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Abstract
In this paper, we investigate the local existence, global existence, and blow-up of
solutions to the Cauchy problem for Choquard–Kirchhoff-type equations involving
the fractional p-Laplacian. As a particular case, we study the following initial value
problem

{
ut + M (‖u‖p) [(−�)spu + V (x)|u|p−2u] =

(∫
RN

|u|q
|x−y|μ dy

)
|u|q−2u in R

N × (0,+∞),

u(x, 0) = u0(x), in R
N ,

where

‖u‖ =
(

[u]ps,p +
∫
RN

V (x)|u|p dx
)1/p

,

s ∈ (0, 1), N > ps, p, q > 2, (−�)sp is the fractional p-Laplacian, u0 : RN →
[0,+∞) is the initial function, M : R+ → R

+ is a continuous function given by
M(σ ) = σθ−1, θ ∈ [1, N/(N − sp)) and V : R

N → R
+ is the potential func-

tion. Under some appropriate conditions, the well-posedness of nonnegative solutions
for the above Cauchy problem is established by employing the Galerkin method.
Moreover, the asymptotic behavior of global solutions is investigated under some
assumptions on the initial data. We also establish upper and lower bounds for the
blow-up time.
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1 Introduction and theMain Results

The aim of this paper is to discuss the global well-posedness, asymptotic behavior and
blow-up phenomena to the following fractional Choquard–Kirchhoff-type parabolic
equations

{
ut + M (‖u‖p) [(−�)spu + V (x)|u|p−2u] = (Kμ ∗ |u|q )|u|q−2u in R

N × (0,+∞),

u(x, 0) = u0(x), in R
N ,

(1.1)

where p, q > 2, M : R+ → R
+ is a continuous function given by M(σ ) = σθ−1,

θ ∈ [1, N/(N − sp)), s ∈ (0, 1), N > sp, μ ∈ (0, N ), and V : RN → R
+ is a scalar

potential. Hereafter Kμ(x) = |x |−μ,

‖u‖ =
(

[u]ps,p +
∫
RN

V (x)|u|p dx
)1/p

, [u]s,p =
(∫

R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

.

(−�p)
s is the fractional p-Laplacian which, up to a normalization constant, is defined

for each x ∈ R
N as

(−�)spϕ(x) = 2 lim
ε→0+

∫
RN \Bε (x)

|ϕ(x) − ϕ(y)|p−2(ϕ(x) − ϕ(y))

|x − y|N+sp
dy (1.2)

for all ϕ ∈ C∞
0 (RN ). Here Bε(x) denotes the ball in R

N centered at x with radius ε.
In the last few decades, great attention has been paid to study problems involving

fractional Laplacian. The interest in studying such problems was stimulated by their
applications in continuum mechanics, minimal surfaces, conversation laws, popula-
tion dynamics, image processing, finance, and many others, see for example [1–3] and
the references therein. In particle the study of parabolic equations involving fractional
p-Laplacian like (1.1) are important in many field of sciences, such as biology, geo-
physics, as well as in Riemannian geometry in the so-called scalar curvature problem
on the sphere SN , for more details see [4–6]. From the mathematical point of view, the
difficulty in solving problem like (1.1) is due to the lack of compactness which caused
by the invariant action of the conformal group, or one of its subgroups, we refer to [7]
for details. When μ = p = q = 2 and V ≡ M ≡ 1, the stationary equation related to
(1.1) becomes the well-known Choquard or nonlinear Schrödinger-Newton equation

−�u + u =
(
K2 ∗ |u|2

)
u in R

N . (E1)

In the case when N = 3, equation (E1) was first introduced in 1954 by Pekar [8].
In 1996, Penrose [9] used equation (E1) in a different context as a model in self-
gravitating matter. The literature on equations of the type (E1) is very large and rich,
so herewe just list somepaperswhere the authors studied the existence andmultiplicity
of solutions for (E1), see for example [10–13] and the references therein. If s → 1−,
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p = 2 and V ≡ 0, the homogeneous equation related to (1.1) reduces to the following
equation

ut − M(‖u‖2)�u = 0 in R
N × (0,+∞), ut (0) = u0. (E′

1)

As far aswe know, the first and the only result on the global existence and nonexistence
of solutions of (E ′

1) was obtained by Gobbino [14] in a more abstract setting. In this
work the author classified the existence and nonexistence of solutions of (E ′

1) into the
following cases :

• If u0 ∈ D(A1/2) and M
(‖∇u0‖22

) 
= 0, then there exists at least one global
solution.

• If u0 ∈ D(Aβ) with β small enough, then there is no solution.

Equation (E ′
1) is related to the parabolic analogue of the Kirchhoff equation

utt − M(‖u‖2)�u = 0 in R
N × (0,+∞). (E′

2)

This equation was first introduced by Gustav Robert Kirchhoff in 1876, which
describes the movement of an elastic string that is constrained at the extrema, tak-
ing into account a possible growth of the tension of the vibrating string in view of its
extension.

Recently, many authors investigated the existence of local and global solutions for
this abstract initial value problem

u′′(t) + M
(
‖A 1

2 u(t)‖2
)
Au(t) = 0, u(0) = u0, u′(0) = u1, (P)

where A is a nonnegative self-adjoint linear operator on a Hilbert space H with
dense domain D(A). Powers of the operator A are just defined by the spectral operator,
that is

Asu :=
∞∑
k=0

λ2sk ukek, ∀s ≥ 0, ∀u ∈ D(As). (1.3)

The local and global existence of solutions of (P) has been proved under different
assumptions on the initial data (u0, u1) and on the nonlinear function M , see for
example the works by Ghisi and Gobbino [15–17] and the references cited therein. It is
important to point out here when p = 2 and s ∈ (0, 1) the fractional Laplace operator
(−�)s defined in (1.2) and the spectral operator As given in (1.3) are completely
different, we refer the reader to the monograph [18] for a comparison between these
operators.

In the whole spaceRN , Papadopoulos and Stavarakakis [19] investigated the global
existence and blow-up of solutions for the following nonlocal quasilinear hyperbolic
problem of Kirchhoff type

utt − φ(x)‖∇u‖2�u + δut = |u|αu in R
N × R

+, (E′
3)
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where N ≥ 3, δ ≥ 0 and ρ(x) = (φ(x))−1 is a positive function lying in LN/2(RN )∩
L∞(RN ). [20,21]

It is worth motioning that the global existence and blow-up of solutions for the
parabolic equations of Kirchhoff type involving the classical Laplacian operator have
been widely studied by many authors. For instance, we refer to [22–25] and the ref-
erences therein for the setting of bounded domains. Concerning the global existence,
asymptotic behavior and blow-up of solutions for hyperbolic equations of Kirchhoff
type involving the fractional Laplacian in the case of bounded domain, we refer the
reader to some recent results obtained in [26,27]. However, to the author’s best knowl-
edge there is no result on the global existence and blow-up of solutions for parabolic
and hyperbolic equations of Kirchhoff type involving fractional Laplacian operator in
whole RN . Recently, Fiscella and Valdinoci [28] proposed a fractional counterpart to
the Kirchhoff operator which models the nonlocal aspect of the tension arising from
nonlocal measurements of the fractional length of the string. We recall that Kirchhoff
problems, with Kirchhoff function M , are said to be non-degenerate if M(0) > 0, and
degenerate if M(0) = 0. Xiang, Rădulescu and Zhang [5] considered the following
diffusion model of Kirchhoff-type

⎧⎨
⎩
ut + M

([u]2s
)
(−�)su = |u|p−2u in  × R

+,

u(x, t) = 0 in
(
R

N\)× R
+,

u(x, 0) = u0(x) in ,

(E2)

where  is a bounded domain in R
N and (−�)s is the fractional Laplacian with

0 < s < 1 < p < ∞. Under some appropriate conditions the authors obtained
a nonnegative local weak solution of (E2) by using the Galerkin method. Moreover,
they proved also an estimate for the lower and upper bounds of the blow-up time. Leter,
by combining the Galerkin method with potential well theory, Ding and Zhou [29]
investigated the global existence and blow-up of solutions for problem (E2). Pucci et
al. [30] studied the following anomalous diffusion model of Kirchhoff type

⎧⎨
⎩
ut + M

([u]ps,p
)
(−�)spu = f (x, t) in  × R

+,

u(x, t) = 0 in
(
R

N\)× R
+,

u(x, 0) = u0(x) in ,

(E3)

where  ⊂ R
N is a bounded domain, f ∈ L2

loc(R
+
0 , L2()) and (−�)sp is the

fractional p-Laplacian. By using the sub-differential approach, the authors established
the well-posedness of solutions for problem (E3). Moreover, the large time behavior
and extinction of solutions are also investigated.With the help of potential well theory,
Fu and Pucci [31], studied the existence of global weak solutions and established the
vacuum isolating and blow-up of strong solutions for the following class of problem

⎧⎨
⎩
ut + (−�)su = |u|p−2u, x ∈ , t > 0,
u(x, t) = 0, x ∈ R

N\, t > 0,
u(x, 0) = u0(x), x ∈ 

(M2)
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where s ∈ (0, 1), N > 2s and 2 < p ≤ 2∗
s = 2N/(N − 2s).

To the best of our knowledge, there is no result on global existence and asymptotic
behavior as well as blow-up of solutions in finite time for initial problem (1.1). There is
no doubt we encounter serious difficulties because of the lack of compactness, Hardy–
Littlewood–Sobolev nonlinearity as well as the degenerate nature of the Kirchhoff
coefficient.

Inspired by the above works, especially by [5,14,29], we study the well-posedness
and asymptotic behavior aswell as blow-upof solutions infinite time for initial problem
(1.1). Moreover, we give an estimate for the lower and upper bounds of the blow-up
time. We stress that these results are new even in the case of classical Laplacian where
M ≡ 1.

In order to present the main results of this paper, let us recall some results related
to the fractional Sobolev space Ws,p(RN ) (see [18,32]). Let 0 < s < 1 < p < ∞ be
real numbers. The fractional Sobolev space Ws,p(RN ) is defined as follows :

Ws,p(RN ) =
{
u ∈ L p(RN ) :

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞
}

,

equipped with the norm

‖u‖Ws,p(RN ) =
(

‖u‖p
p +

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

.

As it is well known (Ws,p(RN ), ‖ . ‖Ws,p(RN )) is a reflexive separable Banach space
and the embeddingWs,p(RN ) ↪→ Lq(RN ) is continuous for any q ∈ [p, p∗

s ], namely
there exists a positive constant Sq such that

‖u‖q ≤ Sq‖u‖Ws,p(RN ).

Here p∗
s is the critical exponent defined as p∗

s = Np
N−sp , see [32] for more details. In

order to obtain the existence of weak solutions for (1.1), we consider the subspace of
Ws,p(RN )

W =
{
u ∈ Ws,p(RN ) :

∫
RN

V (x)|u|p dx < ∞
}

,

endowed with the norm

‖u‖ =
(

‖V 1/pu‖p
p +

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

.

Throughout the paper we assume the following hypotheses on V :

The function V : RN → R+ is measurable and there exists V0 > 0 such that inf
RN

V (x) ≥ V0.

(V1)
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1

V
∈ L

2
p−2 (RN ). (V2)

A typical example of V is given by V (x) = exp(ρ|x |2) for all ρ > 0.
The energy functional associated with initial value problem (1.1) is given by

E(u) = 1

θ p
‖u‖θ p − 1

2q

∫
RN

(Kμ ∗ |u|q)|u|q dx, u ∈ W . (1.4)

We define the Nehari functional by

I (u) = ‖u‖θ p −
∫
RN

(Kμ ∗ |u|q)|u|q dx, u ∈ W . (1.5)

In view of (1.4) and (1.5), it is easy to see that

E(u) =
(

1

θ p
− 1

2q

)
‖u‖θ p + 1

2q
I (u). (1.6)

Let

d = inf
u∈N

E(u), (1.7)

where N is the Nehari manifold, which is defined by

N = {u ∈ W\{0} : I (u) = 0}. (1.8)

We shall show in Lemma 3.3 below that

d ≥
(
2q − θ p

2θqp

)(
�

2q
rq

C(N , μ, r)

)θ p/(2q−θ p)

, (1.9)

where �ν denotes the best constant in the embedding W ↪→ Lν(RN ) for all ν ∈
[2, p∗

s ], i.e,

�ν = inf

{ ‖u‖
‖u‖ν

: u ∈ W\{0}
}

. (1.10)

Clearly,�ν > 0. Before stating the main results of this paper, let us give the definition
of the weak solutions for initial value problem (1.1).

Definition 1.1 We say that u ∈ L∞(0, T ;W ) is a positive weak solution of problem
(1.1) if, ut ∈ L2(0, T ; L2(RN )) and the following equalities hold
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(1)
∫
RN utv dx + ‖u‖p(θ−1)〈u, v〉 = ∫

RN (Kμ ∗ uq)uq−1uv dx for each v ∈ W and
a.e time 0 ≤ t ≤ T , and

(2) u(0) = u0.

where

〈u, v〉 =
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dxdy

+
∫
RN

V |u|p−2uv dx .

Our first result reads as follows :

Theorem 1.1 Suppose that 0 ≤ u0 ∈ W and the following condition holds :

2 < qr < 2q < min

{
θ p + 4p∗

s − 2rθ p

rp∗
s

,
(2 − r)p∗

s

2

}
,

r = 2N

2N − μ
, p∗

s = Np

N − sp
. (1.11)

Then there exists T > 0 such that problem (1.1) admits at least a nontrivial, nonneg-
ative weak solution for all t ∈ (0, T ]. Moreover, for a.e. t ∈ [0, T ],

∫ t

0
‖us(s)‖22 ds + E(u(t)) ≤ E(u0). (1.12)

Remark 1 From the regularity of weak solutions stated in Definition 1.1 and [33,
Proposition 1.2] we infer that u ∈ C([0, T ], L2(RN )). Therefore, the initial condition
(2) in Definition 1.1 exists and makes sense.

Before introducing the second result, let us give the following definition :

Definition 1.2 (Maximal existence time) Let u(t) be a solution of problem (1.1). We
define the maximal existence time Tmax of u as follows :

Tmax = sup{t > 0 : u = u(t) exists on [0, T ]}.

(1) If Tmax < ∞ we say that the solution of (1.1) blows up and Tmax is the blow up
time.

(2) If Tmax = ∞, we say that the solution is global.

The proof of the following Theorem 1.2 relies on the potential well method which was
introduced by Sattinger in [34]; see [25,35,36] and the references therein for some
results on global existence of solutions.

Theorem 1.2 Assume that 0 ≤ u0 ∈ W and the following conditions hold true :

θ p < 2q < p∗
s , (1.13)

123



S702 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S695–S732

and

E(u0) < d and I (u0) > 0. (1.14)

Then the positive weak solution u = u(t) of initial value problem (1.1) exists
globally. Moreover,

∫ t

0
‖us(s)‖22 ds + E(u(t)) ≤ E(u0), a.e. t ∈ [0,+∞). (1.15)

Remark 2 Let us discuss the initial value for which the condition (1.14) is satisfied.

(1) If 0 < E(u0) < d and I (u0) ≥ 0 then we have I (u0) > 0. Indeed, assume
that I (u0) = 0. From (1.6) we observe that u0 
= 0. Thus, u0 ∈ N , then by the
definition of d in (1.7), we infer that E(u0) ≥ d, contradiction.

(2) If E(u0) = 0 and I (u0) ≥ 0 then we have u0 = 0. In fact, if we assume u0 
= 0.
Then from (1.6) it follows that I (u0) = 0. This gives u0 ∈ N and 0 = E(u0) ≥
d > 0, contradiction by (1.9).

(3) By (1.6), clearly the case E(u0) < 0 and I (u0) ≥ 0 can not occur.

Furthermore, we have the following corollary to Theorem 1.2.

Corollary 1.3 Let 0 ≤ u0 ∈ W and (1.13) holds. Assume that

E(u0) ≤ d and I (u0) ≥ 0. (1.16)

Then initial value problem (1.1) admits a global weak solution.

The following theorem shows the asymptotic behavior of global solutions of initial
value problem (1.1).

Theorem 1.4 Suppose the assumptions made in Theorem 1.2 are satisfied. Assume
that ε ∈ (0, s) and

E(u0) <

(
2q − θ p

2qθ p

)(
�

2q
rq

C(N , μ, r)

) θ p
2q−θ p

. (1.17)

Then, there holds

‖u(t)‖Ws−ε,p(RN ) ≤ ω

(
θ p

1 + χ(θ p − 1)t

) β(1−η)
θ p−1

, ∀η, β ∈ (0, 1), ∀t ≥ 0.

(1.18)

where ω = �
(β−1)(1−η)
p∗
s

(
2qθ p
2q−θ p

) η+(1−η)(1−β)
θ p

and χ =
(
1 − C(N , μ, r)�−2q

rq

(
2qθ p
2q−θ p E(u0)

) 2q−θ p
θ p

)
.

123



Applied Mathematics & Optimization (2021) 84 (Suppl 1):S695–S732 S703

The following theorem shows that the local solution obtained in Theorem 1.1 can not
be extended globally in time.

Theorem 1.5 Suppose that 0 ≤ u0 ∈ W, θ ∈ (2, N/(N − sp)) and the following
conditions hold :

θ p < qr < 2q < min

{
θ p + 4p∗

s − 2rθ p

rp∗
s

,
(2 − r)p∗

s

2

}
,

r = 2N

2N − μ
, p∗

s = Np

N − sp
, (1.19)

E(u0) < 0. (1.20)

Then the local weak solution u(t) obtained in Theorem 1.1 belows up in finite time T ,
where T satisfies that

2
2θ2 p2

θ p−2q(1−γ ) �

2q(1−γ )θ p
θ p−2q(1−γ )

p∗
s

(α − 1)‖u0‖2(α−1)
2

≤ T ≤ 8‖u0‖22(θ p − 1)

−θ pE(u0)(θ p − 4)2
.

with α = θ pqγ
θ p−2q(1−γ )

> 1.

Remark 3 Notice that, due to the fact that 2rθ p < 4θ p < 4p∗
s the condition (1.19)

exists. Hence, from (1.19) we observe that the condition (1.11) still holds. Therefore,
in view of Theorem 1.1 there exists a local weak solution for problem (1.1) satisfies
the energy inequality (1.12).

Remark 4 The results presented in this paper can be easily extended to more general
Choquard–Kirchhoff-type equations. For example, with the same technique, we can
deal with nonlinearities M : [0,+∞) → [0,+∞) of class C1 such that

c1r
θ−1 ≤ M(r) ≤ c2r

θ−1

for suitable positive constants c1 and c2. However, this generality only complicates
proofs without bringing any new idea.

The remaining part of the paper is organized as follows. Section 2, contains some
preliminary results, which are required in the proof of the main results. In section 3,
we shall present some properties involving the functional E restricted to the Nehari
manifoldN . In section4,weestablish local existenceof solutions byusing theGalerkin
method. In section 5, under some conditions on the initial data, we show the global
existence of solutions for (1.1). Furthermore, we give a decay estimate for these global
solutions in fractional Sobolev spaces for large time. Finally, in section 6, finite time
blow-up of weak solutions of (1.1) is proved, in addition to this we give an estimate
for the upper and lower bounds of the blow-up time.

Throughout the paper c, ci ,C,Ci , i = 1, 2, . . . denote positive constants which
may vary from line to line, but are independent of terms that take part in any limit
process and we use the notation ‖ . ‖p for the standard L p(RN )−norm. Furthermore
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we use “→”, “⇀” and “⇀∗” to denote the strong convergence, weak convergence
and weak star convergence respectively.

2 Functional Framework

In this section, we give some technical results that will be used in the next sections.

Lemma 2.1 Let (V1) and (V2) hold. Then the embedding W ↪→ Lq(RN ) is continuous
for all q ∈ [2, p∗

s ].
Proof We have ∫

RN
|u|2 dx =

∫
RN

1

V
2
p (x)

V
2
p (x)|u|2 dx .

Since p > 2 from condition (V2) and the Hölder inequality we deduce

∫
RN

|u|2 dx ≤
(∫

RN

1

V
2

p−2 (x)
dx

)(p−2)/2 (∫
RN

V (x)|u|p dx
)2/p

≤ C‖u‖2.

On the other hand, by (V1)wehaveW ↪→ Ws,p(RN ) ↪→ L p∗
s (RN ). Then 2 < q < p∗

s
and θ ∈ (0, 1) satisfy the following equation

1

q
= θ

p∗
s

+ 1 − θ

2
.

By the Hölder inequality, we have

‖u‖q ≤ ‖u‖1−θ
2 ‖u‖θ

p∗
s

≤ C‖u‖.

Hence this completes the proof. ��
From now on, BR(0) denotes the ball in R

N of center zero and radius R > 0.

Lemma 2.2 Assume that (V1) and (V2) hold. Then the embedding W ↪→ Lq(RN ) is
compact for all q ∈ [2, p∗

s ).

Proof It is well know that the embedding Ws,p(RN ) ↪→ Lq(BR(0)) is compact for
all q ∈ [2, p∗

s ). Therefore W ↪→ Lq(BR(0)) is compact for all q ∈ [2, p∗
s ). Since

1
V ∈ L

2
p−2 (RN ), for any ε > 0 there exists R1 > 0 such that

(∫
RN \BR(0)

1

V
2

p−2 (x)
dx

)(p−2)/p

< ε, for all R ≥ R1. (2.1)
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Let {um}m be a bounded sequence inW . Then, for any ε > 0 there existsm0 > 0 such
that ∫

BR1 (0)
|um − u|2 dx < ε, for all m ≥ m0. (2.2)

Combining (2.1) and (2.2), for all m ≥ m0 we have∫
RN

|um − u|2 dx =
∫
BR1 (0)

|um − u|2 dx +
∫
RN \BR1 (0)

1

V
2
p (x)

V
2
p (x)|um − u|2 dx

≤ ε + C1

(∫
RN \BR1 (0)

1

V
2

p−2 (x)
dx

)p−2/p

≤ (1 + C1)ε.

This combined with 2 < q < p∗
s yields

‖um − u‖q ≤ ‖um − u‖θ
p∗
s
‖um − u‖1−θ

2 ≤ C2ε
1−θ , ∀θ ∈ (0, 1), ∀m ≥ m0.

Thus ‖um − u‖q → 0, as m → ∞. Hence the proof is now complete. ��
Throughout this paper, we shall assume that q satisfies

2 < q <
p(N − μ

2 )

N − sp
. (1.3)

In what followswe recall the so-calledHardy–Littlewood–Sobolev inequality, see [37,
Theorem 4.3]. Hereafter, W ′ denotes the dual space of W .

Theorem 2.3 Assume that 1 < r , j < ∞, 0 < μ < N and

1

r
+ 1

j
+ μ

N
= 2.

Then there exists C(N , μ, j, r) > 0 such that∫
R2N

|u(y)|.|u(x)|
|x − y|μ dxdy ≤ C(N , μ, j, r)‖u‖ j‖u‖r .

From this Theorem, one can observe that the operator H : W → W ′ defined by

〈H(u), v〉 =
∫
RN

(Kμ ∗ |u|q)|u|q−2uv dx .

for all u, v ∈ W is well defined. Indeed, clearly, for all u ∈ W , H(u) is a linear map.
Using the Hardy–Littlewood–Sobolev inequality for j = r = 2N

2N−μ
we obtain

∫
R2N

|u(y)|q .|u(x)|q−1.|v(x)|
|x − y|μ dxdy ≤ C(N , μ, r)‖|u|q‖r‖|u|q−1|v|‖r .
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Note that by (1.3) we have 2 < qr < p∗
s . In view of the Hölder inequality and the

continuous embedding W ↪→ Lκ(RN ) for all κ ∈ [2, p∗
s ] we deuce∫

R2N

|u(y)|q .|u(x)|q−1.|v(x)|
|x − y|μ dxdy ≤ C(N , μ, r)‖u‖2q−1‖v‖.

Therefore, for v ∈ W with ‖v‖ ≤ 1 we obtain

‖H(u)‖W ′ ≤ C(N , μ, r)‖u‖2q−1.

Lemma 2.4 [38, Proposition 4.7.12] Let κ ∈ (1,∞). Assume {wm} is a bounded
sequence in Lκ(RN ) and converges almost everywhere tow. Thenwm⇀w in Lκ(RN ).

Lemma 2.5 (Brezis-Lieb lemma) Let κ ∈ (1,∞). Assume {wm} is a bounded sequence
in Lκ(RN ) and converges almost everywhere to w. Then for any t ∈ [1, κ]
(1) lim

m→∞
∫
RN ||wm |t−2wmh−|wm −w|t−2(wm −w)h−|w|t−2wh| κ

t dx = 0, for all

h ∈ Lκ(RN ),

(2) lim
m→∞

∫
RN ||wm |t − |wm − w|t − |w|t | κ

t dx = 0.

Proof Using the Young inequality, for any ε > 0 there exist C(ε),C1 > 0 such that
for all a, b ∈ R we have

∣∣|a + b|t−2(a + b)h − |a|t−2ah
∣∣ κt ≤ C1|h|κ + C(ε)|b|κ + ε|a|κ .

Taking a = wm − w and b = w and using the above inequality, yields

fm,ε = (||wm |t−2wmh − |wm − w|t−2(wm − w)h − |w|t−2wh| κ
t − ε|wm − w|κ)+

≤ (1 + C(ε))|w|κ + C2|h|κ .

Note that, according to the above assumptions we have (1 + C(ε))|w|κ + C2|h|κ ∈
L1(RN ) and fm,ε → 0 a.e inRN . Thus the Lebesgue dominated convergence theorem
implies ∫

RN
fm,ε dx → 0 as m → ∞.

Therefore, we get

||wm |t−2wmh − |wm − w|t−2(wm − w)h − |w|t−2wh| κ
t ≤ fm,ε + ε|wm − w|κ ,

which implies

lim sup
m→∞

∫
RN

||wm |t−2wmh − |wm − w|t−2(wm − w)h − |w|t−2wh| κ
t dx ≤ cε.

where c = supm‖wm − w‖κ
κ < ∞. Further letting ε → 0, we obtain the desired

result. In a similar manner, we conclude that (2) holds. ��
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Throughout the paper without further mentioning, we put r = 2N
2N−μ

.

Lemma 2.6 Let {um}m be a bounded sequence in Lrq(RN ) such that um → u a.e in
R

N as m → ∞. Then for any w ∈ Lrq(RN ) we have

lim
m→∞

∫
RN

(Kμ ∗ |um |q)|um |q−2umw dx →
∫
RN

(Kμ ∗ |u|q)|u|q−2uw dx .

Proof Denote vm = um − u and observe that∫
RN

(Kμ ∗ |um |q)|um |q−2umw dx

=
∫
RN

[Kμ ∗ (|um |q − |vm |q)](|um |q−2umw − |vm |q−2vmw) dx

+
∫
RN

[Kμ ∗ (|um |q − |vm |q)]|vm |q−2vmw dx

+
∫
RN

[Kμ ∗ (|um |q−2umw − |vm |q−2vmw)]|vm |q dx

+
∫
RN

(Kμ ∗ |vm |q)|vm |q−2vmw dx (1.4)

Applying Lemma 2.5 with t = q and κ = rq, we find

|um |q − |vm |q → |u|q in Lr (RN ),

and

|um |q−2umw − |vm |q−2vmw → |u|q−2uw in Lr (RN ).

The Hardy–Littlewood–Sobolev inequality ensures that

⎧⎨
⎩

Kμ ∗ (|um |q − |vm |q) → Kμ ∗ |u|q
in L

2N
μ (RN ).

Kμ ∗ (|um |q−2umw − |vm |q−2vmw) → Kμ ∗ (|u|q−2uw)

(1.5)

In view of Lemma 2.4, we have

|um |q−2umw⇀|u|q−2uw, |vm |q⇀0, |vm |q−2vmw⇀0 in Lr (RN ). (1.6)

Combining (1.5)–(1.6), we find
⎧⎪⎪⎨
⎪⎪⎩

lim
m→∞

∫
RN [Kμ ∗ (|um |q − |vm |q )](|um |q−2umw − |vm |q−2vmw) dx = ∫

RN (Kμ ∗ |u|q )|u|q−2uw dx,

lim
m→∞

∫
RN [Kμ ∗ (|um |q − |vm |q )]|vm |q−2vmw dx = 0,

lim
m→∞

∫
RN [Kμ ∗ (|um |q−2umw − |vm |q−2wmw)]|vm |q dx = 0.

(1.7)
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By Hölder’s inequality and the Hardy–Littlewood–Sobolev inequality, we have∣∣∣∣
∫
RN

(Kμ ∗ |vm |q)|vm |q−2vmw dx

∣∣∣∣ ≤ C(N , μ, r)‖vm‖qrq‖|vm |q−2umw‖r
≤ C‖|vm |q−2vmw‖r . (1.8)

On the other hand, using Lemma 2.4 we infer that |vm |(q−1)r⇀0 in L
q

q−1 (RN ), so

(∫
RN

|vm |(q−1)r |w|r
)1/r

→ 0.

Hence, from (1.8) we obtain

lim
m→∞

∫
RN

(Kμ ∗ |vm |q)|vm |q−2vmw dx = 0. (1.9)

Using (1.7) and (1.9) and passing to the limit in (1.4) as m → ∞, we reach the
conclusion. ��

3 Properties Involving the Functional E Restricted toN
In this section, we provide some properties involving the functional E restricted to
the Nehari manifold N . These properties turn out to be very useful in discussing the
global existence and blow-up of solutions for initial value problem (1.1).

For λ > 0, we consider the function g defined by

g(λ) = E(λu) = λθ p

θ p
‖u‖θ p − λ2q

2q

∫
RN

(Kμ ∗ |u|q)|u|q dx . (3.1)

Lemma 3.1 Let u ∈ W\{0} and θ p < 2q. Then we have

(1) limλ→0+ g(λ) = 0 and limλ→+∞ g(λ) = −∞.

(2) There is a unique λ∗ = λ∗(u) > 0 such that g′(λ∗) = 0.
(3) g(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and attains the maximum

at λ∗.
(4) I (λu) > 0 for 0 < λ < λ∗, I (λu) < 0 for λ∗ < λ < +∞ and I (λ∗u) = 0.

Proof For u ∈ W\{0}, by definition of g(λ) = E(λu), it is clear that the first statement
holds due to θ p < 2q. Now, by differentiating g(λ) we obtain

d

dλ
g(λ) = λθ p−1

(
‖u‖θ p − λ2q−θ p

∫
RN

(Kμ ∗ |u|q)|u|q dx
)

. (3.2)

Therefore, by taking

λ∗ = λ∗(u) =
( ‖u‖θ p∫

RN (Kμ ∗ |u|q)|u|q dx
)1/(2q−θ p)

,
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the second and third statements can be shown easily. In order to show the fourth
statement, one can check that

I (λu) = λg′(λ).

The proof is now complete. ��
Lemma 3.2 Let u ∈ W\{0} and θ p < 2q. Then

(1) If ‖u‖ <

(
�

2q
rq

C(N ,μ,r)

)1/(2q−θ p)

, then I (u) > 0.

(2) If I (u) ≤ 0, then ‖u‖ ≥
(

�
2q
rq

C(N ,μ,r)

)1/(2q−θ p)

.

Proof By the definition of I , we have

I (u) = ‖u‖θ p −
∫
RN

(Kμ ∗ |u|q)|u|q dx

Using the Hardy–Littlewood–Sobolev inequality, we obtain

I (u) ≥ ‖u‖θ p − C(N , μ, r)�−2q
rq ‖u‖2q

= ‖u‖θ p
(
1 − C(N , μ, r)�−2q

rq ‖u‖2q−θ p
)

Hence the proof follows from the above inequality. ��
The next lemma shows that the stationary problem related to (1.1) admits a ground
state solution.

Lemma 3.3 Assume that θ p < q holds. Then d ≥
(
2q−θ p
2θqp

)(
�

2q
rq

C(N ,μ,r)

)θ p/(2q−θ p)

and there exists u ∈ N such that d = E(u).

Proof For any u ∈ N , fromLemma3.2we know that ‖u‖θ p ≥
(

�
2q
rq

C(N ,μ,r)

)θ p/(2q−θ p)

.

Then by (1.6) with I (u) = 0, it follows that

E(u) =
(
2q − θ p

2θqp

)
‖u‖θ p ≥

(
2q − θ p

2θqp

)(
�

2q
rq

C(N , μ, r)

)θ p/(2q−θ p)

> 0.

By the definition of d we obtain d ≥
(
2q−θ p
2θqp

)(
�

2q
rq

C(N ,μ,r)

)θ p/(2q−θ p)

. It remains to

prove the second part of the lemma. Let {un}n be a minimizing sequence of d, i.e,
{un}n ⊂ N and E(un) → d as n → ∞. From (1.6) we have

E(un) =
(
2q − θ p

2θqp

)
‖un‖θ p,
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which implies that {un}n is bounded in W . Going if necessary to a subsequence, we
assume that

⎧⎨
⎩
un⇀u weakly in W ,

un → u strongly in Lν(RN ), ∀ν ∈ [2, p∗
s ),

un → u a.e. in R
N .

(3.3)

Now we claim that

lim
n→∞

∫
RN

(Kμ ∗ |un|q)|un|q dx =
∫
RN

(Kμ ∗ |u|q)|u|q dx . (3.4)

By a direct computation we have

∣∣∣∣
∫
RN

(Kμ ∗ |un|q)|un|q dx −
∫
RN

(Kμ ∗ |u|q)|u|q dx
∣∣∣∣

≤
∫
RN

(Kμ ∗ ∣∣|un|q − |u|q ∣∣)|un|q dx
+
∫
RN

(Kμ ∗ |u|q) ∣∣|un|q − |u|q ∣∣ dx .
Since 2 < qr < p∗

s , by using the Hardy–Littlewood–Sobolev inequality, we have

∣∣∣∣
∫
RN

(Kμ ∗ |un|q)|un|q dx −
∫
RN

(Kμ ∗ |u|q)|u|q dx
∣∣∣∣

≤ 2C(N , μ, r)‖un − u‖qr‖un‖2q−1
qr

≤ C1‖un − u‖qr → 0 as n → ∞.

Since I (un) = 0, it follows from Lemma 3.2 that ‖un‖θ p ≥
(

�
2q
rq

C(N ,μ,r)

)θ p/(2q−θ p)

.

By the definition of I we have

(
�

2q
rq

C(N , μ, r)

)θ p/(2q−θ p)

≤
∫
RN

(Kμ ∗ |un|q)|un|q dx .

So it follows from (3.4) and the above inequality that

0 <

(
�

2q
rq

C(N , μ, r)

)θ p/(2q−θ p)

≤
∫
RN

(Kμ ∗ |u|q)|u|q dx .

��
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This ensures that u 
= 0. Combining (3.3)–(3.4) and the weak lower semicontinuity
of the norm, yield

E(u) ≤ lim
n→∞ E(un) ≤ d, (3.5)

and

I (u) ≤ lim
n→∞ I (un) = 0.

To finish the proof we need to show that I (u) = 0. Indeed, arguing by contradiction,
by supposing that I (u) < 0. Since u ∈ W\{0} it follows from Lemma 3.1 that there
exists λ∗ ∈ (0, 1) such that I (λ∗u) = 0. Hence,

d ≤ E(λ∗u) = (λ∗)θ
(

1

θ p
− 1

2q

)
‖u‖θ p

≤ (λ∗)θ lim inf
n→∞

(
1

θ p
− 1

2q

)
‖un‖θ p < lim inf

n→∞ E(un) = d,

which is absurd. Hence I (u) = 0. Therefore, u ∈ N and the conclusion follows
immediately from (3.5).

4 Local Existence

This section is devoted to the proof of Theorem (1.1). In the sequel we will use the
Galerkin method.

In what follows (., .) denotes the inner product in L2(RN ) and v+ = max{v, 0}.
Since W is separable and W dense in L2(RN ), we have a base V = {wi , i ∈ N} in
W , and also in L2(RN ) such that (wi , w j ) = δi, j , i, j = 1, 2, . . . . For m ∈ N

∗ we

look for the approximate solution um(x, t) =
m∑
i=1

gim(t)wi satisfying the following

identity :

∫
RN

umtw j dx + ‖um‖p(θ−1)〈um, w j 〉

=
∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q−2u+
mw j dx, j = 1, 2, . . . ,m, (4.1)

and

um(0) = u0m, (4.2)
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where

〈u, w j 〉 =
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(w j (x) − w j (y))

|x − y|N+sp
dxdy

+
∫
RN

V |u|p−2uw j dx .

Since V = {wi , i ∈ N} is dense inW and u0 ∈ W , there exists {ηim, i = 1, 2, . . . ,m}
such that

um(0) =
m∑
i=1

ηimwi → u0 strongly in W . (4.3)

Then (4.1)–(4.2) is reduced to the following initial value problem for a system of
nonlinear differential equations on g jm(t) :

{
g′
jm(t) = G j (g), j = 1, . . . ,m,

g jm(0) = η jm, j = 1, . . . ,m,
(4.4)

where

G j (g) = −‖um‖p(θ−1)〈um, w j 〉 +
∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q−2umw j dx .

By the Picard iteration method, there exists t0,m > 0 depending on |η jm | such that
problem (4.4) admits a unique solution g jm ∈ C1([0, t0,m]).

Multiplying (4.1) by g jm(t) and summing over j = 1, 2, . . . ,m, yields

1

2

d

dt
‖um(t)‖22 + ‖um(t)‖θ p =

∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q dx, ∀t ∈ [0, t0,m]. (4.5)

By using the Hardy–Littlewood–Sobolev inequality, we obtain∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q dx ≤ C(N , μ, r)‖un‖2qrq .

From (1.11) we have 2 < qr < p∗
s , by using the interpolation inequality and the

continuous embedding W ↪→ L p∗
s (RN ), we find∫

RN
(Kμ ∗ |u+

m |q)|u+
m |q dx ≤ �

−2q(1−γ )
p∗
s

C(N , μ, r)‖un‖2qγ
2 ‖um‖2q(1−γ ),

(4.6)

where γ ∈ (0, 1) satisfies

1

qr
= γ

2
+ 1 − γ

p∗
s

.
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Since 2 < qr < 2q < min
{
θ p + 4p∗

s −2rθ p
rp∗

s
,

(2−r)p∗
s

2

}
, we have

2q(1 − γ ) < θ p,

and

α = θ pqγ

θ p − 2q(1 − γ )
> 1.

Using the Young inequality in (4.6), for any ε ∈ (0, 1) we obtain∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q dx ≤ C(ε)
(
‖um(t)‖22

)α + ε‖um(t)‖θ p, (4.7)

Combining (4.5) and (4.7), we get

1

2

d

dt
‖um(t)‖22 + (1 − ε)‖um(t)‖θ p ≤ C(ε)

(
‖um(t)‖22

)α

, ∀t ∈ [0, t0,m].

Taking ε = 1
2 , yields

d

dt
‖um(t)‖22 ≤ 2C1

(
‖um(t)‖22

)α

, ∀t ∈ [0, t0,m]. (4.8)

Since α > 1, according to (4.8), we obtain

‖um(t)‖22 ≤
(
C1−α
2 − 2(α − 1)C1t

) 1
1−α

. (4.9)

only if t < T ∗ = C1−α
2

2(α−1)C1
, where C2 = supm

∫
RN u2m(x, 0) dx ∈ (0,+∞). It follows

that

‖um(t)‖22 ≤ 2
1

γ−1C2, ∀t ≤ min
{
t0,m, T ∗/2

}
. (4.10)

Now,we claim that (4.10) holds for all t ∈ [0, T ∗/2]. Indeed, if T ∗/2 ≤ t0,m , then there

is nothing to prove. Otherwise, if t0,m < T ∗/2, then ‖u(t0,m)‖22 ≤ 2
1

γ−1C2. Thus, we
can replace u0m in (4.2) by um(x, t0,m) and extend the solution to the interval [0, T ∗/2]
by repeating the above process. Thus, we obtain

‖um(t)‖22 ≤ 2
1

γ−1C2, ∀t ∈ [0, T ] (T = T ∗/2
)
. (4.11)

Now, multiplying the j th equations in (4.1) by g′
jm(t) and summing over j from 1 to

m, afterward, integrating over (0, t) yields

∫ t

0
‖ums(s)‖22 ds + E(um(t)) = E(u0m), t ∈ [0, T ]. (4.12)
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From (4.3) and the continuity of the functional E on W , we have

|E(u0m)| ≤ c, ∀m ∈ N
∗. (4.13)

Remembering that

E(um(t)) = 1

θ p
‖um(t)‖θ p − 1

2q

∫
RN

Kμ ∗ (|u+
m |q)|u+

m |q dx .

Thus, combining (4.7), (4.11), (4.12) and (4.13) we get

∫ t

0
‖ums(s)‖22 ds +

(
1

θ p
− ε

)
‖um(t)‖θ p ≤ c, ∀t ∈ [0, T ].

Taking ε = 1
2θ p , we conclude that

∫ t

0
‖ums(s)‖22 ds ≤ c1, ∀t ∈ [0, T ], (4.14)

and

‖um(t)‖ ≤ c2, ∀t ∈ [0, T ]. (4.15)

Then, by (4.14) and (4.15), there exist u and a subsequence of {um}m , still denoted by
{um}m such that, as m → ∞

{
um⇀∗u in L∞(0, T ;W )),

umt⇀ut in L2(0, T ; L2(RN )),
(4.16)

Then it follows from Aubin-Lions compactness theorem, see [39, Corollary 4] that

um → u in C([0, T ], Lν(RN )), ∀ν ∈ [2, p∗
s ). (4.17)

This implies

um(x, t) → u(x, t) a.e. in R
N , ∀t ≥ 0. (4.18)

Now, by using [40, proposition 1.3] we prove that {‖um(t)‖p(θ−1)}m is relatively
compact in L1(0, T ). Indeed, by (4.15) we have ‖um(t)‖p(θ−1) ≤ c, for all m and
t . This implies that

∫ T
0 ‖um(t)‖p(θ−1) dt ≤ cT for all m. On the other hand, for any

ε > 0, there exits δ = ε
c such that for any measurable subset A with |A| < δ, there

holds ∫
A

‖um(t)‖p(θ−1) dt ≤ c|A| < ε.
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Consequently, {‖um(t)‖p(θ−1)}m is relatively compact in L1(0, T ). Therefore, there
exist β(t) ∈ L1(0, T ) and a subsequence of {‖um(t)‖p(θ−1)}m , still denoted by
{‖um(t)‖p(θ−1)}m such that

‖um(t)‖p(θ−1) → β(t), a.e. t ∈ [0, T ]. (4.19)

From (4.16) and [41, Lemma 3.1.7], we infer that

um(0) → u(0) weakly in L2(RN ). (4.20)

On the other hand, from (4.3)we have um(0) → u0 strongly inW . Thus, this combined
with (4.20) yields

u(0) = u0. (4.21)

In the next step, we show that the equality (1) in Definition 1.1 holds.
First, we claim that

u+
m → u+ in C([0, T ], Lν(RN )), ∀ν ∈ [2, p∗

s ). (4.22)

To this end, for any ν ∈ [2, p∗
s ) we have∫

RN
|u+

m − u+|ν dx =
∫
RN

∣∣∣∣ |um | − |u|
2

− (um − u)

2

∣∣∣∣
ν

dx

≤
∫
RN

|um − u|ν dx → 0 as m → ∞.

Therefore, the claim holds. Combining (3.4) with (4.22), yields

∫
RN

(Kμ ∗ (u+
m)q)(u+

m)q dx →
∫
RN

(Kμ ∗ (u+)q)(u+)q dx, as m → ∞.

(4.23)

On the other hand, by (4.22) and Lemma 2.6 we get

∫
RN

(Kμ ∗ (u+
m)q−1)(u+

m)q−1w dx

→
∫
RN

(Kμ ∗ (u+)q−1)(u+)q−1w dx, as m → ∞, ∀w ∈ Lrq(RN ).

(4.24)

Now, let us consider the linear operator L : W → W ′ defined by

〈L(u), v〉 =
∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp
dxdy.
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From here on we set p′ = p−1
p is the Hölder conjugate of p. In view of (4.15) we

derive

⎧⎪⎨
⎪⎩

|um (x, t) − um (y, t)|p−2(um (x, t) − um (y, t))

|x − y|
N+sp
p′

⎫⎪⎬
⎪⎭
m

is bounded in L p′
(R2N ), ∀t ∈ [0, T ],

and

|um(x, t) − um(y, t)|p−2(um(x, t) − um(y, t))

|x − y|
N+sp
p′

→ |u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))

|x − y|
N+sp
p′

a.e. in R
2N , ∀t ≥ 0.

Invoking Lemma (2.4), we deduce

|um(x, t) − um(y, t)|p−2(um(x, t) − um(y, t))

|x − y|
N+sp
p′

→ |u(x, t) − u(y, t)|p−2(u(x, t) − u(y, t))

|x − y|
N+sp
p′

weakly in L p′
(R2N ). (4.25)

Thus, for any v ∈ W we have

v(x) − v(y)

|x − y| N+sp
p

∈ L p(R2N ),

which implies, as m → ∞

〈L(um(t)), v〉 → 〈L(u(t)), v〉, ∀v ∈ W , ∀t ∈ [0, T ]. (4.26)

Similarly, as {V p−1
p (x)|um |p−2um}m is bounded in L p′

(RN ) and

V
p−1
p (x)|um |p−2um → V

p−1
p (x)|u|p−2u a.e. in R

N , t ≥ 0,

we obtain

V
p−1
p (x)|um |p−2um → V

p−1
p (x)|u|p−2u weakly in L p′

(RN ),

For any w ∈ W , we have

V
1
p w ∈ L p(RN ).
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Hence, as m → ∞
∫
RN

V (x)|um |p−2umw dx →
∫
RN

V (x)|u|p−2uw dx, ∀w ∈ W . (4.27)

Combining (4.26) with (4.19) and using the Lebesgue dominated convergence theo-
rem, yields

∫ T

0
‖um(t)‖θ(p−1)〈L(um(t)), v〉 dt →

∫ T

0
β(t)〈L(u(t)), v〉 dt, ∀v ∈ W .

(4.28)

Integrating (4.1) with respect to t , we obtain

∫ T

0

∫
RN

umtw j dxdt +
∫ T

0
‖um‖p(θ−1)〈um, w j 〉 dt

=
∫ T

0

∫
RN

(Kμ ∗ |u+
m |q)|u+

m |q−2u+
mw j dxdt, j = 1, 2, . . . ,m. (4.29)

In view of (4.17), (4.24) and (4.28), for j fixed, we can pass to the limit in (4.29) to
get

∫ T

0

∫
RN

utw j dxdt +
∫ T

0
β(t)〈u, w j 〉 dt

=
∫ T

0

∫
RN

(Kμ ∗ |u+|q)|u+|q−2u+w j dxdt, j = 1, 2, . . . ,m. (4.30)

Since V = {wi , i ∈ N} is dense in W , we infer from (4.30) that

∫ T

0

∫
RN

utv dxdt +
∫ T

0
β(t)〈u, v〉 dt

=
∫ T

0

∫
RN

(Kμ ∗ (u+)q)(u+)q−1v dxdt, ∀v ∈ W , (4.31)

which implies

∫
RN

ut (t)v dx + β(t)〈u(t), v〉

=
∫
RN

(Kμ ∗ (u+(t))q)(u+(t))q−1v dx, a.e. t ∈ [0, T ], ∀v ∈ W . (4.32)

If β(t) = 0. Then by (4.19), we deduce that the equality (1) in the Definition 1.1
clearly holds.
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Assume β(t) > 0 for all t ∈ [0, T ]. Taking u = v in (4.31) and using [33,
proposition 2.1], we get

‖u(T )‖22 − ‖u0‖22 +
∫ T

0
β(t)‖u(t)‖p dt =

∫ T

0

∫
RN

(Kμ ∗ (u+)q)(u+)q dxdt .

(4.33)

On the other hand,multiplying both sides of equations in (4.1) by g jm(t), and summing
with respect to i , afterward integrating over (0, T ) yields

‖um(T )‖22 − ‖u0m‖22 +
∫ T

0
‖um‖(θ−1)p〈um, um〉 dt

=
∫ T

0

∫
RN

(Kμ ∗ (u+
m)q)(u+

m)q dxdt . (4.34)

Combining (4.33) with (4.34), and using (4.17) we obtain

lim
m→

∫ T

0
‖um‖p(θ−1)〈um, um〉 dt

= −‖u(T )‖22 − ‖u0‖22 +
∫ T

0

∫
RN

(Kμ ∗ (u+)q)(u+)q dxdt

=
∫ T

0
β(t)‖u(t)‖p dt

= lim
m→∞

∫ T

0
‖um‖p(θ−1)〈um, u〉 dt .

Thus, we deduce that

lim
m→∞

∫ T

0
‖um‖p(θ−1)〈um, um − u〉 dt = 0. (4.35)

Hence, there exists a subsequence, still denoted by {um} such that for a.e. t ∈ [0, T ]

lim
m→∞

(
‖um(t)‖p(θ−1)〈um(t), um(t) − u(t)〉

)
= 0.

By (4.19), as m → ∞ we know that

‖um(t)‖p(θ−1) → β(t) > 0, a.e. t ∈ [0, T ], (4.36)

which implies

lim
m→∞ ‖um(t)‖p = ‖u(t)‖p a.e. t ∈ [0, T ].
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Obviously, lim
m→∞ ‖um(t)‖p(θ−1) = ‖u(t)‖p(θ−1) a.e. t ∈ [0, T ]. Therefore, we obtain

β(t) = ‖u(t)‖p(θ−1) a.e. t ∈ [0, T ]. (4.37)

Inserting (4.37) in (4.32), yields

∫
RN

ut (t)v dx + ‖u(t)‖p(θ−1)〈u(t), v〉

=
∫
RN

(Kμ ∗ (u+(t))q)(u+(t))q−1v dx, a.e. t ∈ [0, T ], ∀v ∈ W . (4.38)

It remains to show that inequality (1.12) holds. From (3.5), (4.16), (4.24), (4.19) and
u0m → u0 in W , we infer

∫ t

0
‖us(s)‖22 ds + E(u(t)) ≤ lim inf

m→∞

(∫ t

0
‖ums(s)‖22 ds + E(um(t))

)
= lim

m→∞ E(u0m) = E(u0).

Corollary 4.1 If u0(x) ≥ 0 a.e. in R
N . Then the function u(x, t) ≥ 0 a.e. in R

N and
for any t ∈ [0, T ].
Proof Let u be a weak solution to initial value problem (1.1). Clearly

u− = max{−u, 0} ∈ L∞(0, T ;W ).

Taking v = −u− in (4.38), we obtain

−
∫
RN

ut (t)u
−(t) dx + ‖u(t)‖p(θ−1)〈u(t),−u−(t)〉

= −
∫
RN

(Kμ ∗ (u+(t))q)(u+(t))q−1u−(t) dx, (4.39)

Observe that for a.e. x, y ∈ R
N ,

|u(x) − u(y)|p−2(u(x) − u(y))(−u−(x) + u−(y))

= |u(x) − u(y)|p−2(u−(x) − u−(y))2

+|u(x) − u(y)|p−2u+(y)u−(x) + |u(x) − u(y)|p−2u−(y)u+(x)

≥ |u−(x) − u−(y)|p,

and

−V (x)|u(x)|p−2u(x)u−(x) = V (x)|u(x)|p−2(u−(x))2 ≥ V (x)|u−|p.
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Furthermore, from the definition of u+ and u−, we get

∫
RN

(Kμ ∗ (u+(t))q)(u+(t))q−1u−(t) dx = 0.

Combining these facts with (4.39), yields

1

2

d

dt

∫
RN

(u−(t))2 dx + ‖u−(t)‖pθ ≤ 0,

which implies

∫
RN

(u−(t))2 dx ≤
∫
RN

(u−
0 )2 dx, ∀t ∈ [0, T ].

Since u0(x) ≥ 0 a.e. in R
N we get u−(t) = 0 a.e. in R

N and for any t ∈ [0, T ].
Hence, u(x, t) ≥ 0 a.e. in RN and for any t ∈ [0, T ]. ��

5 Global Existence and Asymptotic Behavior

This section is concerned with the proof of the existence of global weak solutions
to initial value problem (1.1). Moreover, we show the asymptotic behavior of these
solutions as t → +∞. In doing so, we introduce the potential well set

W = {u ∈ W : E(u) < d, I (u) > 0} ∪ {0} . (5.1)

Similarly to the previous section, we will employ the Galerkin method.

Proof (Theorem 1.2) In what follows we only need to consider the case where u0 ∈
W\{0}. Otherwise if we assume u0 = 0, then initial value problem (1.1) admits a
global solution u = 0 and there is nothing to prove. From (4.12) remembering that

∫ t

0
‖ums(s)‖22 ds + E(um(t)) = E(u0m), t ∈ [0, Tm), (5.2)

where Tm is the maximal existence time of solution um to initial value problem (4.1)–
(4.2). Since we are assuming that u0 ∈ W\{0}, that is

E(u0) < d and I (u0) > 0.

It is follows from (4.3) that

E(u0m) < d and I (u0m) > 0, (5.3)
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for m large enough. This combined with (5.2), yields

∫ t

0
‖ums(s)‖22 ds + E(um(t)) < d, t ∈ [0, Tm). (5.4)

for m large enough. Next we prove um ∈ W for sufficiently large m and Tm = +∞.
Assume that um(t) /∈ W and let t0 be the smallest time for which um(t0) /∈ W . By the
continuity of um(t) we obtain that um(x, t0) ∈ ∂W , i.e.

E(um(t0)) = d. (5.5)

or

um(t0) 
= 0 and I (um(t0)) = 0. (5.6)

Obviously, the case (5.5) could not occur due to (5.4), while if (5.6) holds, then by
definition of d in (1.7) we infer that E(um(t0)) ≥ d. This is also impossible, since it
contradicts (5.4).

In conclusion um(t) ∈ W for all t ∈ [0, Tm) and sufficiently large m, so that

E(um(t)) < d and I (um(t)) > 0. ∀t ∈ [0, Tm). (5.7)

This combined with (1.6), for m large enough we get

d > E(um(t)) = 2q − θ p

2qθ p
‖um(t)‖θ p + 1

2q
I (um(t)) >

2q − θ p

2qθ p
‖um(t)‖θ p,(5.8)

which gives

‖um(t)‖ <

(
2qθ p

2q − θ p

) 1
θ p

, ∀t ∈ [0, Tm). (5.9)

Furthermore, from (5.4) we observe that

∫ t

0
‖ums(s)‖22 ds < d, ∀t ∈ [0, Tm). (5.10)

In view of (5.9), we infer that Tm = +∞. Consequently, by (5.9)–(5.10), there exist
u and a subsequence of {um}m , still denoted by {um}m such that, as m → ∞

{
um⇀∗u in L∞(0,+∞;W )),

umt⇀ut in L2(0,+∞; L2(RN )),
(5.11)
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Hence, in a similar manner to the previous section, applying (5.11) we conclude that
initial value problem (1.1) admits a global positive solution, that is

∫
RN

ut (t)v dx + ‖u(t)‖p(θ−1)〈u(t), v〉

=
∫
RN

(Kμ ∗ uq(t)uq−1(t)v dx, a.e. t ∈ (0,+∞), ∀v ∈ W . (5.12)

Thus, this completes the proof of Theorem (1.2). ��
We give now the proof of Corollary 1.3.

Proof (Corollary 1.3) We divided the proof into two cases :

Case 1. E(u0) < d and I (u0) = 0 In view of Remark 2 this case can not occurs.
Case 2. E(u0) = d and I (u0) ≥ 0 For n = 2, 3, . . . we let εn = 1 − 1

n , u0n = εnu0
and consider the following problem

{
ut + ‖u‖p(θ−1)[(−�)spu + V (x)|u|p−2u] = (Kμ ∗ |u|q )|u|q−2u in R

N × (0,+∞),

u(x, 0) = u0n(x), in R
N ,

(5.13)

According to the definition of I we have

I (u0n) = ε
θ p
n ‖u0‖θ p − ε

2q
n

∫
RN

(Kμ ∗ uq0)u
q
0 dx

= ε
θ p
n I (u0) + ε

2q
n (ε

θ p−2q
n − 1)

∫
RN

(Kμ ∗ uq0)u
q
0 dx

In view of I (u0) ≥ 0 and 0 < εn < 1 it follows that

I (u0n) > 0 (5.14)

Moreover according to the definition of E we know

d

dεn
E(εnu0) = 1

εn
I (u0n) > 0

Hence, this shows that εn �→ E(εnu0) is strictly increasing on (0, 1), from where
it follows that

E(u0n) = E(εnu0) < E(u0) = d. (5.15)

On the other hand, it is easy to see that

u0n → u0 in W , as n → ∞. (5.16)
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Combining (5.14)–(5.16) and by a similar way to the proof of Theorem 1.2, we
obtain the existence of a global solution un for initial value problem (5.13) satisfies
that

‖un(t)‖ <

(
2qθ p

2q − θ p

) 1
θ p

, ∀t ∈ [0, Tn), (5.17)

and

∫ t

0
‖uns(s)‖22 ds < d, ∀t ∈ [0, Tn), (5.18)

for every n ≥ 2. Therefore the reminder of the proof is quite similar to the proof
of Theorem 1.1.

��
Nowwe turn our attention to the asymptotic behavior of global solutions as t → +∞.
To this aim, we need to recall the following Lemma which due to Martinez [42].

Lemma 5.1 Let f : R+ → R
+ be a nonincreasing function and σ is a nonnegative

constant such that

∫ +∞

t
f 1+σ (s) ds ≤ 1

ω
f σ (0) f (t), ∀t ≥ 0.

then we have

(1) f (t) ≤ f (0)e1−ωt , for all t ≥ 0, whenever σ = 0.

(2) f (t) ≤ f (0)
(

1+σ
1+ωσ t

)1/σ
, for all t ≥ 0, whenever σ > 0.

Moreover, we recall the fractional Gagliardo-Nirenberg interpolation inequality that
can be found in [43] : if  is a standard domain (i.e. RN , a half-space or it is bounded
with Lipschitz boundary) then

‖v‖W τ,p() ≤ C‖v‖η

Ws1,p1 ()
‖v‖1−η

Ws2,p2 ()
, η ∈ (0, 1),

τ = ηs1 + (1 − η)s2,
1

p
= η

p1
+ 1 − η

p2
. (5.19)

as long as it fails that : s2 is an integer ≥ 1 and p2 = 1 and s1 − s2 ≤ 1 − 1
p1

.

Proof (Theorem 1.4) Multiplying (4.1) by g jm and summing over j = 1, 2, . . . ,m
gives

− 1

2

d

dt

∫
RN

u2m(t) dx = I (um(t)). (5.20)
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In view of the proof of Lemma 3.2, we know that

I (um(t)) ≥ ‖um(t)‖θ p
(
1 − C(N , μ, r)�−2q

qr ‖um(t)‖2q−θ p
)

, ∀t ≥ 0.

On the other hand, from (1.17) for m large enough

E(u0m) <

(
2q − θ p

2qθ p

)(
�

2q
rq

C(N , μ, r)

) θ p
2q−θ p

. (5.21)

Combining (5.2) with (5.8) yields

(
2qθ p

2q − θ p
E(u0m)

) 1
θ p

> ‖um(t)‖, ∀t ≥ 0,

which implies that

I (um(t)) ≥ ‖um(t)‖θ p

⎛
⎝1 − C(N , μ, r)�−2q

rq

(
2qθ p

2q − θ p
E(u0m)

) 2q−θ p
θ p

⎞
⎠ , ∀t ≥ 0.

(5.22)

Integrating (5.20) over (t, T ), we infer from the continuous embeddingW ↪→ L2(RN )

and (5.22) that

∫ T

t
‖um(t)‖θ p

2 dt ≤ 1

χm
‖um(t)‖22 (5.23)

where χm =
(
1 − C(N , μ, r)�−2q

rq

(
2qθ p
2q−θ p E(u0m)

) 2q−θ p
θ p

)
. Using (5.9) and by a

similar argument to that used in proving (4.17) we have

um → u in C([0, T ], Lν(RN )), ∀ν ∈ [2, p∗
s ). (5.24)

On the other hand, we infer from E(u0m) → E(u0) as m → ∞ that

χm →
⎛
⎝1 − C(N , μ, r)�−2q

rq

(
2qθ p

2q − θ p
E(u0)

) 2q−θ p
θ p

⎞
⎠ as m → ∞. (5.25)

Combining (5.24) with (5.25) and passing to the limit in (5.23) as m goes to infinity,
we conclude

∫ T

t
‖u(t)‖θ p

2 dt ≤ 1

χ
‖u(t)‖22 ∀t ≥ 0, (5.26)
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where χ =
(
1 − C(N , μ, r)�−2q

qr

(
2qθ p
2q−θ p E(u0m)

) 2q−θ p
θ p

)
. Letting T → +∞ in

(5.26) and using Lemma 5.1, we infer that

‖u(t)‖2 ≤
(

θ p

1 + χ(θ p − 1)t

) 1
θ p−1

, ∀t ≥ 0. (5.27)

Now, we can apply (5.19) with s1 = s, s2 = 0, η = s−ε
s , p2 = p1 = p, to find

‖u(t)‖Ws−ε,p(RN ) ≤ C‖u(t)‖η

Ws,p(RN )
‖u(t)‖1−η

p ≤ ‖u(t)‖η‖u(t)‖1−η
p . (5.28)

From (5.9) and (4.16), it follows that

‖u(t)‖ ≤ lim inf
m→∞ ‖um(t)‖ ≤

(
2qθ p

2q − θ p

) 1
θ p

, ∀t ≥ 0. (5.29)

Since 2 < p < p∗
s , then by using the classical interpolation inequality and the

continuous embedding W ↪→ L ps (RN ) we obtain

‖u(t)‖p ≤ ‖u(t)‖β
2 ‖u(t)‖1−β

p∗
s

≤ �
β−1
p∗
s

‖u(t)‖β
2 ‖u(t)‖1−β. (5.30)

where β ∈ (0, 1) satisfies that

1

p
= β

2
+ 1 − β

p∗
s

.

By (5.27), (5.28), (5.29) and (5.30), we deduce

‖u(t)‖Ws−ε,p(RN ) ≤ C‖u(t)‖η

Ws,p(RN )
‖u(t)‖1−η

p

≤ ‖u(t)‖η+(1−η)(1−β)

(
θ p

1 + χ(θ p − 1)t

) β(1−η)
θ p−1

≤ �
(β−1)(1−η)
p∗
s

(
2qθ p

2q − θ p

) η+(1−η)(1−β)
θ p

(
θ p

1 + χ(θ p − 1)t

) β(1−η)
θ p−1

,

for all t ≥ 0. This completes the proof. ��

6 Blow-up Phenomena

In this section we prove that the local weak solutions of initial value problem (1.1)
blow up in finite time. Moreover, we give an estimate for the lower and upper bounds
of the blow-up time.

In order to find an upper bound estimate for the blow-up time we need the following
lemma, which is found in [44, Lemma 2.2].
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Lemma 6.1 Suppose that a positive, twice differentiable function ψ satisfies the
inequality

ψ ′′(t)ψ(t) − (1 + ς)(ψ ′(t))2 ≥ 0

where ς > 0. If ψ(0) > 0, ψ ′(0) > 0, then ψ(t) → +∞ as t → t∗ and t∗ ≤ ψ(0)
ςψ ′(0) .

Proof (Theorem 1.5) Hereafter, T = Tmax is the maximal existence time of solutions
to (1.1). Note that due to (1.20) we have u0 
= 0 and

‖u0‖ >

(
2q�

2q
rq

θ pC(N , μ, r)

) 1
2q−θ p

. (5.1)

Indeed, by the Hardy–Littlewood–Sobolev inequality

1

θ p
‖u0‖θ p <

1

2q
C(N , μ, r)‖u0‖2qqr ≤ 1

2q�
2q
rq

C(N , μ, r)‖u0‖2q ,

which implies (5.2) holds. Moreover, from (1.12) and the condition that E(u0) < 0
we have E(u(t)) < 0 for all t ∈ [0, T ). Thus in a similar way to (5.1) we infer that

‖u(t)‖ >

(
2q�

2q
rq

θ pC(N , μ, r)

) 1
2q−θ p

, ∀t ∈ [0, T ). (5.2)

Upper bound Define

I (t) = 1

2

∫ t

0
‖u(s)‖22 ds + T − t

2
‖u0‖22 + β(σ + t)2, 0 < t < T .

where β, σ > 0 are to be determined. In view of the regularity of the
weak local solutions stated in Definition 1.1 and [33, Proposition 1.2]
we have

I ′′(t) =
∫
RN

ut (t)u(t) dx + 2β.

Taking u = v as a test function in Definition 1.1 yields

I ′′(t) = −‖u(t)‖θ p +
∫
RN

(Kμ ∗ uq(t))uq(t) dx + 2β.

According to the definition of the energy functional

E(u(t)) = 1

θ p
‖u(t)‖θ p − 1

2q

∫
RN

(Kμ ∗ uq(t))uq(t) dx,
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we have

I ′′(t) = −θ pE(u(t)) +
(
1 − θ p

2q

)∫
RN

(Kμ ∗ uq(t))uq(t) dx + 2β.

Since 2q > θ p, then the last equality implies

I ′′(t) ≥ −(λ + 1)E(u(t)) + 2β,

where λ = θ p − 1 > 0. In view of (1.12), we have

I ′′(t) ≥ (λ + 1)
∫ t

0
‖us(t)‖2 ds − (λ + 1)E(u0) + 2β. (5.3)

Since

I ′(t) = 1

2

∫
RN

u2(s) dxds − 1

2

∫
RN

u20 dx + 2β(σ + t)

=
∫ t

0

∫
RN

us(s)u(s) dxds + 2β(σ + t).

It is follows that,

[I ′(t)]2 ≤ 2
∫ t

0
‖us(s)‖22 ds

∫ t

0
‖u(s)‖22 ds + 8β2(σ + t)2

≤
(
4
∫ t

0
‖us(s)‖22 ds + 8β

)
I (t). (5.4)

Combining the above estimates, we find that for ν > 0

I ′′(t)I (t) − (λ + 1)

4
[I ′(t)]2

≥ I (t)

[(
(λ + 1) − (λ + 1)

) ∫ t

0
‖us(s)‖22 ds − (λ + 1)E(u0) − 2βλ

]
= I (t) [−(λ + 1)E(u0) − 2βλ] ≥ 0,

provided β ∈
(
0, −θ pE(u0)

2(θ p−1)

]
. Since θ ∈ (2, N/(N − sp)) and p > 2

it follows that θ p > 4. Invoking Lemma 6.1, yields

lim
t→T− I (t) = +∞, (5.5)

and

T ≤ 4I (0)

(θ p − 4)I ′(0)
= 2(T ‖u0‖22 + 2βσ 2)

2βσ(θ p − 4)
= ‖u0‖22

βσ(θ p − 4)
T + σ

(θ p − 4)
.
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This inequality can be rewritten as

T

(
1 − ‖u0‖22

βσ(θ p − 4)

)
≤ σ

(θ p − 4)
. (5.6)

for any β ∈
(
0, −θ pE(u0)

2(θ p−1)

]
and σ > 0. Now if we choose σ ∈(

‖u0‖22
β(θ p−4) ,+∞

)
we infer that

0 <
‖u0‖22

σβ(θ p − 4)
< 1.

This combined with (5.6) yields

T ≤ σ

(θ p − 4)

(
1 − ‖u0‖22

βσ(θ p − 4)

)−1

= βσ 2

βσ(θ p − 4) − ‖u0‖22
. (5.7)

In what follows for the sake of simplicity we put κ = −θ pE(u0)
2(θ p−1) . Let

us consider the following set

� =
{

(β, σ ) : β ∈ (0, κ], σ ∈
(

‖u0‖22
β(θ p − 4)

,+∞
)}

=
{

(β, σ ) : σ ∈
(

‖u0‖22
κ(θ p − 4)

,+∞
)

, β ∈
( ‖u0‖22
σ(θ p − 4)

, κ
]}

In view of (5.7), we have

T ≤ inf
(β,σ )∈�

βσ 2

βσ(θ p − 4) − ‖u0‖22
.

Set

g(σ, τ ) = τσ

τ(θ p − 4) − ‖u0‖22
.

where τ = βσ . Through straightforward computation one can show
that g(σ, τ ) is decreasing in τ . Thus, it follows that

T ≤ inf
σ∈
( ‖u0‖22

κ(θ p−4) ,+∞
) κσ 2

σκ(θ p − 4) − ‖u0‖22
. (5.8)
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Minimizing the right hand side of (5.8) one has

T ≤ 4‖u0‖22
κ(θ p − 4)2

. (5.9)

Now by substituting the value of κ in (5.9) we get

T ≤ 8‖u0‖22(θ p − 1)

−θ pE(u0)(θ p − 4)2
. (5.10)

According to the definition of I and (5.5), we have

lim
t→T− ‖u(t)‖22 = +∞. (5.11)

Lower bound Now we turn to prove the second part. Taking u = v as a test function
in Definition 1.1 we get

d

dt

∫
RN

u2(t) dx = −2‖u(t)‖θ p + 2
∫
RN

(Kμ ∗ uq(t))uq(t) dx .

Using the Hardy–Littlewood–Sobolev inequality we deduce

d

dt

∫
RN

u2(t) dx ≤ −2‖u(t)‖θ p + 2C(N , μ, r)‖u(t)‖2qrq .

Since 2 < rq < p∗
s , it follows from the interpolation inequality that

d

dt

∫
RN

u2(t) dx ≤ −2‖u(t)‖θ p + 2C(N , μ, r)‖u(t)‖2qγ
2 ‖u(t)‖2q(1−γ )

p∗
s

,

where γ ∈ (0, 1) satisfies

1

qr
= γ

2
+ 1 − γ

p∗
s

.

Now, by using a similar argument that in the proof of Theorem 1.1,
for any ε > 0 we have

d

dt

∫
RN

u2(t) dx ≤ −2‖u(t)‖θ p + C(ε)
(
‖u(t)‖22

)α + ε‖u(t)‖θ p (5.12)

where

α = θ pqγ

θ p − 2q(1 − γ )
> 1,
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and

C(ε) = ε
− 2θ2 p2

θ p−2q(1−γ ) �
− 2q(1−γ )θ p

θ p−2q(1−γ )

p∗
s

.

Put

g(t) =
∫
RN

u2(t) dx = ‖u(t)‖22.

Then (5.12) can be rewritten as

dg(t)

dt
≤ −2‖u(t)‖θ p + C(ε)gα(t) + ε‖u(t)‖θ p.

Taking ε = 2 we arrive at inequality

dg(t)

dt
≤ Cgα(t).

Integrating this inequality from 0 to t yields

1

C

∫ g(t)

g(0)

1

τα
dτ ≤ t .

Thus, it turns out that

1

C(1 − α)
g1−α(t) + 1

C(α − 1)
g1−α(0) ≤ t,

which together with lim
t→T− g(t) = lim

t→T− ‖u(t)‖22 = +∞ and α > 1

give

1

C(α − 1)
g1−α(0) ≤ T , (5.13)

where g(0) = ‖u0‖22 > 0 and C = 2− 2θ2 p2

θ p−2q(1−γ ) �
− 2q(1−γ )θ p

θ p−2q(1−γ )

p∗
s

. Hence
from (5.10) and (5.13) we reach the conclusion.
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