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Abstract
In this paper we deal with a general second order continuous dynamical system associ-
ated to a convexminimization problemwith a Fréchet differentiable objective function.
We show that inertial algorithms, such as Nesterov’s algorithm, can be obtained via
the natural explicit discretization from our dynamical system. Our dynamical system
can be viewed as a perturbed version of the heavy ball method with vanishing damp-
ing, however the perturbation is made in the argument of the gradient of the objective
function. This perturbation seems to have a smoothing effect for the energy error and
eliminates the oscillations obtained for this error in the case of the heavy ball method
with vanishing damping, as some numerical experiments show. We prove that the
value of the objective function in a generated trajectory converges in orderO(1/t2) to
the global minimum of the objective function. Moreover, we obtain that a trajectory
generated by the dynamical system converges to a minimum point of the objective
function.
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1 Introduction

Since Su et al. in [32] showed that Nesterov’s accelerated convex gradient method
has the exact limit the second order differential equation that governs the heavy ball
system with vanishing damping, that is,

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = 0, x(t0) = u0, ẋ(t0) = v0, t0 > 0, u0, v0 ∈ R

m, (1)

withα = 3, the latter systemhas been intensively studied in the literature in connection
to the minimization problem infx∈Rm g(x). Here g : Rm −→ R is a convex Fréchet
differentiable function with Lipschitz continuous gradient.

In [32] the authors proved that

g(x(t)) − min g = O
(
1

t2

)

for every α ≥ 3, however they did not show the convergence of a generated trajectory
to a minimum of the objective function g.

In [9], Attouch et al. considered the case α > 3 in (1), and showed that the generated
trajectory x(t) converges to a minimizer of g as t −→ +∞. Actually in [9] the authors
considered the perturbed version of the heavy ball system with vanishing damping,
that is,

ẍ(t) + α

t
ẋ(t) + ∇g(x(t)) = h(t), x(t0) = u0, ẋ(t0) = v0, t0 > 0, u0, v0 ∈ R

m,

(2)
where h : [t0,+∞) −→ R is a small perturbation term that satisfies

∫ +∞
t0

t‖h(t)‖dt <

+∞. Beside the convergence of a generated trajectory x(t) to a minimizer of g, they
showed that also in this case the convergence rate of the objective function along the

trajectory, that is g(x(t)) − min g, is of order O
(

1
t2

)
.

Another perturbed version of (1) was studied by Attouch et al. in [8], see also
[3,7,11,30]. They assumed that the objective g is twice continuously differentiable
and the perturbation of their system is made at the damping term. More precisely, they
studied the dynamical system with Hessian driven damping

ẍ(t) + α

t
ẋ(t) + β∇2g(x(t))ẋ(t) + ∇g(x(t)) = 0, x(t0) = u0, ẋ(t0) = v0,

t0 > 0, u0, v0 ∈ R
m, (3)
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where α > 0 and β > 0. In case α > 3, β > 0 they showed the convergence of a
generated trajectory to a minimizer of g. Moreover, they obtained that in this case the
convergence rate of the objective function along the trajectory, that is g(x(t))−min g,

is of order o
(

1
t2

)
.

Further, Attouch et al. in [10] studied the subcritical case α ≤ 3 and they proved
that in this case the convergence rates of the objective function g along the trajectory

generated by (1), i.e g(x(t)) − min g, is of order O
(

1

t
2
3 α

)
.

Another approach is due to Aujol et al. [14], who assumed that beside convexity,
the objective g in (1) satisfies some geometrical conditions, such as the Łojasiewicz
property. The importance of their results obtained in [14] is underlined by the fact
that applying the classical Nesterov scheme on a convex objective function without
studying its geometrical properties may lead to sub-optimal algorithms.

It is worth mentioning the work of Aujol and Dossal [13], who did not assumed
the convexity of g, but the convexity of the function (g(x(t)) − g(x∗))β , where β

is strongly related to the damping parameter α and x∗ is a global minimizer of g.
Under these assumptions, they obtained some general convergence rates and also the
convergence of the generated trajectories of (1). In case β = 1 they results reduce to
the results obtained in [8–10].

However, the convergence of the trajectories generated by the continuous heavy
ball system with vanishing damping (1), in the general case when g is non-convex is
still an open question. Some important steps in this direction have been made in [19]
(see also [18]), where convergence of the trajectories of a perturbed system, have been
obtained in a non-convex setting. More precisely in [19] is considered the system

ẍ(t) +
(
γ + α

t

)
ẋ(t) + ∇g(x(t)) = 0, x(t0) = u0, ẋ(t0) = v0, (4)

where t0 > 0, u0, v0 ∈ R
m, γ > 0, α ∈ R. Note that here α can take non-positive

values. For α = 0 we recover the dynamical system studied in [16]. According to [19],
the trajectory generated by the dynamical system (4) converges to a critical point of
g, if a regularization of g satisfies the Kurdyka–Łojasiewicz property.

Further results concerning the heavy ball method and its extensions can be found
in [4,6,15,21–23].

1.1 An Extension of the Heavy Ball Method and the Nesterov Type Algorithms
Obtained via Explicit Discretization

What one can notice concerning the heavy ball system and its variants is, that despite
of the result of Su et al. [32], these systems will never give through the natural
implicit/explicit discretization the Nesterov algorithm. This is due to the fact that
the gradient of g is evaluated in x(t), and this via discretization will become ∇g(xn)
or ∇g(xn+1) and never of the form ∇g(xn + αn(xn − xn−1)) as Nesterov’s gradient
method requires. Another observation is that using the same approach as in [32] one
can show, see [25], that (1), (and also (4)), models beside Nesterov’s algorithm other
algorithms too. In this paper we overcome the deficiencies emphasized above by intro-
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ducing a dynamical system that via explicit discretization leads to inertial algorithms
of gradient type. To this end, let us consider the optimization problem

(P) inf
x∈Rm

g(x) (5)

where g : Rm −→ R is a convex Fréchet differentiable, function with Lg-Lipschitz
continuous gradient, i.e. there exists Lg ≥ 0 such that ‖∇g(x)−∇g(y)‖ ≤ Lg‖x− y‖
for all x, y ∈ R

m .

We associate to (5) the following second order dynamical system:

{
ẍ(t) + α

t ẋ(t) + ∇g
(
x(t) +

(
γ + β

t

)
ẋ(t)
)

= 0

x(t0) = u0, ẋ(t0) = v0,
(6)

where u0, v0 ∈ R
m, t0 > 0 and α > 0, β ∈ R, γ ≥ 0.

Remark 1 The connection of (6) with the heavy ball system with vanishing damping
(1) is obvious, the latter one can be obtained from (6) for γ = β = 0. Further, by
using the Taylor expansion for ∇g(·) we get

∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
≈ ∇g(x(t)) +

(
γ + β

t

)
∇2g(x(t))ẋ(t). (7)

Hence, (6) is strongly related to the following version of heavy ball method with
Hessian driven damping:

{
ẍ(t) + α

t ẋ(t) +
(
γ + β

t

)
∇2g(x(t))ẋ(t) + ∇g(x(t)) = 0

x(t0) = u0, ẋ(t0) = v0.
(8)

We emphasize that second order dynamical systems with Hessian driven damping
similar to (8) have been intensively studied in the literature, see [3,7,8,11,21,30]

The study of the dynamical system (6) in connection to the optimization problem
(5) is motivated by the following facts.

1. The dynamical system (6) leads via explicit discretization to inertial algorithms.
In particular Nesterov’s algorithm can be obtained via this natural discretiza-
tion.

2. A generated trajectory and the objective function value in this trajectory in
general have a better convergence behaviour than a trajectory generated by the
heavy ball system with vanishing damping (1), as some numerical examples
show.

3. The samenumerical experiments reveal that the perturbation term
(
γ + β

t

)
ẋ(t)

in the argument of the gradient of the objective function g has a smoothing
effect and annihilates the oscillations obtained in case of the dynamical system
(1) for the errors g(x(t) −min g and ‖x(t) − x∗‖, where x∗ is a minimizer of
g. In view of Remark 1 this fact is not surprising, since according to [30] the
system (8) has the same smoothing effect.
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4. Despite of the similarities between the systems (6) and (8) underlined in
Remark 1, the trajectories generated by the dynamical system (6) seems to
have a better convergence behaviour than the trajectories generated by (8) as
some numerical experiments show.

5. A trajectory x(t) generated by the dynamical system (6) ensures the conver-

gence rate of order O
(

1
t2

)
for the decay g

(
x(t) +

(
γ + β

t

)
ẋ(t)
)

− min g,

provided it holds that α > 3, γ > 0, β ∈ R or α ≥ 3, γ = 0, β ≥ 0.
6. A trajectory x(t) generated by the dynamical system (6) ensures the same

convergence rate of order O
(

1
t2

)
for the decay g(x(t)) − min g as the heavy

ball method with vanishing damping, for the case α > 3, γ = 0, β ≥ 0.
7. The convergence of a generated trajectory x(t) to a minimizer of the objective

function g can be obtained in case α > 3, γ > 0 and β ∈ R and also in the
case α > 3, γ = 0 and β ≥ 0.

Remark 2 Nevertheless, in case γ = 0 and β < 0 the dynamical system (6) can
generate periodical solutions, hence the convergence of a generated trajectory to a
minimizer of the objective is hopeless. To illustrate this fact, for β < 0, α > 0, γ = 0
consider the strongly convex objective function g : R −→ R, g(x) = α

−2β x
2. Then,

taking into account that γ = 0 the dynamical system (6) becomes

{
ẍ(t) + α

−β
x(t) = 0,

x(0) = 0, ẋ(0) =
√

α
−β

.
(9)

Now, the periodical function x(t) = sin
√

α
−β

t is a solution of (9), consequently do

not exist the limit limt−→+∞ x(t).

We emphasize that the formulation of the dynamical system (6) is natural since
by explicit discretization leads to inertial gradient methods, in particular the famous
Polyak and Nesterov numerical schemes can be obtained from (6). For other inertial
algorithms we refer to [2,17,25].

Indeed, explicit Euler discretization of (6), with the constant stepsize h, tn =
nh, xn = x(tn) leads to

xn+1 − 2xn + xn−1

h2
+ α

nh2
(xn − xn−1) + ∇g

(
xn +

(
γ

h
+ β

nh2

)
(xn − xn−1)

)
= 0.

Equivalently, the latter equation can be written as

xn+1 = xn+
(
1 − α

n

)
(xn−xn−1)−h2∇g

(
xn +

(
γ

h
+ β

nh2

)
(xn − xn−1)

)
. (10)

Now, setting h2 = s and denoting the constants γ
h and β

h2
still with γ and β, we get

the following general inertial algorithm:
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Let x0, x−1 ∈ R
m and for all n ∈ N consider the sequences

⎧⎪⎨
⎪⎩

yn = xn + (1 − α
n

)
(xn − xn−1)

zn = xn +
(
γ + β

n

)
(xn − xn−1)

xn+1 = yn − s∇g (zn) .

(11)

However, fromapractical point of view it ismore convenient toworkwith the following
equivalent formulation: Let x0, x−1 ∈ R

m and for all n ∈ N consider the sequences

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + n
n+α

(xn − xn−1)

zn = xn + γ n+β
n+α

(xn − xn−1)

xn+1 = yn − s∇g (zn) ,

(12)

where α > 0, β ∈ R and γ ≥ 0.

Remark 3 Notice that for γ = β = 0 we obtain a variant of Polyak’s algorithm [29]
and for γ = 1 and β = 0 we obtain Nesterov’s algorithm [27,28]. An interesting fact
is that Algorithm (12) allows different inertial steps and this approach seems to be
new in the literature.

Remark 4 Note that according to Theorem 9 below, the dynamical system (6) can
equivalently be rewritten as a first order system. Further, since the explicit Euler
method applied to a first order system is an explicit Runge–Kutta method of order
1, the interested reader can use the results from [33] in order to obtain numerical
schemes from (6) via Runge–Kutta discretization. In the view of the results from [33]
the Runge–Kutta discretization of the dynamical system (6) may have an acceleration
effect.

Remark 5 Independently to us, very recently, a system similar to (6) was studied by
Muehlebach and Jordan in [26] and they show that Nesterov’s accelerated gradient
method can be obtained from their system via a semi-implicit Euler discretization
scheme. They considered a constant damping instead of α

t and also took β = 0.
Further they also treated the ODE

ẍ(t) + 3

t + 2
ẋ(t) + s∇g

(
x(t) + t − 1

t + 2
ẋ(t)

)
= 0

which for s = 1 is obviously equivalent to the particular case of the governing ODE
from (6), obtained for α = 3, γ = 1, β = −3. However, the freedom of controlling
the parameters β and γ in (6) is essential as the next numerical experiments show.

1.2 Some Numerical Experiments

In this section we consider two numerical experiments for the trajectories generated
by the dynamical system (6) for a convex but not strongly convex objective function.
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(a) u0 = (−1, 5) v0 = (2,−2).
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(b) u0 = (2,−2) v0 = (−2, 2).

Fig. 1 Error analysis with different parameters in dynamical system (6) for a convex, but not strongly
convex, objective function

Everywhere in the following numerical experiments we consider the continuous
time dynamical systems (6) and (8), solved numerically with the ode45 adaptive
method in MATLAB. We solved these dynamical systems with ode45 on the interval
[1, 100] and the plot in Figs. 1, 2 show the energy error |g(x(t)) − g(x∗)| on the left
and the iterate error ‖x(t) − x∗‖ on the right.

We show the evolution of the two errors with respect to different values for α, β

and γ , including the case that yields the Heavy Ball with Friction. One can observe,
see Fig. 1, that the best choice is not γ = β = 0 which is the case of heavy ball system
with vanishing damping (1). Further, in the view of Remark 1, it seems interesting
to compare the convergence behaviour of the trajectories generated by the dynamical
systems (6) and (8) for different values for α, β and γ , see Fig. 2.

In the next experiments we consider the convex, but not strongly convex function
g : R2 −→ R,

g(x, y) = x4 + 5y2 − 4x − 10y + 8.

Then, ∇g(x, y) = (4x3 − 4, 10y − 10), further x∗ = (1, 1) is the unique minimizer
of g and g∗ = g(1, 1) = 0.

In our first experiment we compare the convergence behaviour of the generated
trajectories of (6) by taking into account the following instances.

α β γ Color

3.1 0 0 Blue
3.1 2 0 Red
3.1 0 1 Yellow
3.1 0.5 0.5 Purple
3.1 − 0.5 1 Green

The result are depicted in Fig. 1 for the starting points u0 = (−1, 5), v0 = (2,−2)
and u0 = (2,−2), v0 = (−2, 2), respectively.
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Fig. 2 Convergence properties of the trajectories generated by the dynamical systems (6) and (8)

Remark 6 Observe that in all cases the trajectories generated by dynamical system (6)
have a better behaviour than the trajectories generated by the heavy ball system with
vanishing damping (1). The choice of the parametersα, γ andβ will be validated by the
theoretical results from Sect. 3, where we show that in case α > 3, γ > 0, β ∈ R and

also in the caseα > 3, γ = 0, β ≥ 0 the energy error g(x(t)−min g is of orderO
(

1
t2

)
just as the case of heavy ball method. Further, for the values α > 3, γ > 0, β ∈ R

and for α > 3, γ = 0, β ≥ 0 we are able to show that a generated trajectory x(t)
converges to a minimum of the objective function g.

Remark 7 Aswe have emphasized before, it seems that the perturbation
(
γ + β

t

)
ẋ(t)

in the argument of the gradient of the objective function has a smoothing effect. The
explanation of this fact is that, according to Remark 1, the trajectories generated by the
dynamical system (6) and the trajectories generated by the dynamical system (8) are
similar. Further, the behaviour of the trajectories generated by the dynamical system
(8), in particular the explanation for this smoothing effect, are enlightened in [30].

In our second numerical experiment we consider the same convex function g and
we compare the convergence behaviour of the trajectories generated by the dynamical
system (6) (abbreviated D.Sys. (6)) and the trajectories generated by the dynamical
system (8) (abbreviated D.Sys. (8)) for the following instances.

The result are depicted in Fig. 2 for the starting points u0 = (2,−2) and v0 =
(−2, 2). One can observe that also for these instances the trajectories generated by (6)
have slightly better convergence properties than the trajectories generated by (8).
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α β γ

3.1 3 1
3.1 1.5 0
3.1 − 1 2.5

1.3 The Organization of the Paper

The outline of the paper is the following. After a short section concerning the existence
and uniqueness of the trajectories generated by the dynamical system (6) in Sect. 3
we deal with the convergence analysis of the generated trajectories. We introduce a
general energy functional, which will play the role of a Lyapunov function associated
to the dynamical system (6) (see the full computations given in the Appendix). We

obtain a rate of orderO(1/t2) for the decay g
(
x(t) +

(
γ + β

t

)
ẋ(t)
)
−min g.Further,

we show that also the error g(x(t)) − min g has a rate of order O(1/t2). Finally, we
show the convergence of the generated trajectories to a minimum of the objective
function g. In Sect. 4 we conclude our paper and we present some possible related
future researches.

2 Existence and Uniqueness

The first step toward our existence and uniqueness result obtained in the present section
concerns the definition of a strong global solution of the dynamical system (6).

Definition 1 We call the function x : [t0,+∞) → R
m a strong global solution of the

dynamical system (6) if satisfies the following properties:

(i) x, ẋ : [t0,+∞) → R
m are locally absolutely continuous;

(ii) ẍ(t) + α

t
ẋ(t) + ∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
= 0 for almost every t ≥ t0;

(iii) x(t0) = u0 and ẋ(t0) = v0.

For brevity reasons, we recall that a mapping x : [t0,+∞) → R
m is called locally

absolutely continuous if it is absolutely continuous on every compact interval [t0, T ],
where T > t0. Further, we have the following equivalent characterizations for an
absolutely continuous function x : [t0, T ] −→ R

m , (see, for instance, [1,5]):

(a) there exists y : [t0, T ] → R
m an integrable function, such that

x(t) = x(t0) +
t∫

t0

y(t)ds,∀t ∈ [t0, T ];

(b) x is a continuous function and its distributional derivative is Lebesgue integrable
on the interval [t0, T ];
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(c) for every ε > 0, there exists η > 0, such that for every finite family Ik = (ak, bk)
from [t0, T ], the following implication is valid :

[
Ik ∩ I j = ∅ and

∑
k

|bk − ak | < η

]
⇒
[∑

k

‖x(bk) − x(ak)‖ < ε

]
.

Remark 8 Let x : [t0,+∞) → R
m be a locally absolutely continuous function. Then

x is differentiable almost everywhere and its derivative coincides with its distributional
derivative almost everywhere. On the other hand, we have the equality ẋ(t) = y(t)
for almost every t ∈ [t0,+∞), where y = y(t) is defined at the integration formula
(a).

The first result of the present section concerns the existence and uniqueness of the
trajectories generated by the dynamical system (6).We prove existence and uniqueness
of a strong global solution of (6) by making use of the Cauchy-Lipschitz-Picard
Theorem for absolutely continues trajectories (see for example [24, Proposition 6.2.1],
[31, Theorem 54]). The key argument is that one can rewrite (6) as a particular first
order dynamical system in a suitably chosen product space (see also [3,12,19,20]).

Theorem 9 Let (u0, v0) ∈ R
m ×R

m. Then, the dynamical system (6) admits a unique
strong global solution.

It is worthwhile to emphasize that we do not need to assume that the objective
function g is convex in order to obtain existence and uniqueness of the trajectories
generated by the dynamical system (6). Further, we need the following result.

Proposition 10 For the starting points (u0, v0) ∈ R
m ×R

m let x be the unique strong
global solution of the dynamical system (6). Then, ẍ is locally absolutely continuous
on [t0,+∞). In particular the third order derivative x (3) exists almost everywhere on
[t0,+∞).

The proofs of Theorem 9 and Proposition 10 are postponed to Appendix.

3 Convergence Analysis

3.1 On a General Energy Functional Associated to the Dynamical System (6)

In order to obtain convergence rates for the function values in the trajectories generated
by the dynamical system (6), we need to introduce an appropriate energy functional
which will play the role of a Lyapunov function. The form of such an energy functional
associated to heavy ball system with vanishing damping and its extensions is well
known in the literature, see for instance [8,9,13,14]. However, the novelty of the
dynamical system (6), compared with the extended/perturbed variants of the heavy
ball system studied in the above mentioned papers, consists in the fact that in system
(6) the perturbation is carried out in the argument of the gradient of the objective
function. This seems to be a new approach in the literature, therefore the previously
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mentioned energy functionals are not suitable for a valuable convergence analysis of
the dynamical system (6).

Hence, let us denote α(t) = α
t and β(t) = γ + β

t , and assume that argmin g �= ∅.

Further, let g∗ = min g = g(x∗), x∗ ∈ argmin g. In connection to the dynamical
system (6), we introduce the general energy functional

E(t) = a(t)(g(x(t)+β(t)ẋ(t))− g∗)+ 1

2
‖b(t)(x(t)− x∗)+ c(t)ẋ(t)‖2 + d(t)

2
‖x(t)− x∗‖2,

(13)

which can be seen as an extension of the energy function studied in [9] in connection
to the heavy ball system with vanishing damping.

Our purpose is to define the non-negative functions a(t), b(t), c(t), d(t) such that
Ė(t) ≤ 0, that is, the function E(t) is non-increasing after a t1 ≥ t0. Indeed, if E(t) is
non-increasing for t ≥ t1, then

a(t)(g(x(t) + β(t)ẋ(t)) − g∗) ≤ E(t) ≤ E(t1),

in other words

g(x(t) + β(t)ẋ(t)) − g∗ ≤ E(t1)

a(t)
, for all t ≥ t1.

Concerning the derivative of the energy functional E(t)we can prove the following
result (see the Sect. A2 at the Appendix).

Ė(t) ≤ (a′(t) − b(t)c(t))(g(x(t) + β(t)ẋ(t)) − g∗)
− a(t)β(t)‖∇g(x(t) + β(t)ẋ(t))‖2

+
(
−a(t)α(t)β(t) + a(t)β ′(t) + a(t) − c2(t) + b(t)c(t)β(t)

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉
+
(
b′(t)b(t) + d ′(t)

2

)
‖x(t) − x∗‖2

+
(
b2(t) + b(t)c′(t) + b′(t)c(t) − b(t)c(t)α(t) + d(t)

)
〈ẋ(t), x(t) − x∗〉

+ c(t)
(
b(t) + c′(t) − c(t)α(t)

) ‖ẋ(t)‖2. (14)

Consequently, in order to have Ė(t) ≤ 0 for all t ≥ t1, t1 ≥ t0, one must assume
that for all t ≥ t1 the following inequalities hold:
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a′(t) − b(t)c(t) ≤ 0, (15)

−a(t)β(t) ≤ 0, (16)

−a(t)α(t)β(t) + a(t)β ′(t) + a(t) − c2(t) + b(t)c(t)β(t) = 0, (17)

b′(t)b(t) + d ′(t)
2

≤ 0, (18)

b′(t)c(t) + b(t)
(
b(t) + c′(t) − c(t)α(t)

)+ d(t) = 0, (19)

c(t)
(
b(t) + c′(t) − c(t)α(t)

) ≤ 0. (20)

Remark 11 Observe that (16) implies that β(t) ≥ 0 for all t ≥ t1, t1 ≥ t0 and this
shows that in dynamical system (6), one must have β ≥ 0 whenever γ = 0. Further,
(18) is satisfied whenever b(t) and d(t) are constant functions. It is obvious that there
exists t1 such that for all t ≥ t1 we have−α(t)β(t)+β ′(t)+1 = 1− αγ

t − αβ+β

t2
> 0,

hence from (17) we get

a(t) = c2(t) − b(t)c(t)β(t)

−α(t)β(t) + β ′(t) + 1
.

Since (19) and (20) do not depend by β(t), it seem natural to choose c(t), b(t) and
d(t) the same as in case of heavy ball system with vanishing damping (see [9]), that
is, c(t) = t, b(t) = b ∈ (0, α − 1] and d(t) = b(α − 1 − b), for all t ≥ t0, provided
α > 1. Now, an easy computation shows that in this case

a(t) = t2 + γ (α − b)t + β + (β + αγ 2)(α − b)

+ (αβγ + (γβ + 2αβγ + α2γ 3)(α − b))t + (αβ + β)(β + (β + αγ 2)(α − b))

t2 − αγ t − (αβ + β)
,

hence (15) is satisfied whenever b > 2, which implies that α > 3.
However, if γ = 0 then

a(t) = t2 + β + β(α − b) + ((αβ + β)(β + β(α − b))

t2 − (αβ + β)
,

hence (15) holds also for b = 2 and α = 3.

3.2 Error Estimates for the Values

In this section we obtain convergence rate of orderO(1/t2), t −→ +∞ for the differ-

ence g
(
x(t) +

(
γ + β

t

)
ẋ(t)
)
−g∗ where g∗ = g(x∗) = min g, x∗ ∈ argmin g �= ∅.

From here we are able to show that g(x(t)) − g∗ also has a convergence rate of order
O(1/t2), t −→ +∞.However, just as in the case of heavy ball systemwith vanishing
damping, in order to obtain these rates, it is necessary to assume α ≥ 3 in our system
(6). We have the following result.
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Theorem 12 Let x be the unique strong global solution of (6) and assume that
argmin g �= ∅. Assume further that α > 3, γ > 0 and β ∈ R.

Then, there exists K ≥ 0 and t1 ≥ t0 such that

g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g ≤ K

t2
, for all t ≥ t1. (21)

Further, ∫ +∞

t0
t

(
g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g

)
dt < +∞, (22)

and ∫ +∞

t0
t2
∥∥∥∥∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
2

dt < +∞. (23)

Proof Let min g = g∗ = g(x∗), x∗ ∈ argmin g. Consider the energy functional (13)
with

b(t) = α − 1 > 2, c(t) = t, d(t) = 0.

According to Remark 11 we have

a(t) = t2 + γ t + 2β + αγ 2 + (3αβγ + α2γ 3 + βγ )t + β(α + 1)(2β + αγ 2)

t2 − αγ t − β(α + 1)

and the conditions (17)–(20) are satisfied with equality for every t ≥ t0.
Obviously, if t is big enough on has that a(t) > 0 and since γ > 0 it holds that

γ + β
t > 0 for t big enough, even if β < 0. Hence, there exists t ′ ≥ t0 such (16) is

satisfied for every t ≥ t ′.
Now, a′(t) − b(t)c(t) = (3 − α)t + γ + O

(
1
t2

)
and by taking into account that

α > 3 we obtain that there exists t ′′ ≥ t0 such that (15) holds for every t ≥ t ′′.
Let t ′′′ = max(t ′, t ′′). We conclude that, Ė(t) ≤ 0 for all t ≥ t ′′′, hence E(t) is

non-increasing, i.e.

a(t)

(
g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g

)
≤ E(t) ≤ E(t ′′′), for all t ≥ t ′′′.

But, obviously there exists t1 ≥ t ′′′ such that a(t) ≥ t2 for all t ≥ t1 and by denoting
K = E(t ′′′) we obtain

g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g ≤ K

t2
, for all t ≥ t1.
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Next we prove (22). Since a′(t) − b(t)c(t) = (3 − α)t + γ + O
(

1
t2

)
there exist

t2 ≥ t1 such that

a′(t) − b(t)c(t) ≤ (3 − α)t

2
, for all t ≥ t2.

Hence from (14) we have

Ė(t) ≤ (3 − α)t

2

(
g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g

)
, for all t ≥ t2,

and by integrating from t2 to T > t2 we get

∫ T

t2
t

(
g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
− min g

)
dt ≤ 2

3 − α
(E(T ) − E(t2)).

Now, by letting T −→ +∞ and taking into account that E is non-increasing, the
conclusion follows.

For proving (23) observe that there exists t3 ≥ t1 such that−a(t)
(
γ + β

t

)
≤ − γ

2 t
2

for all t ≥ t3. Consequently

Ė(t) ≤ −γ

2
t2
∥∥∥∥∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
2

, for all t ≥ t3.

Integrating from t3 to T > t3 and letting T −→ +∞ we obtain the desired
conclusion. ��
Remark 13 Note that according to Remark 11 the condition (16) holds even if γ = 0
and β ≥ 0. Consequently, even in the case α > 3, γ = 0, β ≥ 0 the conclusions
(21) and (22) in Theorem 12 hold. However, if β = 0 then we cannot obtain (23).
Nevertheless, if β > 0 then (23) becomes:

∫ +∞

t0
t

∥∥∥∥∇g

(
x(t) + β

t
ẋ(t)

)∥∥∥∥
2

dt < +∞.

Remark 14 Concerning the case α = 3, note that (16) is satisfied if one assumes
that γ = 0 but β ≥ 0. Moreover, in this case (15) is also satisfied since, one has

a′(t) − b(t)c(t) = − 4β2(α+1)
(t2−β(α+1))2

≤ 0. Hence, also in the case α = 3, γ = 0, β ≥ 0
(21) in the conclusion of Theorem 12 holds.

Moreover, if we assume β > 0 then (23) becomes:

∫ +∞

t0
t

∥∥∥∥∇g

(
x(t) + β

t
ẋ(t)

)∥∥∥∥
2

dt < +∞.

Next we show that also the error g (x(t))−min g is of orderO(1/t2). For obtaining
this result we need the Descent Lemma, see [28].
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Lemma 15 Let g : Rm −→ R be a Frèchet differentiable function with Lg Lipschitz
continuous gradient. Then one has

g(y) ≤ g(x) + 〈∇g(x), y − x〉 + Lg

2
‖y − x‖2, ∀x, y ∈ R

m .

Theorem 16 Let x be the unique strong global solution of (6) and assume that
argmin g �= ∅. If α > 3, γ > 0 and β ∈ R or α > 3, γ = 0 and β ≥ 0 , then
x is bounded and there exists K ≥ 0 and t1 ≥ t0 such that

‖ẋ(t)‖ ≤ K

t
, for all t ≥ t1. (24)

Further, ∫ +∞

t0
t‖ẋ(t)‖2dt < +∞ (25)

and for γ = 0 and β ≥ 0 there exists K1 ≥ 0 and t2 ≥ t1 such that

g (x(t)) − min g ≤ K1

t2
, for all t ≥ t2. (26)

Proof For x∗ ∈ argmin g let g∗ = g(x∗) = min g and consider the energy function
(13) with b(t) = b, where 2 < b < α − 1, c(t) = t , d(t) = b(α − 1 − b) > 0 and

a(t) =
c2(t) − b(t)c(t)

(
γ + β

t

)

1 − β

t2
− α

t

(
γ + β

t

) = (t2 − bγ t − bβ)t2

t2 − αγ t − β(α + 1)

=
(
1 + (α − b)γ t − β(α + 1 − b)

t2 − αγ t − β(α + 1)

)
t2.

According to Remark 11 there exists t1 ≥ t0 such that the conditions (15)–(20) are
satisfied.

From the definition of E one has

‖b(t)(x(t) − x∗) + c(t)ẋ(t)‖ ≤ √2E(t),

and

‖x(t) − x∗‖ ≤
√

2

d(t)
E(t)

that is

‖b(x(t) − x∗) + t ẋ(t)‖ ≤ √2E(t),
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and

‖x(t) − x∗‖ ≤
√

2

b(α − 1 − b)
E(t).

By using the fact that E non-increasing on an interval [t1,+∞) the latter inequality
assures that x is bounded.

Now, by using the inequality ‖X − Y‖ ≥ ‖X‖ − ‖Y‖ we get

‖b(x(t) − x∗) + t ẋ(t)‖ ≥ t‖ẋ(t)‖ − ‖b(x(t) − x∗)‖,
hence for all t ≥ t1 one has

t‖ẋ(t)‖ ≤ √2E(t) + ‖b(x(t) − x∗)‖ ≤
(
1 +
√

1

α − 1 − b

)√
2E(t) ≤ K ,

where K =
(
1 +
√

1
α−1−b

)√
2E(t1).

Further, (20) becomes (b + 1 − α)t < 0, hence for all t ≥ t1 one has

Ė(t) ≤ (b + 1 − α)t‖ẋ(t)‖2.
By integrating from t1 to T > t1 one gets

∫ T

t1
t‖ẋ(t)‖2dt ≤ 1

α − 1 − b
(E(t1) − E(T )) ≤ 1

α − 1 − b
E(t1).

By letting T −→ +∞ we obtain

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞.

Now, by considering γ = 0, β ≥ 0 and by using Lemma 15 with y = x(t) and
x = x(t) + β

t ẋ(t) we obtain

g(x(t)) − g

(
x(t) + β

t
ẋ(t)

)
≤
〈
∇g

(
x(t) + β

t
ẋ(t)

)
,−β

t
ẋ(t)

〉
+ Lg

2

∥∥∥∥βt ẋ(t)
∥∥∥∥
2

≤ β

t

∥∥∥∥∇g

(
x(t) + β

t
ẋ(t)

)∥∥∥∥ ‖ẋ(t)‖ + Lg

2

β2

t2
‖ẋ(t)‖2.

(27)

From (24), the Lipschitz continuity of ∇g and the facts that x and ẋ are bounded, we
get that there exists t ′2 ≥ t1 and K ′ > 0 such that

β

t

∥∥∥∥∇g

(
x(t) + β

t
ẋ(t)

)∥∥∥∥ ‖ẋ(t)‖ ≤ K ′

t2
, for all t ≥ t ′2.

123



Applied Mathematics & Optimization (2021) 84:1687–1716 1703

Further (24) assures that

Lg

2

β2

t2
‖ẋ(t)‖ ≤ Lg

2

β2K

t3
, for all t ≥ t1.

Combining the latter relations with (27) we get that there exists K ′
1 > 0 such that

g(x(t)) − g

(
x(t) + β

t
ẋ(t)

)
≤ K ′

1

t2
, for all t ≥ t ′2. (28)

Now, by adding (21) and (28) we get that there exists K1 > 0 and t2 ≥ t ′2 such that

g(x(t)) − min g ≤ K1

t2
, for all t ≥ t2.

��
Remark 17 Note that (23), which holds whenever α > 3 and γ > 0, assures that

t

∥∥∥∥∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥ ∈ L2([t0,+∞),R).

Further, (25) assures that

√
t‖ẋ(t)‖ ∈ L2([t0,+∞),R). (29)

Consequently, the system (6) leads to

‖t ẍ(t)‖ =
∥∥∥∥α ẋ(t) + t∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
≤ α‖ẋ(t)‖ + t

∥∥∥∥∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
hence, by (38) (see Lemma 27 in Appendix), that is ‖x (3)(t)‖ ≤ K (‖ẋ(t)‖ + ‖ẍ(t)‖)
for some K > 0, we get

t‖ẍ(t)‖ ∈ L2([t0,+∞),R) and
√
t‖x (3)(t)‖ ∈ L2([t0,+∞),R). (30)

Remark 18 Notice that (29) and (30) and (38) assure in particular that

lim
t−→+∞ ‖ẋ(t)‖ = lim

t−→+∞ ‖ẍ(t)‖ = 0 and lim
t−→+∞ ‖x (3)(t)‖ = 0. (31)

Remark 19 In the case γ = 0 and β ≥ 0 according to Remark 13 one has

√
t

∥∥∥∥∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥ ∈ L2([t0,+∞),R).
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Hence, as in Remark 17 we derive that

√
t‖ẍ(t)‖,√t‖x (3)(t)‖ ∈ L2([t0,+∞),R)

and consequently (31) holds.

3.3 The Convergence of the Generated Trajectories

In this section we show convergence of the generated trajectories to a minimum point
of the objective g. Consider the set of limit points of the trajectory x , that is

ω(x) = {x ∈ R
m : ∃(tn)n∈N ⊆ R, tn −→ +∞, n

−→ +∞ such that x(tn) −→ x, n −→ +∞}.

We show that ω(x) ⊆ argmin g. We emphasize that since g is convex one has

argmin g = crit g := {x ∈ R
m : ∇g(x) = 0.}.

We have the following result.

Lemma 20 Let x be the unique strong global solution of (6) and assume that
argmin g �= ∅. If α > 3, γ > 0 and β ∈ R, then the following assumptions hold.

(i) ω(x) = ω
(
x(·) +

(
γ + β

t

)
ẋ(·)
)
;

(ii) ω(x) ⊆ argmin g.

Proof Indeed (31) assures that limt−→+∞
(

γ + β

t

)
ẋ(t) = 0, which immediately

proves (i).
For proving (ii) consider x ∈ ω(x). Then, there exists (tn)n∈N ⊆ R, tn −→

+∞, n −→ +∞ such that limn−→+∞ x(tn) = x . Now, since ∇g is continuous and

limn−→+∞
(
x(tn) +

(
γ + β

tn

)
ẋ(tn)
)

= x one has

lim
n−→+∞ ∇g

(
x(tn) +

(
γ + β

tn

)
ẋ(tn)

)
= ∇g(x).

Further, according to (31)

lim
n−→+∞

(
ẍ(tn) + α

tn
ẋ(tn)

)
= 0.

Now, the system (6) gives

0 = lim
n−→+∞

(
ẍ(tn) + α

tn
ẋ(tn) + ∇g

(
x(tn) +

(
γ + β

tn

)
ẋ(tn)

))
= ∇g(x)

that is x ∈ argmin g and this proves (ii). ��
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Remark 21 Obviously, according to Remark 19 the conclusion of Lemma 20 remains
valid also in the case α > 3, γ = 0 and β ≥ 0.

Our aim is to prove that the limit limt−→+∞ ‖x(t) − x∗‖ exists for every x∗ ∈
argmin g, and for this we need the following result from [9].

Lemma 22 (Lemma A.4. [9]) Let t0 > 0, and let w : [t0,+∞) −→ R be a continu-
ously differentiable function which is bounded from below. Assume that

tẅ(t) + αẇ(t) ≤ G(t)

for some α > 1, almost every t > t0, and some non-negative function G ∈
L1(t0,+∞). Then, the positive part [ẇ]+ of ẇ belongs to L1(t0,+∞) and limit
limt−→+∞ w(t) exists.

Now we can prove the following.

Lemma 23 Let x be the unique strong global solution of (6) and assume that
argmin g �= ∅. If α > 3, γ > 0 and β ∈ R, then for every x∗ ∈ argmin g there
exists the limit

lim
t−→+∞ ‖x(t) − x∗‖.

Proof Let x∗ ∈ argmin g and define the function hx∗ : [t0,+∞) −→ R, hx∗(t) =
1

2
‖x(t) − x∗‖2. Using the chain rule with respect to the differentiation of hx∗ , we

obtain that

ḣx∗(t) = 〈ẋ(t), x(t) − x∗〉

and that

ḧx∗(t) = 〈ẍ(t), x(t) − x∗〉 + ‖ẋ(t)‖2.

Let us denote g∗ = g(x∗) = min(g). Using the dynamical system (6), one has that

ḧx∗(t) + α

t
ḣx∗(t) = −

〈
∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
, x(t) − x∗

〉
+ ‖ẋ(t)‖2.

This means that

ḧx∗(t) + α

t
ḣx∗(t) = −

〈
∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
, x(t) +

(
γ + β

t

)
ẋ(t) − x∗

〉

+‖ẋ(t)‖2 +
〈
∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
,

(
γ + β

t

)
ẋ(t)

〉
. (32)
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By the convexity of the mapping g and taking into account that g∗ = g(x∗) = min g,
we obtain

−
〈
∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
, x(t) +

(
γ + β

t

)
ẋ(t) − x∗

〉

≤ g∗ − g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
≤ 0,

hence by using (6) the inequality (32) becomes

ḧx∗(t) + α

t
ḣx∗(t) ≤ g∗ − g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)
+
(
1 − α

t

(
γ + β

t

))
‖ẋ(t)‖2

−
(

γ + β

t

)
〈ẋ(t), ẍ(t)〉.

Consequently, one has

t ḧx∗(t) + αḣx∗(t) ≤
(
t − α

(
γ + β

t

))
‖ẋ(t)‖2 − (γ t + β) 〈ẋ(t), ẍ(t)〉. (33)

Now, according to (29) one has

t‖ẋ(t)‖2 ∈ L1([t0,+∞),R).

Consequently,

(
t − α

(
γ + β

t

))
‖ẋ(t)‖2 ∈ L1([t0,+∞),R). (34)

Further,

− (γ t + β) 〈ẋ(t), ẍ(t)〉 ≤ 1

2
‖ẋ(t)‖2 + 1

2
(γ t + β)2 ‖ẍ(t)‖2

and (30) assures that

t2‖ẍ(t)‖2 ∈ L1([t0,+∞),R),

hence
− (γ t + β) 〈ẋ(t), ẍ(t)〉 ∈ L1([t0,+∞),R). (35)

According to (34) and (35) we get that the function

G(t) =
(
t − α

(
γ + β

t

))
‖ẋ(t)‖2 + 1

2
‖ẋ(t)‖2

+1

2
(γ t + β)2 ‖ẍ(t)‖2 ∈ L1([t0,+∞),R).
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Moreover, it is obvious that there exists t1 ≥ t0 such that G is non negative for every
t ≥ t1. From (33) one has

t ḧx∗(t) + αḣx∗(t) ≤ G(t), for every t ≥ t0, (36)

hence Lemma 22 leads to the existence of the limit

lim
t−→+∞ hx∗(t)

and consequently the limit

lim
t−→+∞ ‖x(t) − x∗‖

also exists. ��
Now, we present the main result of this subsection regarding the convergence of

the solution of the dynamical system (6) as t −→ +∞.

Theorem 24 Let x be the unique strong global solution of the dynamical system (6)
and assume that argmin g �= ∅. If α > 3, γ > 0 and β ∈ R, then x(t) converges to a
point in argmin g as t −→ +∞.

Proof Let x∗ ∈ argmin g. Then, by Lemma 23, we know that lim
t−→+∞ ‖x(t) − x∗‖

exists, hence x is bounded. But then from Bolzano–Weierstrass Theorem we get that
there exists x̄ ∈ ω(x). In other words, there exists a sequence tn −→ +∞, n −→
+∞, such that lim

n−→+∞ x(tn) = x̄ . From Lemma 20, we obtain that x̄ ∈ argmin g.

Using Lemma 23 again, we find that lim
t−→+∞ ‖x(t) − x̄‖ = lim

n−→+∞ ‖x(tn) − x̄‖ = 0,

hence

x(t) −→ x̄ ∈ argmin g, t −→ +∞.

��
Remark 25 As it was expected, Theorem24 remains true if in its hypothesis we assume
only that α > 3, γ = 0 and β ≥ 0. Indeed, note that under these assumptions the
conclusion of Lemma 23 holds, since G from its proof becomes

G(t) =
(
t − αβ

t

)
‖ẋ(t)‖2 + 1

2
‖ẋ(t)‖2 + 1

2
β2‖ẍ(t)‖2

and according to Remark 19 G(t) ∈ L1([t0,+∞),R). Moreover, it is obvious that
there exists t1 ≥ t0 such that G is non negative for every t ≥ t1.

This fact combined with Remark 21 lead to the desired conclusion.
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4 Conclusion

In this paper we study a second order dynamical system which can be viewed as an
extension of the heavy ball system with vanishing damping. This dynamical system
is actually a perturbed version of the heavy ball system with vanishing damping, but
the perturbation is made in the argument of the gradient of the objective function.
Our system is also strongly related to the heavy ball system with Hessian driven
damping. Numerical experiments show that the above mentioned perturbation brings
a smoothing effect in the behaviour of the energy error g(x(t))−min g and also in the
behaviour of the absolute error ‖x(t)−x∗‖, where x(t) is a trajectory generated by our
dynamical system and x∗ is a minimum of the objective g. We show that our system
via explicit discretization leads to inertial algorithms. A related future research is the
convergence analysis of algorithm (12), since this algorithm contains as particular case
the famous Nesterov algorithm. However, since Algorithm (12) may allow different
inertial steps, its area of applicability can be considerable.

We have shown existence and uniqueness of the trajectories generated by our
dynamical system even for the case the objective function g is non-convex. Further,

we treated the cases when the energy error g(x(t)) − min g is of order O
(

1
t2

)
and

we obtained the convergence of a generated trajectory to a minimum of the objective
function g. Another related research is the convergence analysis of the generated tra-
jectories in the case when the objective function g is possible non-convex. This would
be a novelty in the literature even for the case α > 3, γ = β = 0, that is, for the case
of the heavy ball system with vanishing damping.

Finally, we underline that the dynamical system (6) can easily be extended to
proximal-gradient dynamical systems, (see [18,20] and the references therein).

Acknowledgements The authors are thankful to two anonymous referees for their valuable remarks and
suggestions which improved the quality of the paper.

A. Complements to the Section Existence and uniqueness

In what follows we give a detailed proof for Theorem 9.

Proof (Theorem 9).
By making use of the notation X(t) = (x(t), ẋ(t)) the system (6) can be rewritten

as a first order dynamical system:

{
Ẋ(t) = F(t, X(t))
X(t0) = (u0, v0),

(37)

where F : [t0,+∞) × R
m × R

m −→ R
m × R

m, F(t, u, v) =(
v,−α

t v − ∇g
(
u +
(
γ + β

t

)
v
))

.

The existence and uniqueness of a strong global solution of (6) follows according
to the Cauchy–Lipschitz–Picard Theorem applied to the first order dynamical system
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(37). In order to prove the existence and uniqueness of the trajectories generated by
(37) we show the following:

(I) For every t ∈ [t0,+∞) the mapping F(t, ·, ·) is L(t)-Lipschitz continuous and
L(·) ∈ L1

loc([t0,+∞)).
(II) For all u, v ∈ R

m one has F(·, u, v) ∈ L1
loc([t0,+∞),Rm × R

m) .

Let us prove (I). Let t ∈ [t0,+∞) be fixed and consider the pairs (u, v) and (ū, v̄)

from R
m × R

m . Using the Lipschitz continuity of ∇g and the obvious inequality
‖A+ B‖2 ≤ 2‖A‖2 + 2‖B‖2 for all A, B ∈ R

m , we make the following estimations :

‖F(t, u, v) − F(t, u, v)‖

=
√

‖v − v‖2 +
∥∥∥∥αt (v − v) + ∇g

(
u +
(

γ + β

t

)
v

)
− ∇g

(
u +
(

γ + β

t

)
v

)∥∥∥∥
2

≤
√(

1 + 2
(α
t

)2) ‖v − v‖2 + 2L2
g

∥∥∥∥(u − u) +
(

γ + β

t

)
(v − v)

∥∥∥∥
2

≤
√
1 + 4L2

g + 2
(α
t

)2 + 4L2
g

(
γ + β

t

)2
‖(u, v) − (u, v)‖.

By employing the notation L(t) =
√
1 + 4L2

g + 2
(

α
t

)2 + 4L2
g

(
γ + β

t

)2
, we have

that

‖F(t, u, v) − F(t, ū, v̄)‖ ≤ L(t) · ‖(u, v) − (ū, v̄)‖.

Obviously the function t −→ L(t) is continuous on [t0,+∞), hence L(·) is integrable
on [t0, T ] for all t0 < T < +∞.

For proving (II) consider (u, v) ∈ R
m ×R

m a fixed pair of elements and let T > t0.
We consider the following estimations:

∫ T

t0
‖F(t, u, v)‖dt =

∫ T

t0

√
‖v‖2 +

∥∥∥∥αt v + ∇g

(
u +
(

γ + β

t

)
v

)∥∥∥∥
2

dt

≤
∫ T

t0

√√√√
(
1 + 2

(α
t

)2 + 4L2
g

(
γ + β

t

)2)
‖v‖2 + 4‖∇g(u)‖2dt

≤
√

‖v‖2 + ‖∇g(u)‖2
∫ T

t0

√
5 + 2

(α
t

)2 + 4L2
g

(
γ + β

t

)2
dt

and the conclusion follows by the continuity of the function t −→√
5 + 2

(
α
t

)2 + 4L2
g

(
γ + β

t

)2
on [t0, T ].
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The Cauchy–Lipschitz–Picard theorem guarantees existence and uniqueness of
the trajectory of the first order dynamical system (37) and thus of the second order
dynamical system (6). ��

Remark 26 Note that we did not use the convexity assumption imposed on g in the
proof of Theorem 9. However, we emphasize that according to the proof of Theorem
9, the assumption that g has a Lipschitz continuous gradient is essential in order to
obtain existence and uniqueness of the trajectories generated by the dynamical system
(6).

Next we present the complete proof of Proposition 10. For simplicity, in the proof
of the following sequel we employ the 1-norm on Rm ×R

m , defined as ‖(x1, x2)‖1 =
‖x1‖ + ‖x2‖, for all x1, x2 ∈ R

m . Obviously one has

1√
2
‖(x1, x2)‖1 ≤ ‖(x1, x2)‖ =

√
‖x1‖2 + ‖x2‖2 ≤ ‖(x1, x2)‖1, for all x1, x2 ∈ R

m .

Proof (Proposition 10).
We show that Ẋ(t) = (ẋ(t), ẍ(t)) is locally absolutely continuous, hence ẍ is

also locally absolutely continuous. This implies by Remark 8 that x (3) exists almost
everywhere on [t0,+∞).

Let T > t0 and s, t ∈ [t0, T ]. We consider the following chain of inequalities :

‖Ẋ(s) − Ẋ(t)‖1
= ‖F(s, X(s)) − F(t, X(t))‖1
=
∥∥∥∥
(
ẋ(s) − ẋ(t),

α

t
ẋ(t) − α

s
ẋ(t) + ∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)

−∇g

(
x(s) +

(
γ + β

s

)
ẋ(s)

))∥∥∥∥
1

≤ ‖ẋ(s) − ẋ(t)‖ +
∥∥∥α
s
ẋ(s) − α

t
ẋ(t)
∥∥∥

+
∥∥∥∥∇g

(
x(s) +

(
γ + β

s

)
ẋ(s)

)
− ∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
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and by using the Lg-Lipschitz continuity of ∇g we obtain

‖Ẋ(s) − Ẋ(t)‖1 ≤ ‖ẋ(s) − ẋ(t)‖ +
∥∥∥α
s
ẋ(s) − α

t
ẋ(t)
∥∥∥+ Lg‖x(s) − x(t)‖

+ Lg

∥∥∥∥
(

γ + β

s

)
ẋ(s) −

(
γ + β

t

)
ẋ(t)

∥∥∥∥
≤ ‖ẋ(s) − ẋ(t)‖ + α

s
‖ẋ(s) − ẋ(t)‖ +

∣∣∣α
s

−α

t

∣∣∣ ‖ẋ(t)‖ + Lg‖x(s) − x(t)‖

+ Lg

(
γ + β

s

)
‖ẋ(s) − ẋ(t)‖

+ Lg

∣∣∣∣βs − β

t

∣∣∣∣ · ‖ẋ(t)‖

=
(
1 + α

s
+ Lg

(
γ + β

s

))
‖ẋ(s) − ẋ(t)‖ + Lg‖x(s) − x(t)‖

+ (α + Lg|β|) ·
∣∣∣∣1s − 1

t

∣∣∣∣ ‖ẋ(t)‖.

Further, let us introduce the following additional notations:

L1 := max
s∈[t0,T ]

(
1 + α

s
+ Lg

(
γ + β

s

))
= 1 + α

t0
+ Lg

(
γ + β

t0

)

and L2 := (α + Lg|β|) max
t∈[t0,T ] ‖ẋ(t)‖.

Then, one has

‖Ẋ(s) − Ẋ(t)‖ ≤ ‖Ẋ(s) − Ẋ(t)‖1 ≤ L1‖ẋ(s) − ẋ(t)‖ + Lg‖x(s) − x(t)‖
+ L2

∣∣∣∣1s − 1

t

∣∣∣∣ .

By the fact that x is the strong global solution for the dynamical system (6), it follows
that x and ẋ are absolutely continuous on the interval [t0, T ]. Moreover, the function

t −→ 1

t
belongs to C1([t0, T ],R), hence it is also absolutely continuous on the

interval [t0, T ]. Let ε > 0. Then, there exists η > 0, such that for Ik = (ak, bk) ⊆
[t0, T ] satisfying Ik ∩ I j = ∅ and

∑
k

|bk − ak | < η, we have that

∑
k

‖ẋ(bk) − ẋ(ak)‖ <
ε

3L1
,
∑
k

‖x(bk) − x(ak)‖ <
ε

3Lg
and
∑
k

∣∣∣ 1
bk

− 1

ak

∣∣∣ < ε

3L2
.
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Summing all up, we obtain

∑
k

‖Ẋ(bk) − Ẋ(ak)‖ ≤ L1

∑
k

‖ẋ(bk) − ẋ(ak)‖ + Lg

∑
k

‖x(bk) − x(ak)‖

+ L2

∑
k

∣∣∣∣ 1bk − 1

ak

∣∣∣∣ < ε,

consequently Ẋ is absolutely continuous on [t0, T ]. and the conclusion follows. ��

Concerning an upper bound estimate of the third order derivative x (3) the following
result holds.

Lemma 27 For the initial values (u0, v0) ∈ R
m × R

m consider x the unique strong
global solution of the second-order dynamical system (6). Then, there exists K > 0
such that for almost every t ∈ [t0,+∞), we have that:

‖x (3)(t)‖ ≤ K (‖ẋ(t)‖ + ‖ẍ(t)‖). (38)

Proof For h > 0 we consider the following inequalities :

‖Ẋ(t + h) − Ẋ(t)‖1
= ‖F(t + h, X(t + h)) − F(t, X(t))‖1
≤ ‖(ẋ(t + h) − ẋ(t))‖ + α

∥∥∥∥ 1

t + h
ẋ(t + h) − 1

t
ẋ(t)

∥∥∥∥
+
∥∥∥∥∇g

(
x(t + h) +

(
γ + β

t + h

)
ẋ(t + h)

)
− ∇g

(
x(t) +

(
γ + β

t

)
ẋ(t)

)∥∥∥∥
≤ ‖(ẋ(t + h) − ẋ(t))‖ + α

∥∥∥∥ 1

t + h
ẋ(t + h) − 1

t
ẋ(t)

∥∥∥∥
+ Lg‖x(t + h) − x(t)‖ + Lg

∥∥∥∥
(

γ + β

t + h

)
ẋ(t + h) −

(
γ + β

t

)
ẋ(t)

∥∥∥∥ .

Now, dividing by h > 0 and taking the limit h −→ 0, it follows that

‖Ẍ(t)‖1 ≤ ‖ẍ(t)‖ + α

∥∥∥∥
(
1

t
ẋ(t)

)′∥∥∥∥+ Lg‖ẋ(t)‖ + Lg

∥∥∥∥
((

γ + β

t

)
ẋ(t)

)′∥∥∥∥ .

Consequently,

‖x (3)(t)‖ ≤ α

∥∥∥∥− 1

t2
ẋ(t) + 1

t
ẍ(t)

∥∥∥∥+ Lg‖ẋ(t)‖ + Lg

∥∥∥∥− β

t2
ẋ(t) +

(
γ + β

t

)
ẍ(t)

∥∥∥∥ .
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Finally,

‖x (3)(t)‖ ≤
(
Lg + α + Lg|β|

t2

)
‖ẋ(t)‖ +

(
α

t
+ Lg

∣∣∣∣γ + β

t

∣∣∣∣
)

‖ẍ(t)‖
≤ K (‖ẋ(t)‖ + ‖ẍ(t)‖),

where K = max

{
maxt≥t0

(
Lg + α + Lg|β|

t2

)
,maxt≥t0

(
α
t + Lg

∣∣∣∣γ + β

t

∣∣∣∣
)}

. ��

B. On the Derivative of the Energy Functional (13)

In what follows we derive the conditions which must be imposed on the positive
functions a(t), b(t), c(t), d(t) in order to obtain Ė(t) ≤ 0 for every t ≥ t1. We have,

Ė(t) = a′(t)(g(x(t) + β(t)ẋ(t)) − g∗)
+ a(t)〈∇g(x(t) + β(t)ẋ(t)), β(t)ẍ(t) + (β ′(t) + 1)ẋ(t)〉
+ 〈b′(t)(x(t) − x∗) + (b(t) + c′(t))ẋ(t)
+ c(t)ẍ(t), b(t)(x(t) − x∗) + c(t)ẋ(t)〉
+ d ′(t)

2
‖x(t) − x∗‖2 + d(t)〈ẋ(t), x(t) − x∗〉.

Now, from (6) we get ẍ(t) = −α(t)ẋ(t) − ∇g(x(t) + β(t)ẋ(t)), hence

Ė(t) = a′(t)(g(x(t) + β(t)ẋ(t)) − g∗)
+ a(t) 〈∇g(x(t) + β(t)ẋ(t)),−β(t)∇g(x(t) + β(t)ẋ(t))

+ (−β(t)α(t) + β ′(t) + 1
)
ẋ(t)
〉

+ 〈b′(t)(x(t) − x∗) + (b(t) + c′(t) − c(t)α(t)
)
ẋ(t)

−c(t)∇g(x(t) + β(t)ẋ(t)), b(t)(x(t) − x∗) + c(t)ẋ(t)
〉

+ d ′(t)
2

‖x(t) − x∗‖2 + d(t)〈ẋ(t), x(t) − x∗〉.
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Consequently,

Ė(t) = a′(t)(g(x(t) + β(t)ẋ(t)) − g∗)
− a(t)β(t)‖∇g(x(t) + β(t)ẋ(t))‖2

+
(
−a(t)α(t)β(t) + a(t)β ′(t) + a(t) − c2(t)

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉

+
(
b′(t)b(t) + d ′(t)

2

)
‖x(t) − x∗‖2

+
(
b2(t) + b(t)c′(t) + b′(t)c(t) − b(t)c(t)α(t) + d(t)

)
〈ẋ(t), x(t) − x∗〉

+ c(t)
(
b(t) + c′(t) − c(t)α(t)

) ‖ẋ(t)‖2
− b(t)c(t)〈∇g(x(t) + β(t)ẋ(t)), x(t) − x∗〉. (39)

But

〈∇g(x(t) + β(t)ẋ(t)), x(t) − x∗〉 = 〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t) − x∗〉
−〈∇g(x(t) + β(t)ẋ(t)), β(t)ẋ(t)〉

and by the convexity of g we have 〈∇g(x(t) + β(t)ẋ(t)), x(t) + β(t)ẋ(t) − x∗〉 ≥
g(x(t) + β(t)ẋ(t)) − g∗, hence

−b(t)c(t)〈∇g(x(t) + β(t)ẋ(t)), x(t) − x∗〉
≤ −b(t)c(t)(g(x(t) + β(t)ẋ(t)) − g∗) + b(t)c(t)β(t)〈∇g(x(t)

+β(t)ẋ(t)), ẋ(t)〉.

Therefore, (39) becomes

Ė(t) ≤(a′(t) − b(t)c(t))(g(x(t) + β(t)ẋ(t)) − g∗) − a(t)β(t)‖∇g(x(t) + β(t)ẋ(t))‖2

+
(
−a(t)α(t)β(t) + a(t)β ′(t) + a(t) − c2(t) + b(t)c(t)β(t)

)
〈∇g(x(t) + β(t)ẋ(t)), ẋ(t)〉

+
(
b′(t)b(t) + d ′(t)

2

)
‖x(t) − x∗‖2

+
(
b2(t) + b(t)c′(t) + b′(t)c(t) − b(t)c(t)α(t) + d(t)

)
〈ẋ(t), x(t) − x∗〉

+ c(t)
(
b(t) + c′(t) − c(t)α(t)

) ‖ẋ(t)‖2. (40)

From here one easily can observe that the conditions (15)–(20) assure that

Ė(t) ≤ 0, for all t ≥ t1.

Remark 28 Note that we did not use the form of the sequences α(t) and β(t) in the
above computations. Consequently, the energy functional (13) may be suitable also
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for the following general system.

{
ẍ(t) + α(t)ẋ(t) + ∇g (x(t) + β(t)ẋ(t)) = 0
x(t0) = u0, ẋ(t0) = v0,

where u0, v0 ∈ R
m and α, β : [t0 + ∞) −→ (0,+∞), t0 ≥ 0 are continuously

derivable functions.
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