering.
For instance [20, 34] consider macroeconomic models with a continuum of infinites-
imally small firms or consumers subject to idiosyncratic random shocks. Mean field
game (MFG) theory [9, 10, 24, 29, 30] is a paradigm aimed at the characterization
of equilibria in games with a very large number of players. Typically, the game, with
a large but finite number of players, is approximated by a limit found by letting the
number of players grow to infinity. Much of the MFG theory assumes that players
react to one and the same distributional property of the whole population, for example
the mean player state. As a resut, it can only approximate games with a high degree
of symmetry among the players.

The theory of graphons provides a framework for the study of very-large systems
of agents whose interactions are not necessarily symmetric. See [32] for an exposé
of the theory. It provides a mathematically rigorous set-up for the analysis of limits
of sequences of network games of increasing size. The graphon approximation of a
network game is a limit of such a sequence, often referred to as a graphon game.

Graphon games have recently gained an increasing interest motivated by the study
of strategic decision problems on very large networks of heterogeneous agents. Appli-
cations include telecommunications, social networks, electric grids, etc. Static graphon
games have been studied in both deterministic and stochastic settings [8, 38]. In the
dynamic setting, [11] considers a MFG with an Erdös–Renyi graph replacing the
standard MFG interaction (a complete graph with uniform weights). The papers [6,
7] study decentralized strategies in graphon games. Deterministic linear-quadratic
graphon games were studied in [19]. In a setting similar to that of graphon games, a
graphon-basedmodel for optimal network interaction was used in [14–18] to represent
control problems on large networks. All these works assume that the graph underpin-
ning the network of interactions is dense in the sense that the number of edges (non
trivial interactions) is of the same order as the number of vertices (agents). Special
cases of sparse networks have been studied, see for example [13, 27, 28]. Obviously,
graphon theory cannot be used in these cases.

In this paper, we study a dynamic, linear-quadratic, stochastic graphon game. The
states of a continuum of agents indexed by I , a closed bounded interval inR, evolve on
the real line while interacting. The agents’ state trajectories are given by the following
system: for x ∈ I and t ∈ [0, T ],

dXx
t =

(
a(x)Xx

t + b(x)αx
t + c(x)

∫

I
w(x, y)X y

t λ(dy)
)
dt + dBx

t , Xx
0 = ξ x , (1)

where w(·, ·) is a bounded graphon, λ is a probability measure extending the normal-
ized Lebesgue measure λI over I , αx is the strategy chosen by player x , and (Bx )x∈I
are independent standard Brownian motions. The integral

∫
I w(x, y)X y

t λ(dy) is the
population’s influence on player x’s state, an aggregate weighted by the graphon. The
necessity to integrate with respect to the extending measure λ comes from a deep
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measurability issue connected to the construction of a continuum family of Brownian
motions which we would like to be independent of each other. In the macroeconomic
literature, it is well known that dealing with a continuum of agents affected by idiosyn-
cratic shocks poses technical challenges related to measurability issues which get in
the way of a desirable law of large numbers, see e.g., [4, 25]. To cope rigorously with
these issues, several ways have been investigated. The notion of Fubini extension was
introduced to allow for an Exact Law of Large Numbers (ELLN) and [42] can be
viewed as a way to justify the second approach proposed in [12]. At first glance, a
natural way to define the aggregate might be

∫
I w(x, y)X y

t dy. This is however not
well behaved in a standard probabilistic setting: in the usual product space carrying a
continuum of independent Brownian motions (Bx )x∈I the process (ω, x) �→ Bx (ω)

is not jointly measurable (in the product space of the usual continuum product and the
Lebesgue space over the index set), see the references in [41]. One way of resolving
the measurability issue is to set the model in a Fubini extension of the usual product of
the sample probability space and an atomless index probability space (I , I, λ) extend-
ing the normalized Lebesgue probability space. The theory developed in [39, 42, 43]
grants existence of a probability space (Ω× I ,F�I,P�λ), called a Fubini extension
of the product space, carrying a collection of essentially pairwise independent (e.p.i.)
Brownian motions (Bx )x∈I with sufficient joint measurability (in the extension) for
the aggregate to be well defined. By e.p.i., we mean that for λ-a.e. x ∈ I , Bx is
independent of By for λ-a.e. y ∈ I , see Definition 1. Moreover, Fubini’s theorem for
iterated integrals holds in the Fubini extension. Some recent game-theoretical models
considering a continuum of agents in a Fubini extension are the rank-based reward
models [35–37, 45], the static graphon game in [8], and the model of [40].

Our first goal is a rigorous analysis of the system (1). For a strategy profile (αx )x∈I
from an admissible set, essentially defined as the set of decentralized controls, we
show that (1) admits a solution well-defined for all x ∈ I and that the aggregate
is a deterministic function of the agent label x ∈ I and time t ∈ [0, T ]. Graphon
systems with deterministic aggregates have recently been studied in [2, 3] and are also
a feature of the graphon game models cited above. To the best of our knowledge, this
paper and [8] are the only ones treating stochastic graphon games that do not a priori
assume the aggregate to be deterministic. As a consequence, our proofs build on the
following idea: identify the aggregate via a fixed point argument in an L2-space of
random variables on the Fubini extension, and subsequently show that the fixed point
must be constant in the sample variable ω ∈ Ω . To prove the second step we use the
Exact Law of Large Numbers (ELLN) [42]. In contrast, the theoretical works that a
priori assume deterministic aggregates must find them as a fixed point in a space of
measure-valued processes.

Next, we solve the linear-quadratic graphon game. In doing so, the deterministic
nature of the aggregate turns out to be of paramount importance. In the game, the
optimization problem of player x seeking their best response to λ-a.e. other player
following a given strategy profile can be rephrased as a search for their best response
to the deterministic aggregate trajectory

∫
I w(x, y)E[X y· ]λ(dy). We derive optimality

conditions for the game with a stochastic Pontryagin’s type maximum principle. The
following forward-backward stochastic differential equation (FBSDE) system, also
called the Hamiltonian system, appears in the optimality condition for the equilibrium
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strategy profile α̂ = (α̂x )x∈I : for t ∈ [0, T ] and x ∈ I ,

d X̂ x
t = ∂pH

x (t, X̂ x
t , α̂

x
t , pt )dt + dBx

t , X̂ x
0 = ξ x ,

dpxt = −∂χ H
x (t, X̂ x

t , α̂
x
t , pt )dt + qxt dB

x
t , pxT = ∂χh

x (X̂ x
T , Ẑ x

T ).
(2)

We show that (2) iswell-defined: for any finite time horizon T there is a unique solution
that solves the Hamiltonian system for all x ∈ I . In (2) Hx and hx are the Hamiltonian
and terminal cost of player x , respectively. With a solution of (2) at hand, the players
can construct an admissible strategy profile of decentralized controls which is a Nash
equilibrium for the graphon game. Under assumptions on the convexity of Hx and hx ,
x ∈ I , the Nash equilibrium is unique.

Many applications of interest involve models with finitely many players. Neverthe-
less, the search for Nash equilibria is most often prohibitive for all practical purposes,
justifying the quest for approximation results similar to those in the MFG theory. We
find a class of N -player games over fully connected interaction networks with random
weights for which the graphon game provides an approximation and the graphon game
equilibrium is the limit of the finite player equilibria. In these finite player games, the
aggregate for player k is the sum 1

N

∑N
	=1 w(ik, i	)X

	,N
t where i1, i2, . . . are ran-

domly sampled from [0, 1] (according to some distribution). In general, the search for
approximate equilibria for such N -player games is outside the scope of classical MFG
theory (except for the piecewise constant graphon). More specifically, we show that a
graphon game Nash equilibrium is an approximate Nash equilibrium for a N -player
game as described above. In the other direction, Nash equilibria of a sequence of such
finite player games converges to a graphon game equilibrium as N → ∞. Under
a continuity assumption on the graphon, we use the Law of Iterated Logarithms for
Banach space valued random variables to show that the rate of convergence and the
approximation error are both of order almost 1/

√
N with probability 1.

The paper is structured as follows. In Sect. 2 we introduce the notation and the
necessary background on graphons and Fubini extensions. We analyze equations (1)
and (2) in Sect. 3. The convergence results can be found in Sect. 4. Section 5 treats a
special case of the game for which the solution can be computed semi-explicitly, and
presents some solved examples. Most proofs are deferred to the appendix.

2 Preliminaries

2.1 The Graphon

Let I ⊂ R be a closed bounded interval. The set I is an index set labeling a continuum
of agents. The Lebesgue space over I is denoted by (I ,BI , λI ) and L2(I ) denotes the
space ofλI -equivalence classes of functions X : I → R such that

∫
I |X(x)|2λI (dx) <

∞. Hereafter, for a function X : I → R, we will often use the notation Xx = X(x)
for x ∈ I , and sometimes write X · = X(·) to stress the fact that X is a function of the
index. When the context is clear the dot is omitted.
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A graphon is a symmetric, measurable function w : I × I → [0, 1]. It defines an
integral operator W : L2(I ) → L2(I ):

[W f ](x) = 〈w(x, ·), f 〉λI :=
∫

I
w(x, y) f (y)λI (dy), x ∈ I , f ∈ L2(I ).

The operatorW is a symmetric Hilbert–Schmidt operator: there exists an orthonormal
basis in L2(I ) of eigenfunctions {ϕi }∞i=1 of W such that the eigenvalues λk are real
and square summable and:

[W f ] (x) =
∞∑
k=1

λkϕk(x)〈 f , ϕk〉λI , f ∈ L2(I ), λI -a.e. x ∈ I , (3)

and theHilbert–Schmidt normofW is given by‖W‖2 = ‖w‖L2(I×I ) = [∑k≥1 λ2k]1/2.
A standard reference for graphon theory is Lovász’s book [32].

2.2 Fubini Extensions

Much of the analysis in this paper relies on the existence of an uncountable collection
of essentially pairwise independent (e.p.i.) random variables jointly measurable in the
sample ω ∈ Ω and the label x ∈ I . The theory of Fubini extensions was developed to
facilitate this existence.

Definition 1 Let (Ω,F ,P) and (I , I, λ) be probability spaces. A process fromΩ × I
to a complete separable metric space is essentially pairwise independent (e.p.i.) if
for λ-a.e. x ∈ I and λ-a.e. y ∈ I , the random variables fx : ω �→ f (ω, x) and
fy : ω �→ f (ω, y) are independent.
A probability space (Ω × I ,W,Q) extending the usual product space (Ω × I ,F ⊗

I,P⊗ λ) is said to be a Fubini extension if for any real-valued Q-integrable function
f on (Ω × I ,W)

(i) the two functions fx : ω �→ f (ω, x) and fω : x �→ f (ω, x) are integrable,
respectively, on (Ω,F ,P) for λ-a.e. x ∈ I , and on (I , I, λ) for P-a.e. ω ∈ Ω;

(ii)
∫
Ω

fx (ω)dP and
∫
I fω(x)dλ(x) are integrable, respectively, on (I , I, λ) and

(Ω,F ,P), with
∫
Ω×I f dQ = ∫I

(∫
Ω

fxdP
)
dλ = ∫

Ω

(∫
I fωdλ

)
dP.

Remark 1 Given a Fubini extension as above, if E is a separable Banach space and f
is a strongly measurable E-valued function on (Ω × I ,W), then properties (i) and
(ii) of Definition 1 still hold as long as we interpret measurability as strong measura-
bility and integrability in the sense of Bochner integrals. This claim is an immediate
consequence of the fact that an E-valued function ϕ on a measure space (M,M) is
strongly measurable if and only if for each element e∗ of the dual E∗ of E , the real
valued function M � m �→ 〈e∗, ϕ(m)〉 ∈ R is measurable, and if μ is a measure on
(M,M), the Bochner integral

∫
M ϕ(m)μ(dm) is characterized, whenever it exists as

an element of E , by

〈
e∗,
∫

M
ϕ(m)μ(dm)

〉
=
∫

M
〈e∗, ϕ(m)〉μ(dm), e∗ ∈ E∗.
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In the next theorem we recite [43,Thm. 1], a result on the existence of a Fubini
extension carrying a continuum of e.p.i. jointly measurable random variables. It intro-
duces a particular sample space, (Ω,F ,P), an index space (I , I, λ), and a Fubini
extension of their product. See [42,Prop. 5.6] for the construction of the sample space.
The index space (I , I, λ) is the extension of (I ,BI , λI ) explicitly constructed in [43],
where we note that I is non-countably generated. The theorem below would be false
if the index-space extension was replaced by the original index space, see [43,p. 435]
for the detailed argument.

Theorem 1 Let I be the unit interval and S a Polish space. There exists a probability
space (I , I, λ) extending (I ,BI , λI ), a probability space (Ω,F ,P), and a Fubini
extension (Ω× I ,F�I,P�λ) of (Ω× I ,F⊗I,P⊗λ) such that for any measurable
mapping ϕ from (I , I, λ) to P(S), the set of Borel probability measures on S, there
is an F � I-measurable process f : Ω × I → S such that the random variables
fx = f (·, x) are e.p.i. and P ◦ f −1

x = ϕ(x) for x ∈ I .

Let T > 0 be a finite time horizon and let E := C([0, T ];R) be the space of
real-valued continuous functions on [0, T ] equipped with the topology of the uniform
convergence. Let S be the Polish space S := E × R, the Borel σ -field over S is
B(S) = B(E) ⊗ B(R). We use the notation σ = ([σ ]1, [σ ]2) to emphasize the two
components of σ ∈ S. For x ∈ I , let ϕ(x) = μ(x) ⊗ ν(x) where μ(x) is the Wiener
measure on E for each x ∈ I and ν : I → P(R) is an I-measurable function. The
probability measure ν(x)models the initial probability distribution of player x’s state.
By Theorem 1, there exists aF �I-measurable process B : Ω × I → S with random
variablesBx (·) = (Bx (·), ξ x (·)) e.p.i. and such that the law of (Bx , ξ x ) isμ(x)⊗ν(x)
for all x ∈ I . We denote by F

x the filtration generated by B
x .

We write L2
�(Ω × I ; E) for the space of equivalence classes of (F � I,B(E))-

measurable functions which are P � λ-square integrable, i.e., ϕ ∈ L2
�(Ω × I ; E)

if
∫

Ω×I
‖ϕx (ω)‖2EP � λ(dω, dx) < +∞,

and L2
�(Ω × I ) when E = R. We write L2

λ(I ; E) and L2(I ; E) for the space of
equivalence classes of (I,B(E)) and (B(I ),B(E)) measurable functions which are λ

and λI -square integrable, respectively. For any ϕ ∈ L2
�(Ω × I ), we use the notation:

E
� [ϕ] :=

∫

Ω×I
ϕx (ω)P � λ(dω, dx).

Expectation without a superscript, E, refers to the integral taken with respect to P.
Next, we extend the domain of the graphon operator to L2

�(Ω × I ):

W : L2
�(Ω × I ) � X �→ [WX ] : Ω × I � (ω, x) �→ [WX ](ω, x) ∈ R (4)

Naturally, we inquire if ([WXt ])t∈[0,T ] is measurable when X ∈ L2
�(Ω× I ; E)where

we understand Xt as Ω × I � (ω, x) �→ Xt (ω, x) = Xx (ω)t ∈ R.
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Lemma 1 If X ∈ L2
�(Ω × I ; E),

(i) for x ∈ I andP-a.e.ω ∈ Ω , the Bochner integral
∫
I w(x, y)X y(ω)λ(dy) defines

an element [WX ](x, ω) of E,
(ii) the mapping I × Ω � (x, ω) �→ [WX ](x, ω) is measurable with respect to the

completion for λI ⊗ P of the product σ -field BI ⊗ F ,
(iii) [WX ] so defined provides an extension of the graphon operator W to a bounded

operator on L2
�(Ω × I ; E) of norm at most 1.

Notice that Remark 1 implies that [WX ](x, ω)t = [WXt ](x, ω) as defined by formula
(4).

Proof If x ∈ I is fixed, ‖w(x, y)X y(ω)‖E ≤ ‖X y(ω)‖E which is P � λ-integrable.
Moreover, x being fixed, as a function of (ω, y), w(x, y)X y(ω) is F � I-measurable
so that the variation of the definition of Fubini extension given in Remark 1 implies
that the Bochner integral

∫
I w(x, y)X y(ω)λ(dy) defines an element [WX ](x, ω) of

E which happens to be a F-measurable function of ω ∈ Ω .
Using a sequence of functions of the form (x, y) �→ ∑

1≤i≤k ϕi (x)ψi (y) where k
is an integer and ϕi and ψi are BI -measurable real valued functions to approximate
w(x, y) almost everywhere on I × I for the Lebesgue measure, and functions of the
form

∑
1≤i≤k 1Ui (ω, y)ei for some Ui ∈ F � I and ei ∈ E , to approximate X y(ω)

P�λ-a.s., we see that [WX ](x, ω) is in fact almost surely equal to aBI ⊗F-measurable
function as claimed in (ii).

As for (iii), it follows from the following inequalities:

E
�
[
‖[WX ](x, ω)‖2E

]
=
∫

Ω×I

∥∥∥
∫

I
w(x, y)X y(ω)λ(dy)

∥∥∥
2

E
P � λ(dω, dx)

≤
∫

Ω×I

(∫

I
‖X y(ω)‖2Eλ(dy)

)
P � λ(dω, dx)

=
∫

Ω×I
‖X y(ω)‖2EP � λ(dω, dy)

where we used once more the defining property of a Fubini extension. ��
We conclude this section by recalling the (weak) Exact Law of Large Numbers

(ELLN) [42,Corollary 2.10] for the sake of completeness.

Lemma 2 Let f be a real-valued integrable process on (Ω × I ,F � I,P� λ). If the
random variables fx : ω �→ f (ω, x), x ∈ I , are essentially pairwise independent,
then, for P-a.e. ω ∈ Ω , the sample mean

∫
I f (x, ω)dλ(ω) is the same as the mean∫

Ω×I f dP � λ of the process f .

The ELLN is a useful tool for analyzing processes in the Fubini Extension. It will
allow us to replace interactions with a stochastic mean process by interactions with a
deterministic mean process. We take a closer look at Brownian motion in the Fubini
extension B. As an E-valued Gaussian vector, B has exponential moments, so B ∈
L2

�(Ω × I ; E). Furthermore for each t ∈ [0, T ], ELLN applies to Bt since (Bx
t )x∈I
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are e.p.i. and Bt is P � λ-integrable. For each A ∈ I and t ∈ [0, T ] we have:
∫

A
Bx
t (ω)λ(dx) =

∫

A
E[Bx

t ]λ(dx) = 0, P-a.s.

3 Linear-Quadratic Stochastic Graphon Games

In this section, we introduce a game with a continuum of players indexed by I . Each
player’s goal is to choose the best admissible strategy. Below we define the notion of
admissibility, formalize the players’ state dynamics and costs/rewards. We postpone
the specification of what is meant by "best strategy", and its computation, to Sects. 3.2
and 3.3.

3.1 Linear Graphon Dynamics

A family (αx )x∈I of Fx -progressively measurable real-valued processes is called a
strategy profile.

Definition 2 LetA be the set of real-valued, I ⊗B([0, T ]) ⊗B(S)-measurable func-
tions α on I × [0, T ] × S satisfying the following: for every (x, t) ∈ I × [0, T ],
α(x, t, σ ) = α(x, t, σ ′) if [σ ]1(s) = [σ ′]1(s), 0 ≤ s ≤ t and [σ ]2 = [σ ′]2;
E

�
[∫ T

0 |α(·, t,B·)|2dt
]

< ∞ and, for all x ∈ I , E[∫ T0 |α(x, t,Bx )|2dt] < ∞.

The strategy profile (αx )x∈I is called admissible if there is an α ∈ A such that αx· =
α(x, ·,Bx ) for x ∈ I . With some abuse of notation, we will write (αx )x∈I = α ∈ A
when (αx )x∈I is admissible.

For each x ∈ I , we define A(x) as the set of Fx -progressively measurable square-
integrable processes (αt )0≤t≤T , i.e., satisfying E

∫ T
0 |αt |2dt < ∞. When the player

population plays an admissible strategy profile, the strategy of player x ∈ I is an
element of A(x). Furthermore, player x can switch their strategy to any β ∈ A(x)
without affecting the overallI⊗B([0, T ])⊗B(S)-measurability of the strategy profile.

The next assumption is in force throughout the rest of the paper.

Assumption 1 (i) ν(x) has a finite second moment uniformly bounded in x
(ii) The coefficient functions a, b, c : I → R are I-measurable and bounded

The rest of this section is devoted to the existence and uniqueness of a solution to
the graphon SDE system

dX
α,x
t = (a(x)X

α,x
t + b(x)αx

t + c(x)Z
α,x
t
)
dt + dBx

t , X
α,x
0 = ξ x , (5)

defined for all x ∈ I , where αx· = α(x, ·,Bx ) for a given α ∈ A. Zα,x is the graphon-
weighted aggregate of the continuum of player states, defined in line with aggregates
in economic theory, and for now only formally, as:

Z
α,x
t :=

∫

I
w(x, y)X

α,y
t λ(dy) = [WX

α,·
t ](x), t ∈ [0, T ]. (6)
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Lemma 3 If z ∈ L2
�(Ω × I ; E) and α ∈ A, the stochastic integral equation

X
α,z,·
t = X

α,z,·
0 +

∫ t

0

(
a(·)Xα,z,·

s + b(·)α·
s + c(·)zs(·)

)
ds + B·

t , X
α,z,·
0 = ξ · (7)

has a unique solution X
α,z· = (X

α,z,x· (ω); (ω, x) ∈ Ω × I ) in L2
�(Ω × I ; E).

A solution to (7) is any E-valued process on Ω × I that satisfies the equation for
P�λ-a.e (ω, x) ∈ Ω × I . It is unique if P�λ(Xt = X̃t , t ∈ [0, T ]) = 1 wheneverX
and X̃ are solutions. The proof of Lemma 3 is an adaptation of the standard existence
and uniqueness proof for SDEs and is omitted. Next we characterize the aggregate as
the unique fixed point to the following map:

Uα : L2
�(Ω × I ; E) → L2

�(Ω × I ; E),

z �→ Uαz : (ω, x) �→
( ∫

I
w(x, y)X

α,z,y
t (ω)λ(dy)

)
t∈[0,T ]

(8)

where α ∈ A is fixed and X
α,z is the unique solution to (7) as given by Lemma 3.

Proposition 1 For each admissible strategy profile α ∈ A, the mapping Uα is well-
defined and has a unique fixed point which we shall denote Zα .

A proof of Proposition 1 is found in the appendix. Thus, there exists a unique
solution in L2

�(Ω × I ; E) to the graphon SDE system (5)–(6) with α ∈ A fixed and
the aggregate defined as the fixed point of Uα . The next result further specifies the
structure of the solution. In summary, the aggregatemust be almost surely deterministic
and there is a unique version of the solution that solves the linear graphon SDE (5) for
every x ∈ I and whose corresponding aggregate is deterministic everywhere.

Theorem 2 Let α ∈ A be fixed, let Xα be the unique solution to (5)–(6) in L2
�(Ω ×

I ; E), and let Zα be the corresponding aggregate. Then Z
α is P � λ-a.s. equal to a

deterministic function in L2
λ(I ; E). That is, for some f̃ ∈ L2

λ(I ; E):

P � λ
(‖Zα − f ‖E = 0

) = 1, f (ω, x) := f̃ (x), (ω, x) ∈ Ω × I .

Furthermore, there exists a unique pair (Xα,x )x∈I and (Zα,x )x∈I of versions ofXα and
Z

α , respectively, solving the system (5)–(6) for all x ∈ I in the standard L2(Ω; E)-
sense. Moreover, Zα,· is an everywhere deterministic version of Zα .

Remark 2 In light of Theorem 2 we can treat the state and aggregate as defined for all
x ∈ I and the aggregate as deterministic:

Z
α,x
t =

∫

I
w(x, y)E[Xα,y

t ]λ(dy). (9)

Assumption 1.(ii) alone is not sufficient to let us simplify the aggregate to an integral
with respect to the Lebesgue measure dy. To wit, the mean state depends on the coeffi-
cients. There is a "trade-off" between the measurability assumption on the coefficients
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and which measure we see in the aggregate integral (9). We choose to work under a
weaker assumption on the coefficients, and deal with λ in (9).

Proof For the first statement of the theorem, consider the set of all almost surely
deterministic functions in L2

�(Ω × I ; E)

L̃ := {̃z ∈ L2
�(Ω × I ; E) : P�λ(̃z = γ ) = 1 for some γ (ω, ·) = γ̃ (·) ∈ L2

λ(I ; E)}.

L̃ is a closed subset of L2
�(Ω × I ; E), hence a complete space. If z̃ ∈ L̃ , then

(Xα,̃z,x )x∈I is an e.p.i. collection of random variables and, by ELLN (Lemma 2),
[Uα z̃](ω, x) = E[[Uα z̃](x)] forP-a.e.ω ∈ Ω . HenceUα is well-defined as a function
from L̃ to itself. A similar argument to that of Proposition 1 yields the contraction
property of Uα restricted to L̃ . Since L̃ ⊂ L2

�(Ω × I ; E), the fixed point of Uα in L̃
must be Zα , the unique fixed point in L2

�(Ω × I ; E).
To construct the desired version of Zα , we define for a fixed x ∈ I the mapping Φx

by as the Bochner integral

Φx ( f ) :=
∫

I
w(x, y)E[ f y]λ(dy)

for any E-valued, P�λ-square integrable, andF �I-measurable function f . Clearly,
Φx is constant over every equivalence class in L2

�(Ω × I ; E). Denote the element
corresponding to X

α by Zα,x . For all x ∈ I , Zα,x ∈ E by Lemma 1, and it is
deterministic. To prove that (Zα,x )x∈I is the desired version of the aggregate, we must
simultaneously construct a version of Xα . Let

X
α,x
t := ξ x +

∫ t

0

(
a(x)X

α,x
s + b(x)αx

s + c(x)Z
α,x
s
)
ds + Bx

t , (t, x) ∈ [0, T ] × I .

Then t �→ X
α,x
t is continuous P-a.s. Moreover,

∫

I
‖Zα,x‖2Eλ(dx) ≤ CE

�[‖Xα‖2E
]

so x �→ Zα,x is λ-square integrable and it follows that Xα is P� λ-square integrable.
Using this together with admissibility of α and Assumption 1, we get that Xα,x ∈
L2(Ω; E) for all x ∈ I . It remains only to show that (Zα,x )x∈I and (Xα,x )x∈I are
members of the equivalence classesZα andXα , respectively, since that implies Zα,x =∫
I w(x, y)E[Xα,y]λ(dy). Letχ and z be arbitrarymembers ofXα andZα , respectively.

Then

χt = ξ +
∫ t

0
a(·)χs + b(·)αs + c(·)zsds + Bt , t ∈ [0, T ], P � λ-a.s.,
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and therefore

X
α
t −χt =

∫ t

0
a(·) (Xα

s − χs
)
ds+

∫ t

0
c(·)(Zα

s − zs)ds, t ∈ [0, T ], P�λ-a.s. (10)

Since Zα is the fixed point to Uα , z· = ∫I w(·, y)E[χ y]λ(dy) P � λ-a.s. for χ ∈ X
α .

By construction, Zα = z P � λ-a.s., implying that Zα ∈ Z
α . Gronwall’s lemma

applied to (10) then yields P�λ(Xα = χ) = 1, and hence Xα ∈ X
α which concludes

the proof. ��

3.2 Stochastic Maximum Principle

We consider a finite horizon stochastic differential game where the cost incurred
by player x ∈ I is composed of a running cost, here modeled as a function f x :
R×R×R → R of player x’s state, control, and aggregate; and a terminal cost given
by a function hx : R×R → R of player x’s terminal state and aggregate. The expected
cost when using the admissible strategy β ∈ A(x) while λ-a.e. other player uses the
strategy profile α is J x : A(x) × A → R defined by:

J x (β;α) := E

[ ∫ T

0
f x
(
X

(α−x ,β),x
t , βt , Z

α,x
t
)
dt + hx

(
X

(α−x ,β),x
T , Z

α,x
T

)]
, (11)

where we adopt the notation (α−x , β) for a strategy profile

(α−x , β)y =
{

αy, if y �= x,

β, if y = x,
α ∈ A, x ∈ I , β ∈ A(x).

The strategy profile (α−x , β) is admissible and P� λ-a.e. equal to α, so Z (α−x ,β),x =
Zα,x . Other players’ actions appear in player x’s cost only implicitly through Zα,x ,
which is deterministic by Theorem2, and unchanged if any one specific player changes
control. In light of this, we write J x (β;α) as J x (β; Zα,x ) for a function A(x) ×
L2(I ; E) � (α, z) �→ J x (α; z) ∈ R.

In classical game theory, a strategy profile such that no player can do better by
unilaterally changing strategy is called a Nash equilibrium. In the present context, we
adopt the following notion of equilibrium:

Definition 3 An admissible strategy profile α̂ is a graphon game Nash equilibrium if

J x (α̂x ; Z α̂;x ) ≤ J x (β; Z α̂;x ), β ∈ A(x), x ∈ I .

In differential games, equilibria are often characterizedwith Pontryagin’smaximum
principle. Proposition 2 below provides, player by player, a necessary condition and
a sufficient condition for an admissible strategy profile to be a graphon game Nash
equilibrium. The proof follows standard lines for the stochastic maximum principle,
see for example [44].
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Proposition 2 Assume that for all x ∈ I , the functions f x and hx are measurable
and that for all (x, u, z) ∈ I × R × R, χ �→ f x (χ, u, z) and χ �→ hx (χ, z) are
differentiable. Then if it exists, a Nash equilibrium α̂ must satisfy

α̂x
t ∈ arg inf

u∈R
Hx (t, X̂ x

t , u, pxt ), a.e. t ∈ [0, T ], P-a.s, (12)

for each x ∈ I , with (X̂ x , px , qx ) solving the Hamiltonian system

{
d X̂ x

t = ∂pHx (t, X̂ x
t , α̂

x
t , pxt )dt + dBx

t , X̂ x
0 = ξ x ,

dpxt = −∂χ Hx (t, X̂ x
t , α̂

x
t , pxt )dt + qxt dB

x
t , pxT = ∂χhx (X̂ x

T , Ẑ x
T ),

(13)

where Hx : [0, T ] × R × R × R → R is the Hamiltonian of player x,

Hx (t, χ, u, p) = f x (χ, u, Ẑ x
t ) + (a(x)χ + b(x)u + c(x)Ẑ x

t )p,

and Ẑ x
t is the aggregate corresponding to the class X̂ ·

t .
If, in addition (χ, u) �→ f x (χ, u, z) is jointly convex and χ �→ hx (χ, z) is convex

for z ∈ R, then any α ∈ A satisfying (12) for every x ∈ I is a Nash equilibrium.

The system (13) is apriori only formallywritten. The next section is devoted to proving
existence and uniqueness of solutions to (13) in the linear-quadratic setting, making
the argument of Proposition 2 rigorous there. In particular, existence and uniqueness
of the Nash equilibrium can be obtained if existence and uniqueness of the solution
to the forward-backward system (13) holds, as will be the case in the sequel.

3.3 Existence and Uniqueness of Solutions to the Hamiltonian System

In this section we analyze the FBSDE (13) for the linear quadratic case. LetC f : I →
R
3×3
sym and Ch : I → R

2×2
sym be bounded and I-measurable and let from now on f x and

hx be the mappings

f x (u) = 1

2
u∗C f (x)u, hx (v) = 1

2
v∗Ch(x)v, u ∈ R

3, v ∈ R
2. (14)

Whenever [C f (x)]22 > 0, the unique minimizer of R � α �→ Hx (t, χ, α, p) is

1

[C f (x)]22
(

− [C f (x)]12χ − [C f (x)]32 Ẑ x
t − b(x)p

)
. (15)

Plugging (14)–(15) into (13) yields, formally, the linear FBSDE system

d

[
X̂ x
t

pxt

]
= Γ (x)

[
X̂ x
t

pxt

]
+ ΓZ (x)Ẑ x

t dt +
[
1
qxt

]
dBx

t , X̂ x
0 = ξ x ,

pxT = Γ ∗
T (x)

[
X̂ x
T

Ẑ x
T

]
, Ẑ x

t =
∫

I
w(x, y)E[X̂ y

t ]λ(dy), t ∈ [0, T ], x ∈ I .

(16)
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where Γ (x) ∈ R
2×2 and ΓZ (x), ΓT (x) ∈ R

2×1 depend on the coefficient functions
a, b, c and the cost matrices C f ,Ch . Their exact form is presented in the appendix.
To ensure solvability of (16) we enforce the following condition.

Assumption 2 For all x ∈ I : (i) Γ12(x) �= 0; (ii) −[Ch(x)]11Γ12(x) ≥ 0; (iii)
−Γ12(x)Γ21(x) > 0; (iv) [C f (x)]22 > 0.

Theorem 3 There exists a unique solution (X̂ , p, q) ∈ L2
�(Ω × I ; E) × L2

�(Ω ×
I ; E)× L2

�(Ω × I ; L2([0, T ])) to the FBSDE (16) for any finite time horizon T > 0.

From the L2-solutiongrantedby the theoremwecan extract oneversion that satisfies
(16) for all x ∈ I by replicating the argument from Theorem 2.

While uniqueness follows by quite standard arguments, existence requires a more
in-depth analysis. We argue in the appendix along the following lines: after making
the ansatz that px is linear in X̂ x , we get short time existence following a fixed point
argument similar to that of Theorem 2, then we extend the existence to the whole time
horizon [0, T ] with the induction method, see, e.g., [9,Sec. 4.1.2].

4 Connection with Finite Network Games

In this section we show how certain finite player games where players interact through
a randomly-weighted graph can be approximated by a graphon game. Let I∞ be the
infinite countable Cartesian product of copies of I . Throughout this chapter, x∞ =
(xk)∞k=1 denotes a generic sequence in I∞ and N ∈ N. For a fixed x∞, let AN (x∞)

denote the set of
∨N

	=1 F
x	 -progressively measurable functions in L2([0, T ] × Ω)

(from now on referred to as the set of admissible controls in the N -player game).
Consider the N -player game where player k picks a control αk,N ∈ AN (x∞) so as to
minimize

J k,N (αk,N ;α−k,N ) := E

[ ∫ T

0
f xk (Xk,N

t , α
k,N
t , Zk,N

t )dt + hxk (Xk,N
T , Zk,N

T )
]

and the player states (Xk,N )Nk=1 are subject to the dynamics

dXk,N
t = (a(xk)X

k,N
s + b(xk)α

k,N
t + c(xk)Z

k,N
t
)
dt + dBxk

t , Xk,N
0 = ξ xk ,

Zk,N
t := 1

N

N∑
	=1

w(xk, x	)X
	,N
t , k = 1, . . . , N , t ∈ [0, T ].

Assumptions 1 and 2 are in force as well as the additional assumptions on the cost
functions introduced inSect. 3.3.With an approachvery similar to that of Proposition 2,
we can derive necessary conditions for Nash equilibria in this N -player game. Given
x∞ ∈ I∞, a Nash equilibrium in the N -player game satisfies P-a.s., a.e.-t , for all
k = 1, . . . , N ,

α̂
k,N
t = − 1

[C f (xk)]22
(
b(xk)p

kk,N
t + [C f (xk)]21Xk,N

t + [C f (xk)]23Zk,N
t

)
,
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where the N state- and costate variables (Xk,N , pkk,N )Nk=1 solve the forward-backward
system

d

[
Xk,N
t

pkk,Nt

]
=
(

Γ (xk)

[
Xk,N
t

pkk,Nt

]
+
[

0
− 1

N

∑N
	=1 c(x	)w(xk, x	)p

k	,N
t

])
dt

+ ΓZ (xk)Z
k,N
t dt +

[
dBxk∑N

	=1 q
kk	,N
t dBx	

]
, Zk,N

t := 1

N

N∑
	=1

w(xk, x	)X
	,N
t ,

Xk,N
0 = ξ xk , pkk,NT = Γ ∗

T (xk)

[
Xk,N
T

Zk,N
T

]
, t ∈ [0, T ], k = 1, . . . , N ,

and are coupledwith the off-diagonal costate variables (pkh, (qkh	)N	=1)
N
k �=h=1, solving

the backward system below where Γ̄ , Γ̄T : I → R
2×1 and Γ̄Z : I → R:

dpkh,N
t = w(xk, xh)

N

(
Γ̄ (xk)

[
Xk,N
t

pkk,Nt

]
+ Γ̄Z (xk)Z

k,N
t

)
dt

−
( 1

N

N∑
	=1

c(x	)w(xh, x	)p
k	,N
t + a(xh)p

kh,N
t

)
dt +

N∑
	=1

qkh	,N
t dBx	

t ,

pkh,N
T = w(xk, xh)

N
Γ̄ ∗
T (xk)

[
Xk,N
T

Zk,N
T

]
, 1 ≤ h �= k ≤ N , t ∈ [0, T ].

This finite FBSDE system is linear with bounded coefficients.With additional assump-
tions (to insure solvability of a matrix Riccati equation), it can be analyzed with the
induction approach as was done in Theorem 3. We abstain from presenting the argu-
ment, instead we move on assuming that the solution to the coupled system above is
well-defined and of sufficient regularity for the following analysis.

4.1 Propagation of Chaos

Assume that the conditions from earlier sections are satisfied and denote by
(Xx , px , qx )x∈I the solution to the graphon game FBSDE. By comparing the graphon
game FBSDE and the N -player game FBSDE along a specific sequence x∞, we obtain
a propagation of chaos-type result. Let

Δ(x∞, N ) := max
1≤k≤N

(
sup

t∈[0,T ]
E

[
|Zxk ,N

t − Zxk
t |2
]

+ E

[
sup

t∈[0,T ]
(|Xk,N

t − Xxk
t |2+|pkk,Nt − pxkt |2)

])
.

To derive statistical estimates for the rate at whichΔ(·, N ) tends to zero, we introduce
the iteratively completed infinite product space (I∞, Ī∞, λ̄∞), defined in line with
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[22]. The σ -algebra Ī∞ extends I∞ by including sets that are "iteratively null".
An important feature of this setup that we will frequently use is that (Bx , ξ x )x∈x∞
are mutually independent for λ̄∞-a.e. x∞ ∈ I∞ [23,Theorem 1]. We strengthen the
assumptions on the graphon to prove the convergence.

Assumption 3 The mapping I � x �→ w(x, y) ∈ R is 1/2-Hölder continuous, uni-
formly in y ∈ I .

Proposition 3 Let Assumptions 1 and 2 hold. Then

Δ(x∞, N ) −−−−−→
N→+∞ 0, λ̄∞-a.e. x∞ ∈ I∞.

If furthermore Assumption 3 also holds, then for all ε > 0 there exists a Nε : I∞ → N

such that

λ̄∞(Δ(x∞, N ) ≤ (C + ε)2 log log N

N
, N ≥ Nε(x

∞)
)

= 1,

where C is a finite positive constant depending only on T and the graphon w.

Remark 3 Under a different set of conditions, the rate of convergence can be shown to
be 1/N with high probability. Indeed, if the graphon is of rank 1 and a, b, c,C f ,Ch

are constant, it is possible to prove under some conditions on these constants and the
eigenvalues of the graphon operator, that

λ̄∞(Δ(x∞, N ) ≤ C

N

)
> 1 − 2e−2C2

,

for all C ≥ C̄ > 0, with C̄ a finite constant depending only on T and the graphon w.
Importantly, this set of conditions does not require continuity of the graphon, and it
covers the important class of piecewise constant graphons, associated with the family
of stochastic block models rich in applications.

4.2 Convergence and Approximation of N-Player Game Nash Equilibrium

The propagation of chaos type result contained in Proposition 3 directly yields two
λ̄∞ - a.s. results relating the Nash equilibria of N -player and graphon game: 1) the
N -player Nash equilibria converge toward the graphon game Nash equilibria; 2) the
graphon game Nash equilibria provide approximate N -player game Nash equilibria.

Let C be the coefficient in Proposition 3 and let εN := 2C
√
N−1 log log N . Let N

be the random variable Nε from Proposition 3 with ε = C . As before, we denote by
(α̂k,N )Nk=1 and (α̂x )x∈I the Nash equilibria for the N -player game and the graphon
game, respectively.

Proposition 4 The graphon gameNash equilibrium strategy collection (α̂xk )Nk=1 forms
an εN -Nash equilibrium for the N-player gamebetween the players (x1, . . . , xN )when
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N ≥ N (x∞), λ̄∞-a.s. That is, for all β ∈ AN (x∞), k = 1, . . . , N , N ≥ N (x∞):

J k,N (α̂xk ; ᾱ−k,N ) − J k,N (β; ᾱ−k,N ) ≤ εN , λ̄∞-a.e. x∞ ∈ I∞,

where ᾱ−k,N := (α̂x1 , . . . , α̂xk−1 , α̂xk+1 , . . . , α̂xN ).
Moreover, the N-player game equilibrium converges componentwise to the graphon

game equilibrium and the rate of convergence is uniform and at most εN :

max
1≤k≤N

E

[ ∫ T

0
|α̂k,N

t − α̂
xk
t |2dt

]
≤ ε2N , N ≥ N , λ̄∞-a.e. x∞ ∈ I∞.

5 Semi-explicit Solutions in the Case of Constant Coefficients

When the functions a, b, c,C f , and Ch are constant over I , the eigenfunction expan-
sion (3) facilitates a reformulation of the FBSDE into a countable system of decoupled
ODEs. Note that if the graphon is of finite rank, the system is in fact of finite size. This
idea was already used in [19]. Here we summarize it, comment on the well-posedness
of the resulting ODE system, and numerically solve an example.

First, recall from the proof of Theorem 3 that the FBSDE can, by using the linear
ansatz pxt = ηx

t X̂
x
t + ζ x

t , be reduced to a forward-backward system for (X̂ x , ζ x )x∈I
and a Riccati equation for ηx :

η̇x
t = −(ηx

t )
2Γ12(x) − ηx

t (Γ11(x) + Γ21(x) − Γ22(x)) + Γ21(x),

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t ,

X̂ x
0 = ξ x , ζ x

T = ΓT ,2(x)Ẑ
x
T , ηx

T = ΓT ,1(x),

Ẑ x
t =

∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [0, T ].

(17)

The Riccati equation does not depend on (X̂ x , ζ x ) and can be solved independently.
In the case of constant coefficients, the Riccati equation is also independent of x and
we then denote its solution (ηt )t∈[0,T ]. The next assumption formalizes the constant-
coefficient condition.

Assumption 4 The functions ν, a, b, c,C f ,Ch are constant.

The ansatz coefficient ζ x and the aggregate Ẑ x solve the coupled forward-backward
ODE

ζ̇ x
t = ζ x

t (Γ22 − Γ12ηt ) + Ẑ x
t

(
ΓZ ,2 − ΓZ ,1ηt

)
,

d

dt
Ẑ x
t = (Γ11 + Γ12ηt )Ẑ

x
t + Γ12[Wζ ·

t ](x) + ΓZ ,1[W Ẑ ·
t ](x),

ζ x
T = ΓT ,2 Ẑ

x
T , Ẑ x

0 = [Wξ ·](x), t ∈ [0, T ], x ∈ I .

(18)
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At this point, we use the expansion (3) and in the eigendirection φk , k ∈ N, we get

v̇kt = vkt (Γ22 − Γ12ηt ) + zkt (ΓZ ,2 − ΓZ ,1ηt ), vkT = ΓT ,2z
k
T ,

żkt = (Γ11 + Γ12ηt + ΓZ ,1λk
)
zkt + Γ12λkv

k
t , zk0 = λk x

k .
(19)

where vkt := 〈ζt , φk〉λI , z
k
t := 〈Ẑt , φk〉λI , and xk := 〈ξ, φk〉λI . Further analysis of the

coupled system (19) with the ansatz vkt = πk
t z

k
t , where πk is a deterministic function

of time to be determined, yields a Riccati equation with time-varying coefficients for
πk :

π̇k
t = −Γ12λk

(
πk
t

)2 − (Γ11 + 2Γ12ηt − Γ22 + ΓZ ,1λk
)
πk
t

− (ΓZ ,2 − ΓZ ,1ηt ),

πk
T = ΓT ,2.

(20)

Existence and uniqueness of a non-blow up solution to (20) requires further assump-
tions on the coefficients. In the appendix, we derive a set of sufficient conditions. With
πk at hand it is a simple task to solve (19) for zk and vk (xk is computed with the
Exact Law of Large Numbers), and

[W Ẑt ](x) =
∞∑
k=1

λk z
k
t φk(x), [Wζt ](x) =

∞∑
k=1

λkv
k
t φk(x).

The system (18) has been decoupled and rewritten into a countable set of ODEs.

5.1 Comparison of Three Graphons’ Impact on the Graphon Game Nash
Equilibrium

Using the semi-explicit solution outlined above it is easy to numerically solve the
graphon game. Let us compare the impact of three graphons on the solution: the
constant graphon, the power-law graphon, and the min-max graphon.

If the graphon is constant, wC (x, y) = K , then the graphon game is equivalent to
a MFG. Indeed, in this case Ẑ x

t = K
∫
I E[X̂ x

t ]λ(dx) and one can show that Ẑ x
t =

KE[X̂0
t ] = KE[X̂ y

t ] for x, y ∈ I , t ∈ [0, T ]. The role of each player x ∈ I is
that of the representative player in the MFG. The power-law graphon is defined as
wPL(x, y) := (xy)−γ , γ ∈ R. It has applications in dynamical systems theory, see
e.g. [33] where it is used to model coupled systems on scale-free graphs. The power-
law graphon induces an operator of rank 1. If γ ≤ 0, wPL is bounded with eigenvalue
λPL = (1 − 2γ )−1 and eigenfunction φPL(x) = √

λPL x−γ . The min-max graphon
wMM (x, y) = min(x, y)(1−max(x, y)) is not of finite rank. The orthonormal basis of
eigenfunctions is given by φk,MM (x) = √

2 sin(πkx)with corresponding eigenvalues
λk,MM = (πk)−2 for k ≥ 1, see [1].

For the sake of presentation we consider a particularly simple case of the linear-
quadratic graphon game. The parameter values are chosen for the purpose of
visualization of the effects we want to highlight with numerical simulation, but can be
taken arbitrarily from within our theoretical assumptions. The cost and state equation
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of agent x are set to

1

2
E

[ ∫ 3

0

(
(αx

t )2 + (Xx
t − Zx

t )2
)
dt + (Xx

T − Zx
T )2
]

(21)

and

dXx
t = (−Xx

t + αx
t + Zx

t

)
dt + dBx

t , Xx
0 = ξ x ∼ Normal(8, 1/4),

Zx
t =

∫

I
w(x, y)E[X y

t ]λ(dy), x ∈ I , t ∈ [0, T ]. (22)

Here, Assumption 2 holds and if |λk | ≤ 1, which is the case for the three graphons
we consider, then the time-varying Riccati equation (20) does not blow up in finite
time. We simulate (21)–(22) using the semi-explicit solution derived above. For the
constant graphon, we set K = 1, and for the power-law graphon, we set γ = −0.4.
The simulation uses standard discretization techniques to compute the state trajectory
for a finite number of values of x : (xm)Mm=1. We set M = 200 and sample the indices
(xm)Mm=1 from the uniform distribution over I . (The choice of indices here has no
effect on the computation of the Nash equilibrium.)

The simulation results are presented in Fig. 1. In the constant graphon case we
expect the state to mean-revert to the mean of the initial conditions, as is the case
for the MFG corresponding to this specific setting. The simulation result agrees with
this. For the other two graphons however, state trajectories that are tending to 0 due
to reversion to the aggregate; the aggregate tends to zero in the non-constant graphon
cases. We also note the player index has an impact on the state trajectory in the non-
constant graphon cases. The state trajectories are clearly ordered in space according
to index in the power-law graphon case. The index influences the state trajectory also
in the min-max graphon case, albeit in a different way and to a smaller extent (almost
indistinguishably in the figure but visible in a more detailed simulation; on average,
the further from 0.5 the index is, the steeper the initial descent).

6 Summary and Concluding Remarks

In this paper, we formulate and analyze a stochastic differential game for a contin-
uum of players subject to idiosyncratic random shocks modeled as a continuum of
essentially pairwise independent Brownian motions, and interacting over a network
structure given by a graphon. Using the framework of Fubini extensions and the Exact
Law of Large Numbers, we demonstrate how to control the system. We characterize
the Nash equilibria with the Pontryagin stochastic maximum principle and we prove
a form of propagation of chaos providing an approximation of the graphon game by
finite player network games (and vice versa).

We choose to present our theoretical results in the linear-quadratic setting in order
to provide a complete analysis without too many technical assumptions. The linear-
quadratic case is the standard model in stochastic differential game theory, generally
acknowledged as important andwith a huge number applications, somewhat restrictive
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Fig. 1 Simulation of the graphon game at equilibrium, evaluating the influence of the graphon type on the
solution. The same game is solved with three different aggregate variables, defined with the constant, the
power-law, and the min-max graphon. Top: The green-yellow landscape visualizes the player population
occupation measure over time. Only in the constant graphon case is this equal to the (empirical) distribution
of the representative agent’s state in the MFG. Bottom: The blue-to-red graphs in the plane are simulated
player state trajectories and the color indicates the corresponding player index. Interpolating between red
and blue, higher indices are plotted more blue and lower indices more red in the constant graphon and the
power-law graphon case. In the min-max graphon case, the more red the trajectory is the closer to 0.5 is
the corresponding index

though that may be. Some of our results hold true under weaker assumptions, let us
briefly elaborate on the possible extensions of some of the results of the paper.

Theorem 2 generalizes beyond the linear model. With minor modifications to the
proofs, the same conclusions hold when

dX
α,x
t = β

(
x, X

α,x
t , αx

t , Z
α,x
t
)
dt + dBx

t , Xx
0 = ξ x ,

and Z
α,x
t = [WK (X

α,·
t )](x) under the assumption that β and K are I ⊗ (B(R))3-

and B(R)-measurable, respectively; supx∈I |β(x, 0, 0, 0)| < ∞; and (χ, a, z) �→
β(x, χ, a, z)+K (χ) is Lipschitz continuous, uniformly in x ∈ I . With the additional
assumption that χ �→ β(x, χ, a, z) is differentiable, the maximum principle Propo-
sition 2 can be lifted to the same level of generality. That said, a generalization of
Theorem 3 would not be as straightforward. The induction approach would require an
analysis of the master equation for the control problem, and prove that the gradient
of its solution is uniformly Lipschitz continuous, which is beyond the scope of this
study.

With regards to the convergence results, we expect the approach developed here
to extend to other sequences interaction networks (than the one defined by evaluating
the graphon on the N = 1, 2, . . . first elements of a fixed index sequence x∞) as long
as they converge to a limiting graphon, e.g., in the cut-distance (see [32]). Indeed, it
is already known in some cases that various finite player game structures are approx-
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imated by the same MFG [11]. It would follow that the probabilistic limits studied
in Sect. 4 extend, possibly with some slight modifications to the quantitative bounds,
to sequences of games with random interaction graphs generated with the sampling
method for graphons, as developed in [32].
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A Proofs

A.1 Proof of Proposition 1

We drop the superscript α since the strategy profile does not change throughout the
proof. By Lemma 3, Xz ∈ L2

�(Ω × I ; E) so by Lemma 1, the mapping U is well
defined. We turn to the contraction property.

To prove that U is a strict contraction, let z, z̃ ∈ L2
�(Ω × I ; E). By Gronwall’s

inequality and the boundedness of the graphon,

E
�
[
‖ [Uz] − [Uz̃

] ‖2E
]

≤ C
∫ T

0
E

�
[

sup
s∈[0,t]

∣∣zs − z̃s
∣∣2
]
dt, (23)

where C > 0 is a finite constant depending only on T , ‖W‖2, and the coefficient
bound. Iterating the inequality (23) and making use of the fact that

E
�
[

sup
s∈[0,t]

|zs |2
]

≤ E
�[‖zs‖2E

]
, t ∈ [0, T ], z ∈ L2

�(Ω × I ; E),

we have

E
�
[∥∥[(UN )z] − [(UN )̃z]∥∥2E

]
≤ (CT )N

N ! E
�
[
‖z − z̃‖2E

]
, N ∈ N.

Hence, for some N ∈ N, (UN ) is a contraction mapping on from L2
�(Ω × I ; E) to

itself. The existence of a unique fixed point to U in the Banach space L2
�(Ω × I ; E)

then follows by the Banach fixed-point theorem for iterated mappings, see e.g. [5]. ��
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A.2 Proof of Theorem 3

The coefficient matrices in (16) are given in terms of a, b, c,C f and Ch as follows:

Γ :=
⎡
⎣ a − b[C f ]12

[C f ]22 − b2
[C f ]22

[C f ]212[C f ]22 − [C f ]11 b[C f ]12
[C f ]22 − a

⎤
⎦ , ΓZ :=

⎡
⎣ c − b[C f ]32

[C f ]22[C f ]12[C f ]32
[C f ]22 − [C f ]12

⎤
⎦ , ΓT :=

[[Ch]11
[Ch]12

]
.

Step 0: Uniqueness in the Fubini extension
Assume that (X , p, q) and (X̃ , p̃, q̃) are solutions to the FBSDE (16) in the sense that
(16) is satisfied P � λ-a.s. and E

�[‖X‖2E + ‖p‖2E + ∫ T0 |qt |2dt
]

< ∞. Uniqueness,
i.e., that

E
�
[
‖p − p̃‖2E + ‖X − X̃‖2E +

∫ T

0
|qt − q̃t |2dt

]
= 0

can be proven along standard lines of proof.
Step 1: An ansatz for px

We will look for a solution defined with the following ansatz: for each x ∈ I there
exists differentiable and deterministic mappings t �→ ηx

t and t �→ ζ x
t such that

pxt = ηx
t X̂

x
t + ζ x

t . (24)

Plugging (24) into (16) and matching terms we obtain ηx = qx and the following
system for (X̂ x , ζ x , ηx ; x ∈ I ):

η̇x
t = −(ηx

t )
2Γ12(x) − ηx

t (Γ11(x) + Γ21(x) − Γ22(x)) + Γ21(x), ηx
T = ΓT ,1(x),

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t , x ∈ I , t ∈ [0, T ],

X̂ x
0 = ξ x , ζ x

T = ΓT ,2(x)Ẑ
x
T , Ẑ x

t =
∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [0, T ].
(25)

The Riccati equation for ηx in (25) does not depend on the other variables and can
be solved independently. Furthermore, under Assumption 1 and 2 it has a unique
solution (ηx

t )t∈[0,T ] for all x ∈ I and sup(t,x)∈[0,T ]×I |ηx
t | < ∞, see for example

[9,Sec. 2.4.1]. Thus, to prove existence of a solution to (25) it is sufficient to study the
forward-backward system for (X̂ , ζ ), which is the subject matter of the next steps.
Step 2: Unique solvability of (25) for short time horizons
If we fix a collection of aggregates Ẑ x ∈ E , x ∈ I , then ζ x and subsequently X̂ x can be
solved explicitly for all x ∈ I . This "decoupling" property of the aggregate provides us
with a simple proof of short time existence and uniqueness. By a fixed-point argument
there exists a unique solution (X̂ x , ζ x ) to (25) in L2

�(Ω × I ; E) × L2(I ; E) when T
is small enough.
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Step 3: Setting the stage for the induction approach
Inspired by the induction approach, described in detail in [9,Sec. 4.1.2.], we now
extend existence and uniqueness from the previous step to any finite time horizon.

For any τ ∈ [T0, T ], where T0 := T − c0 and c0 > 0, let ξτ be such that (ξ xτ )x∈I
are e.p.i. and ξ xτ is F x

τ -measurable for all x ∈ I . Assume that c0 > 0 is small enough
so that

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t , x ∈ I , t ∈ [τ, T ],

X̂ x
τ = ξ xτ , ζ x

T = ΓT ,2(x)Ẑ
x
T , Ẑ x

t =
∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [τ, T ],
(26)

has a unique solution as found in Step 2. Denote the solution (X̂
0:x,τ,ξ ·

τ
t , ζ

0:x,τ,ξ ·
τ

t ; t ∈
[τ, T ]).

Assume now that the forward-backward system (25) has a solution over the full
time horizon: (X̂ x

t , ζ
x
t ; t ∈ [0, T ]). It is also a solution to (26) on the subinterval

[T0, T ] with X̂ x
T0

as initial condition at T0 = T − c0. By the unique solvability of
(26),

P � λ
(
(ω, x) : (X̂ x

t (ω), ζ x
t ) = (X̂

0:x,T0,X̂ ·
T0

t (ω), ζ
0:x,T0,X̂ ·

T0
t ), T0 ≤ t ≤ T

)
= 1.

Now consider for some τ ∈ [0, T0] the forward-backward system

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t , x ∈ I , t ∈ [τ, T0],

X̂ x
τ = ξ xτ , ζ x

T0 = ζ
0:x,T0,X̂ ·

T0
T0

, Ẑ x
t =

∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [τ, T0],
(27)

with ξ xτ satisfying the same assumptions as above but with the new τ ∈ [0, T0] replac-
ing the old τ ∈ [T0, T ]. System (27) differs from (25) in the terminal condition for the
backward equation. In the next steps we deduce small-time existence and uniqueness

of solutions of (27), we patch the solution with (X̂
0:x,T0,X̂ ·

T0
t , ζ

0:x,T0,X̂ ·
T0

t ; t ∈ [T0, T ]),
then we repeat and show that after a finite number of patching rounds we are left with
the unique solution to (25).
Step 4: Unique solvability of (27) for short time horizons
Let τ ∈ [0, T0] and E[τ,T0] := C([τ, T0]). Let V[τ,T0] and V�,[τ,T0] denote
L2(I ; E[τ,T0]) and L2

�(Ω × I ; E[τ,T0]), respectively. A fixed-point argument can be
made to prove the existence of a c1 > 0 such that if T0 −τ ≤ c1, then there is a unique

solution to (27) inV�,T0×VT0 . Denote the solution by (X̂
1:x,τ,ξ ·

τ
t , ζ

1:x,τ,ξ ·
τ

t ; t ∈ [τ, T0]).
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Let T1 := T0−c1.Most importantly (sincewe aim to use the induction approach) c1
can take any value smaller than a constant C̄ depending only on the time horizon T and
the coefficient function bound (from Assumption 1). The fixed-point calculations are
tedious and omitted here. The main difficulty comes from that the terminal condition
of the backward part of the equation depends on the solution of (26) initiated at the
solution of (27). This can however be overcome by using the fixed-point argument for
(26) from Step 2.
Step 5: Patching the solutions over [T1, T0] and [T0, T ]
We now patch the two solutions. Let τ ∈ [T1, T0] and ξτ be the initial condition vector
in (27). For any s ∈ [τ, T ],

(X̂ x
s , ζ

x
s ) =

⎧⎨
⎩

(X̂
1:x,τ,ξ ·

τ
s , ζ

1:x,τ,ξ ·
τ

s ), s ∈ [τ, T0],
(X̂

0:x,T0,X̂1:·,τ,ξτ
T0

s , ζ
0:x,T0,X̂1:·,τ,ξτ

T0
s ), s ∈ (T0, T ].

(28)

Then, P � λ-a.s.,

lim
s↓T0

X̂ x
s (ω) = lim

s↓T0
X̂
0:x,T0,X̂1:·,τ,ξτ

T0
s (ω) = X̂

1:x,τ,ξ ·
τ

T0
(ω) = X̂ x

T0(ω),

lim
s↓T0

ζ x
s = lim

s↓T0
ζ
0:x,T0,X̂1:·,τ,ξτ

T0
s = ζ

1:x,τ,ξ ·
τ

T0
= ζ x

T0 ,

so (X̂ x
s , ζ

x
s ; τ ≤ s ≤ T ) is P � λ-a.s. continuous and the unique solution to the

forward-backward system

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t , x ∈ I , t ∈ [τ, T ],

X̂ x
τ = ξ xτ , ζ x

T0 = ζ
0:x,T0,X̂ ·

T0
T0

, Ẑ x
t =

∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [τ, T ].

Step 6: The induction approach
Consider the following forward-backward system: for some τ ∈ [0, T1],

d

[
X̂ x
t

ζ x
t

]
=
[
Γ11(x) + ηx

t Γ12(x) Γ12(x)
0 Γ22(x) − ηx

t Γ12(x)

] [
X̂ x
t

ζ x
t

]
dt

+
[

ΓZ ,1(x)
ΓZ ,2(x) − ηx

t ΓZ ,1(x)

]
Ẑ x
t dt +

[
1
0

]
dBx

t , x ∈ I , t ∈ [τ, T ],

X̂ x
τ = ξ xτ , ζ x

T1 = ζ
1:x,T1,X̂ ·

T1
T1

, Ẑ x
t =

∫

I
w(x, y)E[X̂ y

t ]λ(dy), x ∈ I , t ∈ [τ, T ].
(29)

Repeating the analysis that was done for the interval [T1, T0] proves unique solvability
for (29) whenever T1 − τ < c1, with c1 being the same constant that was found above
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in Step 4. Hence, we have a unique solution to (29) on the time interval [T − (2c1 +
c0), T − (c1 + c0)] =: [T2, T1]. This solution can be patched with the solution on
[T1, T ] as was done in Step 5. After a finite number N of iterations (an explicit lower
bound on N can be found, depending only on T and C̄ , the constant from Step 4), the
whole interval [0, T ] has been covered and the patching has yielded a unique solution
to (25) over the interval [0, T ] for any finite T > 0. ��

A.3 Proof of Proposition 3

The proof relies heavily on a bound for the following random variable: for a fixed
x∞ ∈ I∞ and N ∈ N, we define

ζ x∞
N : [0, T ] × I � (t, x) �→ 1

N

N∑
h=1

w(x, xh)X
xh
t −

∫

I
w(x, y)E[X y

t ]λ(dy).

We know ζ x∞
N is well-defined for all x∞ ∈ I∞ since the graphon game state Xx is

defined for all x ∈ I . The proofs of the lemmas below are found in the end of this
section.

Lemma 4 For all x∞ ∈ I∞ and N ∈ N there exists a constant C, independent of x∞
and N, such that

max1≤k≤N

(
E

[
sup

t∈[0,T ]
(|Xk,N

t − Xxk
t |2+|pkk,Nt − pxkt |2)

]
+ sup

t∈[0,T ]
E

[
|Zxk ,N

t − Zxk
t |2
])

≤ sup
(t,x)∈[0,T ]×I

C
(
E

[
|ζ x∞

N (t, x)|2
]

+ 1

N

)
.

Before attending to the first claim of the proposition, we establish a useful estimate.
It follows from the Burkholder-Davis-Gundy inequality, Gronwall’s lemma, and the
uniform integrability of the initial conditions that

sup
x∈I

E[‖Xx‖2E ] ≤ C(T , w), (30)

for some finite C(T , w) > 0 that depends only on T and w. Adding and subtracting
1
N

∑N
k=1 w(x, xk)E[Xxk

t ] to ζ x∞
N (t, x) results in

E

[
|ζ x∞

N (t, x)|2
]

≤ CE

[∣∣∣ 1
N

N∑
k=1

w(x, xk)
(
Xxk
t − E[Xxk

t ])
∣∣∣
2]

+ C
∣∣∣ 1
N

N∑
k=1

w(x, xk)E[Xxk
t ] −

∫

I
w(x, y)E[X y

t ]λ(dy)
∣∣∣
2
.

(31)
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By Lemma 1, (w(x, xk)(X
xk
t − E[Xxk

t ]))∞k=1 are mutually independent λ̄∞-a.s. Thus
λ̄∞-a.s.

E

[∣∣∣ 1
N

N∑
k=1

w(x, xk)(X
xk
t − E[Xxk

t ])
∣∣∣
2] = 1

N 2

N∑
k=1

E

[∣∣w(x, xk)(X
xk
t − E[Xxk

t ])∣∣2
]
.

(32)
The summands on the right hand side of (32) can be bounded by a constant independent
of (t, x), using the estimate derived above. We get

sup
(t,x)∈[0,T ]×I

E

[∣∣∣ 1
N

N∑
k=1

w(x, xk)(X
xk
t − E[Xxk

t ])
∣∣∣
2] ≤ C(T , w)

N
, λ̄∞-a.s.

for some constant C(T , w) > 0 depending only on T and w. We move on to the
second term of the right hand side of (31). By the strong law of large numbers, it tends
to zero almost surely as N → ∞, proving the first claim of the proposition. To prove
the second claim, we prove tightness of the term and then apply the Law of Iterated
Logarithms.

Let m(t, x) := ∫I w(x, y)E[X y
t ]λ(dy) be the mean of w(x, xk)E[Xxk

t ] when xk is
λ-distributed. Let furthermore θk(x∞) : (t, x) �→ w(x, xk)E[Xxk

t ] − m(t, x). θk is a
random variable on (I∞, I∞, λ∞) into C([0, T ] × I ).

Lemma 5 The collection (ΘN )N∈N, where ΘN := 1√
N

∑N
k=1 θk , is tight.

By Prokhorov’s theorem (see e.g. [26,Theorem 16.3]), this yields relative compact-
ness in distribution of (ΘN )N .Moreover, thefinite-dimensional distributions converge.
Indeed, for any n ∈ N and any r1, . . . , rn ∈ [0, T ] × I , we have that the sequence
(ΘN (r1), . . . , ΘN (rn))N=1,2,... converges in distribution by the standard central limit
theorem. Hence, by [26, Lemma 16.2], (ΘN )N converges in distribution. By defini-
tion, this means that θ1(x∞) : (t, x) �→ w(x, x1)E[Xx1

t ] − m(t, x) satisfies CLT (see
[31,Section 10.1]). Note that θk, k = 2, 3, . . . , are independent copies of θ1. Thus,
(ΘN )N satisfies a Law of the Iterated Logarithm (see e.g. [31,Theorem 10.12]). More
precisely, we obtain the following.

Lemma 6 There exists a constant C such that

λ∞
(
lim sup
N→∞

‖θ1 + · · · + θN‖∞√
2N log log N

= C

)
= 1.

In other words, Lemma 6 says that, for λ∞-a.e. x∞ ∈ I∞:

∀ε > 0, ∃Nε(x
∞), ∀N ≥ Nε(x

∞), ‖θ1 + · · · + θN‖∞ ≤ (C + ε)
√
2N log log N ,

and we have for λ∞-a.e. x∞ ∈ I∞, for all N ≥ Nε(x∞)

sup
(t,x)∈[0,T ]×I

∣∣∣ 1
N

N∑
k=1

(
w(x, xk)E[Xxk

t ] − m(t, x)
) ∣∣∣

2 ≤ (C + ε)2 log log N

N
.
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The last statement also holds a.s. in (I∞, Ī∞, λ̄∞), see [21,Section 6]. ��

A.3.1 Proof of Lemma 4

From standard estimates for linear SDEs and BSDEs we get

E

[
sup

t∈[0,T ]
|Xk,N

t − Xik
t |2 + sup

t∈[0,T ]
|pkk,Nt − pikt |2

]
+ sup

t∈[0,T ]
E

[
|Zk,N

t − Zik
t |2
]

≤ C
(

sup
(t,x)∈[0,T ]×I

E

[
|ζ x∞

N (t, x)|2
]

+ max
1≤	,h≤N :	 �=h

E

[
sup

t∈[0,T ]
|p	h,N

t |2
]

+ 1

N

)
.

Next, we will the estimate for the right hand side term containing off-diagonal adjoint
state variables. Consider the following auxiliary BSDE system: for k = 1, . . . , N ,
pkk,Nt = 0 and h = 1, . . . , N , h �= k,

p̃kh,N
t =

∫ T

t

(
a(xk) p̃

kh,N
s + 1

N

N∑
	=1

c(x	)w(xh, x	) p̃
k	,N
s

)
ds−

N∑
	=1

∫ T

t
q̃kh	,N
s dBx	

s .

(33)
The difference pkh,N

t − p̃kh,N
t , 1 ≤ h �= k ≤ N , satisfies the BSDE

pkh,N
t − p̃kh,N

t = w(xk , xh)

N

(
Γ̄ ∗
T (xk)

[
Xk,N
T

Zk,N
T

]
+
∫ T

t
Γ̄ (xk)

[
Xk,N
s

pkk,Ns

]
+ Γ̄Z (xk)Z

k,N
s ds

)

+
∫ T

t

( 1

N

N∑
	=1

c(x	)w(xh, x	)(p
k	,N
s − p̃k	,Ns ) + a(xh)(p

kh,N
s − p̃kh,N

s )
)
ds

−
N∑

	=1

∫ T

t
(qkh	,N

s − q̃kh	,N
s )dBi	

s , t ∈ [0, T ].

Standard BSDE estimates (relying on the integrability of Xk,N , Zk,N , and pkk,N ) yield

E

[
sup

t∈[0,T ]
|pkh,N

t − p̃kh,N
t |2 +

∫ T

0
|qkh	,N

s − q̃kh	,N
s |2ds

]
≤ C

N
,

with C independent of k, h, and N . The unique solution to (33) is p̃kh,N
t = q̃kh	

t = 0
for t ∈ [0, T ], 	 = 1, . . . , N , 1 ≤ k �= h ≤ N . ��

A.3.2 Proof of Lemma 5

We will apply the tightness criterion provided by [26,Corollary 16.9], which stems
from the Kolmogorov-Chentsov criterion. We first note that

ΘN (0, 0) = 1√
N

N∑
k=1

θk = 1√
N

N∑
k=1

[
w(0, xk)E[Xxk

0 ] −
∫

I
w(0, y)E[X y

0 ]λ(dy)

]
,
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where the random variables are i.i.d. (and with mean 0). So the sequence (ΘN (0, 0))N
is tight. Moreover, we prove that there exists a constant C > 0 and there exists a
positive integer N0 ∈ N such that for every (t, x), (t ′, x ′) ∈ [0, T ] × I , N ≥ N0,

∫

I∞

∣∣∣ 1√
N

N∑
k=1

θk(x
∞)(t, x) − θk(x

∞)(t ′, x ′)
∣∣∣
4
λ∞(dx∞) ≤ C

(|t − t ′|4 + |x − x ′|4) .

As a consequence of [26,Corollary 16.9], we will obtain that the sequence of (ΘN )N is
tight and the limiting processes are λ∞-a.s. locally Hölder continuous with exponent
1/2.

We now prove the claim. Let (t, x), (t ′, x ′) ∈ [0, T ] × I , N ∈ N. Letting Tk :=
θk(i∞)(t, x) − θk(x∞)(t ′, x ′), we note that

∫

I N

∣∣∣ 1√
N

N∑
k=1

θk(x
∞)(t, x) − θk(x

∞)(t ′, x ′)
∣∣∣
4 ⊗N

k=1 λ(dxk)

= 1

N 2

∫

I N

⎡
⎣

N∑
k1,k2,k3,k4=1

Tk1Tk2Tk3Tk4

⎤
⎦⊗N

k=1 λ(dxk)

= 1

N 2

∫

I N

N∑
k=1

T4
k ⊗N

k=1 λ(dxk)

︸ ︷︷ ︸
→0 as N→+∞

+ 1

N 2

N∑

k,k′=1
k �=k′

∫

I N

[
T2
kT

2
k′
]

⊗N
k=1 λ(dxk)

+ 1

N 2

N∑
k1=1

∫

I N
Tk1 ⊗N

k=1 λ(dxk)
︸ ︷︷ ︸

=0

N∑
k2,k3,k4=1
k2,k3,k4 �=k1

∫

I N

[
Tk2Tk3Tk4

]⊗N
k=1 λ(dxk).

The first term can be made arbitrarily small by taking N large enough. The third term
is zero. To bound the second term from above, we observe that:

T2
k = (θk(x∞)(t, x) − θk(x

∞)(t ′, x ′)
)2 ≤ C

(
|w(x, xk) − w(x ′, xk)|2E[Xxk

t ]2

+ w(x ′, xk)2
∣∣E[Xxk

t ] − E[Xxk
t ′ ]∣∣2 + |m(t, x) − m(t ′, x ′)|2

)

≤ C
(
|x − x ′|2 + ∣∣t − t ′

∣∣2 + |m(t, x) − m(t ′, x ′)|2
)
.

Furthermore, for the last term, we have by definition of m,

|m(t, x) − m(t ′, x ′)|2

≤
∫

I

(∣∣w(x, y) − w(x ′, y)
∣∣2 E[X y

t ]2 + w(x ′, y)2
∣∣E[X y

t ] − E[X y
t ′ ]
∣∣2) λ(dy)

≤ C
(∣∣x − x ′∣∣2 + ∣∣t − t ′

∣∣2) .
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Hence:

1

N 2

N∑

k,k′=1
k �=k′

∫

I N

[
T2
kT

2
k′
]

⊗N
k=1 λ(dik) ≤ C

(∣∣x − x ′∣∣4 + ∣∣t − t ′
∣∣4) .

��

A.3.3 Proof of Lemma 6

Using (30), we have that

‖θN‖2∞ = sup
(t,x)∈[0,T ]×I

|w(x, xN )E[XxN
t ] − m(t, x)|2

≤ C(w)
(
E[‖XxN ‖2∞] + E

�[‖X‖2∞]
)

≤ C(w, T ),

where C(w, T ) > 0 is a finite constant depending only on the graphon w and T . Let
Lt := max(1, log t) for t ≥ 0. Using the uniform bound derived above, we see that

∫

I∞

( ‖θN‖2∞
LL‖θN‖∞

)
dλ∞(x∞) ≤

∫

I∞
‖θN‖2∞dλ∞(x∞) < ∞.

The claim now follows from the Law of Iterated Logarithms in Banach spaces, see,
e.g., [31,Theorem 10.12]. ��

A.4 Proof of Proposition 4

We first prove the convergence claim. Recall that the two equilibria are linear func-
tions of state, costate, and aggregate, so the propagation of chaos from Proposition 3
immediately yields

max
1≤k≤N

E

[ ∫ T

0
|α̂k,N

t − α̂
xk
t |2dt

]
≤ ε2N , N ≥ N , λ̄∞-a.s.

Moving on to the approximation claim, let α̂−k,N := (α̂1,N , . . . , α̂k−1,N ,

α̂k+1,N , . . . , α̂N ,N ). Since (α̂1,N , . . . , α̂N ,N ) is a Nash equilibrium for the N -player
game

J k,N (α̂xk ; ᾱ−k,N ) − J k,N (β; ᾱ−k,N )

≤ |J k,N (α̂xk ; ᾱ−k,N ) − J k,N (α̂k,N ; α̂−k,N )| + |J k,N (β; ᾱ−k,N ) − J k,N (β; α̂−k,N )|.

Let β be an admissible control for player 1 in the N -player game. Let (X̄ k,N ,β)Nk=1 be
the player states when player 1 is using β and the others are using the graphon game

123



Applied Mathematics & Optimization (2022) 85 :39 Page 29 of 33 39

equilibrium control

d X̄1,N ,β
t =

(
a(xk)X̄

1,N ,β
t + b(xk)βt + c(xk)

1

N

N∑
h=1

w(xk, xh)X̄
h,N ,β
t

)
dt + dBx1

t ,

d X̄k,N ,β
t =

(
a(xk)X̄

k,N ,β
t + b(xk)α̂

xk
t + c(xk)

1

N

N∑
h=1

w(xk, xh)X̄
h,N ,β
t

)
dt + dBxk

t ,

X̂1,N ,β
0 = ξ x1, X̄ k,N ,β

0 = ξ xk , k ≥ 2.

Let (X̂ k,N ,β)Nk=1 be the player states when player 1 is using β and the others are using
the N -player game equilibrium control

d X̂1,N ,β
t =

(
a(xk)X̂

1,N ,β
t + b(xk)βt + c(xk)

1

N

N∑
h=1

w(xk, xh)X̂
h,N ,β
t

)
dt + dBx1

t ,

d X̂k,N ,β
t =

(
a(xk)X̂

k,N ,β
t + b(xk)α̂

k,N
t + c(xk)

1

N

N∑
h=1

w(xk, xh)X̂
h,N ,β
t

)
dt + dBxk

t ,

X̂1,N ,β
0 = ξ x1, X̂ k,N ,β

0 = ξ xk , k ≥ 2.

We have for any admissible β and λ̄∞-a.e. x∞ ∈ I∞ that

|J 1,N (β; ᾱ−1,N ) − J 1,N (β; α̂−1,N )|

≤ E

[ ∫ T

0

∣∣ f x1(X̄1,N ,β
t , βt , Z̄

1,N ,β
t ) − f x1(X̂1,N ,β

t , βt , Ẑ
1,N ,β
t )

∣∣dt
]

+ E

[∣∣hx1(X̄1,N ,β
T , Z̄1,N ,β

T ) − hx1(X̂1,N ,β
T , Ẑ1,N ,β

T )
∣∣]

≤ C max
1≤k≤N

E

[ ∫ T

0

∣∣α̂xk
t − α̂

k,N
t

∣∣2dt
]1/2 ≤ εN , N ≥ N (x∞).

In the samewaywe can perturb the other players’ actions and that concludes the proof.
��

A.5 Conditions forWell-Posedness of the Time-Varying Riccati Equation (20)

Let

At := ΓZ ,2 − ΓZ ,1ηt , B
k
t := −Γ12ηt − 1

2
(Γ11 − Γ22 + ΓZ ,1λk), C

k := −Γ12λk , t ∈ [0, T ].

Set Dk := (Bk
t )

2 + C
k
At − Ḃ

k
t . Note that Dk does not depend on t . Indeed, using

the ODE satisfied by η (i.e., (25) but with constant coefficients) and the identity
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Γ11 = −Γ22, we have

D
k = 1

4
(2Γ11 + ΓZ ,1λk)

2 − Γ12λkΓZ ,2 + Γ12Γ21.

Last, we let:

F
k := B

k
T + C

kΓT ,2 + √
Dk

B
k
T + CkΓT ,2 − √

Dk
.

Proposition 5 Assume Dk ≥ 0 and, for all t ∈ [0, T ], Fke
√
Dk t − e−√

Dk t �= 0. Then
the Riccati equation (20) has a unique solution.

Remark 4 Note that we can rewrite Dk as:

D
k =

(
Γ11 − Γ12ΓZ ,2

ΓZ ,1
+ 1

2
ΓZ ,1λk

)2

−
(

Γ11 − Γ12ΓZ ,2

ΓZ ,1

)2

+ (Γ11)
2 + Γ12Γ21.

So, to ensure Dk ≥ 0 independently of the value of λk , a sufficient condition is:

(Γ11)
2 ≥

(
Γ11 − Γ12ΓZ ,2

ΓZ ,1

)2

− Γ12Γ21.

Proof Existence: We first consider the ODE with the mixed initial condition

ν̈kt − D
kνkt = 0, t ∈ [0, T ], νk0 (B

k
T + C

kΓT ,2) − ν̇k0 = 0. (34)

A solution is given by νkt = F
ke

√
Dk t − e−√

Dk t . Let θkt = νkT−t , for t ∈ [0, T ]. It
solves the ODE with the mixed terminal condition:

θ̈kt = D
kθkt , t ∈ [0, T ], θkT (Bk

T + C
kΓT ,2) + θ̇kT = 0.

To conclude, let

πk
t = − 1

Ck

(
θ̇kt

θkt
+ B

k
t

)
, π̇k

t = − 1

Ck

(
θ̈kt

θkt
−
(

θ̇kt

θkt

)2

+ Ḃ
k
t

)
, t ∈ [0, T ].

Then it can be checked that πk
t solves

π̇k
t = −At + 2Bk

t π
k
t + C

k(πk
t )2, πk

T = [Ch]12,

which is equivalent to (20).
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Uniqueness: Let us consider πk and π̃k solving (20). Reverting the above change
of variables yields solutions νk and ν̃k to (34) such that ν̃kt �= 0 and νkt �= 0 for all
t ∈ [0, T ]. For any such solutions, there exist constants C1,C2, C̃1, C̃2 such that

νkt = C1e
√
Dk t + C2e

−√
Dk t , ν̃kt = C̃1e

√
Dk t + C̃2e

−√
Dk t .

Due to (34), we have:

C1(B
k
T + C

kΓT ,2 −
√
Dk) + C2(B

k
T + C

kΓT ,2 +
√
Dk) = 0,

C̃1(B
k
T + C

kΓT ,2 −
√
Dk) + C̃2(B

k
T + C

kΓT ,2 +
√
Dk) = 0.

As a consequence, we necessarily have C1/C2 = C̃1/C̃2 = −F
k . We deduce that

πk
t = π̃k

t for all t ∈ [0, T ]. ��
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