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Abstract
In this paper, we propose an accelerated variant of the proximal point algorithm
for computing a zero of an arbitrary maximally monotone operator A. The method
incorporates an inertial term (based upon the acceleration techniques introduced by
Nesterov), relaxation factors and a correction term. In a general Hilbert space setting,
we obtain the weak convergence of the iterates (xn) to equilibria, with the fast rate
‖xn+1 − xn‖ = o(n−1) (for the discrete velocity). In particular, when using con-
stant proximal indexes, we establish the accuracy of (xn) to a zero of A with the
worst-case rate ‖Aλ(xn)‖ = o(n−1) (Aλ being the Yosida regularization of A with
some index λ). Furthermore, given any positive integer p and using an appropriate
adjustment of increasing proximal indexes, we obtain the worst-case convergence rate
‖Aλ(xn)‖ = o(n−(p+1)). This acceleration process can be applied to various proximal-
type algorithms such as the augmented Lagrangian method, the alternating direction
method of multipliers, operator splitting methods and so on. Our methodology relies
on a Lyapunov analysis combined with a suitable reformulation of the considered
algorithm. Numerical experiments are also performed.
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1 Introduction

1.1 The considered problem

LetH be a real Hilbert space endowed with inner product and induced norm denoted
by 〈., .〉 and ‖.‖, respectively. Our goal is to propose and study a rapidly converging
method for solving the monotone inclusion problem

find x̄ ∈ H such that 0 ∈ Ax̄, (1.1)

under the following conditions:

A : H → 2H is maximally monotone on H, (1.2a)

S := A−1(0) �= ∅. (1.2b)

This problem finds many important applications in scientific fields such as image
processing, computer vision, machine learning, signal processing, optimization, equi-
librium theory, economics, game theory, partial differential equations, statistics, and so
on (see, e.g., [7,9,17,31,33,42,46,47]). It includes, as special cases, variational inequal-
ities, convex-concave saddle-point problems. In particular, we recall that (1.1)–(1.2)
encompasses the non-smooth convex minimization problem

min
H

g, (1.3)

where g verify the following conditions:

g : H → (−∞,∞] is proper, convex and lower semi-continuous, (1.4a)

argminHg �= ∅. (1.4b)

A typical method for computing zeroes of a maximally monotone operator A : H →
2H is the so-called proximal point algorithm, PPA for short (see Martinet [36], Rock-
afellar [44,45]), which consists of the iteration

xn+1 = JμA(xn), (1.5)

where JμA := (I + μA)−1 denotes the proximal mapping of A (with index μ)
which is well-known to be single-valued, everywhere defined (see, e.g., [13,24,30]
for more details). Many celebrated algorithms can be recast as specific cases of PPA.
As exampleswemention the augmentedLagrangianmethod [26,41,43], the alternating
direction method of multipliers (ADMM for short, see [1,12,18,22]), the split inexact
Uzawa method [47], as well as operator splitting methods (including the Douglas-
Rachford splitting method [19,34] and its generalized variant in [18] (also inspired
from the Peaceman-Racheford splitting method [40]). Thus any enhancement of PPA
has a wide range of applications.

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S2027–S2061 S2029

It is well-known that PPA generates weakly convergent sequences (xn) with worst-

case rates ‖xn+1 − xn‖ = O(n− 1
2 ) and ‖Aμ(xn)‖ = O(n− 1

2 ) (see, e.g. [15,18,23]),
where Aμ = μ−1(I− JμA) denotes theYosida regularization of A. This latter operator
enjoys numerous nice properties (see, for instance, [13,14]). In particular, it satisfies
A−1

μ (0) = S := A−1(0) and the quantity ‖Aμ(x)‖ (for x ∈ H) can be used to measure
the accuracy of x to a zero of A (see [18]).

The minimization problem (1.3)–(1.4), as a special instance of (1.1)–(1.2) when
A = ∂g (where ∂g is the Fenchel sub-differential of g) can be solved by PPA in which
the resolvent operator of A reduces to

Jμ∂g = proxμg(x) := argminy∈H
(
g(y) + (2μ)−1‖x − y‖2

)
. (1.6)

Recall that the corresponding PPA has been considerably enhanced, by means of
extrapolation processes based upon Nesterov’s and Güler’s acceleration techniques.
The latter variant generates convergent sequences (xn) with worst-case convergence
rates g(xn) − infH g = o(n−2) (for the function values), ‖xn+1 − xn‖ = o(n−1)

(for the discrete velocity) and ‖x∗
n‖ = o(n−1) (for the sub-gradients x∗

n ∈ ∂g(xn)),

instead of the worst-case rates g(xn) − infH g = O(n−1), ‖xn+1 − xn‖ = O(n− 1
2 )

and ‖x∗
n‖ = o(n− 1

2 ) established for PPA.
Our purpose here is to extend the above results to sequences (xn) given by some

accelerated variant of PPA, dedicated to solve the more general problem (1.1)–(1.2),
especially in term of the quantities ‖xn+1−xn‖ and ‖Aλ(xn)‖ (for some positive value
λ).

Specifically, for solving (1.1), we introduce CRIPA (Corrected Relaxed Inertial
Proximal Algorithm) which enters the following framework of sequences {zn, xn} ⊂
H generated from starting points {z−1, x−1, x0} by

zn = xn + θn(xn − xn−1) + γn(zn−1 − xn), (1.7a)

xn+1 = (1 − wn)zn + wn Jrn A(zn), (1.7b)

where {wn, θn, γn} ⊂ (0, 1) and (rn) ⊂ (0,∞). These parameters will be specified
farther.

The considered algorithm combines relaxation factors (wn), a momentum term
“θn(xn − xn−1)” (based on Nesterov’s acceleration techniques) and a correction term
“γn(xn − zn−1)” (similar to that introduced by Kim [27] in some variant of PPA).

Compared to PPA, CRIPA keeps the computational cost at each iteration basically
unchanged, while allowing us to extend to the wide framework of maximal monotone
inclusions, the interesting convergence properties obtained for the accelerated variant
relative to convexminimization.More precisely, using conveniently chosen parameters
{rn, wn, θn, γn}, we establish among others (see Theorem 1), the weak convergence
of (xn) towards some zero of A, with the convergence rate ‖xn+1 − xn‖ = o(n−1)

for the discrete velocity. In addition, when using constant proximal indexes rn (see
Theorem 2), we obtain the accuracy of (xn) to an equilibria with the worst-case rate
‖Aλ(xn)‖ = o(n−1) (for some positive value λ). This latter estimate is considerably
improved when using increasing proximal indexes (see Theorem 3). To the best of our
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knowledge, there are no such convergence results established so far for algorithmic
solution to (1.1)–(1.2).

1.2 A brief review of the state of art.

1.2.1 Convex minimization and Güuler’s acceleration processes.

Let us give some reminders concerning the useful and efficient methods proposed
by Güler [25], based upon ideas of Nesterov [37] (also see [38,39]), for minimizing a
convex lower semi-continuous function g. As particular instances of these acceleration
techniques (when using a constant proximal index μ), we mention the following two
algorithms:

The first consists of the sequences {xn, zn} given for n ≥ 0 by

xn+1 = Jμ∂g(zn), (1.8a)

tn+1 = 1

2

(
1 +

√
1 + 4t2n

)
, (1.8b)

zn+1 = xn+1 + tn − 1

tn+1
(xn+1 − xn). (1.8c)

The second method consists of {xn, zn} given for n ≥ 0 by

xn+1 = Jμ∂g(zn), (1.9a)

tn+1 = 1

2

(
1 +

√
1 + 4t2n

)
, (1.9b)

zn+1 = xn+1 + tn − 1

tn+1
(xn+1 − xn) + tn

tn+1
(xn+1 − zn). (1.9c)

Note that both methods include a momentum term tn−1
tn+1

(xn+1 − xn) while the second

one incorporates an additional correction term tn
tn+1

(xn+1 − zn).
Both the methods (1.8) and (1.9) were shown to produce iterates (xn) that guarantee

a worst-case rate g(xn) − infH g = O(n−2) for minimizing the function values.
However the convergence of the iterates has not been established.

This drawback was overcame by Chambolle-Dossal [16] (also see Attouch-
Peypouquet [5]), through the variant of (1.8) given by

zn = xn + n−1
n+α−1 (xn − xn−1),

xn+1 = Jμ∂g(zn),
(1.10)

for some positive constant α. It was proved for α > 3 (see [5]) that (1.10) generates
(weakly) convergent sequences (xn) that minimize the function values with a com-
plexity result of o(n−2), instead of the rates O(n−1) and O(n−2) obtained for (1.5)
and Güler’s processes (1.8)–(1.9), respectively.
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Note that the iterates {xn, zn} generated by the second model of Güler (1.9) satisfy,
for n ≥ 1,

zn = xn + tn−1 − 1

tn
(xn − xn−1) + tn−1

tn
(xn − zn−1), (1.11)

xn+1 = Jμ∂g(zn). (1.12)

Thus, the second algorithm (1.9), which is closely related to the optimized gradient
methods discussed by Kim-Fessler [28,29], uses a correction term other than the one
involved in (1.7).

1.2.2 Monotone inclusions and acceleration processes.

Let us emphasize that, regarding the existing algorithmic solutions to (1.1)–(1.2) with
an arbitrary monotone operator, there are no analogous theoretical convergence result
to that obtained for (1.10). Many papers have been dedicated to accelerating PPA in
its general form, by means of relaxation and inertial techniques. It seems (to the best
of our knowledge) that only empirical accelerations have been obtained, except for
the recent works by Attouch-Peypouquet [5], Attouch-László [2] and Kim [27]:

An accelerated variant of PPA has been proposed and investigated by Attouch-
Peypouquet [5] through the following RIPA (Regularized Inertial Proximal Algo-
rithm)

zn = xn +
(
1 − α

n

)
(xn − xn−1), (1.13)

xn+1 = λn

λn + s
zn + s

λn + s
J(λn+s)A(zn), (1.14)

where {s, α, λn} are positive parameters such that

α > 2 and λn = (1 + ε)
s

α2 n
2 (for some ε > 0). (1.15)

It was established (see [5, Theorem 3.6]) that (1.13)–(1.15) produces convergent
sequences (xn) with worst-case rates

‖xn+1 − xn‖ = O(n−1) and ‖Aλn+s xn‖ = o(n−1). (1.16)

This algorithmwas applied byAttouch [1] to convex structuredminimization problems
with linear constraints and it gave rise to an inertial proximal ADMM algorithm.

Another numerical approach to (1.1)–(1.2) was addressed by Attouch-László [2]
through the following PRINAM (Proximal Regularized Inertial Newton Algorithm)

zn−1 =
(
1 − β

(
1

λn
− 1

λn−1

))
xn +

(
αn − β

λn−1

)
ẋn

+ β

(
1

λn
Jλn A(xn) − 1

λn−1
Jλn−1A(xn−1)

)
, (1.17a)
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xn+1 = λn+1

λn+1 + s
zn−1 + s

λn+1 + s
J(λn+1+s)A(zn−1), (1.17b)

where ẋn = xn − xn−1, while s, β, (λn) and (αn) are positive parameters that satisfy

αn = rn + q − 1

r(n + 1) + q
with r > 0 and q ∈ (−∞,∞), λn = λn2 with λ >

(2β + s)2r2

s
.

(1.18)

It was established (see [2, Theorem 1.1]) that (1.17a)–(1.17b) generates convergent
sequences (xn) with worst-case rates

‖xn+1 − xn‖ = O(n−1) and ‖Aλn (xn)‖ = o(n−2). (1.19)

This secondmethod also use a correction term "β
(

1
λn

Jλn A(xn) − 1
λn−1

Jλn−1A(xn−1)
)
"

different from the one involved in (1.7).
Note that, for accelerating the proximal point algorithm, both the previous methods

require proximal indexes (λn) that go to infinity as n → ∞.

Remark 1 This last observation is fundamental in view of decomposition techniques
which require to use only constant or bounded proximal indexes; for instance, in
forward-backward algorithms ( [33]), or in operator splitting methods ( [18,19,21]).

This is not the case for the accelerated proximal point method proposed by Kim [27],
based on the performance estimation problem (PEP) approach of Drori-Teboulle [20]
and which writes, for initial iterates {x0, z0, z−1} ⊂ H and for n ≥ 0,

xn+1 = JμA(zn), (1.20a)

zn+1 = xn+1 + n

n + 2
(xn+1 − xn) + n

n + 2
(zn−1 − xn). (1.20b)

This yields the following worst-case convergence rate ‖xn − zn−1‖ = O(n−1) (see
[27, Theorem 4.1]), or equivalently ‖Aμ(zn)‖ = O(n−1), which entails (since Aμ is
Lipschtz continuous)

‖Aμ(xn)‖ = O(n−1). (1.21)

However no convergence of the iterates was established for (1.20).

1.3 CRIPA and an overview of the related results.

1.3.1 Introducing CRIPA.

Our numerical approach to (1.1)–(1.2) is more precisely given by sequences {xn, zn}
generated by the following (corrected, relaxed and inertial) algorithm :
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(CRIPA):
� Step 1 (initialization): Let {z−1, x−1, x0} ⊂ H, λ > 0.
� Step 2 (main step): Given {zn−1, xn−1, xn} ⊂ H (with n ≥ 0), we compute the
updates by

zn = xn + θn(xn − xn−1) + γn (zn−1 − xn) , (1.22a)

xn+1 = 1

1 + kn
zn + kn

1 + kn
Jλ(1+kn)A(zn), (1.22b)

where kn , θn and γn are non-negative parameters defined, for some constant
{a, c, a1, a2} ⊂ [0,∞) and {b, c̄} ⊂ (0,∞), as follows:

• (kn) is given recursively, from k0 > 0 and for n ≥ 1, by

kn = kn−1

(
1 + a

bn + c

)
. (1.23)

• (θn) and (γn) are given for n ≥ 0 by

θn = 1 − a1
bn + c̄

, γn = 1 − a2
bn + c̄

. (1.24)

Let us stress that, for conventional reasons, we can assume that c̄ > ai (for i = 1, 2),
so as to ensure that {θn, γn} ⊂ (0, 1) (even though this is not of great importance for
convergence).

A particular attention will be paid to the special case of CRIPA when a = 0
(namely when using constant relaxation factors), which will be considered through
the following formulation:
(CRIPA-S):
� Step 1 (initialization): Let {z−1, x−1, x0} ⊂ H, λ > 0.
� Step 2 (main step): Given {zn−1, xn−1, xn} ⊂ H (with n ≥ 0), we compute the
updates by

zn = xn + θn(xn − xn−1) + γn(zn−1 − xn), (1.25a)

xn+1 = 1

1 + k0
zn + k0

1 + k0
Jλ(1+k0)A(zn). (1.25b)

1.3.2 An overview of the main results.

Under convenient assumptions on the constants {a, b, c, a1, a2, c̄}weestablish (among
others) the weak convergence of {xn} (generated by CRIPA) towards equilibria, but
we also set up the following estimates (see Theorems 1, 2 and 3):

‖xn+1 − xn‖ = o(n−1),
∑
n

n‖xn+1 − xn‖2 < ∞, (1.26a)

∑
n

n2‖(xn+1 − xn) − (xn − xn−1)‖2 < ∞. (1.26b)
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Moreover, given any arbitrary nonnegative integer p, we exhibit a set of conditions on
the parameters that ensure the following properties (see Theorem 2)

‖Aλ(xn)‖ = o(n−(p+1)),
∑
n

n2p+1‖Aλ(xn)‖2 < ∞, (1.27a)

for any q ∈ A−1(0),
∑
n

n p〈Aλ(xn), xn − q〉 < ∞. (1.27b)

In particular, when A is the sub-differential of a proper and convex lower semi-
continuous function f : H → IR ∪ {+∞}, we reach the following convergence
rates of the values (see Theorem 4)

fλ(xn) − min f = o(n−(p+1)),
∑
n

n p( fλ(xn) − min f ) < ∞, (1.28)

where fλ denotes the Moreau envelope of f .
Our process provides a significant acceleration of PPA, even when using a constant

proximal index, besides generating convergent iterates. It also involves a correction
term similar to that used by Kim [27]. It would be interesting to understand the role of
the correction term used in the proposedmethod, through a continuous counterpart, but
this is out of the scope of this work. Let us mention that there is a flourishing literature
devoted to accelerated continuous counterpart of PPA with general operators (see, for
instance, [2,3,5,8,11,35]).

1.4 Organization of the paper.

In Sect. 2, we give some preliminaries on CRIPA. The method is reformulated in
terms of Yosida approximations and a crucial estimation is proposed for a Lyapunov
analysis. Section 3 is devoted to the convergence analysis of CRIPA. A main result
(Theorem 1) is established in a general setting of operators and parameters. As conse-
quences of our main theorem, we claim two other results (Theorems 2 and 3) relative
to the involved parameters. In Sect. 4, we specialize our main results in the setting of
convex minimization. Two related results are proposed (Theorems 4 and 5) are set up.
Next, numerical experiments are performed in Sect. 5 and several technical results are
established in Appendix.

Remark 2 Fromnowon, so as to simplify the presentation,we (often) use the following
notation: given any sequence (un), we denote u̇n = un − un−1. We also denote the
integer part of any real number a by [a].

2 Preliminaries on CRIPA.

In this section, we provide a suitable reformulation of CRIPA in terms of Yosida
approximations andwe exhibit a Lyapunov sequence in connectionwith the algorithm.
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These two argumentswill allowus to obtain separately a series of preliminary estimates
(in Sect. 3) that will be combined so as to reach our statements in Theorem 1.

2.1 Formulation of CRIPA bymeans of Yosida approximations.

Let sequences {xn, zn} verify (1.22b) relative to some positive parameters {kn, λ} and
some maximally monotone operator A : H → 2H.

By definition of the Yosida approximation we have Aλ = λ−1(I − JλA) as well as

(I + λkn Aλ)
−1 = I − λkn(Aλ)λkn . (2.1)

Hence, according to the resolvent equation (formulated as a semi-group property)
(Aδ)κ = Aδ+κ (for any positive values δ and κ), we infer that

(I + λkn Aλ)
−1 = I − λkn Aλ(1+kn). (2.2)

So, by xn+1 = zn − λkn Aλ(1+kn)(zn) (from (1.22b)), we deduce that

xn+1 = (I + λkn Aλ)
−1(zn). (2.3)

This observation will be of crucial interest with regard to the methodology developed
farther.

As a key result in our analysis, we give the following lemma.

Lemma 1 The iterates {xn, zn} generated by CRIPA satisfy (for n ≥ 0)

zn − xn+1 = λkn Aλ(xn+1), (2.4a)

ẋn+1 + (zn − xn+1) = θn ẋn + γn(zn−1 − xn). (2.4b)

Proof It is no difficult to see for n ≥ 0 that (2.3) is equivalent to zn = xn+1 +
λkn Aλ(xn+1), which yields (2.4a). Furthermore, by zn = xn + θn ẋn + γn(zn−1 − xn)
(from (1.22a)), we simply obtain zn − xn+1 = −ẋn+1 + θn ẋn + γn(zn−1 − xn), which
entails (2.4b) ��

As a consequence of the previous arguments we make the following observation.

Remark 3 The iterates {xn, zn} given by CRIPA satisfy (for n ≥ 1)

zn = xn + θn(xn − xn−1) + γnλkn−1Aλ(xn), (2.5a)

xn+1 = Jλkn Aλ(zn). (2.5b)

This latter formulation enlightens the fact that the Moreau-Yosida regularization com-
patibilizes the operator’s lack of co-coercivity with the acceleration scheme (see [5,6]).
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2.2 A general inequality for a Lyapunov analysis

At once we provide a useful inequality dedicated to a Lyapunov analysis of the con-
sidered method. With the iterates {xn} produced by CRIPA, we associate the sequence
(En(s, q)) defined for (s, q) ∈ (0,∞) × S and for n ≥ 1 by

En(s, q) = 1
2‖s(q − xn) − (bn + c̄ − a1)ẋn‖2

+ 1
2 s(a1 − b − s)‖xn − q‖2 + sλkn−1(b(n − 1) + c̄)〈Aλ(xn), xn − q〉. (2.6)

The next result will be helpful with regard to our forthcoming analysis.

Lemma 2 Suppose that (1.2) holds and let {xn} ⊂ H be generated by CRIPA with
sequences (kn), (θn) and (γn) (given by (1.23) and (1.24)), along with constants
{λ, k0} ⊂ (0,∞), {a, c, a1, a2} ⊂ [0,∞) and {b, c̄} ⊂ (0,∞) verifying

a1 > b. (2.7)

Then, for (s, q) ∈ (0, a1 − b] × H and for n ≥ N0 (with some N0 large enough), we
have

Ėn+1(s, q) + sλkn−1 (a2 − b) 〈Aλ(xn), xn − q〉
+ λkn−1(bn + c̄)

(
a bn+c̄−s

bn+c + a2 − s
)

〈Aλ(xn), ẋn+1〉
+ λ2kn(bn + c̄)(bn + c̄ − s)‖Aλ(xn+1) − Aλ(xn)‖2
+ 1

2 (bn + c̄)2‖ẋn+1 − θn ẋn‖2
+ 1

2 (a1 − b − s)
(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2 ≤ 0.

(2.8)

The proof of Lemma 2 is divided into two parts through the next subsections.

2.2.1 Proof of Lemma 2 - part 1.

An important equality of independent interest is proposed here relative to our method
through the wider framework of sequences {xn, dn} ⊂ H and parameters {e, νn, θn} ⊂
(0,∞) verifying (for n ≥ 0)

ẋn+1 − θn ẋn + dn = 0, (2.9a)

(e + νn+1)θn = νn . (2.9b)

For this purpose, we associate with (2.9) the quantity Gn(s, q) given for (s, q) ∈
[0,∞) × H by

Gn(s, q) = 1

2
‖s(q − xn) − νn ẋn‖2 + 1

2
s(e − s)‖xn − q‖2, (2.10)

Basic properties regarding the sequence (Gn(s, q)) are established through the fol-
lowing proposition.
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Proposition 1 Let {xn, dn} ⊂ H and {θn, νn, e} ⊂ (0,∞) verify (2.9). Then for
(s, q) ∈ (0, e] × H and for n ≥ 0 we have

Ġn+1(s, q) + 1
2 (e + νn+1)

2‖ẋn+1 − θn ẋn‖2
+ s(e + νn+1)〈dn, xn+1 − q〉
+ (e − s + νn+1) (e + νn+1)〈dn, ẋn+1〉 = − 1

2 (e − s) (e + 2νn+1)‖ẋn+1‖2.
(2.11)

The proof of Proposition 1 is given in Appendix 1.

2.2.2 Proof of Lemma 2 - part 2.

It can be checked (from (2.4)) that CRIPA enters the special case of algorithm (2.9)
(for n ≥ 1) when taking the particular parameters e = a1 − b (with a1 > b), νn =
bn + c̄ − a1, together with dn as below

dn = λkn Aλ(xn+1) − γnλkn−1Aλ(xn). (2.12)

In this specific situation, we get

e + νn+1 = bn + c̄ and e + 2νn+1 = (2n + 1)b + 2c̄ − a1. (2.13)

Hence, for n ≥ N0, for some N0 large enough (so as to ensure that νn is positive), and
for s ∈ (0, a1 − b], by Proposition 1 we obtain

Ġn+1(s, q) + 1
2 (bn + c̄)2‖ẋn+1 − θn ẋn‖2 + �n

= − 1
2 (a1 − b − s) ((2n + 1)b + 2c̄ − a1)‖ẋn+1‖2, (2.14)

where Gn(s, q) and �n are given by

Gn(s, q) = 1

2
‖s(q − xn) − (bn + c̄ − a1) ẋn‖2 + 1

2
s(a1 − b − s)‖xn − q‖2,

(2.15a)

�n = s(bn + c̄)〈dn, xn+1 − q〉 + (bn + c̄)(bn + c̄ − s)〈dn, ẋn+1〉. (2.15b)

In order to evaluate �n and for simplification, we set

Un := 〈λkn−1Aλ(xn), xn − q〉.

According to the formulation of dn (given in (2.12)) we have

〈dn, xn+1 − q〉
=

〈
λkn Aλ(xn+1) − γnλkn−1Aλ(xn), xn+1 − q

〉

=
〈
λkn Aλ(xn+1), xn+1 − q

〉
− γn

〈
λkn−1Aλ(xn), ẋn+1〉 − γn〈λkn−1Aλ(xn), xn − q

〉

= Un+1 − γnUn − γn〈λkn−1Aλ(xn), ẋn+1〉,
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as well as

〈dn, ẋn+1〉
=

〈
λkn Aλ(xn+1) − γnλkn−1Aλ(xn), ẋn+1

〉

=
〈
λkn Aλ(xn+1) − λkn−1Aλ(xn) + (1 − γn)λkn−1Aλ(xn), ẋn+1

〉

=
〈
λkn Aλ(xn+1) − λkn−1Aλ(xn), ẋn+1

〉
+ (1 − γn)

〈
λkn−1Aλ(xn), ẋn+1

〉

= λkn〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+ λ (kn − kn−1) 〈Aλ(xn), ẋn+1〉 + (1 − γn)〈λkn−1Aλ(xn), ẋn+1〉

= (λkn)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+

(
kn−kn−1
kn−1

+ (1 − γn)

)
〈λkn−1Aλ(xn), ẋn+1〉.

This in light of (2.15b) amounts to

(bn + c̄)−1�n = s〈dn, xn+1 − q〉 + (bn + c̄ − s)〈dn, ẋn+1〉

= s

(
Un+1 − γnUn − γn〈λkn−1Aλ(xn), ẋn+1〉

)

+ (λkn)(bn + c̄ − s)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+ (bn + c̄ − s)

(
kn−kn−1
kn−1

+ 1 − γn

)
〈λkn−1Aλ(xn), ẋn+1〉

= s (Un+1 − γnUn)

+ (λkn)(bn + c̄ − s)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+

(
(bn + c̄ − s) kn−kn−1

kn−1
+ (bn + c̄ − s) (1 − γn) − sγn

)
〈λkn−1Aλ(xn), ẋn+1〉.

The latter equality can be rewritten as

(bn + c̄)−1�n = s(Un+1 − γnUn)

+ λkn(bn + c̄ − s)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+

(
(bn + c̄ − s) kn−kn−1

kn−1
+ (bn + c̄)(1 − γn) − s

)
〈λkn−1Aλ(xn), ẋn+1〉.

(2.16)

Moreover, we recall that γn = 1− a2
n+c̄ . Then, by an easy computation, we obtain the

following two equalities

γn(bn + c̄) = (bn + c̄) − a2 = (b(n − 1) + c̄) + b − a2,

(bn + c̄)(1 − γn) − s = a2 − s.

It is also readily checked from (1.24) that kn satisfies

kn − kn−1

kn−1
= a

bn + c
. (2.17)
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Therefore by the previous arguments we get

�n = s(bn + c̄)Un+1 − s(b(n − 1) + c̄)Un + s (a2 − b)Un

+ (bn + c̄)

(
a
bn + c̄ − s

bn + c
+ a2 − s

)
〈λkn−1Aλ(xn), ẋn+1〉

+ λkn(n + c̄)(n + c̄ − s)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉.
(2.18)

Consequently, by noticing that En(s, q) = Gn(s, q) + s(b(n − 1) + c̄)Un (in light
(2.6) and (2.15a)), and using (2.14) and (2.18), we deduce

Ėn+1(s, q) + s (a2 − b)Un + (bn + c̄)

(
a
bn + c̄ − s

bn + c
+ a2 − s

)
〈λkn−1Aλ(xn), ẋn+1〉

+λkn(bn + c̄)(bn + c̄ − s)〈Aλ(xn+1) − Aλ(xn), ẋn+1〉
+1

2
(bn + c̄)2‖ẋn+1 − θn ẋn‖2

= −1

2
(a1 − b − s)

(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2.

In addition, the well-known property of λ-co-coerciveness of Aλ implies that

〈Aλ(xn+1) − Aλ(xn), ẋn+1〉 ≥ λ‖Aλ(xn+1) − Aλ(xn)‖2. (2.19)

Thus, for n ≥ N0, for some N0 large enough (which also ensures that (bn+c̄−(a1−b))
is positive), and for s ∈ (0, a1 − b], by the previous two inequalities we are led to

Ėn+1(s, q) + s (a2 − b)Un + (bn + c̄)

(
a
bn + c̄ − s

bn + c
+ a2 − s

)
〈λkn−1Aλ(xn), ẋn+1〉

+ λ2kn(bn + c̄)(bn + c̄ − s)‖Aλ(xn+1) − Aλ(xn)‖2

+ 1

2
(bn + c̄)2‖ẋn+1 − θn ẋn‖2

+ 1

2
(a1 − b − s)

(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2 ≤ 0.

This last inequality, recalling that Un := 〈λkn−1Aλ(xn), xn − q〉, is nothing but (2.8)
��

3 CRIPA in the general case of monotone operators.

3.1 Main estimates.

A series of estimates are obtained here by means of a Lyapunov analysis (based upon
Lemma 2) and using the reformulation of CRIPA (from Lemma 1). Our main results
(in Theorem 1) will be derived as a combination of the previous series of estimates.

123



S2040 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S2027–S2061

3.1.1 Estimates from the energy-like sequence.

The next result is obtained from Lyapunov properties of (En(s, q)) for convenient
choices of the involved parameters.

Lemma 3 Suppose that (1.2) holds and that {xn} ⊂ H is generated by CRIPA with
sequences (kn), (θn) and (γn) (given by (1.23) and (1.24)), along with constants
{λ, k0} ⊂ (0,∞), {a, c, a1, a2, } ⊂ [0,∞) and {b, c̄} ⊂ (0,∞) verifying

a2 ≥ b and a1 > b + (a + a2). (3.1)

Assume, in addition, that c and c̄ are chosen as follows:

if a > 0, then c > a1 − (a2 + a), c̄ = c + (a2 + a); (3.2a)

if a = 0, then c̄ > max{a1, a2}. (3.2b)

Then, for any q ∈ S, the sequence (En(a + a2, q))n≥N1 (for some integer N1
large enough) is non-increasing and convergent. Moreover, the following estimates
are reached:

sup
n≥N1

‖xn − q‖2 ≤ 2EN1(a + a2, q)

(a + a2)(a1 − b − (a + a2))
, (3.3a)

sup
n≥N1

(b(n − 1) + c̄)kn−1〈Aλ(xn), xn − q〉 ≤ EN1(a + a2, q)

λ(a + a2)
, (3.3b)

sup
n

n‖ẋn‖ < ∞, (3.3c)

∑
n≥N1

(a2 − b)kn−1〈Aλ(xn), xn − q〉 ≤ EN1(a + a2, q)

λ(a + a2)
, (3.3d)

∑
n≥N1

kn(bn + c̄)
(
bn + c̄ − (a + a2)

)‖Aλ(xn+1) − Aλ(xn)‖2 ≤ EN1(a + a2, q)

λ2
,

(3.3e)
∑
n≥N1

(bn + c̄)‖ẋn+1‖2 ≤ 2EN1(a + a2, q)

a1 − b − (a + a2)
, (3.3f)

∑
n

n2‖ẋn+1 − ẋn‖2 < ∞. (3.3g)

Proof Clearly, we have a+a2 ∈ (0, a1−b) (by condition (3.1)). It can also be checked
that condition (3.2) ensures that

a bn+c̄−(a+a2)
bn+c + a2 = a + a2. (3.4)
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Consequently, for q ∈ S and using Lemma 2 with s = a + a2, we know that, for
n ≥ N1 (with N1 large enough), we get

Ėn+1(a + a2, q) + λ(a + a2)kn−1 (a2 − b) 〈Aλ(xn), xn − q〉
+λ2kn(bn + c̄)

(
bn + c̄ − (a + a2)

)‖Aλ(xn+1) − Aλ(xn)‖2
+ 1

2 (bn + c̄)2‖ẋn+1 − θn ẋn‖2
+ 1

2

(
a1 − b − (a + a2)

)(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2 ≤ 0,

(3.5)

together with

bn + c̄ − (a + a2) > 0, (3.6a)

(2n + 1)b + 2c̄ − a1 > 0. (3.6b)

It follows immediately that the non-negative sequence (En(a + a2, q))n≥N1 is non-
increasing, since a2 − b is assumed to be non-negative and since a1 − b − (a + a2)
is assumed to be positive (in light of condition (3.1)). Hence, (En(a + a2, q))n≥N1 is
convergent and bounded. Moreover, from (2.6), we recall that

En(a + a2, q) = 1
2 (a + a2)

(
a1 − b − (a + a2)

)‖xn − q‖2
+λ(a + a2)kn−1(b(n − 1) + c̄)〈Aλ(xn), xn − q〉
+ 1

2‖(a + a2)(q − xn) − (bn + c̄ − a1)ẋn‖2.
(3.7)

Then, by the inequality En(a + a2, q) ≤ EN1(a + a2, q) (for n ≥ N1), we get

1

2
(a + a2)

(
a1 − b − (a + a2)

)‖xn − q‖2 ≤ EN1(a + a2, q), (3.8)

λ(a + a2)kn−1(b(n − 1) + c̄)〈Aλ(xn), xn − q〉 ≤ EN1(a + a2, q), (3.9)

(bn + c̄ − a1)‖ẋn‖ − (a + a2)‖q − xn‖ ≤ √
2EN1(a + a2, q). (3.10)

Estimates (3.3a), (3.3b) and (3.3c) are direct consequences of these last three inequal-
ities. Furthermore, by adding (3.5) from n = N1 to n = N (for any given positive
integer N ≥ N1) we obtain

EN+1(a + a2, q)

+λ(a + a2) (a2 − b)
∑N

n=N1
kn−1〈Aλ(xn), xn − q〉

+λ2
∑N

n=N1
kn(bn + c̄)

(
bn + c̄ − (a + a2)

)‖Aλ(xn+1) − Aλ(xn)‖2
+ 1

2 (a1 − b − (a + a2))
∑N

n=N1

(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2
+ 1

2

∑N
n=N1

(n + c̄)2‖ẋn+1 − θn ẋn‖2 ≤ EN1(a + a2, q),

(3.11)

which, in light of (3.1) and (3.6), entails that

λ(a2 + a) (a2 − b)
N∑

n=N1

kn−1〈Aλ(xn), xn − q〉 ≤ EN1(a2 + a, q), (3.12a)
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λ2
N∑

n=N1

kn(bn + c̄)
(
bn + c̄ − (a + a2)

)‖Aλ(xn+1) − Aλ(xn)‖2 ≤ EN1(a2 + a, q),

(3.12b)

1

2
(a1 − b − (a + a2))

N∑
n=N1

(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2 ≤ EN1(a2 + a, q),

(3.12c)

1

2

N∑
n=N1

(n + c̄)2‖ẋn+1 − θn ẋn‖2 ≤ EN1(a2 + a, q). (3.12d)

This straightforwardly yields (3.3d), (3.3e) and (3.3f). The last estimate (3.3g) is
simply deduced from (3.3f) and (3.12d) (in light of the definition of θn) ��

3.1.2 Estimates from the reformulation of the method.

In this section we establish additional estimates regarding CRIPA, especially on
(Aλ(xn)), by combining the results of Lemma 3 with the formulation of the method
given in (2.4b).

Lemma 4 Assume, in addition to the assumptions of Lemma 3, that a2 and b satisfy

a2 > 2b. (3.13)

Then we have the following results:

∑
n

n‖ẋn + λkn−1Aλ(xn)‖2 < ∞, (3.14a)

‖ẋn + λkn−1Aλ(xn)‖ = o(n−1), (3.14b)∑
n

nk2n−1‖Aλ(xn)‖2 < ∞, (3.14c)

∑
n

nkn−1|〈Aλ(xn), ẋn+1〉| < ∞. (3.14d)

Proof Let us prove (3.14a) and (3.14b). For n ≥ 1, according to Lemma 1 we have

ẋn+1 + λkn Aλ(xn+1) = θn ẋn + γnλkn−1Aλ(xn), (3.15)

where {θn, γn} ⊂ (0, 1) are given by (1.24) with c̄ = c+a2+a (under the assumptions
of Lemma 3), namely

θn = 1 − a1(bn + c̄)−1 and γn = 1 − a2(bn + c̄)−1. (3.16)
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Observe that (3.15) can be rewritten as

ẋn+1 + λkn Aλ(xn+1) = γn(ẋn + λkn−1Aλ(xn)) + (θn − γn)ẋn, (3.17)

so, by setting

Hn = ẋn + γnλkn−1Aλ(xn), (3.18)

we can equivalently formulate (3.17) as

Hn+1 = γnHn + (θn − γn)ẋn = γnHn + (1 − γn)
θn−γn
1−γn

ẋn . (3.19)

Then by convexity of the squared norm we infer that

‖Hn+1‖2 ≤ γn‖Hn‖2 + (1 − γn)

(
γn − θn

1 − γn

)2

‖ẋn‖2

= γn‖Hn‖2 + (γn − θn)
2

1 − γn
‖ẋn‖2. (3.20)

Moreover, by (3.16) we readily have

θn − γn = (a2 − a1)(bn + c̄)−1 and 1 − γn = a2(bn + c̄)−1, (3.21)

which amounts to

(γn − θn)
2

1 − γn
= (a2 − a1)2(n + c̄)−2

a2(n + c̄)−1 = (a2 − a1)2

a2
(bn + c̄)−1. (3.22)

Consequently, in light of (3.16), (3.20) and (3.22), we obtain

‖Hn+1‖2 ≤
(
1 − a2(bn + c̄)−1

)
‖Hn‖2 + a−1

2 (a2 − a1)
2(bn + c̄)−1‖ẋn‖2.

(3.23)

Next, multiplying this last inequality by (bn + c̄)2 gives us

(bn + c̄)2‖Hn+1‖2 ≤ (bn + c̄) (bn + c̄ − a2) ‖Hn‖2
+a−1

2 (a2 − a1)
2(bn + c̄)‖ẋn‖2, (3.24)

while we simply have

(bn + c̄) (bn + c̄ − a2) − (b(n − 1) + c̄)2

= (bn + c̄)2 − (b(n − 1) + c̄)2 − a2(bn + c̄)
≤ 2b(bn + c̄) − a2(bn + c̄) = −(a2 − 2b)(bn + c̄),
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or equivalently

(bn + c̄) (bn + c̄ − a2) ≤ (b(n − 1) + c̄)2 − (a2 − 2b)(bn + c̄). (3.25)

It follows from the two estimates (3.24) and (3.25) that

(bn + c̄)2‖Hn+1‖2 − (b(n − 1) + c̄)2‖Hn‖2
+(bn + c̄)(a2 − 2b)‖Hn‖2 ≤ a−1

2 (a2 − a1)2(bn + c̄)‖ẋn‖2. (3.26)

Thus, assuming that a2 − 2b > 0 and recalling that
∑

n n‖ẋn‖2 < ∞ (according
to Lemma 3), we classically deduce that

∑
n n‖Hn‖2 < ∞ (that is (3.14a)) and that

there exists l1 ≥ 0 such that

lim
n→+∞(b(n − 1) + c̄)2‖Hn‖2 = l1.

Notice that we clearly have limn→∞(bn)2‖Hn‖2 = l1 (since
(b(n−1)+c̄)2

(bn)2
→ 1 as n →

∞). So, by
∑

n n‖Hn‖2 < ∞ (in light of (3.14a)), and noticing that
∑

n n
−1 = ∞,

we deduce that l1 = 0, which leads to (3.14b).
Let us prove (3.14c) and (3.14d). Clearly, according to the definition of Hn , we

simply have

n‖λkn−1Aλ(xn)‖2 ≤ 2n‖ẋn + λkn−1Aλ(xn)‖2 + 2n‖ẋn‖2 = 2n‖Hn‖2 + 2n‖ẋn‖2,

hence, by
∑

n n‖ẋn‖2 < ∞ (from (3.3f)) and
∑

n n‖Hn‖2 < ∞ (from (3.14a)), we
immediately obtain (3.14c). In addition, Young’s inequality readily gives us

nkn−1|〈Aλ(xn), ẋn+1〉| ≤ 1
2n‖kn−1Aλ(xn)‖2 + 1

2n‖ẋn+1‖2. (3.27)

The estimate (3.14d) is then obtained as an immediate consequence of (3.27), along
with the results

∑
n n‖kn−1Aλ(xn)‖2 < ∞ (from (3.14c)) and

∑
n n‖ẋn‖2 < ∞

(from (3.3f)) ��

3.2 Asymptotic convergence andmain results.

3.2.1 Convergence in the general case of parameters.

The following result establishes the convergence of CRIPA in a general setting of
parameters.

Theorem 1 Let A : H → 2H be a maximally monotone operator such that S :=
A−1(0) �= ∅. Let {λ, k0} be positive constants and assume that {zn, xn} ⊂ H are
generated by CRIPA with (kn), (θn) and (γn) (given by (1.23) and (1.24)), along with
constants {a, c, a1, a2} ⊂ [0,∞) and {b, c̄} ⊂ (0,∞) verifying

a2 > 2b, a1 > b + a + a2; (3.28a)
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if a > 0, then c > a1 − (a2 + a), c̄ = c + a2 + a; (3.28b)

if a = 0, then c̄ > max{a1, a2}. (3.28c)

Then (xn) and (zn) converge weakly to some element of S and the following results
are reached:

‖ẋn+1‖ = o(n−1),
∑
n

n‖ẋn+1‖2 < ∞, , (3.29a)

‖Aλ(xn)‖ = o((nkn)
−1),

∑
n

nk2n‖Aλ(xn)‖2 < ∞, (3.29b)

∑
n

n2‖ẋn+1 − ẋn‖2 < ∞,
∑
n

knn
2‖Aλ(xn+1) − Aλ(xn)‖2 < ∞, (3.29c)

for any q ∈ S,
∑
n

kn〈Aλ(xn), xn − q〉 < ∞. (3.29d)

Theorem 1 will be proved in Appendix (Sect. 3).

3.2.2 Convergence results in particular cases of parameters.

The estimates given in Theorem 1 are depending on the parameter (kn), while the next
result enlightens some specific properties of (kn) given by (1.23).

Proposition 2 Let (kn) ⊂ (0,∞) be given by (1.23) with b > 0 and {a, c} ⊂ [0,∞).
Suppose for some nonnegative integer p that [ ab ] ≥ p (where [ ab ] denotes the integer
part of a

b ). Then there exist some positive constant C (depending on k0, [ ab ], [ cb ]) and
some positive integer n p (depending on [ ab ]) for which kn satisfies

kn ≥ Cnp for n ≥ n p. (3.30)

The proof of Proposition 2 is given in Appendix 2.
The above proposition allows us to give more precise estimates with respect to the

involved parameters.
In specific, the next two results are immediate consequences of Theorem 1 and

Proposition 2.
The first theorem is related to the special case of CRIPA when a = 0.

Theorem 2 (Convergence of CRIPA with constant relaxation factors) Let A : H →
2H be maximally monotone, with S := A−1(0) �= ∅. Let {λ, k0} be positive constants
and assume that {zn, xn} ⊂ H are generated by CRIPA-S with parameters (θn) and
(γn) (given (1.24)), along with constants {b, c̄, a1, a2} ⊂ (0,∞) verifying

a2 > 2b, a1 > b + a2, (3.31a)

c̄ > max{a1, a2}. (3.31b)
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Then (xn) and (zn) converge weakly to some element of S and the following results
are reached:

‖ẋn+1‖ = o(n−1),
∑
n

n‖ẋn+1‖2 < ∞,
∑
n

n2‖ẋn+1 − ẋn‖2 < ∞, (3.32a)

‖Aλ(xn)‖ = o(n−1),
∑
n

n‖Aλ(xn)‖2 < ∞, (3.32b)

∑
n

n2‖ẋn+1 − ẋn‖2 < ∞,
∑
n

n2‖Aλ(xn+1) − Aλ(xn)‖2 < ∞, (3.32c)

for any q ∈ S,
∑
n

〈Aλ(xn), xn − q〉 < ∞. (3.32d)

The second theorem is related to the particular case of CRIPA when a > 0.

Theorem 3 (Convergence of CRIPAwith varying relaxation factors) Let A : H → 2H
be maximally monotone, with S := A−1(0) �= ∅, and let {xn, zn} ⊂ H be generated by
CRIPAwith parameters (θn) and (γn) (given by (1.24)). Suppose for some nonnegative
integer p that {a, b, c, a1, a2, c̄} are positive constants verifying

a2 > 2b, [a
b
] ≥ p, a1 > b + a + a2, (3.33a)

c > a1 − (a2 + a), c̄ = c + a2 + a. (3.33b)

Then (xn) and (zn) converge weakly to some element of S and the following results
are reached:

‖ẋn+1‖ = o(n−1),
∑
n

n‖ẋn+1‖2 < ∞, (3.34a)

‖Aλ(xn)‖ = o(n−(p+1)),
∑
n

n2p+1‖Aλ(xn)‖2 < ∞, (3.34b)

∑
n

n2‖ẋn+1 − ẋn‖2 < ∞,
∑
n

n p+2‖Aλ(xn+1) − Aλ(xn)‖2 < ∞, (3.34c)

for any q ∈ S,
∑
n

n p〈Aλ(xn), xn − q〉 < ∞. (3.34d)

4 CRIPA in the convex case.

In this section, by following the methodology used by Attouch-László [2], we expose
our main results relative to the minimization problem

inf
x∈H

f (x), (4.1)

where f : H → IR ∪ {+∞} is a proper convex and lower semi-continuous function
such that argmin f �= ∅.
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Indeed, by Fermat’s rule we know that (4.1) is equivalent to the monotone inclusion
problem

find x ∈ H such that 0 ∈ ∂ f (x). (4.2)

Moreover, in the special case when A = ∂ f , CRIPA reduces to the following algo-
rithm.
(CRIPA-convex):
� Step 1 (initialization): Let {z−1, x−1, x0} ⊂ H.
� Step 2 (main step): Given {zn−1, xn−1, xn} ⊂ H (with n ≥ 0), we compute the
updates by

zn = xn + θn(xn − xn−1) + γn(zn−1 − xn), (4.3a)

xn+1 = 1

1 + kn
zn + kn

1 + kn
proxλ(1+kn) f (zn), (4.3b)

where (kn), (θn) and (γn) are given by (1.23) and (1.24).
As the specific case of the latter algorithm when a = 0 we also consider the

following method:
(CRIPA-S-convex):
� Step 1 (initialization): Let {z−1, x−1, x0} ⊂ H.
� Step 2 (main step): Given {zn−1, xn−1, xn} ⊂ H (with n ≥ 0), we compute the
updates by

zn = xn + θn(xn − xn−1) + γn(zn−1 − xn), (4.4a)

xn+1 = 1

1 + k0
zn + k0

1 + k0
proxλ(1+k0) f (zn), (4.4b)

where k0 is a positive constant, and where (θn) and (γn) are given by (1.24).

Remark 4 As a fundamental tool, we also recall that the Yosida approximation of ∂ f
is equal to the gradient of the Moreau envelope of f . Namely, for any λ > 0, we have
(∂ f )λ = ∇ fλ, where fλ : H → IR is a C1,1 function, which is defined for any x ∈ H
by:

fλ(x) = infξ∈H
{
f (ξ) + 1

2λ
−1‖x − ξ‖2} . (4.5)

So, an alternative formulation of CRIPA-convex in terms of Moreau envelope is given
by

zn = xn + θn(xn − xn−1) + γn(zn−1 − xn), (4.6a)

xn+1 = zn − λkn∇ fλ(1+kn)(zn). (4.6b)

Before exposing our results regarding CRIPA-convex, we recall some properties of
the Moreau envelope through the following lemma.
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Lemma 5 Let f : H → IR ∪ {+∞} be a lower semi-continuous convex and proper
function such that argmin f �= ∅, and let q ∈ S := argmin f . Then the following
properties are obtained:

0 ≤ fλ(xn) − min f ≤ 〈∇ fλ(xn), xn − q〉, (4.7a)

0 ≤ f (proxλ f (xn)) − min f ≤ fλ(xn) − min f , (4.7b)

2λ−1‖xn − proxλ f xn)‖2 ≤ fλ(xn) − min f . (4.7c)

Proof Item (4.7a) is immediate from the gradient inequality. In addition, by definition
of fλ and the proximal mapping, we have

fλ(xn) − min f = f (proxλ f (xn)) − min f + 2λ−1‖xn − proxλ f xn)‖2. (4.8)

This obviously implies items (4.7b) and (4.7c) ��
Now, we are in position to claim the main result of the this section.

Theorem 4 (Convergence of CRIPA-convex) Let f : H → IR ∪ {+∞} be a lower
semi-continuous convex and proper function such that S := argmin f �= ∅, and let
{xn, zn} ⊂ H be generated by CRIPA-convex with parameters (θn) and (γn) (given by
(1.24)). Suppose for some nonnegative integer p that {a, b, c, a1, a2, c̄} are positive
constants verifying

a2 > 2b, [a
b
] ≥ p, a1 > b + a + a2, (4.9a)

c > a1 − (a2 + a), c̄ = c + (a2 + a). (4.9b)

Then the following properties are obtained:

‖xn+1 − xn‖ = o(n−1), ‖∇ fλ(xn)‖ = o(n−(p+1)), (4.10a)∑
n

n‖xn+1 − xn‖2 < ∞,
∑
n

n2p+1‖∇ fλ(xn)‖2 < ∞, (4.10b)

for any q ∈ S,
∑
n

n p〈∇ fλ(xn), xn − q〉 < ∞, (4.10c)

∃x̄ ∈ S, s.t. (xn, zn)⇁(x̄, x̄) weakly inH2. (4.10d)

We also have the convergence rates:

fλ(xn) − min f = o(n−(p+1)),
∑
n

n p( fλ(xn) − min f ) < ∞, (4.11a)

f (proxλ f (xn)) − min f = o(n−(p+1)),
∑
n

n p (
f (proxλ f (xn)) − min f

)
< ∞,

(4.11b)

‖xn − proxλ f (xn)‖ = o(n− p+1
2 ),

∑
n

n p‖xn − proxλ f (xn)‖2 < ∞. (4.11c)
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Proof The results given by item (4.10) are direct consequences of Theorem 3. So,
(4.7a), in light of ‖∇ fλ(xn)‖ = o(n−(p+1)) (from (4.10a)) and by boundedness of
(xn) (from (4.10d)), yields the first result in item (4.11a). The second result in item
(4.11a) follows immediately from (4.7a) and (4.10c). In addition, item (4.11b) is
readily deduced from (4.7b) and (4.11a), while (4.11c) is obtained from (4.7c) and
(4.11a) ��

Theorem 5 (Convergence of CRIPA-S-convex) Let f : H → IR ∪ {+∞} be a lower
semi-continuous convex and proper function such that S := argmin f �= ∅. Let {λ, k0}
be positive constants and assume that {xn, zn} ⊂ H are generated by CRIPA-S with
parameters (θn) and (γn) (given by (1.24)), along with constants {b, a1, a2, c̄} ⊂
(0,∞) verifying

a2 > 2b, a1 > b + a2, (4.12a)

c̄ > max{a1, a2}. (4.12b)

Then the following results are reached:

‖ẋn+1‖ = o(n−1),
∑
n

n‖ẋn+1‖2 < ∞, (4.13a)

‖∇ fλ(xn)‖ = o(n−1),
∑
n

n‖∇ fλ(xn)‖2 < ∞, (4.13b)

∑
n

n2‖ẋn+1 − ẋn‖2 < ∞,
∑
n

n2‖∇ fλ(xn+1) − ∇ fλ(xn)‖2 < ∞, (4.13c)

for any q ∈ S,
∑
n

〈∇ fλ(xn), xn − q〉 < ∞, (4.13d)

∃x̄ ∈ S, s.t. (xn, zn)⇁(x̄, x̄) weakly inH2. (4.13e)

Proof The items in (4.13) are clearly given by Theorem 2 ��

5 Numerical experiments.

Some numerical experiments are performed in this section so as to illustrate the behav-
ior of CRIPA relative to some benchmarks.

5.1 Themaximally monotone case.

As done for illustrating the performance of PRINAM in [2], we consider a model
example of the skew symmetric and maximally monotone operator A : IR2 → IR2

defined for (ξ, η) ∈ IR2 by A(ξ, η) = (−η, ξ). It is well-known that A is not the
sub-differential of a convex function. We also recall that A possesses a single zero
x∗ = (0, 0), and that A and its Yosida regularization Aλ can be identified respectively
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with the matrices

A =
(
0 −1
1 0

)
, Aλ =

(
λ

λ2+1
− 1

λ2+1
1

λ2+1
λ

λ2+1

)
. (5.1)

We approximate a zero of A by means of several algorithms: CRIPA, KAPPA (namely
Kim’s accelerated proximal point algorithm given in (1.20)) and PRINAM (given in
(1.17)–(1.18)).OnFigs. 1 and2 are displayed the profiles of‖xn−x∗‖ for the sequences
(xn) generated by these algorithms:

– Figure 1 illustrates the behavior of the iterates (xn) generated by CRIPA (with
constant relaxation factors and proximal index) and by KAPPA (which only uses
constant indexes). The profile obtained for KAPPA with the proximal parameter
μ = 0.01 is compared with these of CRIPA for several values of k0 and λ such
that λ(k0 + 1) = μ. The starting points used are x0 = x−1 = z−1 = (1,−1) for
CRIPA, and x0 = z0 = z−1 = (1,−1) for KAPPA. We run each method until the
stopping criteria ‖xn −x∗‖ ≤ 10−7 holds. The performance of both algorithms are
similar on this simple example. However, one can notice the so many oscillations
that are exhibited by KAPPA and which do not happen for CRIPA.

– Figure 2 illustrates the behavior of the iterates (xn) generated by CRIPA (using
varying relaxation factors and unbounded proximal indexes) and by PRINAM
(also using unboundedproximal indexes). The profile obtained for PRINAM(when
using the sameparameters as in the optimal simulation proposed in [2]) is compared
with these of CRIPA (for several values of p). The starting points used are x0 =
(−1, 1) and x1 = (1,−1) for PRINAM, and x0 = z−1 = (−1, 1) and x1 =
(1,−1) for CRIPA. Here we use the stopping criteria ‖xn − x∗‖ ≤ 10−5. A faster
convergence can be noticed for PRINAM than for CRIPAwith p = 1. However the
convergence of the trajectories of CRIPA is considerably accelerated for p ≥ 2.

5.2 The convex case.

Given a symmetric and positive definite matrix A : IRN → IRN , we consider the
convex quadratic programming problem

min
x∈IRN

{
f (x) := 1

2
〈Ax, x〉

}
. (5.2)

It is clear that A possesses a single zero x∗ = 0 and that (5.2) is equivalent to solve

0 ∈ (∂ f )(x̄) = Ax̄ . (5.3)

We approximate the solution to (5.3) by means of the following algorithms: CRIPA,
AFB (given in (1.10)) and IGAHD (see [4]).

Remark 5 For convenience of the reader, we recall that IGAHD was introduced in [4]
for minimizing smooth convex function f : H → IR with L-Lipschitz continuous
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CRIPA-C2

KAPPA

Fig. 1 CRIPA with b = 1, a2 = 2.5 ∗ b, a1 = 1.5 ∗ (b + a2), c̄ = 1.5 ∗ max{a1, a2}, λ = 0.001 for (C1)
and λ = 0.005 for (C2). For (C1) and (C2), k0 depends on λ through k0 = 0.01 ∗ λ−1 − 1. KAPPA is
considered with μ = 0.01
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x
n
−

x
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PRINAM
CRIPA (p = 1)
CRIPA (p = 2)
CRIPA (p = 3)
CRIPA (p = 5)

Fig. 2 CRIPA with λ = 0.001, k0 = 0.01, b = 1, a2 = 3, a = 1.5 ∗ (2p − 1) ∗ b, a1 = 1.5 ∗ (b+ a + a2),
c = 1.5 ∗ (a1 − a2 − a), c̄ = c + a2 + a. PRINAM is considered with s = 0.1, β = 0.025, r = 0.1,
q = −0.1, λ1 = 1.01 ∗ (2β + s)2r2s−1

gradient. This procedure is given, for some nonnegative values {s, α, β}, by

yn = xn + (
1 − α

n

)
(xn − xn−1) − β

√
s (∇ f (xn) − ∇ f (xn−1)) − β

√
s

n ∇ f (xn−1),

xn+1 = yn − s∇ f (yn)).

(5.4)
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Fig. 3 AFB with λ = 0.001 and using several values for α

Convergence of the function values with the rates o(n−2) as well as the property of fast
convergence to zero of the gradient (that is,

∑
n n

2‖∇ f (xn)‖2 < ∞) were established
under the conditions

α ≥ 3, 0 ≤ β < 2
√
s and s ≤ L−1. (5.5)

Regarding our numerical simulation we take N = 100 and A = BT B where
B = (bi, j )1≤i, j≤N is a randomized invertible matrix such that bi, j ∈ [−1, 1].
On Figs. 3, 4 and 5 are displayed the profiles of ‖xn−x∗‖ for the iterates (xn) generated
by these algorithms. The starting points used are x1 = x0 = (1, 1, ..., 1) for IGAHD
and for AFB, while we similarly choose x1 = x0 = z−1 = (1, 1, ..., 1) for CRIPA.
Here we use the stopping criteria ‖xn − x∗‖ ≤ 10−5 :

– In order to compare CRIPA with AFB and IGAHD, we first give some insights
into the influence of the parameter α on the trajectories generated by the latter two
algorithms. Figures 3 and 4 feature the profiles obtained for AFB and IGAHD (for
several values of α).

– On Fig. 5, some profiles obtained for IGAHD and AFB are compared with that of
CRIPA (for several values of p).
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Fig. 4 IGAHD with λ = 0.001, β = 0.9 ∗ 2
√

λ and for several values of α
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Fig. 5 CRIPA with the same parameters as in Figs. 2. IGAHD and AFB are considered with α = 10 and
the other parameters unchanged from Fig. 2

APPENDIX.

Proof of Proposition 1.

In order to get this result, we compute the discrete derivative Ġn+1(s, q) :=
Gn+1(s, q)−Gn(s, q). For convenience of the reader we recall that Gn(s, q) is given
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from (2.10) by

Gn(s, q) = 1

2
‖s(q − xn) − νn ẋn‖2 + 1

2
s(e − s)‖xn − q‖2. (A.1)

It is then readily noticed that Ġn+1(s, q) can be formulated as

Ġn+1(s, q) = s(νn+1an+1 − νnan) + seḃn+1 + ν2n+1cn+1 − ν2ncn, (A.2)

where

an := 〈xn − q, ẋn〉, bn := 1

2
‖xn − q‖2 and cn := 1

2
‖ẋn‖2.

Note also that for any bilinear symmetric form 〈., .〉E on a real vector space E and for
any sequences {φn, ϕn} ⊂ E we have the discrete derivative rules:

〈φn+1, ϕn+1〉E − 〈φn, ϕn〉E = 〈φ̇n+1, ϕn+1〉E + 〈φn, ϕ̇n+1〉E , (A.3a)

〈φn+1, ϕn+1〉E − 〈φn, ϕn〉E = 〈φ̇n+1, ϕn〉E + 〈φn+1, ϕ̇n+1〉E . (A.3b)

The sequel of the proof can be divided into the following parts (1)–(4):
(1) Basic estimates. Setting Pn = 〈q − xn+1, ẋn+1〉, we establish the elementary

but useful facts below:

ḃn+1 = −Pn − 1

2
‖ẋn+1‖2, (A.4a)

νn+1an+1 − νnan = νn〈ẋn+1, ẋn〉 + ePn − (e + νn+1)〈dn, xn+1 − q〉.
(A.4b)

– Let us prove (A.4a). From 2bn+1 = ‖xn+1 − q‖2, by the derivative rule (A.3a) we
get

2ḃn+1 = 〈ẋn+1, xn+1 − q〉 + 〈xn − q, ẋn+1〉
= 〈ẋn+1, xn+1 − q〉 + 〈xn − xn+1, ẋn+1〉 + 〈xn+1 − q, ẋn+1〉,

namely 2ḃn+1 = −2Pn − ‖ẋn+1‖2, which leads to (A.4a).
– Let us prove (A.4b). From an = 〈q − xn,−ẋn〉, we simply get

an = 〈q − xn+1,−ẋn〉 + 〈ẋn+1,−ẋn〉 = −〈q − xn+1, ẋn〉 − 〈ẋn+1, ẋn〉.
(A.5)

Moreover, from an := 〈xn − q, ẋn〉, by the rule (A.3b) we readily get

ȧn+1 = 〈ẋn+1, ẋn〉 + 〈xn+1 − q, ẋn+1 − ẋn〉. (A.6)
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In addition, the derivative rule (A.3b) yields

νn+1an+1 − νnan = ν̇n+1an + νn+1ȧn+1.

This latter result, in light of (A.5) and (A.6), amounts to

an+1νn+1 − anνn

= ν̇n+1

(
− 〈q − xn+1, ẋn〉 − 〈ẋn+1, ẋn〉

)

+νn+1

(
〈ẋn+1, ẋn〉 − Pn + 〈q − xn+1, ẋn〉

)

= νn〈ẋn+1, ẋn〉 − νn+1Pn + νn〈q − xn+1, ẋn〉.

(A.7)

Furthermore, (2.9) gives us ẋn+1 + dn − θn ẋn = 0. Taking the scalar product of
each side of this equality by q − xn+1 yields

θn〈q − xn+1, ẋn〉 = Pn − 〈dn, xn+1 − q〉.

So, recalling that νn = (e + νn+1)θn (from (2.9)), we get

νn〈q − xn+1, ẋn〉 = (e + νn+1)(θn〈q − xn+1, ẋn〉)
= (e + νn+1) (Pn − 〈dn, xn+1 − q〉) ,

which, in light of (A.7), entails

an+1νn+1 − anνn
= νn〈ẋn+1, ẋn〉 − νn+1Pn + (e + νn+1) (Pn − 〈dn, xn+1 − q〉)
= νn〈ẋn+1, ẋn〉 + ePn − (e + νn+1)〈dn, xn+1 − q〉,

that is (A.4b).

(2) An estimate from the inertial part.Now, given (s, q) ∈ [0,∞)×H, we prove
that the discrete derivative Ġn+1(s, q) satisfies

Ġn+1(s, q) + s(e + νn+1)〈dn, xn+1 − q〉
= sνn〈ẋn+1, ẋn〉 − 1

2

(
se − ν2n+1

) ‖ẋn+1‖2 − 1
2ν

2
n‖ẋn‖2. (A.8)

Indeed, in light of (A.2) and (A.4), we obtain

Ġn+1 = s

(
νn〈ẋn+1, ẋn〉 + ePn − (e + νn+1)〈dn, xn+1 − q〉

)

+se

(
− Pn − 1

2‖ẋn+1‖2
)

+ 1
2

(
ν2n+1‖ẋn+1‖2 − ν2n‖ẋn‖2

)

= sνn〈ẋn+1, ẋn〉 + 1
2

(
ν2n+1 − se

) ‖ẋn+1‖2 − 1
2ν

2
n‖ẋn‖2

−s(e + νn+1)〈dn, xn+1 − q〉,
which leads obviously to the desired equality.
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(3) An estimate from the proximal part. We prove that, for any ξn �= 1, it holds
that

ξn〈dn, ẋn+1〉 + 1
2‖ẋn+1 − θn ẋn‖2

= −θn(1 − ξn)〈ẋn, ẋn+1〉 + 1
2θ

2
n ‖ẋn‖2 − (

ξn − 1
2

) ‖ẋn+1‖2. (A.9)

Indeed, we have ẋn+1 = θn ẋn − dn (from (2.9)), hence, for any ξn �= 1, and setting
Hn = ẋn+1 − (1 − ξn)

−1θn ẋn , we have

(1 − ξn)Hn = (1 − ξn)ẋn+1 − θn ẋn = −dn − ξn ẋn+1,

or equivalently

ξn ẋn+1 = −(1 − ξn)Hn − dn . (A.10)

Furthermore, by −dn = ẋn+1 − θn ẋn (again using (2.9)) we simply obtain

〈(−dn), Hn〉 = 〈ẋn+1 − θn ẋn, ẋn+1 − (1 − ξn)
−1θn ẋn〉

= ‖ẋn+1‖2 + (1 − ξn)
−1θ2n ‖ẋn‖2 − 2−ξn

(1−ξn)
θn〈ẋn+1, ẋn〉. (A.11)

Therefore, taking the scalar product of each side of (A.10) with dn , also adding
(1/2)‖dn‖2 to the resulting equality, and next using (A.11) we get

ξn〈dn, ẋn+1〉 + 1
2‖dn‖2 = (1 − ξn)〈(−dn), Hn〉 − 1

2‖dn‖2
= (1 − ξn)

(
‖ẋn+1‖2 + θ2n

(1−ξn)
‖ẋn‖2 − 2−ξn

(1−ξn)
θn〈ẋn+1, ẋn〉

)

− 1
2

(‖ẋn+1‖2 + θ2n ‖ẋn‖2 − 2θn〈ẋn+1, ẋn〉
)

= −(1 − ξn)θn〈ẋn+1, ẋn〉 + 1
2θ

2
n ‖ẋn‖2 + ( 1

2 − ξn
) ‖ẋn+1‖2.

This, while noticing that ‖dn‖2 = ‖ẋn+1 − θn ẋn‖2 (from (2.9)) , yields (A.9).
(4) Combining proximal and inertial effects. At once we show for s ∈ (0, e] that

the iterates verify (for n ≥ 0)

Ġn+1(s, q) + 1
2 (e + νn+1)

2‖ẋn+1 − θn ẋn‖2
+s(e + νn+1)〈dn, xn+1 − q〉 + (e + νn+1)(e − s + νn+1)〈dn, ẋn+1〉

= − 1
2 (e − s) (e + 2νn+1) ‖ẋn+1‖2.

(A.12)

Indeed, denoting τn = e + νn+1, from (A.8) we know that

Ġn+1(s, q) + sτn〈dn, xn+1 − q〉
= sνn〈ẋn+1, ẋn〉 − 1

2

(
se − ν2n+1

) ‖ẋn+1‖2 − 1
2ν

2
n‖ẋn‖2. (A.13)
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Furthermore, assuming that s ∈ (0, e] and taking ξn = 1 − sτ−1
n in (A.9), while

noticing that τnθn = νn (from (2.9b)), we obtain

(1 − sτ−1
n )〈dn, ẋn+1〉 + 1

2‖ẋn+1 − θn ẋn‖2
= −sθnτ−1

n 〈ẋn, ẋn+1〉 + 1
2θ

2
n ‖ẋn‖2 − ( 1

2 − sτ−1
n

) ‖ẋn+1‖2
= −sνnτ−2

n 〈ẋn, ẋn+1〉 + 1
2ν

2
nτ

−2
n ‖ẋn‖2 − ( 1

2 − sτ−1
n

) ‖ẋn+1‖2.
(A.14)

Then multiplying equality (A.14) by τ 2n and adding the resulting equality to (A.13)
yields

(1 − sτ−1
n )τ 2n 〈dn, ẋn+1〉 + 1

2τ
2
n ‖ẋn+1 − θn ẋn‖2

+ Ġn+1(s, q) + sτn〈dn, xn+1 − q〉
=

(
− 1

2

(
se − ν2n+1

) − τ 2n
( 1
2 − sτ−1

n

) )
‖ẋn+1‖2 = −Tn,

(A.15)

where Tn is defined by

Tn = 1

2

(
se − ν2n+1 + τ 2n

(
1 − 2sτ−1

n

))
‖ẋn+1‖2. (A.16)

In addition, as τn := e + νn+1, a simple computation yields

τ 2n
(
1 − 2sτ−1

n

) = e2 + 2eνn+1 + (νn+1)
2 − 2s (e + νn+1)

= e (e − s) − se + 2νn+1 (e − s) + (νn+1)
2

= (e + 2νn+1) (e − s) − se + (νn+1)
2.

As a consequence, by (A.16) we obtain

Tn = (e − s)

2
(e + 2νn+1) ‖ẋn+1‖2.

This ends the proof ��

Proof of Proposition 2.

Let us first prove the result for b = 1. Consider the positive sequence (kn)n≥0 defined,
for n ≥ 1 and for some constants {a, c} ⊂ [0,∞), by the recursive formula kn

kn−1
=

1+ a
n+c , . As a consequence, from the basic inequalities a ≥ [a] and c ≤ [c] + 1, we

get

kn
kn−1

≥ 1 + [a]
n+[c]+1 = n+[c]+[a]+1

n+[c]+1 .

Hence, for n ≥ 1, we obtain

kn
k0

≥ ∏n
j=1

j+[c]+[a]+1
j+[c]+1 =

∏n
j=1( j+[c]+[a]+1)∏n

j=1( j+[c]+1)
=

∏n+[c]+1+[a]
j=2+[c]+[a] j∏n+[c]+1
j=2+[c] j

. (A.17)

123



S2058 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S2027–S2061

Moreover, for n ≥ 3 + [a], we simply get

n+[c]+1+[a]∏
j=2+[c]+[a]

j = (2 + [c] + [a])
( n+[c]∏

j=3+[c]+[a]
j

)( n+[c]+1+[a]∏
j=n+[c]+1

j

)
, (A.18a)

n+[c]+1∏
j=2+[c]

j =
( 2+[c]+[a]∏

j=2+[c]
j

)( n+[c]∏
j=3+[c]+[a]

j

)
(n + [c] + 1). (A.18b)

As a consequence, for n ≥ 3 + [a], by (A.17) in light of (A.18) we get

kn ≥ k0
(2+[c]+[a])

(∏n+[c]+1+[a]
j=n+[c]+1 j

)
(∏2+[c]+[a]

j=2+[c] j
)
(n+[c]+1)

= C0

∏n+[c]+1+[a]
j=n+[c]+1 j

n+[c]+1 = C0

∏[c]+1+[a]
j=[c]+1 (n+ j)

n+[c]+1 ,

where C0 := k0

(
2+[c]+[a]∏2+[c]+[a]
j=2+[c] j

)
, which implies that

kn ≥ C0(n + [c] + 1)[a] ≥ C0n[a].

The desired result follows immediately from the previous arguments when replacing
a and c by a

b and c
b , respectively. This completes the proof ��

Proof of Theorem 1

The proof will be divided into the following steps (a), (b) and (c):
(a) In order to establish (3.29a) and (3.29b), we first prove the following estimates

‖ẋn‖ = o(n−1), (A.19a)

kn−1‖Aλ(xn)‖ = o(n−1). (A.19b)

Indeed, passing to the limit as s → 0+ in (2.8) amounts to

(b(n + 1) + c̄ − a1)
2‖ẋn+1‖2 − (bn + c̄ − a1)

2‖ẋn‖2

+ λkn−1(bn + c̄)

(
a
bn + c̄

bn + c
+ a2

)
〈Aλ(xn), ẋn+1〉

+ 1

2
(a1 − b)

(
(2n + 1)b + 2c̄ − a1

)‖ẋn+1‖2 ≤ 0.

(A.20)

Concerning the second quantity in the right side of the above inequality, by b > 0,
a ≥ 0 and a2 > 0 (hence a + a2 > 0) we readily have

(bn + c̄)

(
a
bn + c̄

bn + c
+ a2

)
∼ b(a + a2)n as n → ∞.
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Then, in light of
∑

n nkn−1|〈Aλ(xn), ẋn+1〉| < ∞ (from (3.14d)), we infer that

∑
n

(bn + c̄)

(
a
bn + c̄

bn + c
+ a2

)
kn−1|〈Aλ(xn), ẋn+1〉| < ∞.

It is then a classical matter to derive from (A.20) that there exists some l2 ≥ 0 such
that limn→∞ n2‖ẋn‖2 = l2. Moreover, recalling that

∑
n n‖ẋn‖2 < ∞ (from (3.3f)),

and noticing that
∑

n n
−1 = ∞, we infer that lim infn→∞ n2‖ẋn‖2 = 0. It follows

that l2 = 0, that is (A.19a).
Next combining the latter result with ‖ẋn+λkn−1Aλ(xn)‖ = o(n−1) (from (3.14b))

gives us immediately that limn→∞ nkn−1‖Aλ(xn)‖ = 0, that is (A.19b).
Then (3.29a) is given by (3.3f) and (A.19a), while (3.29b) follows from (3.14c) and

(A.19b).
(b) The estimates in (3.29c) are derived from (3.3e) and (3.3g), while the estimate

(3.29d) is given by (3.3d).
(c) Finally, we prove the weak convergence of the iterates {xn, zn} given by CRIPA

by means of the Opial lemma. This latter result guarantees that (xn) converges weakly
to some element of S, provided that the following results (h1)–(h2) hold: (h1) for any
q ∈ S, the sequence (‖xn − q‖) is convergent; (h2) any weak-cluster point of (xn)
belongs to S.

- Let us prove (h1). Take q ∈ S. Clearly, as a straightforward consequence of the
bounded-ness of (xn) (given by (3.3a)) along with (A.19b) we have

kn−1〈Aλ(xn), xn − q〉 = o(n−1). (1.21)

Moreover, we know that (En(a + a2, q)) is convergent (from Lemma 3) and writes

En(a + a2, q) = 1

2
‖(a + a2)(q − xn) − (bn + c̄ − a1)ẋn‖2

+ 1

2
(a + a2)

(
a1 − b − (a + a2)

)‖xn − q‖2

+ (a + a2)(b(n − 1) + c̄)(λkn−1)〈Aλ(xn), xn − q〉.

(1.22)

Then, by n‖ẋn‖ → 0 (from (A.19a)) and nkn−1|〈Aλ(xn), xn − q〉| → 0 (according to
(1.21)) as n → ∞, we deduce that

lim
n→∞ En(a + a2, q) = lim

n→∞
1

2
(a + a2)(a1 − b)‖xn − q‖2. (1.23)

This entails (h1).
- Now, we prove (h2). Let u be a weak cluster point of (xn), namely there exists

a subsequence (xnk ) that converges to u as k → ∞. So, in view of (A.19b), we
simply have limk→+∞ ‖Aλ(xnk )‖ = 0, while a classical result gives us Aλ(xnk ) ∈
A(xnk − λAλ(xnk )). Then passing to the limit as k → ∞ in this latter result and
recalling that the graph of a maximally monotone operator is demi-closed (see, for
instance, [13]), we deduce that 0 ∈ A(u), namely u ∈ S. This proves (h2).
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Thenwe infer byOpial’s lemma that (xn) converges weakly to some element x̄ ∈ S.
Finally, by

∑
n n‖kn−1Aλ(xn)‖2 < ∞ (from (3.14c)), we get kn−1Aλ(xn) → 0

(as n → ∞), hence, by zn−1 − xn = λkn−1Aλ(xn) (from (2.4a)), we are led to
zn−1 − xn → 0 (as n → ∞). It follows that (zn) converges weakly to the element x̄ .
This completes the proof ��
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