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Abstract
Stochastic wave equations appear in several models for evolutionary processes subject
to random forces, such as the motion of a strand of DNA in a liquid or heat flow around
a ring. Semilinear stochastic wave equations can typically not be solved explicitly, but
the literature contains a number of results which show that numerical approximation
processes converge with suitable rates of convergence to solutions of such equations.
In the case of approximation results for strong convergence rates, semilinear stochas-
tic wave equations with both additive or multiplicative noise have been considered
in the literature. In contrast, the existing approximation results for weak convergence
rates assume that the diffusion coefficient of the considered semilinear stochastic wave
equation is constant, that is, it is assumed that the considered wave equation is driven
by additive noise, and no approximation results for multiplicative noise are known.
The purpose of this work is to close this gap and to establish essentially sharp weak
convergence rates for spatial spectral Galerkin approximations of semilinear stochastic
wave equations with multiplicative noise. In particular, our weak convergence result
establishes as a special case essentially sharp weak convergence rates for the contin-
uous version of the hyperbolic Anderson model. Our method of proof makes use of
the Kolmogorov equation and the Hölder-inequality for Schatten norms.
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1 Introduction

In the field of numerical approximation of stochastic evolution equations (SEEs) one
distinguishes between two conceptually fundamentally different error criteria, that
is, strong convergence and weak convergence. In the case of the finite-dimensional
stochastic ordinary differential equations, both strong and weak convergence are quite
well understood nowadays; cf., e.g., the standard monographs Kloeden & Platen
[26] and Milstein [36]. However, the situation is different in the case of the infinite-
dimensional stochastic partial differential equations (cf., e.g., Walsh [43], Da Prato &
Zabczyk [13], Liu & Röckner [35]). In the case of stochastic partial differential equa-
tions with regular nonlinearities, strong convergence rates are essentially well under-
stood, whereas a proper understanding of weak convergence rates has still not been
reached (cf., e.g., [1,2,4–6,9,11,16–22,25,27–29,31,32,34,41,45–47] for several weak
convergence results in the literature). In thisworkwederiveweak convergence rates for
stochastic wave equations. Stochastic wave equations can be used for modelling sev-
eral evolutionary processes subject to random forces. Examples include the motion of
aDNAmolecule floating in a fluid and the dilatation of shockwaves throughout the sun
(cf., e.g., Section 1 in Dalang [14]), as well as heat conduction around a ring (cf., e.g.,
Thomas [42]). Unfortunately, such problems usually involve complicated nonlineari-
ties and are inaccessible for current numerical analysis approaches. Nonetheless, rigor-
ous examination of simpler model problems such as the ones considered in the present
work is a keyfirst step. Even though a number of strong convergence rates for stochastic
wave equations are available (cf., e.g., [3,7,8,30,39,44,45,48]), apart from the findings
of the works Harms & Müller [20] and Cox et al. [11], which have appeared after the
preprint [23] of the present article, the existing weak convergence results for stochastic
wave equations in the literature (cf., e.g., [22,28,29,31,45,46]) assume that the diffusion
coefficient is constant or, in other words, that the equation is driven by additive noise.

The main contribution of this work is the derivation of essentially sharp weak con-
vergence rates for a class of stochastic wave equations large enough to also include
the case of multiplicative noise. Roughly speaking, the main result of this article (cf.
Theorem 3.6 in Sect. 3.2 below) establishes upper bounds for weak errors associated to
spatial spectralGalerkin approximations of semilinear stochasticwave equations under
suitable Lipschitz and smoothness assumptions on the drift nonlinearity and on the
diffusion coefficient as well as under suitable integrability and regularity assumptions
on the initial value. In order to employ a mild solution framework, the second-order
stochastic wave equations are formulated as first-order two-component systems of
SEEs on an extended state space. The first component process of the solution pro-
cess of such a first-order system corresponds to the solution process of the original
second-order equation, while the second component process corresponds to the time
derivative of the first component process. As is often the case in the context of spatial
spectral Galerkin approximations, convergence is obtained in terms of the in absolute
value increasing sequence of eigenvalues of a symmetric linear operator.
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To illustrate the main result of this article in more detail, we consider the following
setting as a special case of our general framework (cf. Sect. 3.1 below). Consider
the notation in Sect. 1.1, let (H , 〈·, ·〉H , ‖·‖H ) and (U , 〈·, ·〉U , ‖·‖U ) be separable
R-Hilbert spaces, let T ∈ (0,∞), let (�,F ,P) be a probability spacewith a normal fil-
tration (Ft )t∈[0,T ], let (Wt )t∈[0,T ] be an idU -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener
process, let (en)n∈N={1,2,3,...} ⊆ H be an orthonormal basis of H , let (λn)n∈N ⊆
(0,∞) be an increasing sequence, let A : D(A) ⊆ H → H be the linear operator
which satisfies D(A) = {

v ∈ H : ∑∞
n=1|λn〈en, v〉H |2 < ∞}

and ∀v ∈ D(A) : Av =∑∞
n=1 −λn〈en, v〉Hen , let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be a family of interpolation
spaces associated to−A (cf., e.g., [40, Section 3.7]), let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be
the family ofR-Hilbert spaces which satisfies for all r ∈ R that (Hr , 〈·, ·〉Hr , ‖·‖Hr

) =(
Hr/2 × Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
, let PN ∈ L(H0), N ∈ N ∪ {∞},

be the linear operators which satisfy for all N ∈ N∪ {∞}, v,w ∈ H that PN (v,w) =(∑N
n=1〈en, v〉Hen,∑N

n=1〈en, w〉Hen
)
, let A : D(A) ⊆ H0 → H0 be the linear oper-

ator which satisfies D(A) = H1 and ∀(v,w) ∈ H1 : A(v,w) = (w, Av), and let γ ∈
(0,∞), β ∈ (γ/2, γ ], ρ ∈ [0, 2(γ −β)], �,CF,CB ∈ [0,∞), ξ ∈ L2(P|F0;H2(γ−β)),
F ∈ Lip0(H0,H0), and B ∈ Lip0(H0, L2(U ,H0)) satisfy (−A)−β ∈ L1(H),
F(Hρ) ⊆ H2(γ−β), (Hρ � v �→ F(v) ∈ H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)), ∀v ∈
Hρ, u ∈ U : B(v)u ∈ Hγ , ∀v ∈ Hρ : (U � u �→ B(v)u ∈ Hρ) ∈ L2(U ,Hρ),
(Hρ � v �→ (U � u �→ B(v)u ∈ Hρ) ∈ L2(U ,Hρ)) ∈ Lip0(Hρ, L2(U ,Hρ)),
∀v ∈ Hρ : (U � u �→ B(v)u ∈ Hγ ) ∈ L(U ,Hγ ), (Hρ � v �→ (U � u �→ B(v)u ∈
Hγ ) ∈ L(U ,Hγ )) ∈ Lip0(Hρ, L(U ,Hγ )), F|H� ∈ C2(H�,H0), B|H� ∈ C2(H�,

L2(U ,H0)), CF = supx,v1,v2∈∩r∈RHr ,max{‖v1‖H0
,‖v2‖H0

}≤1 ‖F′′(x)(v1, v2)‖H0
< ∞,

and CB = supx,v1,v2∈∩r∈RHr ,max{‖v1‖H0
,‖v2‖H0

}≤1 ‖B′′(x)(v1, v2)‖L2(U ,H0)
< ∞.

Theorem 1.1 Assume the above setting. Then

(i) it holds that there exist up to modifications unique (Ft )t∈[0,T ]-predictable
stochastic processes XN = (XN ,X N ) : [0, T ] × � → PN (Hρ), N ∈ N∪ {∞},
such that for all N ∈ N∪ {∞}, t ∈ [0, T ] it holds that sups∈[0,T ] E

[‖XN
s ‖2Hρ

]
<

∞ and P-a.s. that

XN
t = etAPN ξ +

∫ t

0
e(t−s)APNF(XN

s ) ds +
∫ t

0
e(t−s)APNB(XN

s ) dWs (1.1)

and
(ii) it holds that

sup
N∈N

sup
ϕ∈C2

b (H0,R)\{0}

(
(λN )γ−β

∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣

‖ϕ‖C2
b (H0,R)

)

≤
[
E

[‖ξ‖H2(γ−β)

] + T ‖F|Hρ ‖Lip0(Hρ,H2(γ−β))

+ 2T ‖(−A)−β‖L1(H)‖B|Hρ ‖2Lip0(Hρ,L(U ,Hγ ))

]

· max
{
1,

[
T

(
(CF)2 + 2 (CB)2

)]1/2} (1.2)

· exp(T [ 1
2 + 3 |F|Lip0(H0,H0)

+ 4 |B|2
Lip0(H0,L2(U ,H0))

])
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· max
{
1,E

[‖ξ‖2Hρ

]}

· exp
(
T

[
2‖F|Hρ ‖Lip0(Hρ,Hρ)

+ ‖B|Hρ ‖2Lip0(Hρ,L2(U ,Hρ))

])
< ∞.

Theorem 1.1 is a consequence of the more general results in Remark 3.1 and Theo-
rem3.6 below (cf.Corollary 3.8). Let us nowadd a few remarks regardingTheorem1.1.

First, we briefly outline our proof of Theorem 1.1. As usual in the case of weak con-
vergence analysis, the Kolmogorov equation (cf. (3.25) below) is used. Another key
ingredient is the Hölder inequality for Schatten norms (cf. (3.28) below). In addition,
the proof of Theorem 1.1 employs the mild Itô formula (cf. Corollary 1 in Da Prato et
al. [12]) to obtain suitable a priori estimates for solutions of (1.1) (cf. Lemma 3.2 in
Sect. 3.2 below for details). The detailed proof of Theorems 1.1 and 3.6, respectively,
can be found in Sect. 3.2.

Second, we would like to emphasize that in the general setting of Theorem 1.1,
the weak convergence rate established in Theorem 1.1 can essentially not be
improved. More precisely, Theorem 1.1 in [24] proves that for every η ∈ (0,∞)

and every infinite-dimensional separable R-Hilbert space (H , 〈·, ·〉H , ‖·‖H ) there
exist (U , 〈·, ·〉U , ‖·‖U ), A : D(A) ⊆ H → H , γ, c ∈ (0,∞), (Cε)ε∈(0,∞) ⊆
[0,∞), ρ ∈ [0, γ/2], ξ ∈ L2(P|F0;Hγ ), ϕ ∈ C2

b (H0,R), F ∈ C2
b (H0,H0), and

B ∈ C2
b (H0, L2(U ,H0)) such that F(Hρ) ⊆ Hγ , (Hρ � v �→ F(v) ∈ Hγ ) ∈

Lip0(Hρ,Hγ ), ∀v ∈ Hρ, u ∈ U : B(v)u ∈ Hγ , ∀v ∈ Hρ : (U � u �→ B(v)u ∈
Hρ) ∈ L2(U ,Hρ), (Hρ � v �→ (U � u �→ B(v)u ∈ Hρ) ∈ L2(U ,Hρ)) ∈
Lip0(Hρ, L2(U ,Hρ)), ∀v ∈ Hρ : (U � u �→ B(v)u ∈ Hγ ) ∈ L(U ,Hγ ), and
(Hρ � v �→ (U � u �→ B(v)u ∈ Hγ ) ∈ L(U ,Hγ )) ∈ Lip0(Hρ, L(U ,Hγ )) and
such that for all ε ∈ (0,∞), N ∈ N it holds that

c · (λN )−η ≤ ∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣ ≤ Cε · (λN )ε−η. (1.3)

Further results on lower bounds for strong and weak errors for stochastic parabolic
equations can be found, e.g., in Davie & Gaines [15], Müller-Gronbach et al. [38],
Müller-Gronbach & Ritter [37], Conus et al. [9], and Jentzen & Kurniawan [25].

Third, we illustrate Theorem 1.1 by a simple example (cf. Corollary 3.12). For this
let PN ∈ L(H), N ∈ N ∪ {∞}, be the linear operators which satisfy for all N ∈ N ∪
{∞}, v ∈ H that PN (v) = ∑N

n=1〈en, v〉Hen . In the case where (H , 〈·, ·〉H , ‖·‖H ) =
(U , 〈·, ·〉U , ‖·‖U ) = (

L2(μ(0,1);R), 〈·, ·〉L2(μ(0,1);R), ‖·‖L2(μ(0,1);R)

)
, ξ = (ξ0, ξ1) ∈

H1
0 ((0, 1);R) × H , and F = 0, where A : D(A) ⊆ H → H is the Laplacian with

Dirichlet boundary conditions on H , and where B : H × H−1/2 → L2(H , H × H−1/2)

is the function which satisfies for all (v,w) ∈ H ×H−1/2, u ∈ C([0, 1],R) andμ(0,1)-
a.e. x ∈ (0, 1) that

(
B(v,w)u

)
(x) = (

0, v(x)u(x)
)
, the first component processes

XN : [0, T ]×� → PN (H), N ∈ N∪{∞}, are mild solutions of the stochastic partial
differential equations

Ẍt (x) = ∂2

∂x2
Xt (x) + PN Xt (x)Ẇt (x) (1.4)

with X0(x) = (PN ξ0)(x), Ẋ0(x) = (PN ξ1)(x), and Xt (0) = Xt (1) = 0 for
x ∈ (0, 1), t ∈ [0, T ], N ∈ N ∪ {∞}. In the case N = ∞, (1.4) is known as the

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1187–S1217 S1191

continuous version of the hyperbolic Anderson model in the literature (cf., e.g., Conus
et al. [10]). Theorem 1.1 applied to (1.4) ensures for all ϕ ∈ C2

b (H ,R), ε ∈ (0,∞)

that there exists a real number C ∈ [0,∞) such that for all N ∈ N it holds that

∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣ ≤ C · N ε−1 (1.5)

(cf. Corollary 3.12). We thus prove that the spatial spectral Galerkin approximations
converge with weak rate 1- to the solution of the continuous version of the hyperbolic
Andersonmodel. Theweak rate 1- is exactly twice thewell-known strong convergence
rate for the continuous version of the hyperbolic Anderson model. To the best of our
knowledge, Theorem1.1 is the first result in the literature that establishes an essentially
sharp weak convergence rate for the continuous version of the hyperbolic Anderson
model. Theorem1.1 also establishes essentially sharpweak convergence rates formore
general semilinear stochastic wave equations (cf. Corollaries 3.10 and 3.12 below).

The remainder of this article is organized as follows. InSect. 1.1 someof the notation
that is often used in this article is presented. Section 2.1 states mostly well-known
existence, uniqueness, and regularity results, while Sect. 2.3 collects basic properties
about interpolation spaces and semigroups associated to deterministic wave equations.
The main result of this article, Theorem 3.6 below, is stated and proven in Sect. 3.2. It
establishes upper bounds for weak errors for wave-type SEEs. Finally, Sect. 3.3 shows
how this abstract result can be applied to stochastic wave equations and, in particular,
to the continuous version of the hyperbolic Anderson model (cf. Corollaries 3.10 and
3.12 below).

1.1 Notation

In this section we introduce some notation which we employ throughout this article.
For a set A we denote by P(A) the power set of A and by P0(A) the set of all
finite subsets of A. For a metric space (E, dE ), a dense subset A ⊆ E , a complete
metric space (F, dF ), a uniformly continuous function f : A → F , and the unique
function f̃ ∈ C(E, F) which satisfies f̃ |A = f we often write, for simplicity of
presentation, f instead of f̃ . For twoR-Banach spaces (V , ‖·‖V ) and (W , ‖·‖W )with
V �= {0}, a natural number k ∈ N, and a function f ∈ Ck(V ,W ) we denote by
| f |Ck

b (V ,W ), ‖ f ‖Ck
b (V ,W ) ∈ [0,∞] the extended real numbers given by

| f |Ck
b (V ,W ) = sup

x∈V
∥∥ f (k)(x)

∥∥
L(k)(V ,W )

= sup
x∈V

sup
v1,...,vk∈V \{0}

‖ f (k)(x)(v1, . . . , vk)‖W
‖v1‖V · . . . · ‖vk‖V

, (1.6)

‖ f ‖Ck
b (V ,W ) = ‖ f (0)‖W +

k∑

=1

| f |C
b (V ,W ) (1.7)

andwedenote byCk
b (V ,W ) the set givenbyCk

b (V ,W )={
g∈Ck(V ,W ) : ‖g‖Ck

b (V ,W )

< ∞}
. For two R-Banach spaces (V , ‖·‖V ) and (W , ‖·‖W ) with V �= {0}, a

number k ∈ N0 = {0, 1, 2, . . .}, and a function f ∈ Ck(V ,W ) we denote by
| f |Lipk (V ,W ), ‖ f ‖Lipk (V ,W ) ∈ [0,∞] the extended real numbers given by
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| f |Lipk (V ,W ) =

⎧
⎪⎨

⎪⎩

supx,y∈V ,

x �=y

( ‖ f (x)− f (y)‖W‖x−y‖V
)

: k = 0,

supx,y∈V ,

x �=y

( ‖ f (k)(x)− f (k)(y)‖L(k)(V ,W )

‖x−y‖V
)

: k ∈ N,
(1.8)

‖ f ‖Lipk (V ,W ) = ‖ f (0)‖W +
k∑

=0

| f |Lip(V ,W ) (1.9)

and we denote by Lipk(V ,W ) the set given by Lipk(V ,W ) = {
g ∈ Ck(V ,W ) :

‖g‖Lipk (V ,W ) < ∞}
. For two R-inner product spaces (V , 〈·, ·〉V , ‖·‖V ) and

(W , 〈·, ·〉W , ‖·‖W ) we denote by (V × W , 〈·, ·〉V×W , ‖·‖V×W ) the R-inner prod-
uct space which satisfies for all x1 = (v1, w1), x2 = (v2, w2) ∈ V × W that
〈x1, x2〉V×W = 〈v1, v2〉V + 〈w1, w2〉W . For R-Hilbert spaces (Hi , 〈·, ·〉Hi , ‖·‖Hi

),
i ∈ {1, 2}, a real number p ∈ [1,∞), and linear operators A ∈ L(H1, H2) and
B ∈ L(H1) we denote by ‖A‖L p(H1,H2)

∈ [0,∞] the extended real number given

by ‖A‖L p(H1,H2)
= [traceH1((A

�A)
p/2)]1/p, we denote by ‖B‖L p(H1)

∈ [0,∞]
the extended real number given by ‖B‖L p(H1)

= ‖B‖L p(H1,H1)
, we denote by

L p(H1, H2) the set given by L p(H1, H2) = {
C ∈ L(H1, H2) : ‖C‖L p(H1,H2)

< ∞}
,

and we denote by L p(H1) the set given by L p(H1) = L p(H1, H1). For an R-
Hilbert space (H , 〈·, ·〉H , ‖·‖H ), an orthonormal basis B ⊆ H of H , a function
λ : B → R, a linear operator A : D(A) ⊆ H → H which satisfies D(A) ={
v ∈ H : ∑

b∈B|λb〈b, v〉H |2 < ∞}
and ∀v ∈ D(A) : Av = ∑

b∈B λb〈b, v〉Hb,
and a function ϕ : R → R we denote by ϕ(A) : D(ϕ(A)) ⊆ H → H the lin-
ear operator which satisfies D(ϕ(A)) = {

v ∈ H : ∑
b∈B|ϕ(λb)〈b, v〉H |2 < ∞}

and ∀v ∈ D(ϕ(A)) : ϕ(A)v = ∑
b∈B ϕ(λb)〈b, v〉Hb. For a Borel measurable set

A ∈ B(R) we denote by μA : B(A) → [0,∞] the Lebesgue–Borel measure on A.

2 Preliminaries

For the proof of our key results in Sect. 3 below we require a number of basic proper-
ties of solutions of Kolmogorov equations and of semigroups associated to wave-type
evolution equations, which we collect in this section. More precisely, in Sect. 2.1
we state a well-known existence and uniqueness result for solutions of SEEs with
Lipschitz continuous drift and diffusion coefficients (cf. Proposition 2.1 below) as
well as an elementary result providing bounds for solutions of Kolmogorov equa-
tions associated to finite-dimensional SEEs (cf. Lemma 2.2 below). Furthermore, in
Sect. 2.3 we recall several elementary and well-known facts about linear operators,
semigroups, and interpolation spaces associated to deterministic linear wave-type evo-
lution equations (cf. the setting in Sect. 2.2).

2.1 Existence, Uniqueness, and Regularity Results for SEEs

Proposition 2.1 below is a direct consequence of Theorem 7.4 in Da Prato & Zabczyk
[13].
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Proposition 2.1 Consider the notation in Sect. 1.1, let T ∈ (0,∞), p ∈ [2,∞),
let (H , 〈·, ·〉H , ‖·‖H ) and (U , 〈·, ·〉U , ‖·‖U ) be separable R-Hilbert spaces with
H �= {0}, let (�,F ,P) be a probability space with a normal filtration (Ft )t∈[0,T ],
let (Wt )t∈[0,T ] be an idU -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener process, let
S : [0,∞) → L(H) be a strongly continuous semigroup, and let F ∈ Lip0(H , H),
B ∈ Lip0(H , L2(U , H)), ξ ∈ L p(P|F0; H). Then there exists an up to modifications
unique (Ft )t∈[0,T ]-predictable stochastic process X : [0, T ] × � → H such that for
all t ∈ [0, T ] it holds that sups∈[0,T ] E

[‖Xs‖p
H

]
< ∞ and P-a.s. that

Xt = Stξ +
∫ t

0
St−s F(Xs) ds +

∫ t

0
St−s B(Xs) dWs . (2.1)

In the next elementary and well-known result, Lemma 2.2 below, we present
bounds for spatial derivatives of solutions of Kolmogorov equations associated to
finite-dimensional SEEs (cf., e.g., Lemma 2.3 in [23]).

Lemma 2.2 Consider the notation in Sect. 1.1, let (H , 〈·, ·〉H , ‖·‖H ) be a finite-
dimensional R-vector space with H �= {0}, let (U , 〈·, ·〉U , ‖·‖U ) be a separable
R-Hilbert space, let U ⊆ U be an orthonormal basis of U, let T ∈ (0,∞),
A ∈ L(H), F ∈ C2

b (H , H), B ∈ C2
b (H , L2(U , H)), ϕ ∈ C2

b (H ,R), let (�,F ,P)

be a probability space with a normal filtration (Ft )t∈[0,T ], let (Wt )t∈[0,T ] be an idU -
cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener process, let X x : [0, T ] × � → H, x ∈ H,
be (Ft )t∈[0,T ]-predictable stochastic processes such that for all x ∈ H, t ∈ [0, T ] it
holds that sups∈[0,T ] E

[‖Xx
s ‖2H

]
< ∞ and P-a.s. that

Xx
t = et Ax +

∫ t

0
e(t−s)AF(Xx

s ) ds +
∫ t

0
e(t−s)AB(Xx

s ) dWs, (2.2)

and let u : [0, T ] × H → R be the function which satisfies for all t ∈ [0, T ], x ∈ H
that u(t, x) = E[ϕ(Xx

t )]. Then
(i) it holds that u ∈ C1,2([0, T ] × H ,R),
(ii) it holds for all (t, x) ∈ [0, T ] × H that

(
∂
∂t u

)
(t, x) = (

∂
∂x u

)
(t, x)[Ax + F(x)] + 1

2

∑

b∈U

(
∂2

∂x2
u
)
(t, x)(B(x)b, B(x)b), (2.3)

(iii) it holds that

sup
t∈[0,T ]

|u(t, ·)|C1
b (H ,R) ≤ |ϕ|C1

b (H ,R)

[
sup

s∈[0,T ]
‖es A‖L(H)

]

· exp
(
T

[|F |C1
b (H ,H) + 1

2 |B|2
C1
b (H ,L2(U ,H))

]
sup

s∈[0,T ]
‖es A‖2L(H)

)
< ∞,

(2.4)

and
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(iv) it holds that

sup
t∈[0,T ]

|u(t, ·)|C2
b (H ,R)

≤ ‖ϕ‖C2
b (H ,R)

[
sup

s∈[0,T ]
‖es A‖3L(H)

]

· max
{
1,

[
T

(|F |2
C2
b (H ,H)

+ 2 |B|2
C2
b (H ,L2(U ,H))

)]1/2}

· exp
(
T

[ 1
2 + 3 |F |C1

b (H ,H) + 4 |B|2
C1
b (H ,L2(U ,H))

]
sup

s∈[0,T ]
‖es A‖4L(H)

)
< ∞.

(2.5)

2.2 Setting

Consider the notation in Sect. 1.1, let (H , 〈·, ·〉H , ‖·‖H ) be a separable R-Hilbert
space, let H ⊆ H be a nonempty orthonormal basis of H , let λ : H → R be a
function which satisfies suph∈H λh < 0, let A : D(A) ⊆ H → H be the linear
operator which satisfies D(A) = {

v ∈ H : ∑
h∈H|λh〈h, v〉H |2 < ∞}

and ∀v ∈
D(A) : Av = ∑

h∈H λh〈h, v〉Hh, let (Hr , 〈·, ·〉Hr , ‖·‖Hr
), r ∈ R, be a family of

interpolation spaces associated to −A, let (Hr , 〈·, ·〉Hr , ‖·‖Hr
), r ∈ R, be the family

of R-Hilbert spaces which satisfies for all r ∈ R that (Hr , 〈·, ·〉Hr , ‖·‖Hr
) = (

Hr/2 ×
Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
, and let A : D(A) ⊆ H0 → H0 be the

linear operator which satisfies D(A) = H1 and ∀(v,w) ∈ H1 : A(v,w) = (w, Av).

2.3 Basic Properties of Deterministic LinearWave Equations

The following elementary result, Lemma 2.3 below, provides a characterization for the
family of R-Hilbert spaces (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, from the setting in Sect. 2.2
(cf., e.g., Lemma 2.4 in [23]).

Lemma 2.3 Assume the setting in Sect. 2.2 and let � : D(�) ⊆ H0 → H0 be the
linear operator which satisfies for all (v,w) ∈ H1 that D(�) = H1 and

�(v,w) =
(∑

h∈H|λh |1/2〈h, v〉Hh∑
h∈H|λh |1/2〈h, w〉Hh

)
. (2.6)

Then the R-Hilbert spaces (Hr , 〈·, ·〉Hr , ‖·‖Hr
), r ∈ R, are a family of interpolation

spaces associated to �.

The next elementary and well-known result, Lemma 2.4 below, can be found, e.g.,
in a slightly different form in Section 5.3 in Lindgren [33].

Lemma 2.4 Assume the setting in Sect. 2.2 and letS : [0,∞) → L(H0) be the function
which satisfies for all t ∈ [0,∞), (v,w) ∈ H0 that

St

(
v

w

)
=

(
cos

(
t(−A)

1/2
)
v + (−A)−1/2 sin

(
t(−A)

1/2
)
w

−(−A)
1/2 sin

(
t(−A)

1/2
)
v + cos

(
t(−A)

1/2
)
w

)
. (2.7)
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Then S : [0,∞) → L(H0) is a strongly continuous semigroup of bounded linear
operators on H0 and A : D(A) ⊆ H0 → H0 is the generator of S.

The following two elementary and well-known assertions state that the semigroup
in Lemma 2.4 above is a semigroup of isometries and that both this semigroup and its
generator commute with Galerkin projections (cf., e.g., Lemmas 2.6 and 2.7 in [23]).

Lemma 2.5 Assume the setting in Sect. 2.2. Then

(i) it holds for all t ∈ [0,∞), x ∈ H0 that ‖etAx‖H0
= ‖x‖H0

and
(ii) it holds that supt∈[0,∞) ‖etA‖L(H0)

= 1.

Lemma 2.6 Assume the setting in Sect. 2.2 and let PI ∈ L(H0), I ∈ P(H), be
the linear operators which satisfy for all I ∈ P(H), v,w ∈ H that PI (v,w) =(∑

h∈I 〈h, v〉Hh,
∑

h∈I 〈h, w〉Hh
)
. Then

(i) it holds for all I ∈ P(H), x ∈ H1 that API (x) = PIAx and
(ii) it holds for all I ∈ P(H), t ∈ [0,∞), x ∈ H0 that etAPI (x) = PI etAx.

3 Upper Bounds for Weak Errors

In this section we establish upper bounds for weak errors associated to spatial spectral
Galerkin approximations of semilinear stochastic wave equations; cf. Theorem 3.6
and Corollaries 3.7, 3.8, 3.10, and 3.12 below.

For many results in this section we consider an abstract setting of wave-type SEEs
with appropriate Lipschitz and smoothness assumptions on the corresponding drift
nonlinearity and diffusion coefficients; cf. the setting in Sect. 3.1 below. In Sect. 3.2
below we first present a suitable a priori estimate and a suitable perturbation estimate
for solutions of certain wave-type SEEs; cf. Lemmas 3.2 and 3.3, respectively. There-
after, we show an estimate for first and second order spatial derivatives of solutions
to Kolmogorov equations associated to certain finite-dimensional wave-type SEEs;
cf. Lemma 3.4 below. Following an elementary auxiliary lemma (cf. Lemma 3.5), we
demonstrate the main theorem of this work, Theorem 3.6 below, which provides upper
bounds for weak errors involving, among other terms, quantities depending on solu-
tions of certain finite-dimensional wave-type SEEs as well as quantities depending on
solutions of Kolmogorov equations associated to these SEEs (cf. also Corollary 3.7
below). Using the a priori estimate in Lemma 3.2 and the estimate for solutions of
Kolmogorov equations in Lemma 3.4, the upper bounds in Theorem 3.6 are subse-
quently specialized in order to obtain upper bounds depending in an explicit way on
the drift nonlinearity, the diffusion coefficient, and the initial value; cf. Corollary 3.8.

Finally, in Sect. 3.3 we apply Corollary 3.7 to prove essentially sharp weak con-
vergence rates for spatial spectral Galerkin approximations of semilinear stochastic
wave equations. In Corollary 3.10 we consider a setting with specialized drift nonlin-
earity but still quite general diffusion coefficient, while in Corollary 3.12 we consider
a class of semilinear stochastic wave equations driven by multiplicative noise, that
includes, in particular, the continuous version of the hyperbolic Anderson model. For
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the proofs of these results we recall two well-known facts about families of interpo-
lation spaces associated to symmetric diagonal linear operators (cf., e.g., Sell & You
[40, Section 3.2]); cf. Lemmas 3.9 and 3.11 below.

3.1 Setting

Consider the notation in Sect. 1.1, let (H , 〈·, ·〉H , ‖·‖H ) and (U , 〈·, ·〉U , ‖·‖U ) be
separable R-Hilbert spaces, let H ⊆ H be a nonempty orthonormal basis of H , let
λ : H → R be a function which satisfies suph∈H λh < 0, let A : D(A) ⊆ H → H
be the linear operator which satisfies D(A) = {

v ∈ H : ∑
h∈H|λh〈h, v〉H |2 < ∞}

and ∀v ∈ D(A) : Av = ∑
h∈H λh〈h, v〉Hh, let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be a fam-
ily of interpolation spaces associated to −A, let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be the
family of R-Hilbert spaces which satisfies for all r ∈ R that (Hr , 〈·, ·〉Hr , ‖·‖Hr

) =(
Hr/2 × Hr/2−1/2, 〈·, ·〉Hr/2×Hr/2−1/2

, ‖·‖Hr/2×Hr/2−1/2

)
, let PI ∈ L(H0), I ∈ P(H), be

the linear operators which satisfy for all I ∈ P(H), v,w ∈ H that PI (v,w) =(∑
h∈I 〈h, v〉Hh,

∑
h∈I 〈h, w〉Hh

)
, let A : D(A) ⊆ H0 → H0 be the linear oper-

ator which satisfies D(A) = H1 and ∀(v,w) ∈ H1 : A(v,w) = (w, Av), let
� : D(�) ⊆ H0 → H0 be the linear operator which satisfies D(�) = H1
and ∀(v,w) ∈ H1 : �(v,w) = (∑

h∈H|λh |1/2〈h, v〉Hh,
∑

h∈H|λh |1/2〈h, w〉Hh
)
,

let T ∈ (0,∞), let (�,F ,P) be a probability space with a normal filtration
(Ft )t∈[0,T ], let (Wt )t∈[0,T ] be an idU -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener pro-
cess, and let γ ∈ (0,∞), β ∈ (γ/2, γ ], ρ ∈ [0, 2(γ − β)], �,CF,CB ∈ [0,∞),
ξ ∈ L2(P|F0;H2(γ−β)), F ∈ Lip0(H0,H0), B ∈ Lip0(H0, L2(U ,H0)) satisfy �−β ∈
L2(H0), F(Hρ) ⊆ H2(γ−β), (Hρ � v �→ F(v) ∈ H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)),
∀v ∈ Hρ, u ∈ U : B(v)u ∈ Hγ , ∀v ∈ Hρ : (U � u �→ B(v)u ∈ Hρ) ∈ L2(U ,Hρ),
(Hρ � v �→ (U � u �→ B(v)u ∈ Hρ) ∈ L2(U ,Hρ)) ∈ Lip0(Hρ, L2(U ,Hρ)),
∀v ∈ Hρ : (U � u �→ B(v)u ∈ Hγ ) ∈ L(U ,Hγ ), (Hρ � v �→ (U � u �→ B(v)u ∈
Hγ ) ∈ L(U ,Hγ )) ∈ Lip0(Hρ, L(U ,Hγ )), F|H� ∈ C2(H�,H0), B|H� ∈ C2(H�,

L2(U ,H0)), CF = supx,v1,v2∈∩r∈RHr ,max{‖v1‖H0
,‖v2‖H0

}≤1 ‖F′′(x)(v1, v2)‖H0
< ∞,

and CB = supx,v1,v2∈∩r∈RHr ,max{‖v1‖H0
,‖v2‖H0

}≤1 ‖B′′(x)(v1, v2)‖L2(U ,H0)
< ∞.

3.2 Weak Convergence Rates for Galerkin Approximations

Remark 3.1 Assume the setting in Sect. 3.1. Note that the assumption that (Hρ �
v �→ F(v) ∈ H2(γ−β)) ∈ Lip0(Hρ,H2(γ−β)) ensures that (Hρ � v �→ F(v) ∈
Hρ) ∈ Lip0(Hρ,Hρ). The assumption that (Hρ � v �→ (U � u �→ B(v)u ∈ Hρ) ∈
L2(U ,Hρ)) ∈ Lip0(Hρ, L2(U ,Hρ)) and Proposition 2.1 hence show that there exist
up to modifications unique (Ft )t∈[0,T ]-predictable stochastic processes X I : [0, T ] ×
� → PI (Hρ), I ∈ P(H), such that for all I ∈ P(H), t ∈ [0, T ] it holds that

sups∈[0,T ] E
[‖X I

s ‖2Hρ

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs . (3.1)
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The next elementary result, Lemma 3.2, provides global a priori L2-bounds for the
stochastic processes X I : [0, T ] × � → PI (Hρ), I ∈ P(H), from Remark 3.1 (cf.,
e.g., Lemma 3.2 in [23]).

Lemma 3.2 Assume the setting in Sect. 3.1 and let X I : [0, T ] × � → PI (Hρ), I ∈
P(H), be (Ft )t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H),

t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖X I

s ‖2Hρ

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs . (3.2)

Then

sup
I∈P(H)

sup
t∈[0,T ]

max
{
1,E

[∥∥X I
t

∥∥2
Hρ

]} ≤ max
{
1,E

[‖ξ‖2Hρ

]}

· exp
(
T

[
2‖F|Hρ ‖Lip0(Hρ,Hρ)

+ ‖B|Hρ ‖2Lip0(Hρ,L2(U ,Hρ))

])
< ∞.

(3.3)

In the next result, Lemma3.3 below,we present an elementary perturbation estimate
(cf., e.g., Lemma 3.3 in [23]).

Lemma 3.3 Assume the setting in Sect.3.1 and let X I : [0, T ] × � → PI (H0), I ∈
P(H), be (Ft )t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H),

t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖X I

s ‖2H0

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs . (3.4)

Then it holds for all I , J ∈ P(H) that

sup
t∈[0,T ]

E
[∥∥X I

t − X J
t

∥∥2
H0

] ≤ 2

[
sup

t∈[0,T ]
E

[∥∥PI\J X I
t + PJ\I X J

t

∥∥2
H0

]]

· exp([√2T |PI∩JF|Lip0(H0,H0)
+ √

2T |PI∩JB|Lip0(H0,L2(U ,H0))

]2)
< ∞.

(3.5)

Lemma 3.4 Assume the setting in Sect. 3.1, let X J ,x : [0, T ] × � → PJ (H0), x ∈
PJ (H0), J ∈ P0(H), be (Ft )t∈[0,T ]-predictable stochastic processes such that for all
J ∈ P0(H), x ∈ PJ (H0), t ∈ [0, T ] it holds that sups∈[0,T ] E

[‖X J ,x
s ‖2H0

]
< ∞ and

P-a.s. that

X J ,x
t = etAx +

∫ t

0
e(t−s)APJF(X J ,x

s ) ds +
∫ t

0
e(t−s)APJB(X J ,x

s ) dWs, (3.6)

let ϕ ∈ C2
b (H0,R), and let u J : [0, T ] × PJ (H0) → R, J ∈ P0(H), be the functions

which satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ]×PJ (H0) that u J (t, x) = E
[
ϕ
(
X J ,x
t

)]
.

Then
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(i) it holds for all J ∈ P0(H) that u J ∈ C1,2([0, T ] × PJ (H0),R),
(ii) it holds that

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C1
b (PJ (H0),R)

≤ |ϕ|C1
b (H0,R) exp

(
T

[|F|Lip0(H0,H0)
+ 1

2 |B|2
Lip0(H0,L2(U ,H0))

])
< ∞,

(3.7)

and
(iii) it holds that

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C2
b (PJ (H0),R) ≤ ‖ϕ‖C2

b (H0,R) max
{
1,

[
T

(
(CF)2 + 2 (CB)2

)]1/2}

· exp(T [ 1
2 + 3 |F|Lip0(H0,H0)

+ 4 |B|2
Lip0(H0,L2(U ,H0))

])
< ∞. (3.8)

Proof of Lemma 3.4 Observe that it holds for all J ∈ P0(H) thatPJ (H0) ⊆ (⋂
r∈RHr

)

is a finite-dimensional R-vector space. The assumptions that F|H� ∈ C2(H�,H0),
B|H� ∈ C2(H�, L2(U ,H0)), F ∈ Lip0(H0,H0), B ∈ Lip0(H0, L2(U ,H0)), and
CF +CB < ∞ hence ensure for all J ∈ P0(H) that (PJ (H0) � v �→ PJF(v) ∈
PJ (H0)) ∈ C2

b (PJ (H0),PJ (H0)) and (PJ (H0) � v �→ (U � u �→ PJB(v)u ∈
PJ (H0)) ∈ L2(U ,PJ (H0))) ∈ C2

b (PJ (H0), L2(U ,PJ (H0))). Therefore, Lem-
mas 2.2 and 2.5 prove for all J ∈ P0(H) that uJ ∈ C1,2([0, T ] × PJ (H0),R),

sup
t∈[0,T ]

|uJ (t, ·)|C1
b (PJ (H0),R) ≤ |ϕ|PJ (H0)|C1

b (PJ (H0),R)

· exp(T [|PJF|PJ (H0)|C1
b (PJ (H0),PJ (H0))

+ 1
2 |PJB|PJ (H0)|2C1

b (PJ (H0),L2(U ,PJ (H0)))

])
,
(3.9)

and

sup
t∈[0,T ]

|uJ (t, ·)|C2
b (PJ (H0),R) ≤ ∥∥ϕ|PJ (H0)

∥∥
C2
b (PJ (H0),R)

· max
{
1,

[
T

(|PJF|PJ (H0)|2C2
b (PJ (H0),PJ (H0))

+ 2 |PJB|PJ (H0)|2C2
b (PJ (H0),L2(U ,PJ (H0)))

)]1/2}
(3.10)

· exp(T [ 1
2 + 3 |PJF|PJ (H0)|C1

b (PJ (H0),PJ (H0))

+ 4 |PJB|PJ (H0)|2C1
b (PJ (H0),L2(U ,PJ (H0)))

])
< ∞.

This implies (i)–(iii) and thus completes the proof of Lemma 3.4. ��
Before we present the main result of this article, Theorem 3.6 below, we recall

the following elementary and well-known lemma, which is employed in the proof of
Theorem 3.6.

Lemma 3.5 Let p ∈ [0,∞), let Jn, n ∈ N0, be sets which satisfy for all n ∈ N

that Jn ⊆ Jn+1 and
⋃∞

m=1 Jm = J0, and let g : J0 → (0,∞) be a function which
satisfies

∑
h∈J0

(gh)p < ∞. Then
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lim sup
n→∞

sup
({gh : h ∈ J0\Jn} ∪ {0}) = 0. (3.11)

Proof of Lemma 3.5 Without loss of generality we assume that p ∈ (0,∞) (otherwise
(3.11) is clear). Observe that for all n ∈ N it holds that

[
sup

({gh : h ∈ J0\Jn} ∪ {0})]p ≤
∑

h∈J0\Jn

(gh)
p =

∑

h∈J0

(gh)
p −

∑

h∈Jn

(gh)
p.

(3.12)

Moreover, note that Lebesgue’s theorem of dominated convergence proves that

lim sup
n→∞

[ ∑

h∈J0

(gh)
p −

∑

h∈Jn

(gh)
p
]

= 0. (3.13)

Combining this with (3.12) completes the proof of Lemma 3.5. ��
Theorem 3.6 Assume the setting in Sect. 3.1, let X I : [0, T ] × � → PI (Hρ), I ∈
P(H), and X J ,x : [0, T ] × � → PJ (H0), x ∈ PJ (H0), J ∈ P0(H), be (Ft )t∈[0,T ]-
predictable stochastic processes such that for all I ∈ P(H), J ∈ P0(H), x ∈ PJ (H0),

t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖X I

s ‖2Hρ
+ ‖X J ,x

s ‖2H0

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs, (3.14)

X J ,x
t = etAx +

∫ t

0
e(t−s)APJF(X J ,x

s ) ds +
∫ t

0
e(t−s)APJB(X J ,x

s ) dWs, (3.15)

let ϕ ∈ C2
b (H0,R), and let u J : [0, T ] × PJ (H0) → R, J ∈ P0(H), be the functions

which satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ]×PJ (H0) that u J (t, x) = E
[
ϕ
(
X J ,x
t

)]
.

Then it holds for all I ∈ P(H)\{H} that

∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤
([

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C1
b (PJ (H0),R)

]

·
[
E

[‖ξ‖H2(γ−β)

] + sup
J∈P0(H)

∫ T

0
E

[‖F(X J
s )‖H2(γ−β)

]
ds

]

+ ‖�−β‖2L2(H0)

[
sup

J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C2
b (PJ (H0),R)

]

·
[

sup
J∈P0(H)

∫ T

0
E

[‖B(X J
s )‖2L(U ,Hγ )

]
ds

])

·
[

inf
h∈H\I |λh |

]β−γ

< ∞.

(3.16)
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Proof of Theorem 3.6 Throughout this proof let U ⊆ U be an orthonormal basis of
U , let v J , v J

1,0 : [0, T ] × PJ (H0) → R, J ∈ P0(H), and v J
0, : [0, T ] × PJ (H0) →

L()(PJ (H0),R),  ∈ {1, 2}, J ∈ P0(H), be the functions which satisfy for all J ∈
P0(H), (k, ) ∈ {(1, 0), (0, 1), (0, 2)}, (t, x) ∈ [0, T ] × PJ (H0) that v J (t, x) =
E

[
ϕ
(
X J ,x
T−t

)]
and v J

k,(t, x) = (
∂k+

∂tk∂x v
J
)
(t, x), and let RI ,J ,s : � → L(PJ (H0)),

I ∈ P(J ), J ∈ P0(H), s ∈ [0, T ], be the functions which satisfy for all s ∈ [0, T ],
J ∈ P0(H), I ∈ P(J ), ω ∈ �, y1, y2 ∈ PJ (H0) that

v J
0,2

(
s, X I

s (ω)
)
(y1, y2) = 〈y1, RI ,J ,s(ω) y2〉H0 . (3.17)

Note that for all J ∈ P0(H), (t, x) ∈ [0, T ] × PJ (H0) it holds that v J (t, x) =
uJ (T − t, x). Next observe that for all J ∈ P0(H), x ∈ PJ (H0) it holds that

ϕ(x) = E[ϕ(x)] = uJ (0, x) = v J (T , x). (3.18)

Moreover, note that for all J ∈ P0(H) it holds that

E
[
ϕ
(
X J
T

)] = E
[
uJ (T , X J

0

)] = E
[
v J (0, X J

0

)]
. (3.19)

Combining (3.18) and (3.19) shows for all J ∈ P0(H), I ∈ P(J ) that

∣∣E
[
ϕ
(
X J
T

)] − E
[
ϕ
(
X I
T

)]∣∣

= ∣∣E
[
ϕ
(
X I
T

)] − E
[
ϕ
(
X J
T

)]∣∣

= ∣∣E
[
v J (T , X I

T

)] − E
[
v J (0, X J

0

)]∣∣

≤ ∣∣E
[
v J (T , X I

T

)] − E
[
v J (0, X I

0

)]∣∣ + ∣∣E
[
v J (0, X I

0

)] − E
[
v J (0, X J

0

)]∣∣.

(3.20)

In a first step we establish an estimate for the second summand on the right hand side
of (3.20). For this observe that for all J ∈ P0(H), I ∈ P(J ) it holds that

∣∣E
[
v J (0, X I

0

)] − E
[
v J (0, X J

0

)]∣∣

=
∣∣∣∣E

[∫ 1

0
v J
0,1

(
0, X I

0 + τ
(
X J
0 − X I

0

))(
X J
0 − X I

0

)
dτ

]∣∣∣∣

≤ |uJ (T , ·)|C1
b (PJ (H0),R) E

[‖X J
0 − X I

0‖H0

]

= |uJ (T , ·)|C1
b (PJ (H0),R) E

[∥∥PI
(
X J
0

) − PJ
(
X J
0

)∥∥
H0

]
.

(3.21)
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In addition, it holds for all x ∈ H2(γ−β), I , J ∈ P(H) with I �= J that

‖PI (x) − PJ (x)‖H0

≤ ‖�2(β−γ )P(I\J )∪(J\I )‖L(H0)
‖P(I\J )∪(J\I )(x)‖H2(γ−β)

=
[

inf
h∈(I\J )∪(J\I )|λh |

]β−γ

‖P(I\J )∪(J\I )(x)‖H2(γ−β)

≤
[

inf
h∈(I\J )∪(J\I )|λh |

]β−γ

‖x‖H2(γ−β)
.

(3.22)

Putting (3.21) and (3.22) together proves for all J ∈ P0(H), I ∈ P(J )\{H} that
∣∣E

[
v J (0, X I

0

)] − E
[
v J (0, X J

0

)]∣∣ (3.23)

≤
[

sup
K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C1
b (PK (H0),R)

]
E

[‖ξ‖H2(γ−β)

][
inf

h∈H\I |λh |
]β−γ

< ∞.

Inequality (3.23) provides an estimate for the second summand on the right hand side
of (3.20). In a second step we establish an estimate for the fist summand on the right
hand side of (3.20). The chain rule and Lemma 2.2 show that for all J ∈ P0(H),
(t, x) ∈ [0, T ] × PJ (H0) it holds that

v J
1,0(t, x) = −v J

0,1(t, x)
[
Ax + PJF(x)

] − 1
2

∑

u∈U
v J
0,2(t, x)(PJB(x)u,PJB(x)u).

(3.24)

The standard Itô formula and (3.24) prove for all J ∈ P0(H), I ∈ P(J ) that

E
[
v J (T , X I

T

)] − E
[
v J (0, X I

0

)] =
∫ T

0
E

[
v J
1,0

(
s, X I

s

)]
ds

+
∫ T

0
E

[
v J
0,1

(
s, X I

s

)
AX I

s

]
ds +

∫ T

0
E

[
v J
0,1

(
s, X I

s

)
PIF(X I

s )
]
ds

+ 1
2

∑

b∈U

∫ T

0
E

[
v J
0,2

(
s, X I

s

)(
PIB(X I

s )b,PIB(X I
s )b

)]
ds

=
∫ T

0
E

[
v J
0,1

(
s, X I

s

)
PIF(X I

s )
]
ds −

∫ T

0
E

[
v J
0,1

(
s, X I

s

)
PJF(X I

s )
]
ds

+ 1
2

∑

b∈U

∫ T

0

(
E

[
v J
0,2

(
s, X I

s

)(
PIB(X I

s )b,PIB(X I
s )b

)]

− E
[
v J
0,2

(
s, X I

s

)(
PJB(X I

s )b,PJB(X I
s )b

)])
ds.

(3.25)
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This shows for all J ∈ P0(H), I ∈ P(J ) that

∣∣E
[
v J

(
T , X I

T
)] − E

[
v J

(
0, X I

0
)]∣∣≤

∫ T

0

∣∣E
[
v J0,1

(
s, X I

s
)(
PIF(X I

s ) − PJF(X I
s )

)]∣∣ ds

+
∣∣∣∣
1
2

∑

b∈U

∫ T

0
E

[
v J0,2

(
s, X I

s
)(
PIB(X I

s )b + PJB(X I
s )b,PIB(X I

s )b − PJB(X I
s )b

)]
ds

∣∣∣∣.
(3.26)

Inequality (3.22) andLemmas 3.4 and 3.2 thus prove for all J ∈ P0(H), I ∈ P(J )\{J }
that

∫ T

0

∣∣E
[
v J
0,1

(
s, X I

s

)(
PIF(X I

s ) − PJF(X I
s )

)]∣∣ ds

≤
∫ T

0
E

[∣∣v J
0,1

(
s, X I

s

)(
PIF(X I

s ) − PJF(X I
s )

)∣∣] ds

≤ sup
t∈[0,T ]

|uJ (t, ·)|C1
b (PJ (H0),R)

∫ T

0
E

[‖PIF(X I
s ) − PJF(X I

s )‖H0

]
ds

≤
[

sup
K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C1
b (PK (H0),R)

]
sup

K∈P0(H)

∫ T

0
E

[‖F(XK
s )‖H2(γ−β)

]
ds

·
[

inf
h∈J\I |λh |

]β−γ

< ∞.

(3.27)

This estimates the first summand on the right hand side of (3.26). Next we consider
the second summand on the right hand side of (3.26). Note that the Hölder inequality
for Schatten norms implies for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J ) that

‖B(X I
s )

�(PI + PJ )RI ,J ,s(PI − PJ )B(X I
s )‖L1(U )

≤ ‖B(X I
s )

�(PI + PJ )‖L(2β)/γ (H0,U )‖RI ,J ,s‖L(PJ (H0))

· ∥∥(PI − PJ )B(X I
s )

∥∥
L(2β)/(2β−γ )(U ,H0)

.

(3.28)

Moreover, observe that for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J )\{J } it holds that

‖B(X I
s )

�(PI + PJ )‖L(2β)/γ (H0,U ) = ‖B(X I
s )

��γ �−γ (PI + PJ )‖L(2β)/γ (H0,U )

≤ ‖B(X I
s )

��γ ‖L(H0,U )‖�−γ ‖L(2β)/γ (H0)
‖PI + PJ‖L(H0)

= ‖B(X I
s )‖L(U ,Hγ )‖�−β‖γ/β

L2(H0)
‖PI + PJ‖L(H0)

≤ 2‖B(X I
s )‖L(U ,Hγ )‖�−β‖γ/β

L2(H0)
< ∞

(3.29)

and

‖(PI − PJ )B(X I
s )‖L(2β)/(2β−γ )(U ,H0)

≤ ‖(PI − PJ )|Hγ ‖
L(2β)/(2β−γ )(Hγ ,H0)

‖B(X I
s )‖L(U ,Hγ ) (3.30)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1187–S1217 S1203

≤ ‖(PI − PJ )�
2(β−γ )‖L(H0)

‖�2(γ−β)|Hγ ‖
L(2β)/(2β−γ )(Hγ ,H0)

‖B(X I
s )‖L(U ,Hγ )

=
[

inf
h∈J\I |λh |

]β−γ

‖�−β‖(2β−γ )/β

L2(H0)
‖B(X I

s )‖L(U ,Hγ ) < ∞.

In addition, Lemma 3.4 establishes for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J ) that

‖RI ,J ,s‖L(PJ (H0))
≤ sup

t∈[0,T ]
|uJ (t, ·)|C2

b (PJ (H0),R) < ∞. (3.31)

Combining (3.28)–(3.31) shows for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J )\{J } that

‖B(X I
s )

�(PI + PJ )RI ,J ,s(PI − PJ )B(X I
s )‖L1(U )

≤ 2‖�−β‖2L2(H0)

[
sup

t∈[0,T ]
|uJ (t, ·)|C2

b (PJ (H0),R)

]

· ∥∥B(X I
s )

∥∥2
L(U ,Hγ )

[
inf

h∈J\I |λh |
]β−γ

< ∞.

(3.32)

This and (3.17) imply for all s ∈ [0, T ], J ∈ P0(H), I ∈ P(J )\{J } that
∣∣∣∣
∑

b∈U
E

[
v J
0,2

(
s, X I

s

)(
(PI + PJ )B(X I

s )b, (PI − PJ )B(X I
s )b

)]
∣∣∣∣

=
∣∣∣∣E

[∑

b∈U
〈(PI + PJ )B(X I

s )b, RI ,J ,s(PI − PJ )B(X I
s )b〉H0

]∣∣∣∣

=
∣∣∣∣E

[∑

b∈U
〈b,B(X I

s )
�(PI + PJ )RI ,J ,s(PI − PJ )B(X I

s )b〉U
]∣∣∣∣

=∣∣E
[
traceU (B(X I

s )
�(PI + PJ )RI ,J ,s(PI − PJ )B(X I

s ))
]∣∣ (3.33)

≤ E
[∥∥B(X I

s )
�(PI + PJ )RI ,J ,s(PI − PJ )B(X I

s )
∥∥
L1(U )

]

≤ 2‖�−β‖2L2(H0)

[
sup

t∈[0,T ]
|uJ (t, ·)|C2

b (PJ (H0),R)

]
E

[∥∥B(X I
s )

∥∥2
L(U ,Hγ )

][
inf

h∈J\I |λh |
]β−γ

.

Lemmas 3.2 and 3.4 hence prove for all J ∈ P0(H), I ∈ P(J )\{J } that
∣∣∣∣
1
2

∑

b∈U

∫ T

0
E

[
v J
0,2

(
s, X I

s

)(
PIB(X I

s )b + PJB(X I
s )b,PIB(X I

s )b − PJB(X I
s )b

)]
ds

∣∣∣∣

≤ ‖�−β‖2L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C2
b (PK (H0),R)

]

·
[

sup
K∈P0(H)

∫ T

0
E

[‖B(XK
s )‖2L(U ,Hγ )

]
ds

][
inf

h∈J\I |λh |
]β−γ

< ∞. (3.34)
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Combining this with (3.26) and (3.27) ensures for all J ∈ P0(H), I ∈ P(J )\{H} that
∣∣E

[
v J (T , X I

T

)] − E
[
v J (0, X I

0

)]∣∣

≤
([

sup
K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C1
b (PK (H0),R)

]
sup

K∈P0(H)

∫ T

0
E

[‖F(XK
s )‖H2(γ−β)

]
ds

+ ‖�−β‖2L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C2
b (PK (H0),R)

]

·
[

sup
K∈P0(H)

∫ T

0
E

[‖B(XK
s )‖2L(U ,Hγ )

]
ds

])[
inf

h∈H\I |λh |
]β−γ

< ∞.

(3.35)

This constitutes an estimate for the first summand on the right hand side of (3.20).
Inequalities (3.35), (3.20), and (3.23) show for all J ∈ P0(H), I ∈ P(J )\{H} that

∣∣E
[
ϕ
(
X J
T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤
([

sup
K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C1
b (PK (H0),R)

][
E

[‖ξ‖H2(γ−β)

]

+ sup
K∈P0(H)

∫ T

0
E

[‖F(XK
s )‖H2(γ−β)

]
ds

]
(3.36)

+‖�−β‖2L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C2
b (PK (H0),R)

]

·
[

sup
K∈P0(H)

∫ T

0
E

[‖B(XK
s )‖2L(U ,Hγ )

]
ds

])[
inf

h∈H\I |λh |
]β−γ

< ∞.

In a third step Lemmas 3.3, 2.5, and 2.6, the Cauchy–Schwarz inequality, and the
Burkholder–Davis–Gundy inequality (see, e.g., Lemma 7.7 in Da Prato & Zabczyk
[13]) imply for all n ∈ N, (Jk)k∈N0 ⊆ P(H) with

⋃∞
k=1 Jk = J0 and ∀k ∈ N : Jk ⊆

Jk+1 ∈ P0(H) that

sup
t∈[0,T ]

(
E

[‖X J0
t − X Jn

t ‖2H0

])1/2

≤ √
2

[
sup

t∈[0,T ]
(
E

[‖PJ0\Jn X
J0
t ‖2H0

])1/2
]

· exp( 12
[√

2T |PJnF|Lip0(H0,H0)
+ √

2T |PJnB|Lip0(H0,L2(U ,H0))

]2)

≤ √
2 exp

( 1
2

[√
2T |F|Lip0(H0,H0)

+ √
2T |B|Lip0(H0,L2(U ,H0))

]2) (3.37)

·
((

E
[‖PJ0\Jnξ‖2H0

])1/2 +
[
T

∫ T

0
E

[‖PJ0\JnF(X J0
s )‖2H0

]
ds

]1/2

+
[∫ T

0
E

[‖PJ0\JnB(X J0
s )‖2L2(U ,H0)

]
ds

]1/2)
.
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Therefore, Lebesgue’s theorem of dominated convergence proves for all (Jk)k∈N0 ⊆
P(H) with

⋃∞
k=1 Jk = J0 and ∀k ∈ N : Jk ⊆ Jk+1 ∈ P0(H) that

lim sup
n→∞

sup
t∈[0,T ]

(
E

[‖X J0
t − X Jn

t ‖2H0

])1/2 = 0. (3.38)

Moreover, observe that (3.36) ensures for all n ∈ N, I ∈ P0(H)\{H}, (Jk)k∈N ⊆
P0(H) with

⋃∞
k=1 Jk = H and ∀k ∈ N : I ⊆ Jk ⊆ Jk+1 that

∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X Jn
T

)]∣∣ + ∣∣E
[
ϕ
(
X Jn
T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤ |ϕ|C1
b (H0,R)

(
E

[‖XH

T − X Jn
T ‖2H0

])1/2

+
([

sup
K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C1
b (PK (H0),R)

][
E

[‖ξ‖H2(γ−β)

]
(3.39)

+ sup
K∈P0(H)

∫ T

0
E

[‖F(XK
s )‖H2(γ−β)

]
ds

]

+ ‖�−β‖2L2(H0)

[
sup

K∈P0(H)

sup
t∈[0,T ]

|uK (t, ·)|C2
b (PK (H0),R)

]

·
[

sup
K∈P0(H)

∫ T

0
E

[‖B(XK
s )‖2L(U ,Hγ )

]
ds

])[
inf

h∈H\I |λh |
]β−γ

.

Note that (3.38) and letting n → ∞ in (3.39) complete the proof of Theorem 3.6 in
the case that I ∈ P0(H)\{H}. In a last step we prove the remaining cases. Estimate
(3.39) ensures for all n ∈ N, I0 ∈ P(H)\{H}, (Ik)k∈N ⊆ P0(I0) with

⋃∞
k=1 Ik = I0

and ∀k ∈ N : Ik ⊆ Ik+1 that

∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X I0
T

)]∣∣

≤ ∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X In
T

)]∣∣ + ∣∣E
[
ϕ
(
X I0
T

)] − E
[
ϕ
(
X In
T

)]∣∣

≤
([

sup
J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C1
b (PJ (H0),R)

][
E

[‖ξ‖H2(γ−β)

]

+ sup
J∈P0(H)

∫ T

0
E

[‖F(X J
s )‖H2(γ−β)

]
ds

]

+ ‖�−β‖2L2(H0)

[
sup

J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|C2
b (PJ (H0),R)

]
(3.40)

·
[

sup
J∈P0(H)

∫ T

0
E
[‖B(X J

s )‖2L(U ,Hγ )

]
ds

])[
inf

h∈H\I |λh |
]β−γ

+ |ϕ|C1
b (H0,R)

(
E

[‖X I0
T − X In

T ‖2H0

])1/2
.

Equation (3.38) and Lemma 3.5 thus complete the proof of Theorem 3.6. ��
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The next corollary is a direct consequence of Theorem 3.6 and Lemma 3.2.

Corollary 3.7 Assume the setting in Sect. 3.1, let X I : [0, T ] × � → PI (Hρ), I ∈
P(H), and X J ,x : [0, T ] × � → PJ (H0), x ∈ PJ (H0), J ∈ P0(H), be (Ft )t∈[0,T ]-
predictable stochastic processes such that for all I ∈ P(H), J ∈ P0(H), x ∈ PJ (H0),

t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖X I

s ‖2Hρ
+ ‖X J ,x

s ‖2H0

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs, (3.41)

X J ,x
t = etAx +

∫ t

0
e(t−s)APJF(X J ,x

s ) ds +
∫ t

0
e(t−s)APJB(X J ,x

s ) dWs, (3.42)

let ϕ ∈ C2
b (H0,R), and let u J : [0, T ] × PJ (H0) → R, J ∈ P0(H), be the functions

which satisfy for all J ∈ P0(H), (t, x) ∈ [0, T ]×PJ (H0) that u J (t, x) = E
[
ϕ
(
X J ,x
t

)]
.

Then it holds for all I ∈ P(H)\{H} that

∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤
[
max
i∈{1,2} sup

J∈P0(H)

sup
t∈[0,T ]

|uJ (t, ·)|Ci
b(PJ (H0),R)

]
sup

J∈P0(H)

sup
t∈[0,T ]

max
{
1,E

[‖X J
t ‖2Hρ

]}

·
(
E

[‖ξ‖H2(γ−β)

] + T ‖F|Hρ ‖Lip0(Hρ ,H2(γ−β))

+ T ‖�−β‖2L2(H0)
‖B|Hρ ‖2

Lip0(Hρ ,L(U ,Hγ ))

)

·
[

inf
h∈H\I |λh |

]β−γ

< ∞.

(3.43)

The last result in this section, Corollary 3.8 below, follows immediately fromCorol-
lary 3.7 and Lemmas 3.4 and 3.2.

Corollary 3.8 Assume the setting in Sect. 3.1 and let X I : [0, T ] × � → PI (Hρ),
I ∈ P(H), be (Ft )t∈[0,T ]-predictable stochastic processes such that for all I ∈ P(H),

t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖X I

s ‖2Hρ

]
< ∞ and P-a.s. that

X I
t = etAPI ξ +

∫ t

0
e(t−s)APIF(X I

s ) ds +
∫ t

0
e(t−s)APIB(X I

s ) dWs . (3.44)

123



Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1187–S1217 S1207

Then it holds for all ϕ ∈ C2
b (H0,R), I ∈ P(H)\{H} that

∣∣E
[
ϕ
(
XH

T

)] − E
[
ϕ
(
X I
T

)]∣∣

≤ ‖ϕ‖C2
b (H0,R) max

{
1,E

[‖ξ‖2Hρ

]}

·
(
E

[‖ξ‖H2(γ−β)

] + T ‖F|Hρ ‖Lip0(Hρ,H2(γ−β))

+ T ‖�−β‖2L2(H0)
‖B|Hρ ‖2Lip0(Hρ,L(U ,Hγ ))

)

· max
{
1,

[
T

(
(CF)2 + 2 (CB)2

)]1/2}

· exp(T [ 1
2 + 3 |F|Lip0(H0,H0)

+ 4 |B|2
Lip0(H0,L2(U ,H0))

])

· exp
(
T

[
2‖F|Hρ ‖Lip0(Hρ,Hρ)

+ ‖B|Hρ ‖2Lip0(Hρ,L2(U ,Hρ))

])

·
[

inf
h∈H\I |λh |

]β−γ

< ∞.

(3.45)

3.3 Semilinear StochasticWave Equations and the Continuous Version of the
Hyperbolic AndersonModel

Roughly speaking, the following elementary and well-known lemma provides a useful
criterion for determining whether a vector belonging to an interpolation space asso-
ciated to a symmetric diagonal linear operator possesses more regularity (cf., e.g.,
Example 37.1 in Sell & You [40]).

Lemma 3.9 Consider the notation in Sect. 1.1, letK ∈ {R,C}, let (H , 〈·, ·〉H , ‖·‖H ) be
aK-Hilbert space, letH ⊆ H be a nonempty orthonormal basis of H, let A : D(A) ⊆
H → H be a symmetric diagonal linear operator with inf(σP(A)) > 0, and let
(Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be a family of interpolation spaces associated to A. Then

(i) for all v ∈ ⋃
s∈R Hs, r ∈ R it holds that v ∈ Hr if and only if

sup
w∈spanH (H)\{0}

|〈w, v〉H |
‖w‖H−r

< ∞, (3.46)

(ii) for all s ∈ R, v ∈ H−s , r ∈ [−s,∞) it holds that v ∈ Hr if and only if

sup
w∈Hs\{0}

|〈w, v〉H |
‖w‖H−r

< ∞, (3.47)

and
(iii) for all r ∈ R, v ∈ Hr , s ∈ [−r ,∞) it holds that

‖v‖Hr
= sup

w∈spanH (H)\{0}
|〈w, v〉H |
‖w‖H−r
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= sup
w∈Hs\{0}

|〈w, v〉H |
‖w‖H−r

. (3.48)

In the next result, Corollary 3.10, we specialize Corollary 3.7 above to the case of
semilinear stochastic wave equations. Corollary 3.10 is an elementary consequence
of Corollary 3.7.

Corollary 3.10 Consider the notation in Sect.1.1, let T , ϑ ∈ (0,∞),γ ∈ (1/4, 1/2),ρ ∈
[0, 2γ −1/2),� ∈ [1/6,∞), let (�,F ,P) be a probability spacewith a normal filtration
(Ft )t∈[0,T ], let (H , 〈·, ·〉H , ‖·‖H ) = (

L2(μ(0,1);R), 〈·, ·〉L2(μ(0,1);R), ‖·‖L2(μ(0,1);R)

)
,

let (Wt )t∈[0,T ] be an idH -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener process, let
(en)n∈N ⊆ H satisfy for all n ∈ N and μ(0,1)-a.e. x ∈ (0, 1) that en(x) =√
2 sin(nπx), let A : D(A) ⊆ H → H be the Laplacian with Dirichlet boundary

conditions on H multiplied by ϑ , let (Hr , 〈·, ·〉Hr , ‖·‖Hr
), r ∈ R, be a family of

interpolation spaces associated to −A, let PN ∈ L(H × H−1/2), N ∈ N ∪ {∞}, be
the linear operators which satisfy for all N ∈ N ∪ {∞}, v,w ∈ H that PN (v,w) =(∑N

n=1〈en, v〉Hen,∑N
n=1〈en, w〉Hen

)
, letA : D(A) ⊆ H×H−1/2 → H×H−1/2 be the

linear operator which satisfies D(A) = H1/2×H and∀(v,w) ∈ H1/2×H : A(v,w) =
(w, Av), let ξ ∈ L2(P|F0; H1/2×H), ϕ ∈ C2

b (H×H−1/2,R), f ∈ Lip2((0, 1)×R,R),
B ∈ Lip0(H , L2(H , H−1/2)) satisfy ∀v ∈ Hρ, u ∈ H : B(v)u ∈ Hγ−1/2, ∀v ∈
Hρ : (H � u �→ B(v)u ∈ Hρ−1/2) ∈ L2(H , Hρ−1/2), (Hρ � v �→ (H � u �→
B(v)u ∈ Hρ−1/2) ∈ L2(H , Hρ−1/2)) ∈ Lip0(Hρ, L2(H , Hρ−1/2)), ∀v ∈ Hρ : (H �
u �→ B(v)u ∈ Hγ−1/2) ∈ L(H , Hγ−1/2), (Hρ � v �→ (H � u �→ B(v)u ∈ Hγ−1/2) ∈
L(H , Hγ−1/2)) ∈ Lip0(Hρ, L(H , Hγ−1/2)), B|H� ∈ C2

b (H�, L2(H , H−1/2)), and
supx,v1,v2∈H�, max{‖v1‖H ,‖v2‖H }≤1 ‖B ′′(x)(v1, v2)‖L2(H ,H−1/2)

< ∞, and let F : H ×
H−1/2 → H1/2 × H and B : H × H−1/2 → L2(H , H × H−1/2) be the func-
tions which satisfy for all v, u ∈ H, w ∈ H−1/2 and μ(0,1)-a.e. x ∈ (0, 1) that(
F(v,w)

)
(x) = (

0, f (x, v(x))
)
and B(v,w)u = (

0, B(v)u
)
. Then

(i) it holds that F ∈ Lip0(H × H−1/2, H1/2 × H), F|H�×H�−1/2
∈ Lip2(H� ×

H�−1/2, H1/2 × H), B ∈ Lip0(H × H−1/2, L2(H , H × H−1/2)), ∀v ∈ Hρ ×
Hρ−1/2, u ∈ H : B(v)u ∈ Hγ × Hγ−1/2, ∀v ∈ Hρ × Hρ−1/2 : (H � u �→
B(v)u ∈ Hρ × Hρ−1/2) ∈ L2(H , Hρ × Hρ−1/2), (Hρ × Hρ−1/2 � v �→
(H � u �→ B(v)u ∈ Hρ × Hρ−1/2) ∈ L2(H , Hρ × Hρ−1/2)) ∈ Lip0(Hρ ×
Hρ−1/2, L2(H , Hρ × Hρ−1/2)), ∀v ∈ Hρ × Hρ−1/2 : (H � u �→ B(v)u ∈
Hγ ×Hγ−1/2) ∈ L(H , Hγ ×Hγ−1/2), (Hρ ×Hρ−1/2 � v �→ (H � u �→ B(v)u ∈
Hγ ×Hγ−1/2) ∈ L(H , Hγ ×Hγ−1/2)) ∈ Lip0(Hρ×Hρ−1/2, L(H , Hγ ×Hγ−1/2)),
B|H�×H�−1/2

∈ C2
b (H� × H�−1/2, L2(H , H × H−1/2)), and

∀δ ∈ (−∞, 1/4) :
sup x∈H�×H�−1/2,

v1,v2∈H�×H�−1/2\{0}

‖F′′(x)(v1,v2)‖Hδ×H
δ−1/2

+‖B′′(x)(v1,v2)‖L2(H ,H×H−1/2)

‖v1‖H×H−1/2
‖v2‖H×H−1/2

< ∞,

(3.49)

(ii) it holds that there exist up to modifications unique (Ft )t∈[0,T ]-predictable
stochastic processes X N : [0, T ]×� → PN (Hρ × Hρ−1/2), N ∈ N∪{∞}, such
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that for all N ∈ N∪{∞}, t ∈ [0, T ] it holds that sups∈[0,T ] E
[‖XN

s ‖2Hρ×Hρ−1/2

]
<

∞ and P-a.s. that

X N
t = etAPN ξ +

∫ t

0
e(t−s)APNF(XN

s ) ds +
∫ t

0
e(t−s)APNB(XN

s ) dWs,

(3.50)

and
(iii) it holds for all ε ∈ (4(1/2 − γ ),∞) that there exists a real number C ∈ [0,∞)

such that for all N ∈ N it holds that

∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣ ≤ C · N ε−1. (3.51)

Proof of Corollary 3.10 Throughout this proof let fk, : (0, 1)×R → R, k,  ∈ {0, 1, 2}
with k+ ≤ 2, be the functionswhich satisfy for all k,  ∈ {0, 1, 2}, (x, y) ∈ (0, 1)×R

with k +  ≤ 2 that fk,(x, y) = (
∂k+

∂xk∂ y f
)
(x, y) and let F : H → H be the function

which satisfies for all v ∈ H and μ(0,1)-a.e. x ∈ (0, 1) that
(
F(v)

)
(x) = f (x, v(x)).

Then note that for all u, v ∈ H , w ∈ H−1/2 it holds that F(v,w) = (
0, F(v)

)
and

‖F(u) − F(v)‖H =
(∫ 1

0
| f (x, u(x)) − f (x, v(x))|2 dx

)1/2

≤ | f |Lip0((0,1)×R,R)‖u − v‖H . (3.52)

This proves that F ∈ Lip0(H , H). Hence, we obtain that F ∈ Lip0(H ×H−1/2, H1/2 ×
H). Next observe that the Sobolev embedding theorem ensures for all δ ∈ [1, 6] that

sup
w∈H�\{0}

‖w‖Lδ(μ(0,1);R)

‖w‖H�

< ∞. (3.53)

Moreover, note that it holds for all v, h ∈ H and μ(0,1)-a.e. x ∈ (0, 1) that

∣∣ f (x, v(x) + h(x)) − f (x, v(x)) − f0,1(x, v(x))h(x)
∣∣

=
∣∣∣∣

∫ 1

0

[
f0,1(x, v(x) + yh(x)) − f0,1(x, v(x))

]
h(x) dy

∣∣∣∣ (3.54)

≤ | f |Lip1((0,1)×R,R)|h(x)|2.
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This, Hölder’s inequality, and (3.53) imply for all v ∈ H�, h ∈ H�\{0} that

1

‖h‖H�

(∫ 1

0
| f (x, v(x) + h(x)) − f (x, v(x)) − f0,1(x, v(x))h(x)|2 dx

)1/2

≤ | f |Lip1((0,1)×R,R)

‖h‖2
L4(μ(0,1);R)

‖h‖H�

≤ | f |Lip1((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L4(μ(0,1);R)

‖w‖H�

)2

‖h‖H�
< ∞.

(3.55)

In addition, observe that it holds for all v, h ∈ H� that
(∫ 1

0
| f0,1(x, v(x))h(x)|2 dx

)1/2

≤ | f |C1
b ((0,1)×R,R)‖h‖H ≤ | f |C1

b ((0,1)×R,R)

(
sup

w∈H�\{0}
‖w‖H
‖w‖H�

)
‖h‖H�

= | f |Lip0((0,1)×R,R)

(
sup

w∈H�\{0}
‖w‖H
‖w‖H�

)
‖h‖H�

< ∞. (3.56)

Inequalities (3.55)–(3.56) prove that F |H� : H� → H is Fréchet differentiable, that
for all v, h ∈ H� and μ(0,1)-a.e. x ∈ (0, 1) it holds that

(
F ′(v)h

)
(x) = f0,1(x, v(x))h(x), (3.57)

and that supv∈H�
‖F ′(v)‖L(H�,H) ≤ | f |C1

b ((0,1)×R,R) < ∞. Furthermore, Hölder’s
inequality and (3.53) show for all u, v, h ∈ H� that

‖(F ′(u) − F ′(v))h‖H
=

(∫ 1

0

∣∣[ f0,1(x, u(x)) − f0,1(x, v(x))
]
h(x)

∣∣2 dx
)1/2

≤ | f |Lip1((0,1)×R,R)‖u − v‖L4(μ(0,1);R)‖h‖L4(μ(0,1);R)

≤ | f |Lip1((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L4(μ(0,1);R)

‖w‖H�

)2

‖u − v‖H�
‖h‖H�

< ∞.

(3.58)

This ensures that F |H� ∈ Lip1(H�, H). Similarly, observe that for all v, h, g ∈ H and
μ(0,1)-a.e. x ∈ (0, 1) it holds that

| f0,1(x, v(x) + g(x))h(x) − f0,1(x, v(x))h(x) − f0,2(x, v(x))h(x)g(x)|

=
∣∣∣∣

∫ 1

0

[
f0,2(x, v(x) + yg(x)) − f0,2(x, v(x))

]
h(x)g(x) dy

∣∣∣∣

≤ | f |Lip2((0,1)×R,R)|h(x)||g(x)|2.
(3.59)
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This, Hölder’s inequality, and (3.53) establish for all v, h ∈ H�, g ∈ H�\{0} that

1

‖g‖H�

( ∫ 1

0
| f0,1(x, v(x) + g(x))h(x)

− f0,1(x, v(x))h(x) − f0,2(x, v(x))h(x)g(x)|2 dx
)1/2

≤ | f |Lip2((0,1)×R,R)

‖g‖H�

(∫ 1

0
|h(x)|2|g(x)|4 dx

)1/2

≤ | f |Lip2((0,1)×R,R)

‖h‖L6(μ(0,1);R)‖g‖2L6(μ(0,1);R)

‖g‖H�

≤ | f |Lip2((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L6(μ(0,1);R)

‖w‖H�

)3

‖h‖H�
‖g‖H�

< ∞.

(3.60)

Furthermore, Hölder’s inequality and (3.53) also prove for all v, h, g ∈ H� that

(∫ 1

0
| f0,2(x, v(x))h(x)g(x)|2 dx

)1/2

≤ | f |C2
b ((0,1)×R,R)‖h‖L4(μ(0,1);R)‖g‖L4(μ(0,1);R)

≤ | f |C2
b ((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L4(μ(0,1);R)

‖w‖H�

)2

‖h‖H�
‖g‖H�

= | f |Lip1((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L4(μ(0,1);R)

‖w‖H�

)2

‖h‖H�
‖g‖H�

< ∞.

(3.61)

Combining (3.60)–(3.61) ensures that F |H� : H� → H is twice Fréchet differentiable,
that for all v, h, g ∈ H� and μ(0,1)-a.e. x ∈ (0, 1) it holds that

(
F ′′(v)(h, g)

)
(x) = f0,2(x, v(x))h(x)g(x), (3.62)

and that

sup
v∈H�

‖F ′′(v)‖L(2)(H�,H) ≤ | f |C2
b ((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L4(μ(0,1);R)

‖w‖H�

)2

< ∞. (3.63)

In addition, Hölder’s inequality and (3.53) establish for all u, v, h, g ∈ H� that

‖(F ′′(u) − F ′′(v))(h, g)‖H =
(∫ 1

0

∣∣[ f0,2(x, u(x)) − f0,2(x, v(x))
]
h(x)g(x)

∣∣2 dx
)1/2

≤ | f |Lip2((0,1)×R,R)‖u − v‖L6(μ(0,1);R)‖h‖L6(μ(0,1);R)‖g‖L6(μ(0,1);R)

≤ | f |Lip2((0,1)×R,R)

(
sup

w∈H�\{0}

‖w‖L6(μ(0,1);R)

‖w‖H�

)3

‖u − v‖H�
‖h‖H�

‖g‖H�
< ∞.

(3.64)

This shows that F |H� ∈ Lip2(H�, H). This proves that F|H�×H�−1/2
∈ Lip2(H� ×

H�−1/2, H1/2 × H). Next, note that the assumptions that B ∈ Lip0(H , L2(H , H−1/2)),
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∀v ∈ Hρ, u ∈ H : B(v)u ∈ Hγ−1/2, ∀v ∈ Hρ : (H � u �→ B(v)u ∈
Hρ−1/2) ∈ L2(H , Hρ−1/2), (Hρ � v �→ (H � u �→ B(v)u ∈ Hρ−1/2) ∈
L2(H , Hρ−1/2)) ∈ Lip0(Hρ, L2(H , Hρ−1/2)), ∀v ∈ Hρ : (H � u �→ B(v)u ∈
Hγ−1/2) ∈ L(H , Hγ−1/2), (Hρ � v �→ (H � u �→ B(v)u ∈ Hγ−1/2) ∈
L(H , Hγ−1/2)) ∈ Lip0(Hρ, L(H , Hγ−1/2)), and B|H� ∈ C2

b (H�, L2(H , H−1/2))

ensure that B ∈ Lip0(H × H−1/2, L2(H , H × H−1/2)), ∀v ∈ Hρ × Hρ−1/2, u ∈
H : B(v)u ∈ Hγ × Hγ−1/2, ∀v ∈ Hρ × Hρ−1/2 : (H � u �→ B(v)u ∈ Hρ ×
Hρ−1/2) ∈ L2(H , Hρ × Hρ−1/2), (Hρ × Hρ−1/2 � v �→ (H � u �→ B(v)u ∈
Hρ × Hρ−1/2) ∈ L2(H , Hρ × Hρ−1/2)) ∈ Lip0(Hρ × Hρ−1/2, L2(H , Hρ × Hρ−1/2)),
∀v ∈ Hρ × Hρ−1/2 : (H � u �→ B(v)u ∈ Hγ × Hγ−1/2) ∈ L(H , Hγ × Hγ−1/2),
(Hρ × Hρ−1/2 � v �→ (H � u �→ B(v)u ∈ Hγ × Hγ−1/2) ∈ L(H , Hγ ×
Hγ−1/2)) ∈ Lip0(Hρ × Hρ−1/2, L(H , Hγ × Hγ−1/2)), and B|H�×H�−1/2

∈ C2
b (H� ×

H�−1/2, L2(H , H × H−1/2)). In addition, Lemma 3.9 proves for all δ ∈ (−∞, 1/4),
v, h, g ∈ H� that

‖F ′′(v)(h, g)‖Hδ−1/2
= sup

w∈H1/2−δ\{0}
〈w, F ′′(v)(h, g)〉H

‖w‖H1/2−δ

≤ | f |C2
b ((0,1)×R,R)

(
sup

w∈H1/2−δ\{0}

‖w‖L∞(μ(0,1);R)

‖w‖H1/2−δ

)
‖h‖H‖g‖H < ∞.

(3.65)

This and the assumption that

sup
x,v1,v2∈H�, max{‖v1‖H ,‖v2‖H }≤1

‖B ′′(x)(v1, v2)‖L2(H ,H−1/2)
< ∞ (3.66)

show (3.49). The proof of (i) is thus complete. Furthermore, observe that (ii) follows
directly from (i) and Remark 3.1. It thus remains to prove (iii). For this let ε ∈
(4(1/2 − γ ), 1− 2ρ], β ∈ (1/2, 2γ ] and λn ∈ R, n ∈ N, be real numbers which satisfy
for all n ∈ N that β = 1/2 + (ε−4(1/2−γ ))/2 and λn = −ϑπ2n2 and let � : D(�) ⊆
H×H−1/2 → H×H−1/2 be the linear operatorwhich satisfies for all (v,w) ∈ H1/2×H
that D(�) = H1/2 × H and

�(v,w) =
(∑∞

n=1|λn|1/2〈en, v〉Hen∑∞
n=1|λn|1/2〈en, w〉Hen

)
. (3.67)

Then note that for all v ∈ H1 it holds that Av = ∑∞
n=1 λn〈en, v〉Hen and

‖�−β‖L2(H×H−1/2)
< ∞. Furthermore, observe that (i) and the fact that 2γ − β =

(1−ε)/2 ≤ 1/2 imply that (H × H−1/2 � v �→ F(v) ∈ H2γ−β × H2γ−β−1/2) ∈
Lip0(H × H−1/2, H2γ−β × H2γ−β−1/2). This, the fact that 2ρ ≤ 1 − ε = 2(2γ − β),
and again (i) enable us to apply Corollary 3.7 to obtain that there exists a real number
C ∈ [0,∞) such that for all N ∈ N it holds that
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∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣ ≤ C |λN+1|β−2γ ≤ C ϑ
(ε−1)/2 · N ε−1. (3.68)

The proof of Corollary 3.10 is thus complete. ��
In the proof of Corollary 3.12 below we employ the following elementary and

well-known result, Lemma 3.11.

Lemma 3.11 Let K ∈ {R,C}, let (H , 〈·, ·〉H , ‖·‖H ) be a K-Hilbert space, let H ⊆ H
be a nonempty orthonormal basis of H, let A : D(A) ⊆ H → H be a symmetric
diagonal linear operator with inf(σP(A)) > 0, let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be
a family of interpolation spaces associated to A, and let q, s ∈ R, p ∈ [q,∞),
r ∈ [s,∞). Then

(i) for all B ∈ L(Hq , Hs) it holds that
(
B(Hq) ⊆ Hr and (Hq � v �→ Bv ∈ Hr ) ∈

L(Hq , Hr )
)
if and only if

(
B(spanH (H)) ⊆ Hr and sup

w∈spanH (H)\{0}
‖Bw‖Hr

‖w‖Hq

< ∞
)

, (3.69)

(ii) for all B ∈ L(Hq , Hs) it holds that
(
B(Hq) ⊆ Hr and (Hq � v �→ Bv ∈ Hr ) ∈

L(Hq , Hr )
)
if and only if

(
B(Hp) ⊆ Hr and sup

w∈Hp\{0}
‖Bw‖Hr

‖w‖Hq

< ∞
)

, (3.70)

and
(iii) for all B ∈ L(Hq , Hr ) it holds that

‖B‖L(Hq ,Hr )
= sup

w∈spanH (H)\{0}
‖Bw‖Hr

‖w‖Hq

= sup
w∈Hp\{0}

‖Bw‖Hr

‖w‖Hq

. (3.71)

Corollary 3.12 Consider the notation in Sect. 1.1, let T , ϑ ∈ (0,∞), α, β ∈
R, let (�,F ,P) be a probability space with a normal filtration (Ft )t∈[0,T ], let
(H , 〈·, ·〉H , ‖·‖H ) = (

L2(μ(0,1);R), 〈·, ·〉L2(μ(0,1);R), ‖·‖L2(μ(0,1);R)

)
, let (Wt )t∈[0,T ]

be an idH -cylindrical (�,F ,P, (Ft )t∈[0,T ])-Wiener process, let (en)n∈N ⊆ H satisfy
for all n ∈ N and μ(0,1)-a.e. x ∈ (0, 1) that en(x) = √

2 sin(nπx), let A : D(A) ⊆
H → H be the Laplacian with Dirichlet boundary conditions on H multiplied by ϑ ,
let (Hr , 〈·, ·〉Hr , ‖·‖Hr

), r ∈ R, be a family of interpolation spaces associated to −A,
let PN ∈ L(H × H−1/2), N ∈ N ∪ {∞}, be the linear operators which satisfy for all
N ∈ N ∪ {∞}, v,w ∈ H that PN (v,w) = (∑N

n=1〈en, v〉Hen,∑N
n=1〈en, w〉Hen

)
,

let A : D(A) ⊆ H × H−1/2 → H × H−1/2 be the linear operator which sat-
isfies D(A) = H1/2 × H and ∀(v,w) ∈ H1/2 × H : A(v,w) = (w, Av), let
ξ ∈ L2(P|F0; H1/2 × H), ϕ ∈ C2

b (H × H−1/2,R), f ∈ Lip2((0, 1) × R,R), and
let F : H × H−1/2 → H1/2 × H and B : H × H−1/2 → L2(H , H × H−1/2) be the func-
tions which satisfy for all (v,w) ∈ H × H−1/2, u ∈ H1 and μ(0,1)-a.e. x ∈ (0, 1) that(
F(v,w)

)
(x) = (

0, f (x, v(x))
)
and

(
B(v,w)u

)
(x) = (

0, (α + βv(x))u(x)
)
. Then

123



S1214 Applied Mathematics & Optimization (2021) 84 (Suppl 2):S1187–S1217

(i) it holds that there exist up to modifications unique (Ft )t∈[0,T ]-predictable
stochastic processes X N : [0, T ] × � → (⋂

ρ∈[0,1/4) PN (Hρ × Hρ−1/2)
)
, N ∈

N ∪ {∞}, such that for all ρ ∈ [0, 1/4), N ∈ N ∪ {∞}, t ∈ [0, T ] it holds that
sups∈[0,T ] E

[‖XN
s ‖2Hρ×Hρ−1/2

]
< ∞ and P-a.s. that

XN
t = etAPN ξ +

∫ t

0
e(t−s)APNF(XN

s ) ds +
∫ t

0
e(t−s)APNB(XN

s ) dWs (3.72)

and
(ii) it holds for all ε ∈ (0,∞) that there exists a real number C ∈ [0,∞) such that

for all N ∈ N it holds that

∣∣E
[
ϕ
(
X∞
T

)] − E
[
ϕ
(
XN
T

)]∣∣ ≤ C · N ε−1. (3.73)

Proof of Corollary 3.12 Throughout this proof let B : H → L2(H , H−1/2) be the
function which satisfies for all v ∈ H , u ∈ H1 and μ(0,1)-a.e. x ∈ (0, 1) that(
B(v)u

)
(x) = (α + βv(x))u(x). Note that it holds for all ρ ∈ [0, 1/4), v, u ∈ H

that B(v)u ∈ Hρ−1/2, (H � y �→ B(v)y ∈ Hρ−1/2) ∈ L2(H , Hρ−1/2), and (H �
x �→ (H � y �→ B(x)y ∈ Hρ−1/2) ∈ L2(H , Hρ−1/2)) ∈ Lip0(H , L2(H , Hρ−1/2)).
Remark 3.1 and (i) in Corollary 3.10 thus prove (i). Next observe that the Sobolev
embedding theorem proves for all ρ ∈ (0, 1/4) that

[
sup

w∈H1\{0}

‖w‖L1/(2ρ)(μ(0,1);R)

‖w‖H1/4−ρ

]
+

[
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(μ(0,1);R)

‖w‖Hρ

]
< ∞. (3.74)

This and Hölder’s inequality ensure for all ρ ∈ (0, 1/4), v ∈ Hρ , u ∈ H1 that

sup
w∈H1\{0}

|〈w, B(v)u〉H |
‖w‖H1/4−ρ

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(μ(0,1);R)

‖w‖H1/4−ρ

]
‖α + βv‖L2/(1−4ρ)(μ(0,1);R)

‖u‖L2(μ(0,1);R)

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(μ(0,1);R)

‖w‖H1/4−ρ

][
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(μ(0,1);R)

‖w‖Hρ

]
‖α + βv‖Hρ

‖u‖H < ∞.

(3.75)

Lemma 3.9 hence shows for all ρ ∈ (0, 1/4), v ∈ Hρ , u ∈ H1 that B(v)u ∈ Hρ−1/4. In
addition, (3.75) and Lemmas 3.9 and 3.11 prove for all ρ ∈ (0, 1/4), v ∈ Hρ , u ∈ H
that B(v)u ∈ Hρ−1/4 and (H � y �→ B(v)y ∈ Hρ−1/4) ∈ L(H , Hρ−1/4). Furthermore,
Lemma 3.9 and Hölder’s inequality show for all ρ ∈ (0, 1/4), v1, v2 ∈ Hρ , u ∈ H1
that
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‖(B(v1) − B(v2))u‖Hρ−1/4
= sup

w∈H1\{0}
|〈w, (B(v1) − B(v2))u〉H |

‖w‖H1/4−ρ

≤
[

sup
w∈H1\{0}

‖w‖L1/(2ρ)(μ(0,1);R)

‖w‖H1/4−ρ

][
sup

w∈Hρ\{0}

‖w‖L2/(1−4ρ)(μ(0,1);R)

‖w‖Hρ

]

· |β|‖v1 − v2‖Hρ
‖u‖H < ∞.

(3.76)

This and Lemma 3.11 establish for all ε ∈ (0, 1], γ ∈ (1/2 − ε/4, 1/2), ρ ∈
[γ − 1/4,min{2γ − 1/2, 1/4}) that (Hρ � v �→ (H � u �→ B(v)u ∈ Hγ−1/2) ∈
L(H , Hγ−1/2)) ∈ Lip0(Hρ, L(H , Hγ−1/2)). Corollary 3.10 thus completes the proof
of Corollary 3.12. ��
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de Saint-Flour, XIV—1984.Vol. 1180. LectureNotes inMath. Springer, Berlin, 1986, 265–439. https://
doi.org/10.1007/BFb0074920

44. Walsh, J.B.: On numerical solutions of the stochastic wave equation. Illinois J. Math. 50(1–4), 991–
1018 (2006). https://doi.org/10.1215/ijm/1258059497

45. Wang, X.: An exponential integrator scheme for time discretization of nonlinear stochastic wave
equation. J. Sci. Comput. 64(1), 234–263 (2015). https://doi.org/10.1007/s10915-014-9931-0

46. Wang, X.: Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without
Malliavin calculus. Discrete Contin. Dyn. Syst. 36(1), 481–497 (2016). https://doi.org/10.3934/dcds.
2016.36.481

47. Wang, X., Gan, S.: Weak convergence analysis of the linear implicit Euler method for semilinear
stochastic partial differential equations with additive noise. J. Math. Anal. Appl. 398(1), 151–169
(2013). https://doi.org/10.1016/j.jmaa.2012.08.038

48. Wang, X., Gan, S., Tang, J.: Higher order strong approximations of semilinear stochastic wave equation
with additive space-time white noise. SIAM J. Sci. Comput. 36(6), A2611–A2632 (2014). https://doi.
org/10.1137/130937524

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10543-012-0405-1
https://doi.org/10.1137/090772241
https://doi.org/10.1137/090772241
https://doi.org/10.1137/15M1009792
https://doi.org/10.1016/j.jmaa.2013.12.034
https://doi.org/10.1007/s11118-012-9276-y
https://doi.org/10.1007/978-3-319-22354-4
https://doi.org/10.1007/978-94-015-8455-5
https://doi.org/10.1007/978-94-015-8455-5
https://doi.org/10.1007/s10208-005-0166-6
https://doi.org/10.1007/s10208-005-0166-6
https://doi.org/10.1142/S0219493708002433
https://doi.org/10.1142/S0219493708002433
https://doi.org/10.1007/s11118-005-9002-0
https://doi.org/10.1007/978-1-4757-5037-9
https://doi.org/10.1007/978-1-4757-5037-9
https://doi.org/10.1023/A:1023661308243
https://doi.org/10.1063/1.4728986
https://doi.org/10.1007/BFb0074920
https://doi.org/10.1007/BFb0074920
https://doi.org/10.1215/ijm/1258059497
https://doi.org/10.1007/s10915-014-9931-0
https://doi.org/10.3934/dcds.2016.36.481
https://doi.org/10.3934/dcds.2016.36.481
https://doi.org/10.1016/j.jmaa.2012.08.038
https://doi.org/10.1137/130937524
https://doi.org/10.1137/130937524

	Weak Convergence Rates for Spatial Spectral Galerkin Approximations of Semilinear Stochastic Wave Equations with Multiplicative Noise
	Abstract
	1 Introduction
	1.1 Notation

	2 Preliminaries
	2.1 Existence, Uniqueness, and Regularity Results for SEEs
	2.2 Setting
	2.3 Basic Properties of Deterministic Linear Wave Equations

	3 Upper Bounds for Weak Errors
	3.1 Setting
	3.2 Weak Convergence Rates for Galerkin Approximations
	3.3 Semilinear Stochastic Wave Equations and the Continuous Version of the Hyperbolic Anderson Model

	Acknowledgements
	References




