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Abstract
Weconsider the Timoshenko beamwith localizedKelvin–Voigt dissipation distributed
over two components: one of them with constitutive law of the type C1, and the other
with discontinuous law. The third component is simply elastic, where the viscosity
is not effective. Our main result is that the decay depends on the position of the
components. We will show that the system is exponentially stable if and only if the
component with discontinuous constitutive law is not in the center of the beam. When
the discontinuous component is in the middle, the solution decays polynomially.

Keywords Timoshenko beam · Localized viscoelastic dissipative mechanism ·
Transmission problem · Exponential stability · Polynomial decay

Mathematics Subject Classification 35B40 · 35P05 · 35Q74

1 Introduction

Weconsider aTimoshenkobeamconfigured in the interval ]0, �[, and divided into three
components: an elastic part configured over the interval IE , without any dissipative
mechanism, and two viscous components, one of them configured over IC has a C1

constitutive law, the other viscous component over ID with discontinuous constitutive
law. These components can be distributed over any of the intervals I1 =]0, �0[, I2 =
]�0, �1[, I3 =] �1, �[. Denoting by ˜I = I1 ∪ I2 ∪ I3, we consider
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ρ1 ϕt t − Sx = 0 in ˜I × (0,+∞), (1.1)

ρ2 ψt t − Mx + S = 0 in ˜I × (0,+∞), (1.2)

with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt (x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x), ψt (x, 0) = ψ1(x) in (0, �),
(1.3)

and Dirichlet boundary conditions:

ϕ(0, t) = ϕ(�, t) = ψ(0, t) = ψ(�, t) = 0 in (0, +∞) (1.4)

Here, S and M are given, respectively, by:

S = κ(ϕx + ψ) + κ̃(ϕxt + ψt ), M = bψx + b̃ψxt (1.5)

where ρ1, ρ2, κ , and b positive constants for simplicity. To see more details of the
model, we refer to [15]. The functions κ̃ and b̃ are non negative, where κ̃ = κ0(x) +
κ1(x), b̃ = b0(x) + b1(x). Here κ0, b0 ∈ C1(ID) are discontinuous functions of the
first kind over ]0, �[, vanishing outside of ID and positive inside ID . Instead, κ1(x)
and b1(x), are C1 functions vanishing outside of IC and positive inside IC .

Finally, we consider the transmission conditions,

ϕ(�−
i ) = ϕ(�+

i ), ψ(�−
i ) = ψ(�+

i ), S(�−
i ) = S(�+

i ), M(�−
i ) = M(�+

i ). (1.6)

for i = 0, 1. Note that condition (1.6) implies S, M ∈ H1(0, �). If we have more
points of discontinuity, the set ˜I have to be modified.

To get the uniform rate of decay, we consider the following hypotheses (to be used
in Lemma 3.3)

|b′
1(x)|2 ≤ c|b1(x)|, |κ ′

1(x)|2 ≤ c|κ1(x)|, ∀x ∈ IC (1.7)

Additionally, we assume that there exists positive constants C1 and C2 such that

C1κ1(x) ≤ b1(x) ≤ C2κ1(x) (1.8)

As a typical example of a function κ̃(x), (˜b(x) is similar) is given in the following
graphics
In the case of Fig. 1 we have not exponential stability, and in case of Figs. 2 and 3 the
system is exponentially stable.

In [11], the authors consider the transmission problem of Timoshenko beam com-
posed by N components, each of thembeing either purely elastic (E), or aKelvin–Voigt
viscoelastic material (discontinuous constitutive lawV), or an elastic material inserted
with a frictional damping mechanism (F). The authors prove that the Timoshenko
model is exponentially stable if and only if all the elastic components are connected
with one component with frictional damping. Otherwise, there is no exponential sta-
bility, but a polynomial decay of the energy as 1/t2. On the other hand, Liu and Liu
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Fig. 1 The discontinuous component ID is in the center of the beam

Fig. 2 Here the continuous component IC is in the center of the beam

Fig. 3 The elastic component IC is in the center of the beam

in [8] and Cheng et al. [3], proved that the wave equation with localized Kelvin–Voigt
viscoelastic damping (with discontinuous constitutive law) is not exponentially stable.
In [1] was proved that the corresponding semigroup decays polynomially to zero. On
the other hand, Liu and Rao in [9] proved that when the localized viscoelastic damping
has a C1-constitutive law, then the corresponding semigroup is exponentially stable.
Therefore, for localized viscoelastic damping, the regularity of the constitutive law is
important and completely changes the asymptotic properties.

In thisworkweconsider the two types of localizedviscoelastic damping (continuous
and discontinuous constitutive law) andwe prove that the exponential stability depends
on the order of the viscoelastic components of the beam. That is, we will show that
the semigroup is exponentially stable if and only if the discontinuous component is
not in the center of the beam. Furthermore, in case of lack of exponential stability, we
show that the semigroup decays polynomially to zero.

The remainder part of this paper is organized as follows. In Sect. 2we show thewell-
posedness of the model. In Sect. 3 we show the the exponential stability provided the
discontinuous component is not in the center of the beam, and the polynomial stability,
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in case of the discontinuous component is in the center. Finally, in Sect. 4 we show
the lack of exponential stability.

2 The Semigroup Approach

The energy of the system is given by:

E(t) = 1

2

∫ �

0

(

ρ1|ϕt |2 + ρ2|ψt |2 + b|ψx |2 + κ|ϕx + ψ |2
)

dx (2.1)

Multiplying Eq. (1.1) by ϕt and Eq. (1.2) by ψt , summing up the product result we
arrive to

d

dt
E(t) = −

∫ �

0
b̃|ψxt |2 dx −

∫ �

0
κ̃|ϕxt + ψt |2 dx ≤ 0. (2.2)

We denote by H the phase space given by:

H = H1
0 (0, �) × L2(0, �) × H1

0 (0, �) × L2(0, �)

For U = (ϕ, �, ψ, �)t we define

‖U‖2H =
∫ �

0
ρ1|�(s)|2 + ρ2|�(s)|2 + b|ψx (s)|2 + κ|ϕx (s) + ψ(s)|2 ds

Taking U = (ϕ, ψ, ϕt , ψt )
	, system (1.1)–(1.2) can be written as

Ut = AU

with A : D(A) ⊂ H → H is the linear operator defined by:

AU =
(

� ,
1

ρ1
Sx , � ,

1

ρ2
(Mx − S)

)	

where M and S are given in (1.5). The domain is given by:

D(A) = {U ∈ H : �, � ∈ H1
0 (0, �), ϕ, ψ ∈ H2(IE ), S, M ∈ H1(0, �)}

Note the operator A is dissipative,

Re 〈AU , U 〉 = −
∫ �

0
b̃|�x |2 dx −

∫ �

0
κ̃|�x + �|2 dx ≤ 0

So we have the following result.

Theorem 2.1 The operator A defined by (2) is the infinitesimal generator of a con-
tractions semigroup S(t) over the space H.
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Proof It is no difficult to show that 0 ∈ ρ(A). Hence, to use Theorem 1.2.4 in [10] to
show the the desired result, we only need to prove that the domain D(A) is dense. But
this follows by using Theorem 4.6 Chapter 1 of [13], this because H is reflexive and
A is a dissipative operator; thus, it is deduced that D(A) is dense. We conclude that
A is the infinitesimal generator of a contractions C0-semigroup (see [4]). ��

3 The Asymptotic Behavior

The main tool we use is the characterizations of the exponential and polynomial
stabilization due to Prüss [14]–Huang [6]–Gearhart [5] and Borichev and Tomilov
[2], respectively.

Theorem 3.1 Let S(t) be a contraction C0-semigroup, generated byA over a Hilbert
space H. Then, in Prüss [14] is established that there exists C, γ > 0 verifying

‖S(t)‖ ≤ Ce−γ t ⇔ i R ⊂ 
(A) and ‖(i λ I − A)−1‖L(H) ≤ M, ∀ λ ∈ R.

(3.1)
To polynomial stability, Borichev and Tomilov [2] result establish that there exists
C > 0 such that

‖S(t)A−1‖ ≤ C

t1/α
⇔ iR ⊂ 
(A) and ‖(iλ I − A)−1‖ ≤ M |λ|α, ∀λ ∈ R

(3.2)

Hence, to show the uniform rate of decay we use the resolvent equation, given by:

iλU − AU = F (3.3)

Taking U = (ϕ, �, ψ, �)t and F = ( f1, f2, f3, f4)t we can rewrite (3.3) as

iλϕ − � = f1 (3.4)

iρ1λ� − Sx = ρ1 f2 (3.5)

iλψ − � = f3 (3.6)

iρ2λ� − Mx + S = ρ2 f4 (3.7)

Lemma 3.1 iR ⊆ ρ(A)

Proof Since 0 ∈ ρ(A), the set

N = {s ∈ R
+ : ] − is, is[⊂ ρ(A)}

is not empty. Let us denote by σ = supN . If σ = ∞ we have that iR ⊂ ρ(A),
hence there is nothing to prove. So, let us suppose that σ < ∞, we will arrive to a
contradiction. This implies that iR � ρ(A). Then, exists a sequence {λn} ⊆ R such
that λn → σ < +∞ and

‖(iλn I − A)−1‖L(H) → +∞
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Hence, exists a sequence { fn} ⊆ H with ‖ fn‖H = 1 and ‖(iλn I −A)−1 fn‖H → ∞.
Denoting by:

Ũn = (iλn I − A)−1 fn, Un = Ũn

‖Ũn‖
Fn = fn

‖Ũn‖
we get:

iλnUn − AUn = Fn → 0 (3.8)

Note that ‖AUn‖ ≤ C . Therefore Un is bounded in D(A). This implies in particular
that �n and �n are bounded in H1(0, �) and also ψ and ϕ are bounded in H2(IE );
therefore, there exists a subsequence (we still denote in the same way) such that:

�n → �, �n → �, strong in L2(0, �) (3.9)

ϕn,x + ψn → ϕx + ψ, ψn,x → ψ, strong in L2(IE ) (3.10)

Taking inner product to (3.8)

iλn‖Un‖2 − 〈AUn,Un〉 = 〈Fn, Un〉 → 0

and taking real part:

− Re 〈AUn,Un〉 =
∫ �

0
(b̃|�n

x |2 + κ̃|�n
x + �n|2) dx → 0 (3.11)

That implies:

�n,x + �n → 0, �n,x → 0 strong in ∈ L2(IC ∪ ID)

Therefore we have

ϕn,x + ψn → 0, ψn,x → 0 strong in ∈ L2(IC ∪ ID) (3.12)

From (3.9), (3.10) and (3.12), we get that Un → U strongly in H. Since A is closed,
we conclude that U satisfies:

iσU − AU = 0

Moreover, using (3.12) into (3.5)–(3.7) we conclude that � = � = 0, so relations
(3.4)–(3.6) implies that ϕ = ψ = 0, hence U ≡ 0 over IC ∪ ID . Since IE = [α, β]
is linked to IC or ID on α or β, we get that U (α) = 0 or U (β) = 0. So we have that
over ]α, β[ it verifies that:

−σ 2ϕ + κ(ϕx + ψ) = 0, −σ 2ψ + bψxx + κ(ϕx + ψ) = 0

with

ϕ(α) = ψ(α) = ϕx (α) = ψx (α) = 0
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It is a second order initial value problem verifying ϕ = ψ = 0 over ]α, β[. From
where it follows that U ≡ 0 on H, which is a contradiction. This finish the proof.��

A key result that we are going to use in this work, is given by the following:

Lemma 3.2 For g ∈ H1(a, b):

∫ b

a
|g|2 dx ≤ C

∣

∣

∣

∣

∫ b

a
g dx

∣

∣

∣

∣

2

+
∫ b

a
|gx |2 dx

Proof In fact, for any a ≤ x < y ≤ b we have

g(y) − g(x) =
∫ y

x
gx ds ⇒ (b − a)g(y) −

∫ b

a
g(x) dx =

∫ b

a

∫ y

x
gx ds dx,

therefore, taking absolute value

(b − a)|g(y)| ≤
∣

∣

∣

∣

∫ b

a
g(x) dx

∣

∣

∣

∣

+ (b − a)

∫ b

a
|gx | dx,

Since (b − a)
∫ b
a |gx | dx ≤ (b − a)3/2

(

∫ b
a |gx |2 dx

)1/2
, squaring and integrating

once more over [a, b] our conclusion follows. .��

The dissipativity of the operator A implies that

∫

IC
κ1|�x + �|2 + b1|�x |2 dx +

∫

ID
κ0|�x + �|2 + b0|�x |2 dx

= Re (U , F)H ≤ ‖U‖‖F‖ (3.13)

Lemma 3.3 Let us suppose that condition (1.7)–(1.8) holds, then any solution of (3.4)–
(3.7) satisfies

∫

IC
κ1|λ�|2 + b1|λ�|2 dx ≤ Cε‖U‖‖F‖ + Cε‖F‖2 + ε‖U‖2

Proof The resolvent system over IC is written as:

iλρ1� − [κ(ϕx + ψ)]x − [κ1(�x + �)]x = ρ1 f2, in IC (3.14)

iλρ2� − (bψx )x − (b1�x )x + κ(ϕx + ψ) + κ1(�x + �) = ρ2 f4, in IC (3.15)
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Multiplying (3.14) by iλκ1� and integrating over IC = [a, b]
∫ b

a
ρ1κ1|λ�|2 dx =

∫ b

a
[κ(ϕx + ψ) + κ1(�x + �)]x iλκ1� dx

+
∫ b

a
ρ1 f2iλκ1� dx

= G + G0 +
∫ b

a
ρ1 f2iλκ1� dx (3.16)

where G = ∫ b
a [κ1(�x + �)]iλ(κ ′

1� + κ1�x ) dx and G0 =
∫ b
a [κ(ϕx + ψ)]iλ(κ ′

1� + κ1�x ) dx . Estimating G (the estimation of G0 is similar
after using Eqs. (3.4) and (3.6))

G =
∫ b

a
[κ1(�x + �)]iλ(κ ′

1� + κ1(�x + �)) dx

−
∫ b

a
[κ1(�x + �)]iλ(κ1�) dx

Taking the real part of the above relation and using (3.13), we get:

ReG = Re
∫ b

a
[κ1(�x + �)]iλ(κ ′

1�) dx − Re
∫ b

a
[κ1(�x + �)]iλ(κ1�) dx

≤ ε‖λ�‖2 + ε‖λ�‖2 + Cε‖U‖‖F‖ (3.17)

Similarly, using (3.4), (3.6) and (3.13), we get:

Re
∫ b

a
[κ(ϕx + ψ)]iλ(κ ′

1� + κ1�x ) dx

= Re
∫ b

a
[κ(�x + �) + κ( f1,x + f3)](κ ′

1� + κ1�x ) dx

≤ ε

∫ b

a
‖�‖2 + ‖�‖2 dx + Cε‖U‖‖F‖ + Cε‖F‖2 (3.18)

Thus, substitution of (3.17) and (3.18) into (3.16) yields

∫ b

a
κ1|λ�|2 dx ≤ ε‖λ�‖2 + ε‖λ�‖2 + Cε‖U‖‖F‖ + Cε‖F‖2 (3.19)

for |λ| > 1. Multiplying (3.15) by iλb1� and using the same above procedure, we get

∫ b

a
ρ2b1|λ�|2 dx ≤ ε‖λ�‖2 + Cε‖U‖‖F‖ + Cε‖F‖2
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From the last two inequalities, our conclusion follows. ��

Let us introduce the following notations

Eϕ = (κqρ1)
′

2
|�|2 + q ′

2
|S|2, Iϕ = κqρ1

2
|�|2 + q

2
|S|2 (3.20)

Eψ = (bqρ2)
′

2
|�|2 + q ′

2
|M |2, Iψ = bqρ2

2
|�|2 + q

2
|M |2 (3.21)

E = Eϕ + Eψ, I = Iϕ + Iψ (3.22)

and

L =
∫ b

a
E(s) ds −

∫ b

a
ρ1q�ψ dx +

∫ b

a
κqSM̄ dx (3.23)

Taking q(x) = enx − ena

n
we have q ′(x) = enx � q(x), for n large. Note that

∣

∣

∣

∣

∫ b

a
ρ1q�ψ dx

∣

∣

∣

∣

≤ 1

n

∫ b

a
ρ1q

′ ∣
∣�ψ

∣

∣ dx ≤ c

n

∫ b

a
E(s) ds

similarly we have

∣

∣

∣

∣

∫ b

a
κqSM̄ dx

∣

∣

∣

∣

≤ c

n

∫ b

a
E(s) ds

Hence, for n large enough we have

C0

∫ b

a
E dx ≤ L ≤ C1

∫ b

a
E dx (3.24)

Remark 3.1 Recalling the definition of S and M we get

∫ b

a
|S|2 dx ≤ c

∫ b

a
κ|ϕx + ψ |2 dx +

∫ b

a
|̃κ(�x + �)|2 dx

Using the dissipative properties

∫ b

a
|S|2 dx ≤ c

∫ b

a
|ϕx + ψ |2 dx + c‖U‖‖F‖

Similarly

∫ b

a
|M |2 dx ≤ c

∫ b

a
|ψx |2 dx + c‖U‖‖F‖
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from where it follows that

∫ b

a
|�|2 + |ϕx + ψ |2 + |�|2 + |ψx |2 dx ≤

∫ b

a
E dx + c‖U‖‖F‖

∫ b

a
E dx ≤ c

∫ b

a
|�|2 + |ϕx + ψ |2 + |�|2 + |ψx |2 dx + c‖U‖‖F‖

Lemma 3.4 Over [a, b] ⊂ IC ∪ IE we have

∣

∣

∣

∣

L − I(s)
∣

∣

∣

b

a

∣

∣

∣

∣

≤ Cε‖U‖‖F‖ + Cε‖F‖2 + ε‖U‖2

Instead over ID = [a, b]
∣

∣

∣

∣

L − I(s)
∣

∣

∣

b

a

∣

∣

∣

∣

≤ ε‖U‖2 + Cε|λ|2‖U‖‖F‖2 + ‖F‖2

Proof Multiplying (3.5) by q S̄ and (3.7) by q M̄ we have

iλρ1�q S̄ − Sxq S̄ = ρ1 f2q S̄,

iλρ2�q M̄ − MxqM̄ + qSM̄ = ρ2 f4q M̄ .

The above equations implies

−ρ1κq

2

d

dx
|�|2 − q

2

d

dx
|S|2 = ρ1 f2q S̄ + ρ1q�κ( f1,x + f3) − iλρ1q�(κψ

+κ̃(�x + �))

−ρ2bq

2

d

dx
|�|2 − 1

2
q
d

dx
|M |2 + qSM̄ = ρ2 f4q M̄

+ρ2q�b f3,x − iλρ2�q[b̃�x ]

Summing up the two equations we get

− d

dx
I(x) + E(x) = R3 + ρ1κq�� − qSM̄ −iλρ1κ̃q�(�x + �) − iλρ2b̃q��x

︸ ︷︷ ︸

:=J (x)

,

where R3 = ρ1 f2q S̄ + ρ1q�κ( f1,x + f3) + ρ2 f4q M̄ + ρ2q�b f3,x . Note that when
[a, b] ⊂ IC ∪ IE , from Lemma 3.3 we get

∣

∣

∣

∣

∫ b

a
J (x) dx

∣

∣

∣

∣

≤ Cε‖U‖‖F‖ + Cε‖F‖2 + ε‖U‖2 (3.25)
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Over ID we get

∣

∣

∣

∣

∫

ID
J (x) dx

∣

∣

∣

∣

≤ ε‖U‖2 + Cε|λ|2‖U‖‖F‖2 + ‖F‖2 (3.26)

for λ large enough. After an integration using the above inequalities our conclusion
follows. ��
Now, we are in condition to establish our main result.

Theorem 3.2 The system is exponentially stable if the viscous discontinuous part ID
is not in the center of the beam.

Proof Since ID is not in the middle then 0 ∈ ID or � ∈ ID; hence, because of the
boundary conditions, Poincaré inequality is valid for � and �. So we have

∫

ID
|�|2 dx ≤ Cp

∫

ID
|�x |2 dx ≤ C‖U‖‖F‖ (3.27)

Using that iλψ = � + f3 we get

∫ �

�1

|ψx |2 + |�|2 dx ≤ C‖U‖‖F‖ + C‖F‖2

Using Poincare’s and the triangular inequality, we get
∫

ID
|�|2 dx ≤ c

∫

ID
|�x |2 dx ≤ C

∫

ID
κ|�x +�|2+|�|2 dx ≤ C‖U‖‖F‖+C‖F‖2

So we have
∫

ID
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx ≤ C‖U‖‖F‖ + C‖F‖2

Integrating (3.5) and (3.7) over [a, b] ⊂ IC , we get

iλρ1

∫ b

a
� dx − S(b−) + S(a+) =

∫ b

a
ρ1 f2 dx (3.28)

iλρ2

∫ b

a
� dx − M(b−) + M(a+) =

∫ b

a
ρ2 f4 dx (3.29)

From Lemma 3.4 we get

∣

∣

∣

∣

∫ b

a
� dx

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ b

a
� dx

∣

∣

∣

∣

≤ C

|λ| ‖U‖1/2‖F‖1/2 + C

|λ| ‖U‖ + C

|λ| ‖F‖ (3.30)
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∫ b

a
|�|2 dx ≤ c

∣

∣

∣

∣

∫ b

a
� dx

∣

∣

∣

∣

2

+ C
∫ b

a
b1|�x |2 dx ≤ C‖U‖‖F‖

+ C

|λ|2 ‖U‖2 + C

|λ|2 ‖F‖2

Using (3.4), (3.6) and (3.13), we get

∫ b

a
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx ≤ C‖U‖‖F‖ + C

|λ|2 ‖U‖2 + C‖F‖2

From Lemma 3.4
I(a) ≤ C‖U‖‖F‖ + ε‖U‖2 + C‖F‖2 (3.31)

Since ID is not in the center, then IC ∪ IE = [0, �2] or IC ∪ IE = [�0, �]. Let us
assume the later case. Using the observability Lemma 3.4 once more

∫ a

�0

|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx ≤ cI(a) + C‖U‖‖F‖

+ C

|λ|2 ‖U‖2 + C‖F‖2

≤ C‖U‖‖F‖ + ε‖U‖2 + C‖F‖2
(3.32)

for λ large. Using the observability over the interval [a, �], we get
∫ �

a
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx ≤ C‖U‖‖F‖ + ε‖U‖2 + C‖F‖2

(3.33)

From (3.27), (3.32) and (3.33) we get

‖U‖2 =
∫ �

0
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx

≤ C‖U‖‖F‖ + ε‖U‖2 + C‖F‖2 (3.34)

from where we get that ‖U‖ ≤ C‖F‖. So our conclusion follows. ��
Finally, we finish this section showing the polynomial decay when the discontinuous
viscous part is in the center of the beam. We use the result given in [2].

Theorem 3.3 Suppose that the viscoelastic discontinuous part VD is in the center of
the beam. Then, the energy of the system decays polynomially, and:

‖S(t)U0‖ ≤ Ct−1‖U0‖D(A) (3.35)
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Proof Denoting VD = [�0, �1]. Using (3.28) and (3.29) for a = �0 and b = �1 we
have:

∫

ID
|�|2+|ψx |2+|ϕx +ψ |2+|�|2 dx ≤ C‖U‖‖F‖+ C

|λ|2 ‖U‖2+C‖F‖2 (3.36)

Using the same procedure as in Theorem 3.2, we get

∫

IC
|�|2+|ψx |2+|ϕx +ψ |2+|�|2 dx ≤ C‖U‖‖F‖+ C

|λ|2 ‖U‖2+C‖F‖2 (3.37)

Let us suppose that �1 ∈ IE . Using Lemma 3.4 over ID =]�0, �1[, we have

I(�+
1 ) ≤

∫

ID
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx + ε‖U‖2 + Cε|λ|2‖F‖2 (3.38)

Since S(�−
1 ) = S(�+

1 ) and M(�−
1 ) = M(�+

1 ) we have

∫

IE
|�|2 + |ψx |2 + |ϕx + ψ |2 + |�|2 dx ≤ I(�−

1 ) + C‖U‖H‖F‖H
≤ ε‖U‖2 + Cε|λ|2‖F‖2 (3.39)

From the above inequality we get

‖U‖2 ≤ Cε|λ|2‖F‖2 + ε‖U‖2

and the polynomial decay is a consequence of the Borichev-Tomilov theorem. ��

4 Lack of Exponential Stability

Our starting point is the boundary estimate of the Timoshenko system.

ρ1ϕt t − κ(ϕx + ψ)x = 0

ρ2ψt t − bψxx + κ(ϕx + ψ) = 0 (4.1)

over some interval [a, b], then we have

Theorem 4.1 Let us suppose that the solution of system (4.1) (ϕ, ϕt , ψ,ψt ) is bounded
in C(0, T ; [H1(a, b) × L2(a, b)]2). Then we have that

∫ t

0
ρ1|ϕt (α, τ )|2 + ρ2|ψt (α, τ )|2 + κ|ϕx (α, τ )|2 + b|ψx (α, τ )|2dτ ≤ CE

for any α ∈ [a, b].
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Proof The proof is well known now, we develop here only the main ideas for com-
pleteness. Multiplying (4.1)1 by qϕx and (4.1)2 by qψx to get

d

dt
(ρ1ϕt qϕx ) − qρ1ϕtϕt x − qκϕxxϕx = −κψxqϕx

d

dt
(ρ2ψt qψx ) − qρ2ψtψt x − qbψxxψx = −κϕxqψx − κψqψx

Summing up the above inequalities we get

−q

2

d

dx

(

ρ1|ϕt |2 + κ|ϕx |2 + ρ2|ψt |2 + bψx |2
)

= −κψqψx

−q
d

dt
(ρ1ϕtϕx + ρ2ψtψx )

Integrating over [α, β] × [0, t], with β ∈ [a, b], and taking q = x − β, we get:

∣

∣

∣

∣

∫ t

0

∫ β

α

q
d

dt
(ρ1ϕtϕx + ρ2ψtψx ) dxdτ

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ β

α

(ρ1ϕtϕx + ρ2ψtψx )|τ=t
t=0 dx

∣

∣

∣

∣

≤ CE ,

the last inequality is a consequence of the hypotheses, where CE is a positive constant
that depends on the initial data. So, our conclusion follows.

Here we consider that ID is in the middle of the beam. Our main tool is the following
theorem due to [12].

Theorem 4.2 Let H be a Hilbert space and H0 a closed subspace of H. Let S(t) be a
contractions semigroup over H and S0(t) an unitary group over H0. If the difference
S(t) − S0(t) is a compact operator from H0 over H, then S(t) is not exponentially
stable. ��
Theorem 4.3 The semigroup S(t) is not exponentially stable when the viscous discon-
tinuous part is in the center of the beam.

Proof Let be the spaces:

L0 = { f ∈ L2(0, �) : f
∣

∣

∣[�0, �]
= 0}, V0 = H1

0 (0, �) ∩ L0,

H0 = V0 × L0 × V0 × L0

Let us consider the model over [0, �0]:

ρ1ϕ̃t t − κ(ϕ̃x + ψ̃)x = 0

ρ2ψ̃t t − bψ̃xx + κ(ϕ̃x + ψ̃) = 0

ϕ̃(0, t) = ϕ̃(�0, t) = ψ̃(0, t) = ψ̃(�0, t) = 0 (4.2)
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Let S0 be the semigroup over H0 (null extensions on [�0, �]) associated to (4.2). So
we have

‖S0(t)U0‖2 = ‖U0‖2, ∀U0 ∈ H0 (4.3)

Now, we are going to prove that S(t) − S0(t) : H0 → H is a compact operator, where

S(t)Um
0 = (ϕm, ϕm

t , ψm, ψm
t ) ∈ H , S0(t)U

m
0 = (ϕ̃m, ϕ̃m

t , ψ̃m, ψ̃m
t ) ∈ H0

Let be: vm := ϕm − ϕ̃m, wm := ψm − ψ̃m . By definition we have

vm(x, t) =
{

ϕm − ϕ̃m, if x ∈ [0, �0]
ϕm , if x /∈ [0, �0] ; wm(x, t) =

{

ψm − ψ̃m, if x ∈ [0, �0]
ψm , if x /∈ [0, �0]

Moreover, v and w verifies

ρ1vt t − κ(vx + w)x − κ̃(vxt + wt )x = 0 (4.4)

ρ2wt t − bwxx − b̃wxxt + κ(vx + w) + κ̃(vxt + wt ) = 0 (4.5)

Multiplying (4.4) by vt , (4.5) by wt , and integrating over [0, �], we obtain:
∫ �

0

(

ρ1|vt |2 + ρ2|wt |2 + b|wx |2 + κ|vx + w|2
)

dx =

κvxvt

∣

∣

∣

∣

�0

0

+ bwxwt

∣

∣

∣

∣

�0

0

−
∫ �

�0

κ̃|vxt + wt |2 + b̃|wxt |2 dx (4.6)

Using the boundary conditions we get

κvxvt

∣

∣

∣

∣

�0

0

+ bwxwt

∣

∣

∣

∣

�0

0

= −κϕ̃x (�
−
0 , t)ϕt (�

−
0 , t) − bψ̃x (�

−
0 , t)ψt (�

−
0 , t)

Denoting by Um(t) = [S(t) − S0(t)]Um
0 = (vm, vmt , wm, wm

t ), integrating (4.6) over
[0, t], recalling the definition of the norm of the phase spaceH we get

∫ t

0
‖Um(t)‖2H dt +

∫ t

0

∫ �

�0

κ̃|vmxt + wm
t |2 + b̃|wm

xt |2 dx dt

= −
∫ t

0
(κϕ̃m

x (�−
0 , t)ϕm

t (�−
0 , t) + bψ̃x (�

−
0 , t)ψt (�

−
0 , t)) dt (4.7)

using Theorem 4.1 we have that ϕ̃m
x (�−

0 , t) and ψ̃m
x (�−

0 , t) are bounded. So there exists
a subsequence, we still denote in the same way, such that

ϕ̃m
x (�−

0 , t) → ϕ̃x (�
−
0 , t) weak in L2(0, T ), ψ̃m

x (�−
0 , t) → ψ̃x (�

−
0 , t) weak in L2(0, T )
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We only need to prove that

(

ϕm
x (�−

0 , t) , ψm
x (�−

0 , t)
) → (

ϕx (�
−
0 , t) , ψx (�

−
0 , t)

)

strong in L2(0, T )×L2(0, T )

(4.8)
which implies the norm convergence in (4.7). To do that we use (3.13) and (1.1)–(1.2)
to get

ϕm
t , ψm

t ∈ L2(0, T ; H1(ID)), ϕm
tt , ψ

m
tt ∈ L2(0, T ; H−1(ID))

Since H1 ⊂ H1−δ ⊂ H−1 where the first inclusion is a compact embedding, the
compactness Theorem of Lions-Aubin (see [7]) implies that there exists a subsequence
(we still denote in the same way) such that

(ϕm
t , ψm

t ) → (ϕt , ψt ) strong in L2(0, T ; H1−δ(ID) × H1−δ(ID)).

Using that the embedding H1−δ(ID) ⊂ C(ID) is compact, we have:

(ϕm
t , ψm

t ) → (ϕt , ψt ) strong in L2(0, T ;C(VD) × C(VD))

This implies (4.8). Hence inequality (4.7) implies the convergence in norm of Um . So,
S(t) − S̃0(t) is a compact operator. Then our conclusion follows. ��
In summary, we can state the following theorem:

Theorem 4.4 The Timoshenko system is exponentially stable if and only if the vis-
coelastic discontinuous part is not in the middle of the beam. Otherwise, the system
only has polynomial rate of decay.
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