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Abstract
In this paper, we study a Markov decision process with a non-linear discount function
and with a Borel state space. We define a recursive discounted utility, which resem-
bles non-additive utility functions considered in a number of models in economics.
Non-additivity here follows from non-linearity of the discount function. Our study is
complementary to the work of Jaśkiewicz et al. (Math Oper Res 38:108–121, 2013),
where also non-linear discounting is used in the stochastic setting, but the expectation
of utilities aggregated on the space of all histories of the process is applied leading to a
non-stationary dynamic programming model. Our aim is to prove that in the recursive
discounted utility case the Bellman equation has a solution and there exists an optimal
stationary policy for the problem in the infinite time horizon. Our approach includes
two cases: (a)when the one-stage utility is bounded on both sides by a weight function
multiplied by some positive and negative constants, and (b)when the one-stage utility
is unbounded from below.
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anna.jaskiewicz@pwr.edu.pl

Nicole Bäuerle
nicole.baeuerle@kit.edu

Andrzej S. Nowak
a.nowak@wmie.uz.zgora.pl

1 Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany

2 Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology,
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1 Introduction

Discounting future benefits and costs is crucial in order to determine fair prices for
investments and projects, in particular, when long time horizons come into play like
for example in the task to price carbon emissions. The idea behind pricing carbon
emissions is to add up the cost of the economic damage caused by this emission
for the society. Up to now the value of one ton CO2 emissions varies quite heavily
between countries, ranging for instance from $119.43 in Sweden to $2.69 in Japan
(see [11]). This is of course only partly due to the use of different discount functions,
but nevertheless emphasises the role of discounting.

The traditional discounting with a constant discount factor can be traced back to
[29]. This is still the most common way to discount benefits and costs, in particular
because it simplifies the computation. However, Koopmans [25] gave an axiomatic
characterisation of a class of recursive utilities, which also includes the classical way
of discounting. He introduced an aggregatorW to aggregate the current utility ut with
future ones vt+1 in vt = W (ut , vt+1). When we choose W (u, v) = u + βv, we get
the classical discounting with a discount factor β.

In this paper, we study a Markov decision process with a Borel state space,
unbounded stage utility and with a non-linear discount function δ which has certain
properties. We use an aggregation of the form

vt (ht ) = ut (πt (ht )) +
∫

δ
(
vt+1(ht , πt (ht ), xt+1)

)
q(dxt+1|xt , πt (ht ))

where q is the transition kernel of the Markov decision process, πt is the decision
function at time t and ht the history of the process.When δ(x) = βx we are back in the
classical setting. In this case, it is well-known how to solve a Markov decision process
with an infinite time horizon, see for example [3,8,15,16,30,31]. In the unbounded
utility case, the established method is to use a weighted supremum norm and combine
it with Banach’s contraction theorem (see e.g. [3,4,9,14,17]). In our setting the Banach
contraction principle cannot be applied. Indeed our paper is in the spirit of [20–
22], where also non-linear discounting was used and an extension of the Banach
theorem due toMatkowski [26] was applied.Whereas papers [21,22] consider a purely
deterministic decision process, work [20] treats a stochastic problem. However, in [20]
the expectation is the final operator applied at the end of aggregation, whereas in the
present paper expectation and discounting operators alternate. As will be explained in
Sect. 3 this has the advantage that we get optimal stationary policies in our setting.

Themain result of our paper is a solution procedure of these newkind of discounting
problems with stochastic transition. In particular, we provide an optimality equation,
show that it has a solution and prove that there exists an optimal stationary policy for
the problem in the infinite time horizon. Note that we allow the utility function to be
unbounded.

The outline of our paper is as follows.We introduce ourmodel data togetherwith the
assumptions in Sect. 2. In Sect. 3, we present our optimisation problem. Particularly,
we explain how the utility is aggregated in our model and what precisely the difference
to the model and results in [20] is. In Sect. 4, we summarise some auxiliary results like
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a measurable selection theorem and a generalised fixed point theorem, which is used
later. Next, in Sect. 5.1 we treat the model, where the positive and negative part of
the one-stage utility is bounded by a weight function ω. We show in this case that the
value function v∗ is a unique fixed point of the correspondingmaximal reward operator
and that every maximiser in the Bellman equation for v∗ defines an optimal stationary
policy. InSect. 5.2,we consider then the setting,where the utility function is unbounded
from below, but still bounded from above by the weight function ω.Here, we can only
show that the value function v∗ is a fixed point of the corresponding maximal reward
operator, but examples show that the fixed point is not necessarily unique. Anyway, as
in Sect. 5.1, any maximiser in the Bellman equation for v∗ defines again an optimal
stationary policy. The proof employs an approximation of v∗ by a monotone sequence
of value functions, which are bounded by a weight function ω in absolute value like
in Sect. 5.1. In Sect. 6, we briefly discuss two numerical algorithms for the solution
of problems in Sect. 5.1, namely policy iteration and policy improvement. The last
section presents some applications. We discuss two different optimal growth models,
an inventory problem and a stopping problem.

2 The Dynamic ProgrammingModel

LetN (R) denote the set of all positive integers (all real numbers) andR = R∪{−∞},
R+ = [0,∞). A Borel space Y is a non-empty Borel subset of a complete separable
metric space. By B(Y ) we denote the σ -algebra of all Borel subsets of Y and we write
M(Y ) to denote the set of all Borel measurable functions g : Y → R.

A discrete-time Markov decision process is specified by the following objects:

(i) X is the state space and is assumed to be a Borel space.
(ii) A is the action space and is assumed to be a Borel space.
(iii) D is a non-empty Borel subset of X × A. We assume that for each x ∈ X , the

non-empty x-section

A(x) := {a ∈ A : (x, a) ∈ D}

of D represents the set of actions available in state x .
(iv) q is a transition probability from D to X . For each B ∈ B(X), q(B|x, a) is the

probability that the new state is in the set B, given the current state is x ∈ X and
an action a ∈ A(x) has been chosen.

(v) u ∈ M(D) is a one-period utility function.
(vi) δ : R → R is a discount function.

Let Dn := D × · · · × D (n times) for n ∈ N. Let H1 = X and Hn+1 be the space
of admissible histories up to the n-th transition, i.e., Hn+1 := Dn × X for n ∈ N. An
element of Hn is called a partial history of the process. We put H = D× D×· · · and
assume that Hn and H are equipped with the product σ -algebras.

In this paper, we restrict ourselves to deterministic policies, since randomisation
does not give any advantage from the point of view of utility maximisation. A policy π

is a sequence (πn) of decision rules where, for every n ∈ N, πn is a Borel measurable
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mapping, which associates any admissible history hn ∈ Hn (n ∈ N) with an action
an ∈ A(xn). We write Π to denote the set of all policies. Let F be the set of all Borel
measurable mappings f : X → A such that f (x) ∈ A(x) for every x ∈ X . When
A(x) is compact for each x ∈ X , then from the Arsenin-Kunugui result (see Theorem
18.18 in [24]), it follows that F �= ∅. A policy π is called stationary if πn = f for
all n ∈ N and some f ∈ F . Therefore, a stationary policy π = ( f , f , . . .) will be
identified with f ∈ F and the set of all stationary policies will be denoted by F .

2.1 Assumptions with Comments

Let ω : X → [1,∞) be a fixed Borel measurable function.
Assumptions (A)

(A2.1) there exists b > 0 such that

u(x, a) ≥ −bω(x) for all (x, a) ∈ D,

(A2.2) there exists c > 0 such that

u(x, a) ≤ cω(x) for all (x, a) ∈ D.

Our next assumptions are on the discount function δ.

Assumptions (B)

(B2.1) there exists an increasing function γ : R+ → R+ such that γ (z) < z for
each z > 0 and

|δ(z1) − δ(z2)| ≤ γ (|z1 − z2|)

for all z1, z2 ∈ R.

(B2.2) δ is increasing, δ(0) = 0 and δ(−∞) = −∞.
(B2.3) (i) γ is subadditive, i.e., γ (y + z) ≤ γ (y) + γ (z) for all y, z ≥ 0, and

(i i) γ (ω(x)y) ≤ ω(x)γ (y) for all x ∈ X and y > 0.
(B2.4) it holds that

∫
X

ω(y)q(dy|x, a) ≤ αω(x) for all (x, a) ∈ D

and either

(i) α ≤ 1 or
(ii) α > 1 and αγ (x) < x for all x ∈ (0,+∞).

Remark 2.1 In some empirical studies it was observed that negative and positive util-
ities were discounted by different discount factors (“sign effect”). Therefore a simple
non-linear discount function is δ(y) = δ1y for y ≤ 0 and δ(y) = δ2y for y > 0,
where δ1, δ2 ∈ (0, 1) and δ1 �= δ2. For a discussion and interpretation of this and
other types of discount functions the reader is referred to Jaśkiewicz, Matkowski and
Nowak [21]. Additional examples of discount functions are also given in Sect. 7.
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Remark 2.2 Obviously, assumption (B2.1) implies that γ (0) = 0 and γ is continuous
at zero.Moreover, it implies that δ is continuous and (with (B2.2)) that |δ(z)| ≤ γ (|z|)
for all z ∈ R. From (B2.3), it follows that

|γ (y) − γ (z)| ≤ γ (|y − z|) for all y, z ≥ 0. (2.1)

This fact and continuity of γ at zero, implies that γ is continuous at any point in R+.

Remark 2.3 Assumption (B2.3) holds if the function z �→ γ (z)/z is non-increasing
on (0,∞). Note that under this condition we have γ (y+z)

y+z ≤ γ (y)
y and γ (y+z)

y+z ≤ γ (z)
z .

Hence, γ (y + z) ≤ γ (y) + γ (z). Moreover, for any d ≥ 1 and z > 0, γ (dz)/dz ≤
γ (z)/z. Thus γ (dz) ≤ dγ (z). Take d = ω(x). Then (i i) in (B2.3) holds.

Remark 2.4 There are subadditive functions γ such that z �→ γ (z)/z is not necessarily
non-increasing. An example of such a subadditive function is γ (x) = (1 − ε)x +
ε| sin x | for some ε ∈ (0, 1).

The following two standard sets of assumptions will be used alternatively.

Assumptions (W)

(W2.1) A(x) is compact for every x ∈ X and the set-valued mapping x �→ A(x)
is upper semicontinuous, i.e., {x ∈ X : A(x) ∩ K �= ∅} is closed for each
closed set K ⊂ A,

(W2.2) the function u is upper semicontinuous on D,

(W2.3) the transition probability q is weakly continuous, i.e.,

(x, a) �→
∫
X

φ(y)q(dy|x, a)

is continuous on D for each bounded continuous function φ,
(W2.4) the function ω is continuous on X .
(W2.5) the function

(x, a) �→
∫
X

ω(y)q(dy|x, a)

is continuous on D.

Assumptions (S)

(S2.1) A(x) is compact for every x ∈ X ,
(S2.2) the function u(x, ·) is upper semicontinuous on A(x) for every x ∈ X ,

(S2.3) for each x ∈ X and every Borel set X̃ ⊂ X , the function q(X̃ |x, ·) is contin-
uous on A(x),

(S2.4) the function a �→ ∫
X ω(y)q(dy|x, a) is continuous on A(x) for every x ∈ X .

The above conditions were used in stochastic dynamic programming by many
authors, see, e.g., Schäl [30], Bäuerle and Rieder [3], Bertsekas and Shreve [7] or
Hernández-Lerma and Lasserre [16,17]. Using the so-called “weight” or “bounding”
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function ω one can study dynamic programming models with unbounded one-stage
utility u. This method was introduced by Wessels [34], but as noted by van der Wal
[32], in the dynamic programming with linear discount function δ(z) = βz, one can
introduce an extra state xe /∈ X , re-define the transition probability and the utility
function to obtain an equivalent “bounded model”. More precisely, we consider a new
state space X ∪{xe},where xe is an absorbing isolated state. Let A(xe) = {ae}with an
extra action ae /∈ A. For x ∈ X the action sets are A(x). The transition probabilities
Q and one-stage utilities R in a new model are as follows

Q(B|x, a) := 1

αω(x)

∫
B

ω(y)q(dy|x, a), for B ∈ B(X),

Q(xe|x, a) := 1 −
∫
X ω(y)q(dy|x, a)

αω(x)
,

R(x, a) := u(x, a)

ω(x)
, for (x, a) ∈ D, R(xe, ae) := 0.

Here, α is a constant from assumption (B2.4). This transformed Markov decision
process is equivalent to the original one in the sense that every policy gives the same
total expected discounted payoff up to the factorω(x), where x ∈ X denotes the initial
state. We would like to emphasise that in the non-linear discount function case such a
transformation to bounded case is not possible. We need to do some extra work.

Remark 2.5 If u is bounded from above by some constant, then we can skip assump-
tions (A) and it is enough in assumptions (B) to require (B2.1), (B2.2) and (B2.3)(i).
In this case, it suffices to put α = 1, ω(x) = 1 for all x ∈ X and it is easily seen
that (B2.3)(i i), (B2.4), (S2.4), (W2.4) and (W2.5) hold. If, on the other hand, u is
unbounded in the sense that there exists a function ω meeting conditions (A2.2), then
ω(x) ≥ 1 for all x ∈ X must be unbounded as well. From Remark 2.3, it follows
that (B2.3) holds when the function z �→ γ (z)/z is non-increasing. We would like
to emphasise that condition (i i) in (B2.3) is crucial in our proofs in the case when
(A2.2) holds with an unbounded function ω. The dynamic programming problems
when only (A2.2) is assumed can be solved by a “truncationmethod” and thenmaking
use of an approximation by solutions for models that satisfy conditions (A).

3 Discounted Utility Evaluations: Two Alternative Approaches

Let r1(x, a) = u(x, a) for (x, a) ∈ D and, for any n ∈ N and (hn, an) =
(x1, a1, . . . , xn, an) ∈ Dn,

rn+1(hn+1, an+1)

= u(x1, a1) + δ
(
u(x2, a2) + δ

(
u(x3, a3) + · · · + δ (u (xn+1, an+1)) · · · ) )

= u(x1, a1) + δ(rn(x2, a2, . . . , xn+1, an+1)).

Below in this subsection we assume that all expectations (integrals) and limits exist.
In the sequel, we shall study cases where this assumption is satisfied.
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Let π ∈ Π and x = x1 ∈ X be an initial state. By E
π
x we denote the expectation

operator with respect to the unique probability measurePπ
x on H induced by the policy

π ∈ Π and the transition probability q according to the Ionescu–Tulcea theorem, see
Proposition 7.28 in [7].

Definition 3.1 For anyπ = (πk) ∈ Π and any initial state x = x1 the n-stage expected
discounted utility is

Rn(x, π) = E
π
x

[
rn(x1, a1, . . . , xn, an)

]

and the expected discounted utility over an infinite horizon is

R(x, π) := lim
n→∞ Rn(x, π). (3.1)

A policy π∗ ∈ Π is optimal in the dynamic programming model under utility evalu-
ation (3.1), if

R(x, π∗) ≥ R(x, π) for all π ∈ Π, x ∈ X .

Remark 3.2 Utility functions as in (3.1) have been considered by Jaśkiewicz et al. [20].
Optimal policies have been shown to exist for the model with u bounded from above
satisfying assumptions (A) and either (W) or (S). However, optimal policies obtained
in [20] are history-dependent and are characterised by an infinite system of Bellman
equations as in the non-stationary model of Hinderer [18].

To obtain stationary optimal policies, we shall define a recursive discounted util-
ity using the ideas similar to those developed in papers on dynamic programming
by Denardo [12] and Bertsekas [6] and in papers on economic dynamic optimisation
[1,2,4,9,14,27,28,33]. The seminal article for these studies was the work by Koop-
mans [25] on stationary recursive utility generalising the standard discounted utility
of Samuelson [29]. To define the recursive discounted utility we must introduce some
operator notation.

Let π = (π1, π2, . . .) ∈ Π and v ∈ M(Hk+1). We set

Qδ
πk

v(hk) =
∫
X

δ(v(hk, πk(hk), xk+1))q(dxk+1|xk, πk(hk))

and

Tπkv(hk) = u(xk, πk(hk)) + Qδ
πk

v(hk)

= u(xk, πk(hk)) +
∫
X

δ(v(hk, πk(hk), xk+1))q(dxk+1|xk, πk(hk)).

These operators are well-defined for example when u and v are bounded from above.
Similarly, we define Qγ

πk with δ replaced by γ . Observe that by (B2.1)

|Qδ
πk

v(hk)| ≤ Qγ
πk

|v|(hk)

123



2826 Applied Mathematics & Optimization (2021) 84:2819–2848

provided that Qδ
πk

v(hk) > −∞. This fact will be used frequently.
The interpretation of Tπkv(hk) is as follows. If xk+1 �→ v(hk, πk(hk), xk+1) is a

“continuation value” of utility, then Tπkv(hk) is the expected discounted utility given
the pair (xk, πk(hk)).

The composition Tπ1 ◦ Tπ2 ◦ · · · ◦ Tπn of the operators Tπ1, Tπ2 , . . . , Tπn is for
convenience denoted by Tπ1Tπ2 · · · Tπn .

Let 0 be a function that assigns zero to each argument y ∈ X .

Definition 3.3 For any π = (πk) ∈ Π and any initial state x = x1, the n-stage
recursive discounted utility is defined as

Un(x, π) = Tπ1 · · · Tπn0(x)

and the recursive discounted utility over an infinite horizon is

U (x, π) := lim
n→∞Un(x, π). (3.2)

A policy π∗ ∈ Π is optimal in the dynamic programming model under utility evalu-
ation (3.2), if

U (x, π∗) ≥ U (x, π) for all π ∈ Π, x ∈ X . (3.3)

For instance, below we give a full formula for n = 3. Namely,

U3(x, π) = Tπ1Tπ2Tπ30(x) = u(x, π1(x)) +
∫
X

δ
(
u(x2, π2(x, π1(x), x2))

+
∫
X

δ(u(x3, π3(x, π1(x), x2, π2(x, π1(x), x2), x3))q(dx3|x2,

π2(x, π1(x), x2)))
)

× q(dx2|x, π1(x)).

We would like to point out that in the special case of linear discount function
δ(z) = βz with β ∈ (0, 1), the two above-mentioned approaches coincide. In that
case we deal with the usual expected discounted utility, because

Rn(x, π) = Un(x, π) = E
π
x

[
n∑

k=1

βk−1u(xk, ak)

]
.

4 Auxiliary Results

Let Y be a Borel space. By U(Y ) we denote the space of all upper semicontinuous
functions on Y . We recall some results on measurable selections, a generalisation of
the Banach fixed point theorem and present a property of a subadditive function γ.
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Lemma 4.1 Assume that A(x) is compact for each x ∈ X .

(a) Let g ∈ M(D) be such that a �→ g(x, a) is upper semicontinuous on A(x) for
each x ∈ X . Then,

g∗(x) := max
a∈A(x)

g(x, a)

is Borel measurable and there exists a Borel measurable mapping f ∗ : X → A
such that

f ∗(x) ∈ Arg max
a∈A(x)

g(x, a)

for all x ∈ X .

(b) If, in addition, we assume that x �→ A(x) is upper semicontinuous and g ∈
U(D), then g∗ ∈ U(X).

Part (a) follows fromCorollary 1 in [10]. Part (b) is a corollary toBerge’smaximum
theorem, see [5, pp. 115–116] and Proposition 10.2 in [30].
Let Ma

b(X) be the space of all functions v ∈ M(X) such that x �→ v(x)/ω(x) is
bounded from above on X . The symbolMd

b(X) is used for the subspace of functions
v ∈ Ma

b(X) such that x �→ |v(x)|/ω(x) is bounded on X . Let Ma
b(D) be the space

of all functions w ∈ M(D) such that (x, a) �→ w(x, a)/ω(x) is bounded from
above on D. By Md

b(D) we denote the space of all functions w ∈ Ma
b(D) such that

(x, a) �→ |w(x, a)|/ω(x) is bounded on D. We also define

Ua
b (X) := Ma

b(X) ∩ U(X), Ud
b (X) := Md

b(X) ∩ U(X), and

Ua
b (D) := Ma

b(D) ∩ U(D), Ud
b (D) := Md

b(D) ∩ U(D).

Lemma 4.2 Let assumptions (B) be satisfied and

I (v)(x, a) :=
∫
X

δ(v(y))q(dy|x, a), v ∈ Ma
b(X), (x, a) ∈ D.

Then I (v) ∈ Ma
b(D). If v ∈ Md

b(X), then I (v) ∈ Md
b(D).

Proof Let v ∈ Ma
b(X) and v+(y) = max{v(y), 0}. Then there exists c0 > 0 such

that v(y) ≤ v+(y) ≤ c0ω(y) for all y ∈ X . Obviously, we have I (v)(x, a) ≤
I (v+)(x, a) ≤ I (c0ω)(x, a) ≤ αc0ω(x) for all (x, a) ∈ D. Hence I (v) ∈ Ma

b(D).

Now assume that v ∈ Md
b(X). Then there exists a constant c1 > 0 such that |v(y)| ≤

c1ω(y) for all y ∈ X and we obtain |I (v)(x, a)| ≤ αc1ω(x) for all (x, a) ∈ D. Thus
I (v) ∈ Md

b(D). ��
Our results will be formulated using the standard dynamic programming operators.

For any v ∈ Ma
b(X), put

Sv(x, a) := u(x, a) +
∫
X

δ(v(y))q(dy|x, a), (x, a) ∈ D.
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Next define

T v(x) := sup
a∈A(x)

Sv(x, a) = sup
a∈A(x)

[
u(x, a) +

∫
X

δ(v(y))q(dy|x, a)

]
. (4.1)

By T (m) we denote the composition of T with itself m times.
If f ∈ F and v ∈ Ma

b(X), then we put

T f v(x) := Sv(x, f (x)) = u(x, f (x)) +
∫
X

δ(v(y))q(dy|x, f (x)). (4.2)

Clearly, T f v ∈ Ma
b(X).

The next result follows from Lemmas 4.1–4.2 and Lemmas 8.3.7 and 8.5.5 from [17].

Lemma 4.3 Assume that assumptions (A) and (B) hold.

(a) If conditions (W ) are also satisfied and v ∈ Ud
b (X), then Sv ∈ Ud

b (D) and
T v ∈ Ud

b (X).

(b) If (S2.2)–(S2.4) hold and v ∈ Md
b(X), then Sv ∈ Md

b(D) and, for each x ∈ X ,

the function a �→ Sv(x, a) is upper semicontinuous on A(x). Moreover, T v ∈
Ud
b (X).

Remark 4.4 (a) The assumption that δ is continuous and increasing is important for
part (a) of Lemma 4.3.

(b) Under assumptions of Lemma 4.3, in the operator in (4.1) one can replace sup by
max.

(c) Using Lemma 4.2, one can easily see that if v ∈ Ma
b(X) and f ∈ F, then

T f v ∈ Ma
b(X).

The following fixed point theorem will play an important role in our proof (see e.g.
[26] or Theorem 5.2 in [13]).

Lemma 4.5 Let (Z ,m) be a complete metric space, ψ : R+ → R+ be a continuous,
increasing function with ψ(x) < x for all x ∈ (0,∞). If an operator T : Z → Z
satisfies the inequality

m(T v1, T v2) ≤ ψ(m(v1, v2))

for all v1, v2 ∈ Z, then T has a unique fixed point v∗ ∈ Z and

lim
n→∞m(T (n)v, v∗) = 0

for each v ∈ Z. Here T (n) is the composition of T with itself n times.

For the convenience of the reader we formulate and prove a modification of Lemma
8 from [20] that is used many times in our proofs. Consider a function ψ : R+ → R+
and put

ψm(z) = z + ψ
(
z + ψ

(
z + · · · + ψ(z + ψ(z)) · · · )), where z > 0 appears m times.
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Lemma 4.6 If ψ is increasing, subadditive and ψ(y) < y for all y > 0, then for any
z > 0, there exists

L(z) := lim
m→∞ ψm(z) = sup

m≥1
ψm(z) < ∞.

Proof For any k ∈ N, let ψ(k) mean the composition of ψ with itself k times. Note
that since the function ψ is increasing, then for each m ≥ 1,

ψm+1(z) > ψm(z).

Hence, the sequence (ψm(z)) is increasing. We show that its limit is finite. Indeed,
observe that by the subadditivity of ψ, we have

ψ2(z) − ψ1(z) = z + ψ(z) − z ≤ ψ(z), and

ψ3(z) − ψ2(z) = z + ψ(z + ψ(z)) − z − ψ(z) ≤ ψ(2)(z).

By induction, we obtain

ψm(z) − ψm−1(z) ≤ ψ(m−1)(z).

Let ε > 0 be fixed. Since ψ(m)(z) → 0 as m → ∞, there exists m ≥ 1 such that

ψm(z) − ψm−1(z) < ε − ψ(ε).

Observe now that from subadditivity of ψ (set γ := ψ in (2.1)), it follows that

ψm+1(z) − ψm−1(z) = ψm+1(z) − ψm(z) + ψm(z) − ψm−1(z)

≤ z + ψ(ψm(z)) − z − ψ(ψm−1(z)) + ε − ψ(ε)

≤ ψ(ψm(z) − ψm−1(z)) + ε − ψ(ε)

≤ ψ(ε − ψ(ε)) + ε − ψ(ε) < ψ(ε) + ε − ψ(ε) = ε.

By induction, we can easily prove that

ψm+k(z) − ψm−1(z) ≤ ε

for all k ≥ 0. Hence, ψm+k(z) ≤ ψm−1(z)+ ε. Since ψm−1(z) is finite, it follows that
L(z) is finite. ��

5 Stationary Optimal Policies in Dynamic Problems with the
Recursive Discounted Utilities

In this section, we prove that if u ∈ Ma
b(D), assumptions (B) hold and either condi-

tions (W ) or (S) are satisfied, then the recursive discounted utility functions (3.2) are
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well-defined and there exists an optimal stationary policy. Moreover, under assump-
tions (W ) ((S)), the value function x �→ supπ∈Π U (x, π) belongs toUa

b (X) (Ma
b(X)).

The value function and an optimal policy will be characterised via a single Bellman
equation. First we shall study the case u ∈ Md

b(D) and then apply an approximation
technique to the unbounded from below case.

5.1 One-Period Utilities with Bounds on Both Sides

Assume thatMd
b(X) is endowed with the so-called weighted norm ‖ · ‖ω defined as

‖v‖ω := sup
x∈X

|v(x)|
ω(x)

, v ∈ Md
b(X).

Then Md
b(X) is a Banach space and Ud

b (X) is a closed subset of Md
b(X), if (W2.4)

holds. The following theorem is the main result of this subsection. Its proof is split in
different parts below.

Theorem 5.1 Suppose that assumptions (A), (B) hold and assumptions (W ) are sat-
isfied. Then

(a) the Bellman equation T v = v has a unique solution v∗ ∈ Md
b(X) and

lim
m→∞ ‖T (m)0 − v∗‖ω = 0 and v∗(x) = sup

π∈Π

U (x, π), x ∈ X ,

(b) there exists f ∗ ∈ F such that T f ∗v∗ = v∗ and f ∗ is an optimal stationary policy
for problem (3.3),

(c) v∗ ∈ Ud
b (X).

The points (a) and (b) also remain valid under assumptions (A), (B) and (S).

Remark 5.2 As already mentioned, in our approach we consider only deterministic
strategies. This is because the optimality results do not change, when we take ran-
domised strategies into account. Actually, we may examine a new model in which the
original action sets A(x) are replaced by the set of probability measures Pr(A(x)).
Then, the Bellman equation has a solution as in Theorem 5.1, but the supremum in
(4.1) is taken over the set Pr(A(x)). However, due to our assumptions the maximum
is also attained at a Dirac delta concentrated at some point from A(x). Therefore,
randomised strategies do not influence the results.

Since condition (B2.4) contains two cases, it is convenient to define a new function

γ̃ (y) :=
{

γ (y), α ≤ 1
αγ (y), α > 1.

Clearly, γ̃ is subadditive. Let z = max{b, c}, the constants b > 0 and c > 0 come
from (A). Then |u(x, a)| ≤ ω(x)z for all (x, a) ∈ D. From (B2.3)(i i), it follows
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that

γ̃ (ω(x)y) ≤ ω(x)γ̃ (y), for all x ∈ X , y ≥ 0. (5.1)

This inequality is frequently used in our proofs. Let

γ̃k(z) = z + γ̃
(
z + γ̃ (z + · · · + γ̃ (z)

) · · · ),

where z appears on the right-hand side k times. Putting ψ = γ̃ in Lemma 4.6, we
infer that

L̃(z) := lim
k→∞ γ̃k(z) = sup

k∈N
γ̃k(z) < ∞.

(5.2)

We point out that γ̃ (n) is the n-th iteration of the function γ̃ .

We now prove that the recursive discounted utility (3.2) is well-defined.

Lemma 5.3 If u ∈ Md
b(D) and assumptions (B) are satisfied, then U (x, π) :=

limn→∞ Un(x, π) exists for any policy π ∈ Π and any initial state x ∈ X . Moreover,
U (·, π) ∈ Md

b(X) and

lim
n→∞ ‖U (·, π) −Un(·, π)‖ω = 0.

Proof We shall prove that (Un(·, π)) is a Cauchy sequence of functions in Md
b(X)

for each policy π ∈ Π. We claim that

|Un+m(x, π) −Un(x, π)| ≤ Qγ
π1

. . . Qγ
πn−1

Qγ
πn

|Tπn+1 . . . Tπn+m0|(x). (5.3)

Indeed, using assumptions (B), we can conclude that

|Un+m(x, π) −Un(x, π)| = |Tπ1 · · · Tπn Tπn+1 · · · Tπn+m0(x) − Tπ1 · · · Tπn0(x)|
= |Qδ

π1
Tπ2 · · · Tπn+m0(x) − Qδ

π1
Tπ2 · · · Tπn0(x)|

≤ Qγ
π1

|Tπ2 · · · Tπn+m0 − Tπ2 · · · Tπn0|(x) ≤ (cont.) · · ·
≤ Qγ

π1
· · · Qγ

πn−1
|Qδ

πn
Tπn+1 · · · Tπn+m0|(x)

≤ Qγ
π1

· · · Qγ
πn−1

Qγ
πn

|Tπn+1 · · · Tπn+m0|(x).

Assume that m = 1. Then, for any hn+1 ∈ Hn+1, we have

|Tπn+10(hn+1)| = |u(xn+1, πn+1(hn+1))| ≤ ω(xn+1)z.
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Take m = 2 and notice by (B) that

|Tπn+1Tπn+20(hn+1)| = |u(xn+1, πn+1(hn+1)) +
∫
X

δ(u(xn+2, πn+2(hn+1, xn+2)))

q(dxn+2|xn+1, πn+1(hn+1))|
≤ ω(xn+1)z +

∫
X

γ (ω(xn+2)z)q(dxn+2|xn+1, πn+1(hn+1))

≤ ω(xn+1)z +
∫
X

ω(xn+2)γ (z)q(dxn+2|xn+1, πn+1(hn+1))

≤ ω(xn+1)(z + αγ (z)) ≤ ω(xn+1)(z + γ̃ (z)).

For m = 3, it follows that

|Tπn+1Tπn+2Tπn+30(hn+1)| = |u(xn+1, πn+1(hn+1))

+
∫
X

δ(Tπn+2Tπn+30(hn+1, πn+1(hn+1), xn+2))q(dxn+2|xn+1, πn+1(hn+1))|

≤ ω(xn+1)z +
∫
X

γ (ω(xn+2)(z + γ̃ (z))) q(dxn+2|n+1, πn+1(hn+1))

≤ ω(xn+1)z +
∫
X

ω(xn+2)γ (z + γ̃ (z)) q(dxn+2|xn+1, πn+1(hn+1))

≤ ω(xn+1)z + αω(xn+1)γ (z + γ̃ (z)) ≤ ω(xn+1)(z + γ̃ (z + γ̃ (z))).

Continuing this way, for any hn+1 ∈ Hn+1, we obtain

|Tπn+1 · · · Tπn+m0(hn+1)| ≤ ω(xn+1)
(
z + γ̃

(
z + γ̃ (z + · · · + γ̃ (z + γ̃ (z)) · · · )))

= ω(xn+1)γ̃m (z) , (5.4)

where z appears m times on the right-hand side of inequality (5.4). By (5.2), γ̃m(z) <

L̃(z) < ∞. Combining (5.3) and (5.4) and making use of (B2.4) and (5.1), we
conclude that

Qγ
π1

. . . Qγ
πn−1

Qγ
πn
L̃(z)ω(x) ≤ Qγ

π1
. . . Qγ

πn−1
γ (L̃(z))αω(x)

= Qγ
π1

· · · Qγ
πn−1

γ̃ (L̃(z))ω(x) . . .

≤ γ̃ (n)(L̃(z))ω(x).

Consequently,

‖Un+m(·, π) −Un(·, π)‖ω ≤ γ̃ (n)(L̃(z)). (5.5)

From the proof of (5.4) we deduce that for any n ∈ N

|Un(x, π)| ≤ ω(x)γ̃n(z) ≤ ω(x)L̃(z).
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Therefore, for each n ∈ N, Un(·, π) ∈ Md
b(X). From (5.5) it follows that (Un(x, π))

is a Cauchy sequence in the Banach space Md
b(X). ��

Proof of Theorem 5.1 Consider first assumptions (W ). By Lemma 4.3, T maps Ud
b (X)

into itself. We show that T has a fixed point in Ud
b (X). Let v1, v2 ∈ Ud

b (X). Then,
under assumptions (B) we obtain

|T v1(x) − T v2(x)| ≤ sup
a∈A(x)

∫
X

∣∣δ(v1(y)) − δ
(
v2(y)

)∣∣ q(dy|x, a)

≤ sup
a∈A(x)

∫
X

γ
(|v1(y) − v2(y)|

)
q(dy|x, a)

≤ sup
a∈A(x)

∣∣∣∣
∫
X

γ
(‖v1 − v2‖

)
ω(y)q(dy|x, a)

∣∣∣∣
≤ αγ

(‖v1 − v2‖ω

)
ω(x).

Hence,

‖T v1 − T v2‖ω ≤ γ̃ (‖v1 − v2‖ω).

Since the spaceUd
b (X) endowedwith themetric induced by the norm ‖·‖ω is complete,

by Lemma 4.5, there exists a unique v∗ ∈ Ud
b (X) such that v∗ = T v∗ and

lim
n→∞ ‖T (n)v − v∗‖ω = 0 for any v ∈ Ud

b (X).

By Lemma 4.1 and the assumptions that δ is increasing and continuous, it follows
that there exists f ∗ ∈ F such that v∗ = T f ∗v∗. We claim that

v∗(x) = U (x, f ∗) = lim
n→∞ T (n)

f ∗ v∗(x) for all x ∈ X .

The operator T f ∗ : Md
b(X) → Md

b(X) also satisfies assumptions of Lemma 4.5.
Thus there is a unique function ṽ ∈ Md

b(X) such that

ṽ(x) = T f ∗ ṽ(x) = lim
n→∞ T (n)

f ∗ h(x), x ∈ X ,

for any h ∈ Md
b(X). Therefore, ṽ = v∗. Putting h := 0 we deduce from Lemma 5.3

that

lim
n→∞ T (n)

f ∗ 0(x) = U (x, f ∗), x ∈ X .

In order to prove the optimality of f ∗ note that for any a ∈ A(x) and x ∈ X , it holds

v∗(x) ≥ u(x, a) +
∫
X

δ(v∗(y))q(dy|x, a).
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Taking any policy π = (πn) and iterating the above inequality, we get

v∗(x) ≥ Tπ1 · · · Tπnv
∗(x), x ∈ X .

We now prove that

lim
n→∞ Tπ1 · · · Tπnv

∗(x) = U (x, π), x ∈ X .

With this end in view, we first consider the differences

|Un(x, π) − Tπ1 · · · Tπnv
∗(x)| = |Tπ1 · · · Tπn0(x) − Tπ1 · · · Tπnv

∗(x)|
≤ ω(x)γ̃ (n)(‖v∗‖ω) → 0 as n → ∞.

By Lemma 5.3, Un(x, π) → U (x, π) for every x ∈ X as n → ∞. Therefore, we
have that

v∗(x) ≥ lim
n→∞ Tπ1 · · · Tπnv

∗(x) = U (x, π), x ∈ X

and

sup
π∈Π

U (x, π) ≥ U (x, f ∗) = v∗(x) ≥ sup
π∈Π

U (x, π), x ∈ X .

This implies that

U (x, f ∗) = v∗(x) = sup
π∈Π

U (x, π), x ∈ X ,

which finishes the proof under assumptions (W ). For assumptions (S) the proof pro-
ceeds along the same lines. By Lemma 4.3, under (S), T : Md

b(X) → Md
b(X).

��

Remark 5.4 Under assumptions of Theorem 5.1, the Bellman equation has a unique
solution and it is the optimal value function v∗(x) = supπ∈Π U (x, π). Moreover, it
holds that

lim
n→∞ ‖T (n)0 − v∗‖ω = 0.

Obviously, T (n)0 is the value function in the n-step dynamic programming problem.
One can say that the value iteration algorithm works and the iterations T (n)0(x)
converge to v∗(x) for each x ∈ X . This convergence is uniform in x ∈ X when the
weight function ω is bounded.
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5.2 One-Period Utilities Unbounded from Below

In this subsection we drop condition (A2.1) and assume that there exists c > 0 such
that u(x, a) ≤ cω(x) for all (x, a) ∈ D. In other words, u ∈ Ma

b(D). Here we obtain
the following result which is shown in the remaining part of this subsection.

Theorem 5.5 Suppose that assumptions (A2.2), (B) and (W ) are satisfied. Then

(a) the optimal value function

v∗(x) := sup
π∈Π

U (x, π), x ∈ X ,

is a solution to the Bellman equation T v = v and v∗ ∈ Ma
b(X),

(b) there exists f̃ ∈ F such that T f̃ v
∗ = v∗ and f̃ is an optimal stationary policy,

(c) v∗ ∈ Ua
b (X).

The points (a) and (b) also remain valid under assumptions (A2.2), (B) and (S).

Remark 5.6 We shall prove that v∗ is the limit of a non-increasing sequence of value
functions in “truncated models”, i.e. the models that satisfy (A2.1) and (A2.2). The
convergence is monotone, but it is not uniform. The Bellman equation may have many
unbounded solutions.

Remark 5.7 The assumptions of Theorem 5.5 do not guarantee uniqueness. An exam-
ple is very simple. Assume that X = N, A = A(x) = {a}, u(x, a) = 0 for all
(x, a) ∈ D, and the process moves from state x to x + 1 with probability one. The
discount function δ(x) = βx with β ∈ (0, 1). Clearly, u satisfies assumption (A2.2)
with ω(x) = 1, c = 1. Note that v(x) = r/βx is a solution to the Bellman equation
T v = v for any r ∈ R. Clearly, v∗(x) = 0 is one of them. Actually, v∗(x) = 0
is the largest non-positive solution to the Bellman equation. This example does not
contradict the uniqueness result in Theorem 5.1.Within the class of bounded functions
v∗(x) = 0 is the unique solution to the Bellman equation.

We now prove that the recursive discounted utility (3.2) is well-defined.

Lemma 5.8 If u ∈ Ma
b(D) and assumptions (B) are satisfied, then U (x, π) :=

limn→∞ Un(x, π) exists in R for any policy π ∈ Π and any initial state x ∈ X .

Moreover, U (·, π) ∈ Ma
b(X).

Our assumption that u ∈ Ma
b(D) means that (A2.2) holds, i.e., there exists c > 0

such that u(x, a) ≤ cω(x) for all (x, a) ∈ D.

Proof of Lemma 5.8 We divide the proof into five parts.
Step 1: We start with a simple observation: for any n ∈ N, x ∈ X and π ∈ Π it holds

Un+1(x, π) ≤ Un(x, π) + γ̃ (n)(c)ω(x).

From assumptions (B), it follows that

δ(a + cω(x)) ≤ δ(a) + γ (cω(x)) ≤ γ (c)ω(x)
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for a ∈ R and x ∈ X . Note that, for any hk ∈ Hk and πk , we have

Tπk cω(hk) = u(xk, πk(hk)) +
∫
X

δ(cω(y))q(dy|xk, πk(hk))

≤ u(xk, πk(hk)) + Qγ
πk
cω(xk) ≤ Tπk0(hk) + γ̃ (c)ω(xk). (5.6)

Furthermore, for any v ∈ M(Hk+1) such that v(hk, πk(hk), y) ≤ ηω(y) for all y ∈ X
and some η > 0, we obtain

Tπk (v + cω)(hk)

= u(xk, πk(hk)) +
∫
X

δ(v(hk, πk(hk), y) + cω(y))q(dy|xk, πk(hk))

≤ u(xk, πk(hk)) + Qδ
πk

v(hk) + Qγ
πk
cω(hk) ≤ Tπkv(hk) + γ̃ (c)ω(xk).

From this fact and (5.6) we conclude that

Un+1(x, π) = Tπ1 · · · Tπn Tπn+10(x) ≤ Tπ1 · · · Tπn−1Tπn cω(x)

≤ Tπ1 · · · Tπn−1

(
Tπn0 + γ̃ (c)ω

)
(x)

≤ Tπ1 · · · Tπn−2

(
Tπn−1Tπn0 + γ̃ (2)(c)ω

)
(x) . . . (cont.)

≤ Tπ1 · · · Tπn−2Tπn−1Tπn0(x) + γ̃ (n)(c)ω(x)

= Un(x, π) + γ̃ (n)(c)ω(x). (5.7)

This finishes the first step.
Step 2: Let Un(x, π) = −∞ for some n ∈ N, x ∈ X and π ∈ Π . Then, by Step 1,
Um(x, π) = −∞ for all m ≥ n. Therefore, limm→∞ Um(x, π) = −∞.

Step 3: Let v ∈ M(Hk+1) be such that v(hk, ak, xk+1) ≤ ηω(xk+1) for every xk+1 ∈
X and for some η > 0. Define

Γπkv(hk) := cω(xk) + Qγ
πk

v(hk) and

Γ
πn+m
πn+1 0(hn+1) := Γπn+1 · · ·Γπn+m0(hn+1).

Note that

Γπn+m0(hn+m) = cω(xn+m).

Next, we have

Γπn+m−1Γπn+m0(hn+m−1)

= cω(xn+m−1) +
∫
X

γ
(
cω(xn+m)

)
q
(
dxn+m |xn+m−1, πn+m−1(hn+m−1)

)

≤ ω(xn+m−1)(c + γ̃ (c)),
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and

Γπn+m−2Γπn+m−1Γπn+m0(hn+m−2)

≤ cω(xn+m−2) +
∫
X

γ
(
ω(xn+m−1)(c + γ̃ (c))

)

q
(
dxn+m−1|xn+m−2, πn+m−2(hn+m−2)

)
≤ ω(xn+m−2)(c + γ̃ (c + γ̃ (c))).

Continuing this way, we get

Γ
πn+m
πn+1 0(hn+1) = Γπn+1 · · · Γπn+m0(hn+1)

≤ ω(xn+1)
(
c + γ̃

(
c + γ̃

(
c + · · · + γ̃ (c + γ̃ (c)) · · · ))),

where c appears on the right-hand side of this inequality m times. Putting c̃ = L̃(z)
with z = c in (5.2), we obtain

Γ
πn+m
πn+1 0(hn+1) = Γπn+1 · · ·Γπn+m0(hn+1) ≤ ω(xn+1)c̃ = ω(xn+1)L̃(c) < ∞.

(5.8)

Step 4: For m, n ∈ N, we set

Wn,m(x, π) := Tπ1 · · · TπnΓ
πn+m
πn+1 0(x) and

Wn,0(x, π) := Tπ1 · · · Tπn0(x) = Un(x, π).

For any k = 1, . . . , n−1 and hk+1 ∈ Hk+1, π ∈ Π, let π(k+1) = (πk+1, πk+2, . . .)

and

V π(k+1)
n−k,m (hk+1) := Tπk+1 · · · TπnΓ

πn+m
πn+1 0(hk+1),

V π(k+1)
n−k,0 (hk+1) := Tπk+1 · · · Tπn0(hk+1).

For k = n − 1, we have

V π(n)
1,m (hn) = TπnΓ

πn+m
πn+1 0(hn),

and

V π(n)
1,0 (hn) = Tπn0(hn) = u(xn, πn(hn)).

Hence and from (5.8), it follows that

V π(n)
1,m (hn) − V π(n)

1,0 (hn) ≤
∫
X

γ
(
ω(xn+1)c̃

)
q(dxn+1|xn, πn(hn)) ≤ ω(xn)γ̃ (c̃).

(5.9)
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Observe that for each k = 1, . . . , n − 2,

V π(k+1)
n−k,m (hk+1) − V π(k+1)

n−k,0 (hk+1) = Tπk+1V
π(k+2)
n−k−1,m(hk+1) − Tπk+1V

π(k+2)
n−k−1,0(hk+1)

= Qδ
πk+1

V π(k+2)
n−k−1,m(hk+1) − Qδ

πk+1
V π(k+2)
n−k−1,0(hk+1)

≤ Qγ
πk+1

(
V π(k+2)
n−k−1,m − V π(k+2)

n−k−1,0

)
(hk+1). (5.10)

It is important to note that

V π(k+1)
n−k,m − V π(k+1)

n−k,0 > 0, k = 1, . . . , n − 1.

Now, using (5.10), for any π ∈ Π and x = x1, we conclude that

Wn,m(x, π) − Wn,0(x, π) = Tπ1V
π(2)
n−1,m(x) − Tπ1V

π(2)
n−1,0(x)

= Qδ
π1
V π(2)
n−1,m(x) − Qδ

π1
V π(2)
n−1,0(x)

≤ Qγ
π1

(
V π(2)
n−1,m − V π(2)

n−1,0

)
(x)

≤ Qγ
π1
Qγ

π2

(
V π(3)
n−2,m − V π(3)

n−2,0

)
(x) . . . (cont.)

≤ Qγ
π1
Qγ

π2
· · · Qγ

πn−1

(
V π(n)
1,m − V π(n)

1,0

)
(x).

This and (5.9) imply that

Wn,m(x, π) − Wn,0(x, π) ≤ ω(x)γ̃ (n)(c̃), for all m, n ∈ N. (5.11)

Step 5: We now consider the case where Un(x, π) > −∞ for an initial state x ∈ X ,

a policy π ∈ Π and for all n ∈ N. From (5.8) we have

Wn,m(x, π) ≤ Wn,m+1(x, π) ≤ Γ
πn+m+1
π1 0(x) ≤ c̃ω(x) < ∞.

Therefore, limm→∞ Wn,m(x, π) exists and is finite. Let us denote this limit by Gn .
Note that, for each m, n ∈ N,

Un(x, π) = Wn,0(x, π) ≤ Wn,m(x, π).

Let ε > 0 be fixed. Then, by (5.11), for sufficiently large n, say n > N0,

Wn,m(x, π) ≤ Wn,0(x, π) + ε

for all m ∈ N. Thus

Wn,m(x, π) − ε ≤ Wn,0(x, π) ≤ Wn,m(x, π)

and consequently

Gn − ε ≤ Wn,0(x, π) ≤ Gn
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for all n > N0. Observe that the sequence (Gn) is non-increasing and G∗ :=
limn→∞ Gn exists in the extended real line R. Hence, the limit

lim
n→∞ Wn,0(x, π) = lim

n→∞Un(x, π)

also exists and equals G∗. ��
In the proof of Theorem 5.5 we shall need the following result (see [30] or Theorem

A.1.5 in [3]).

Lemma 5.9 If Y is a metric space and (wn) is a non-increasing sequence of upper
semicontinuous functions wn : Y → R, then

(a) w∞ = limn→∞ wn exists and w∞ is upper semicontinuous,
(b) if, additionally, Y is compact, then

max
y∈Y lim

n→∞ wn(y) = lim
n→∞max

y∈Y wn(y).

In the proof of Theorem 5.5 we shall refer to the dynamic programming operators
defined in (4.1) and (4.2). Moreover, we also define corresponding operators for v ∈
Ma

b(X) and K ∈ N as follows

T K v(x) := sup
a∈A(x)

[
uK (x, a) +

∫
X

δ(v(y))q(dy|x, a)

]
, x ∈ X ,

and

T K
f v(x) = uK (x, f (x)) +

∫
X

δ(v(y))q(dy|x, f (x)), x ∈ X ,

where f ∈ F and uK (x, a) = max{u(x, a), 1−K }, K ∈ N. The recursive discounted
utility functions with one-period utility uK in the finite (n-periods) and infinite time
horizon for an initial state x ∈ X and a policy π ∈ Π will be denoted by UK

n (x, π)

and UK (x, π), respectively.

Lemma 5.10 For any n ∈ N and f ∈ F, it holds

lim
K→∞UK

n (x, f ) = Un(x, f ), x ∈ X .

Proof We proceed by induction. For n = 1 the fact is obvious. Suppose that

T K ,(n)
f 0(x) = UK

n (x, f ) → T (n)
f 0(x) = Un(x, f ) as K → ∞, for all x ∈ X .

Here, T K ,(n)
f denotes the n-th composition of the operator T K

f with itself. Then, by
our induction hypothesis, our assumption that δ is continuous and increasing, and the
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monotone convergence theorem, we infer that, for every x ∈ X ,

lim
K→∞ T K

f T K ,(n)
f 0(x) = lim

K→∞

(
uK (x, f (x)) +

∫
X

δ(T K ,(n)
f 0(y))q(dy|x, f (x))

)

= u(x, f (x)) +
∫
X

δ(T (n)
f 0(y))q(dy|x, f ) = T (n+1)

f 0(x).

The lemma now follows by the induction principle. ��
Proof of Theorem 5.5 Assume first (W ). The proof for (S) is analogous with obvious
changes. ByTheorem5.1, for any K ∈ N, there exists a unique solution v∗,K ∈ Ud

b (X)

to the Bellman equation and, for each x ∈ X , v∗,K (x) = supπ∈Π UK (x, π). Since,
uK ≥ u, it follows that

v∗,K (x) = sup
π∈Π

UK (x, π) ≥ sup
π∈Π

U (x, π) = v∗(x), x ∈ X .

Clearly, the sequence (v∗,K ) is non-increasing, thus v∞(x) := limK→∞ v∗,K (x) exists
in R for every x ∈ X , and consequently,

v∞(x) ≥ v∗(x), x ∈ X . (5.12)

From Theorem 5.1 we know that v∗,K is a solution to the equation

v∗,K (x) = sup
a∈A(x)

[
uK (x, a) +

∫
X

δ(v∗,K (y))q(dy|x, a)

]
, x ∈ X .

Since both sequences (v∗,K (x)), x ∈ X , and (uK (x, a)), (x, a) ∈ D, are non-
increasing, it follows from Lemma 5.9, our assumption that δ is increasing and
continuous and the monotone convergence theorem that

v∞(x) = lim
K→∞ v∗,K (x) = lim

K→∞ max
a∈A(x)

[
uK (x, a) +

∫
X

δ(v∗,K (y))q(dy|x, a)

]

= max
a∈A(x)

lim
K→∞

[
uK (x, a) +

∫
X

δ(v∗,K (y))q(dy|x, a)

]

= max
a∈A(x)

[
u(x, a) +

∫
X

δ(v∞(y))q(dy|x, a)

]
, x ∈ X . (5.13)

Moreover, in case (W ), we have that v∞ ∈ Ua
b (X). From the obvious inequalities

u(x, a) ≤ u1(x, a) ≤ cω(x), (x, a) ∈ D, it follows that v∞(x) ≤ c̃ω(x) for c̃ = L̃(c)
and for all x ∈ X (put z = c in (5.2)). By Lemma 4.1, there exists a maximiser f̃ ∈ F
on the right-hand side of equation (5.13) and we have

v∞(x) = u(x, f̃ (x)) +
∫
X

δ(v∞(y))q(dy|x, f̃ (x)) = T f̃ v∞(x), x ∈ X .
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Iterating this equation, we obtain that

v∞(x) = T (n)

f̃
v∞(x) ≤ T K ,(n)

f̃
v∞(x) ≤ T K ,(n)

f̃
c̃ω(x), for all x ∈ X and k ∈ N.

From (5.7) in the proof of Lemma 5.8, (with c replaced by c̃, u replaced by uK and
π1 = · · · = πn = f̃ ) we infer that

v∞(x) ≤ T K ,(n)

f̃
c̃ω(x) ≤ UK

n (x, f̃ ) + γ̃ (n)(c̃)ω(x), for all x ∈ X and n ∈ N.

Letting K → ∞ in the above inequality and making use of Lemma 5.10 yield that

v∞(x) ≤ Un(x, f̃ ) + γ̃ (n)(c̃)ω(x) for all x ∈ X .

Hence,

v∞(x) ≤ lim
n→∞

(
Un(x, f̃ ) + γ̃ (n)(c̃)ω(x)

)
= U (x, f̃ ) ≤ sup

π∈Π

U (x, π)

= v∗(x), x ∈ X .

From this inequality and (5.12), we conclude that

v∞(x) = U (x, f̃ ) = sup
π∈Π

U (x, π) = v∗(x), for all x ∈ X ,

and the proof is finished. ��

6 Computational Issues

In this section we consider the unbounded utility setting as in Theorem 5.1.

6.1 Policy Iteration

An optimal stationary policy can be computed as a limit point of a sequence of decision
rules. In what follows, we define V0 = 0 and Vn := T (n)0 for n ∈ N. Next for fixed
x ∈ X , let

A∗
n(x) := Arg max

a∈A(x)

(
u(x, a) +

∫
X

δ(Vn−1(y))q(dy|x, a)
)

for n ∈ N. In the same way, let

A∗(x) := Arg max
a∈A(x)

(
u(x, a) +

∫
X

δ(v∗(y))q(dy|x, a)
)
.
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By LsA∗
n(x), we denote the upper limit of the set sequence (A∗

n(x)), that is, the set of
all accumulation points of sequences (an) with an ∈ A∗

n(x) for all n ∈ N.

The next result states that an optimal stationary policy can be obtained from accu-
mulation points of sequences of maximisers of recursively computed value functions.
Related results for dynamic programming with standard discounting are discussed,
for example, in [3,30].

Theorem 6.1 Under assumptions of Theorem 5.1, we obtain: ∅ �= LsA∗
n(x) ⊂ A∗(x)

for all x ∈ X.

Proof Fix x ∈ X and define for n ∈ N the functions vn : A(x) → R by

vn(a) := u(x, a) +
∫
X

δ(Vn−1(y))q(dy|x, a).

By Lemma 4.3, vn is upper semicontinuous on A(x). Moreover, for m ≥ n and
a ∈ A(x), we have

|vm(a) − vn(a)| ≤ |
∫
X

δ
(
T (m−1)0(y)

)
q(dy|x, a) −

∫
X

δ
(
T (n−1)0(y)

)
q(dy|x, a)|

≤
∫
X

γ
(|T (m−1)0(y) − T (n−1)0(y)|)q(dy|x, a). (6.1)

Using the arguments as in the proof of (5.5), we infer that

|T (m−1)0(y) − T (n−1)0(y)| ≤ sup
π∈Π

|Um−1(y, π) −Un−1(y, π)|

≤ ω(y) sup
π∈Π

‖Um−1(·, π) −Un−1(·, π)‖ω ≤ ω(y)γ̃ (n−1)(L̃(z)). (6.2)

From (6.1) and (6.2), it follows that

|vm(a) − vn(a)| ≤
∫
X

γ
(
ω(y)γ̃ (n−1)(L̃(z))

)
q(dy|x, a)

≤
∫
X

ω(y)γ
(
γ̃ (n−1)(L̃(z))

)
q(dy|x, a) ≤ ω(x)γ̃ (n)

(
L̃(z)

)
.

for all a ∈ A(x). Hence

max
a∈A(x)

|vm(a) − vn(a)| ≤ ω(x)γ̃ (n)
(
L̃(z)

) =: εn .

This then implies that vm(a) ≤ vn(a) + εn for m ≥ n and all a ∈ A(x). Since
εn → 0 as n → ∞, the result follows from Theorem A.1.5. in [3] and the fact that
v∗ = limn→∞ Vn (see Remark 5.4). ��
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6.2 Howard’s Policy Improvement Algorithm

The algorithmproposed byHoward [19] iswidely discussed in the literature onMarkov
decision processes (dynamic programming), see [3,16,17] and their references. It may
be also applied to models with the recursive discounted utility.

For any f ∈ F we shall use the following notation U f = U (·, f ).

Theorem 6.2 Let assumptions of Theorem 5.1 be satisfied. For any f ∈ F, denote

A(x, f ) := {
a ∈ A(x) | u(x, a) +

∫
X

δ(U (y, f ))q(dy|x, a) > U (x, f )
}
, x ∈ X .

Then, the following holds:

(a) If for some Borel set X0 ⊂ X we define a decision rule g by

g(x) ∈ A(x, f ) for x ∈ X0,

g(x) = f (x) for x /∈ X0,

then Ug ≥ U f and Ug(x) > U f (x) for x ∈ X0. In this case, the policy g is
called an improvement of f .

(b) If A(x, f ) = ∅ for all x ∈ X, then U f = v∗, i.e., the stationary policy f ∈ F
is optimal.

Proof (a) From the definition of g we obtain

TgU f (x) > U (x, f ),

if x ∈ X0 and TgU f (x) = U (x, f ), if x /∈ X0. Thus by induction

U f (x) ≤ TgU f (x) ≤ T (n)
g U f (x),

where the first inequality is strict for x ∈ X0. Letting n → ∞, it follows as in the
proof of Theorem 5.1 thatU f ≤ Ug and in particularU (x, f ) < U (x, g) for x ∈ X0.

(b) The condition A(x, f ) = ∅ for all x ∈ X implies TU f ≤ U f . Since we always
have TU f ≥ T f U f = U f , we obtain TU f = U f . From Theorem 5.1 we know that
T has a unique fixed point v∗ ∈ Ud

b (X) (under assumptions (W )) or v∗ ∈ Md
b(X)

(under assumptions (S)). Thus U f = v∗. ��
Altogether, we have the following algorithm for the computation of the value func-

tion and an optimal stationary policy:

1. Choose f0 ∈ F arbitrary and set k = 0.
2. Compute U fk as the unique solution v ∈ Md

b(X) of the equation v = T fkv.
3. Choose fk+1 ∈ F such that

fk+1(x) ∈ Arg max
a∈A(x)

(
u(x, a) +

∫
X

δ(U fk (y))q(dy|x, fk(x))
)
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and set fk+1(x) = fk(x) if possible. If fk+1 = fk, then U fk = v∗ and
( fk, fk, . . .) is an optimal stationary policy. Else set k := k + 1 and go to step 2.

It is obvious that the algorithm stops in a finite number of steps if the state and
action sets are finite. In general, as in the standard discounted case (see, e.g., Theorem
7.5.1 and Corollary 7.5.3 in [3]) we can only claim that

v∗(x) = lim
k→∞U (x, fk).

7 Applications

Example 7.1 (Stochastic optimal growth model 1) There is a single good available to
the consumer. The level of this good at the beginning of period t ∈ N is given by xt ∈
X := [0,∞). The consumer has to divide xt between consumption at ∈ A := [0,∞)

and investment (saving) yt = xt −at . Thus A(xt ) = [0, xt ]. From consumption at the
consumer receives utility u(xt , at ) = √

at . Investment, on the other hand, is used for
production with input yt yielding output

xt+1 = yt · ξt , t ∈ N,

where (ξt ) is a sequence of i.i.d. shocks with distribution ν being a probability measure
on [0,∞). The initial state x = x1 ∈ R+ is non-random. Further, we assume that

s̄ = Eξt =
∫ ∞

0
sν(ds) ≤ 1.

Let the discount function be as follows

δ(z) = (1 − ε)z + ε ln(1 + z), z ≥ 0

with some ε ∈ (0, 1). We observe that there is no constant β ∈ (0, 1) such that
δ(z) < βz for all z > 0. We define γ := δ and note that z �→ γ (z)/z is non-
increasing. Hence, γ and δ satisfy assumptions (B2.1)-(B2.3). Now we show that
assumptions (A), (W ) and (B2.4) are satisfied with an appropriate function ω. With
this end in view, put

ω(x) = √
x + 1, x ∈ X .

Then |u(x, a)| ≤ √
x ≤ √

x + 1 for a ∈ A(x) = [0, x] and x ∈ X . Thus, (A) holds.
Furthermore, by Jensen’s inequality we have

∫
X

ω(y)q(dy|x, a) =
∫ ∞

0

√
(x − a)s + 1 ν(ds) ≤ √

(x − a)s̄ + 1 ≤ √
x + 1

for a ∈ A(x) and x ∈ X . Hence, (B2.4) is satisfied with α = 1. It is obvious
that conditions (W ) are also met. Therefore, from Theorem 5.1, there exists an upper
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semicontinuous solution to the Bellman equation and a stationary optimal policy f ∗ ∈
F .

Example 7.2 (Stochastic optimal growth model 2) We study a modified model from
Example 1. We assume that the next state evolves according to the equation

xt+1 = yθ
t · ξt + (1 − ρ) · yt , t ∈ N

where ρ, θ are some constants from the interval (0, 1). Here, (ξt ) is again a sequence
of i.i.d. shocks with distribution ν and the expected value s̄ > 0. The utility function
is u(x, a) = aσ with σ ∈ (0, 1). Let ω(x) = (x + r)σ , where r ≥ 1. Assume now
that the discount function is of the form

δ(z) = (1 − 2ε)z + ε ln(1 + z), z ≥ 0

with some ε ∈ (0, 1). Then, δ(z) ≤ (1− ε)z for z ≥ 0. By Example 1 in [2] (see also
Example 2 in [23]), we have that

∫
X

ω(y)q(dy|x, a) ≤
(
1 + (s̄/ρ)

1
1−θ

r

)σ

ω(x), x ∈ X .

Hence, in (B2.4), we set

α :=
(
1 + (s̄/ρ)

1
1−θ

r

)σ

> 1

and αγ (z) < z is satisfied with γ := δ and r such that α(1 − ε) < 1. Clearly,
all conditions (A), (B) and (W ) are satisfied. (B(2.3) follows from the fact that
z �→ γ (z)/z is non-increasing.) By Theorem 5.1, the value function v∗ is upper
semicontinuous and satisfies the Bellman equation. Moreover, there exists an optimal
stationary policy.

Example 7.3 (Inventory model) A manager inspects the stock at each period t ∈ N.

The number of units in stock is xt ∈ X := [0,∞). He can sell min{xt ,Δt } units in
period t , where Δt ≥ 0 is a random variable representing an unknown demand. At
the end of period t he can also order any amount at ∈ A := [0, â] of new goods to
be delivered at the beginning of next period at a cost C(at ) paid immediately. Here
â is some positive constant. Moreover, the function C is bounded above by Ĉ , lower
semicontinuous, increasing and C(0) = 0. The state equation is of the form

xt+1 = xt − min{xt ,Δt } + at , for t ∈ N,

where (Δt ) is a sequence of i.i.d. random variables such that each Δt follows a con-
tinuous distribution Φ and EΔt < ∞. The manager considers a recursive discounted
utility with a discount function δ satisfying (B2.1)–(B2.3) (with ω = 1). This model
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canbeviewed as aMarkovdecision process, inwhichu(x, a) := pEmin{x,Δ}−C(a)

is the one period bounded utility function and p denotes the unit stock price. (Here
Δ = Δt for any fixed t ∈ N.) Clearly, −Ĉ ≤ u(x, a) ≤ pEΔ. Next note that the
transition probability q is of the form

q(B|x, a) =
∫ ∞

0
1B(x − min{x, y} + a)dF(y),

where B ⊂ X is a Borel set, x ∈ X , a ∈ A. If φ is a bounded continuous function on
X , then the integral

∫
X

φ(y)q(dy|x, a) =
∫ ∞

0
φ(x − min{x, y} + a)dF(y)

=
∫ x

0
φ(x − y + a)dF(y) +

∫ ∞

x
φ(a)dF(y)

=
∫ x

0
φ(x − y + a)dF(y) + φ(a)(1 − F(x))

depends continuously on (x, a). Hence, the model satisfies assumptions (W2.1)-
(W2.3). Therefore, by Theorem 5.1, there exists a bounded upper semicontinuous
solution to the Bellman equation and an optimal stationary policy f ∗ ∈ F .

Example 7.4 (Stopping problem)We now describe a stopping problemwith non-linear
discounting. Suppose the Borel state space is X and there is an (uncontrolled) Markov
chain with an initial distribution q0 and the transition probability q(·|x). By P we
denote the probability measure on the product space X∞ of all trajectories of the
Markov chain induced by q0 and q.At each period the controller has to decide whether
to stop the process and receive the reward R(x), where x is the current state or to con-
tinue. In the latter case the reward C(x) (which might be a negative cost) is received.
The aim is to find a stopping time such that the recursive discounted reward is max-
imized. We assume here that the controller has to stop with probability one. This
problem is a special case of the more general model of Sect. 2. We have to choose here

(i) X ∪ {∞} is the state space where ∞ is an absorbing state which indicates that
the process is already stopped,

(ii) A := {0, 1} where a = 0 means continue and a = 1 means stop,
(iii) A(x) := A for all x ∈ X ∪ {∞},
(iv) q(B|x, 0) := q(B|x) for x ∈ X , B a Borel set and q({∞}|x, 1) = 1 for x ∈ X

and q(∞|∞, ·) = 1,
(v) u(x, a) := C(x)(1 − a) + R(x)a for x ∈ X and u(∞, ·) = 0.

We assume now that |C(x)| ≤ ω(x) and |R(x)| ≤ ω(x) which implies (A) and we
assume (B). The optimisation problem is considered with the recursive discounted
utility and an interpretation that the receiving of rewards (costs) is stopped after a ran-
dom time. This random time is a stopping time with respect to the filtration generated
by observable states (for more details see Chapter 10 in [3]).

Proposition 7.5 If the above assumptions on the stopping problem are satisfied, then
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(a) there exists a function v∗ ∈ Md
b(X) such that

v∗(x) = max

{
R(x); C(x) +

∫
X

δ(v∗(y))q(dy|x)
}

. (7.1)

(b) Moreover, define f ∗(x) = 1 if v∗(x) = R(x) and f ∗(x) = 0 else and let
τ ∗ := inf{n ∈ N : f ∗(xn) = 1}. If P(τ ∗ < ∞) = 1, then τ ∗ is optimal for the
stopping problem and v∗(x) = supπ∈Π U (x, π).

The action space A consists of two elements only, so assumptions (S) are satisfied.
In the above description we already assumed (A) and (B). Therefore the result follows
from Theorem 5.1

Let us consider a special example. Imagine a person who wants to sell her house.
At the beginning of each week she receives an offer, which is randomly distributed
over the interval [m, M] with 0 < m < M . The offers are independent and identically
distributed with distribution q. The house seller has to decide immediately whether to
accept or reject this offer. If she rejects, the offer is lost and she has maintenance cost.
Which offer should she accept in order to maximise her expected reward?

Here, we have X := [m, M], C(x) ≡ −c and R(x) := x . From Proposition 7.5 we
obtain that the value function satisfies

v∗(x) = max

{
x;−c +

∫
[m,M]

δ(v∗(y))q(dy)

}
.

Note that C∗ := ∫
[m,M] δ(v

∗(y))q(dy) is obviously a constant independent of x .
Thus the optimal strategy is to accept the first offer which is above −c + C∗. The
corresponding stopping time is geometrically distributed and thus certainly satisfies
P(τ ∗ < ∞) = 1.Moreover, it is not difficult to see thatwheneverwe have twodiscount
functions δ1, δ2, which satisfy assumptions (B) and which are ordered, i.e., δ1 ≤ δ2,
then C∗

1 ≤ C∗
2 because the operator T is monotone. Thus, with stricter discounting

we will stop earlier.
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