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Abstract
We consider a one-dimensional reaction–diffusion equation of Fisher–Kolmogoroff–
Petrovsky–Piscounoff type. We investigate the effect of the interaction between the
nonlinear diffusion coefficient and the reaction termon the existence and non-existence
of travelling waves. Our diffusion coefficient is allowed to be degenerate or singular
at both equilibrium points, 0 and 1, while the reaction term need not be differentiable.
These facts influence the existence and qualitative properties of travelling waves in a
substantial way.
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1 Introduction

We are concerned with the travelling waves (particularly with their speed and profile)
for the Fisher–Kolmogoroff–Petrovsky–Piscounoff population model with nonlinear
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diffusion, d(u) (of porous medium type), and a non-Lipschitzian reaction term, g(u):

∂u

∂t
− ∂

∂x

(
d(u)

∂u

∂x

)
= g(u) for (x, t) ∈ R × R+ . (1.1)

We employ certain specific forms of the possibly degenerate or singular diffusion
coefficient d(u) and the nonlinear reaction function g(u) that aremotivated by classical
population models by Fisher [15] and Kolmogoroff et al. [20], both from the same
year of 1937. We allow both, d(u) and g(u), to depend continuously on the population
density u. The reaction–diffusion equation (1.1) is briefly referred to as the Fisher–
KPP equation (or FKPP equation).

In contrast with similar models that have been considered in the literature so far,
particularly in Audrito and Vázquez [4,5], Corli and Malaguti [8], Corli et al. [9],
King and McCabe [19], Malaguti and Marcelli [21], Murray [23,24], and Sánchez-
Garduño and Maini [25], typically with a power-type diffusion coefficient d(u) and a
continuously differentiable (C1-) reaction function g(u), our diffusion term d = d(u)

and the reaction term g = g(u) are much more general functions. Only in our simple
examples (in Sect. 5) do we take functions d(u) and g(u) with power-type asymptotic
behavior near the equilibrium points u = 0 and u = 1. In fact, the diffusion term
d = d(u) may degenerate or blow up as u → 0+ and/or u → 1−. In particular, to
the authors’ best knowledge, models with a discontinuous diffusion term d on [0, 1]
have not been considered in the literature so far. Our only restriction on d is that
d : R\{0, 1} → R be continuous and locally Lebesgue integrable near the (possibly)
singular points {0, 1}. We expect some of our results, in particular, Proposition 4.2
(existence of a travelling wave in Sect. 4.1) and Proposition 4.3 (nonexistence of a
travellingwave in Sect. 4.2), to stay valid even if d is only a locally Lebesgue integrable
function. At the same time, the reaction term g = g(u) need not be a Lipschitz
continuous function in its domain of definition.While the role of the nonlinear reaction
term g = g(u) has been justified already in the original works [15,20] (which consider
only constant diffusivity d > 0), the importance of the density-dependent diffusion
term d = d(u) in insect despersal models is emphasized in the monograph [24, Sect.
13.4, p. 449].

In a general biological Fisher–KPP model one naturally expects travelling waves
u(x, t) = U (x−ct)with a continuous wave profileU . However, requiring a smoother
profileU does not seem to be biologically justified, see [24, Sect. 11.3] for a sketch of
non-smooth profiles in Fig. 11.2 on p. 403. Non-smooth profiles for doubly non-linear
diffusion (like ours in Eq. (1.1) above) have been suggested as “generalizations” in
[19] (termed profiles with “sharp front”) and treated in details much later in [4, Fig. 2,
p. 7651] (with “slow” diffusion) and [5, Fig. 3, p. 217] (with “fast” diffusion). Taking
into account this fact, we define a travelling wave for problem (1.1) in a rather general
fashion that does not require differentiability of the profile; cf. Definition 2.1 below. In
a higher space dimension (inRN ), an appropriate definition in the sense of distributions
is used; cf. [4,5,16,19]. However, in one space dimension (in R1) our Definition 2.1 is
simpler and more natural. It yields useful qualitative properties of expected travelling
waves (see Sect. 3) which permit to transform the original second-order Fisher–KPP
equation (1.1) (for a travelling wave u(x, t) = U (x − ct)) into an equivalent first-
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order boundary value problem for the (first) derivative of the inverse function of U
(see Sect. 4) under rather general hypotheses on d and g.

Density-dependent dispersal (modelled by density-dependent diffusion) has been
observed in many insect populations, such as the antlion Glenuroides japonicus. Sev-
eral authors propose to analyse the flux of ants throughout a compartmentally divided
habitat which leads to the spatial segregation of a species. For greater details and
numerous references to biological modelling, we refer the reader to [25, Sect. 2, pp.
164–166].

This article is organized as follows. Our new definition of a travelling wave is given
in the next section (Sect. 2). Basic properties of awave profileU , such asmonotonicity,
are studied in Sect. 3. A standard phase plane transformation applied to the equation for
the wave profileU in Sect. 4 yields an overdetermined first-order, two-point boundary
value problem, with a free parameter c ∈ R, the wave speed. This is our basic tool for
obtaining existence and nonexistence of a travelling wave. The last section (Sect. 5)
is dedicated to studies with simple terms d(u) and g(u) that are nonlinear of power-
type near the equilibrium points. As a conclusion, from the interaction between d(u)

and g(u) we determine the asymptotic shape of travelling waves near the equilibrium
points.

2 A Quasilinear Fisher–KPP Equation with Discontinuous Diffusion
and Non-smooth Positive Reaction

As usual, we denote R
def= (−∞,∞), R+

def= [0,∞), and assume that the diffusion
coefficient d and the reaction term g satisfy the following basic hypotheses, respec-
tively:

(H1) d : R \ {0, 1} → R is a continuous, but not necessarily smooth function,
such that d(s) > 0 for every s ∈ R \ {0, 1}, and the (Lebesgue) integral∫ b
a d(s) ds < ∞ whenever −∞ < a < b < +∞.

(H2) g : R → R is a continuous, but not necessarily smooth function, such that
g(0) = g(1) = 0 together with g(s) > 0 for every s ∈ (0, 1), and g(s) < 0 for
every s ∈ (−∞, 0) ∪ (1,∞).

The reaction function g satisfying (H2) comprises also the so-called generalized
logistic growth in the population model studied in Tsoularis and Wallace [26].

We reformulate Eq. (1.1) for u(x, t) as an equivalent initial value problem for
the unknown function v(z, t) = u(z + ct, t) ≡ u(x, t) with the moving coordinate
z = x − ct :

∂v

∂t
− ∂

∂z

(
d(v)

∂v

∂z

)
− c

∂v

∂z
= g(v) , (z, t) ∈ R × R+ . (2.1)

We will show below that every travelling wave u(x, t) = U (x − ct) for (1.1) must
have a monotone decreasing profile U : R → R satisfying

lim
z→−∞U (z) = 1 and lim

z→+∞U (z) = 0 . (2.2)
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More precisely, U : R → R must be monotone decreasing with U ′ < 0 on a
suitable open interval (z0, z1) ⊂ R, such that

lim
z→z0+

U (z) = 1 and lim
z→z1−

U (z) = 0 , (2.3)

by Proposition 3.4. We would like to remark that the cases of z0 > −∞ and/or z1 <

+∞ render qualitatively different travelling waves than the classical case (z0, z1) = R

which has been studied in the original works [15,20] and in the literature [2,3,14,17,
21,23–25].

In order to be able to give a workable definition of a travelling wave, we introduce
the (Lebesgue) integral

D(s)
def=

∫ s

0
d(s′) ds′ for every s ∈ R .

This is an absolutely continuous function on R which is continuously differentiable
on R \ {0, 1} with the derivative D′(s) = d(s) for every s ∈ R \ {0, 1}. Using this
setting, in Sect. 4 we are able to find a first integral for the second-order equation for
U restricted to the open interval (z0, z1) ⊂ R:

d

dz

(
d(U )

dU

dz

)
+ c

dU

dz
+ g(U (z)) = 0 , z ∈ (z0, z1) . (2.4)

It is easy to observe that this equation is valid for every z ∈ R \ {z0, z1} (in the sense
of Definition 2.1 below) provided U is extended by U (z) = 1 if −∞ < z ≤ z0 and
U (z) = 0 if z1 ≤ z < +∞.

Definition 2.1 A function u(x, t) = U (x−ct) of (x, t) ∈ R×R+ is called a travelling
wave (or TW, for short) for problem (1.1) where c ∈ R is a constant called wave speed
(or simply speed) and U : R → R is a continuous function called wave profile (or
simply profile) with the following properties:

(a) U (z) ≥ 0 holds for every z ∈ R and the limits in (2.2) are valid.
(b) The composition z �→ (D ◦ U )(z) = D(U (z)) : R → R is a continuously

differentiable function with the derivative d
dz D(U (z)) vanishing at every point

ξ ∈ R such that U (ξ) ∈ {0, 1}.
(c) The following integral form of Eq. (2.4) is valid for all pairs z, z∗ ∈ R:

d

dz
D(U (z)) − d

dz
D(U (z))

∣∣∣
z=z∗

+ c (U (z) −U (z∗)) +
∫ z

z∗
g(U (z′)) dz′ = 0 .

(2.5)

Remark 2.2 An important feature of our definition of a travelling wave for problem
(1.1) above is the fact that we do not assume that its profile, U : R → R, is a
sufficiently smooth function that obeys the differential equation (2.4) in a classical
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sense. In fact, we will see in the next remark (Remark 2.3, Part (ii)) that the “weaker”
integral form of Eq. (2.4), given in Eq. (2.5) above, easily yields also the “stronger”
classical form (2.4) at every point z ∈ R such that U (z) /∈ {0, 1}. In other words,
in case the wave profile U is only continuous, but not differentiable, one has to take
advantage of the integral form (2.5) only for z ∈ R near those points ξ ∈ R at which
U (ξ) ∈ {0, 1}.

The integral form (2.5) enables us to use rather general, nonsmooth diffusion and
reaction terms, d and g, respectively. Last but not least, our definition of a travelling
wave covers both alternatives for travelling waves introduced in Sánchez-Garduño
and Maini [25, Sect. 3, p. 167]: front-type and sharp-type travelling waves (see also
[21, Sect. 2, pp. 473–474]). Such types of travelling waves (TW) are called “positive
TW” and “finite TW”, respectively, in Audrito and Vázquez [4,5]. It has been shown
in Malaguti and Marcelli [21, Sect. 2, pp. 476–481] that the cases of z0 > −∞
and/or z1 < +∞ may occur if the nonlinear reaction function g(s) and the diffusion
term d(s) are not differentiable at the points s ∈ {0, 1}. In accordance with [21,
Remark 1, p. 478], we now persue the case of g and/or d being “nonsmooth” at the
points s ∈ {0, 1} in greater details.

Definition 2.1 has the following simple, but important technical consequences to
be used in the sequel:

Remark 2.3 (i) Equation (2.4) being translation invariant (z �→ z + ζ : R → R, for
ζ ∈ R fixed), we are allowed to choose the profile U in such a way that U (0) = 1/2.
This choice will determine the profile, U , uniquely if needed, thanks to the strict
monotonicity of the profile throughout the open interval (z0, z1) ⊂ R, by U ′ < 0; cf.
Proposition 3.4 below. However, we do not assume U (0) = 1/2, in general, unless
we need the uniqueness of U for a fixed speed c ∈ R.

(ii) Hypothesis (H1) combined with Definition 2.1, Part (b), imply that, at every
point ξ ∈ RwithU (ξ) /∈ {0, 1}, we have d(U (ξ)) > 0 and the derivativeU ′(ξ) exists

and satisfies d
dz D(U (z))

∣∣∣∣
z=ξ

= d(U (ξ))U ′(ξ).

(iii) There exist two sequences ξn ∈ (n, n + 1) and ξ∗
n ∈ (−n − 1,−n); n =

1, 2, 3, . . . , such that

d

dz
D(U (z))

∣∣∣∣
z=ξn

−→ 0 and
d

dz
D(U (z))

∣∣∣∣
z=ξ∗

n

−→ 0 as n → ∞ .

(2.6)

Indeed, we can apply the mean value theorem to the (continuously differentiable)
function z �→ D(U (z)) : R → R in each of the intervals (n, n+1) and (−n−1,−n);
n = 1, 2, 3, . . . , to conclude that there are ξn ∈ (n, n + 1) and ξ∗

n ∈ (−n − 1,−n),
such that

D(U (n + 1)) − D(U (n)) = d

dz
D(U (z))

∣∣∣
z=ξn

and

D(U (−n)) − D(U (−n − 1)) = d

dz
D(U (z))

∣∣∣
z=ξ∗

n

.
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The limits in Eq. (2.6) follow from Definition 2.1 combined with the limits
in (2.2). Similarly, given any interval length λ ∈ (0,∞), analogous sequences
ξn ∈ (nλ, (n + 1)λ) and ξ∗

n ∈ (−(n + 1)λ, −nλ) canbe obtained forn = 1, 2, 3, . . . .

3 Basic Properties of aWave Profile

Throughout this section we assume that d, g : R → R satisfy Hypotheses (H1) and
(H2). In this section we prove that every travelling wave profile obeying Definition 2.1
has some specific properties that permit us to take advantage of a phase plane trans-
formation, thus reducing the second-order differential equation (2.4) for U = U (z)
to a first-order ordinary differential equation for the derivative dz/dU of its inverse
function U �→ z = z(U ) as a function of U ∈ (0, 1); see Sect. 4. Next, we show that
any wave profile U : R → R takes only values between 0 and 1.

Lemma 3.1 (Wave profile values.) Let (x, t) �→ u(x, t) = U (x − ct) : R×R+ → R

be a TW with speed c ∈ R and profile U : R → R. Then we have 0 ≤ U (z) ≤ 1 for
every z ∈ R.

Proof We have U (z) ≥ 0 for every z ∈ R, by Definition 2.1. By contradiction to
U (z) ≤ 1 for every z ∈ R, suppose there is a number ξ ∈ R such that U (ξ) > 1. We
make use of the limits in (2.2) to conclude that there are numbers ξ1, ξ2 ∈ R such that
ξ1 < ξ < ξ2 and U (ξ) > min{U (ξ1),U (ξ2)} > 1. We may choose ξ1 and ξ2, close
enough to ξ , in such a way that also U (z) > 1 holds for every z ∈ [ξ1, ξ2]. Denoting
by ξ0 ∈ [ξ1, ξ2] a (global) maximizer for the function U over the compact interval
[ξ1, ξ2], we arrive at ξ0 ∈ (ξ1, ξ2), U (ξ0) ≥ U (ξ) > 1, U ′(ξ0) = 0, and

d(U (z))U ′(z) − d(U (ξ0))U
′(ξ0) = − c (U (z) −U (ξ0)) −

∫ z

ξ0

g(U (z′)) dz′

for all z ∈ [ξ1, ξ2], by Eq. (2.5) and Remark 2.3, Part (i). Since U ′(ξ0) = 0, the last
equation entails

d(U (z))
U ′(z) −U ′(ξ0)

z − ξ0
= − c

U (z) −U (ξ0)

z − ξ0
− 1

z − ξ0

∫ z

ξ0

g(U (z′)) dz′

(3.1)

for all z ∈ [ξ1, ξ2] \ {ξ0}. We apply the mean value theorem to the right-hand side of
Eq. (3.1) to conclude that, for every z ∈ [ξ1, ξ2], z �= ξ0, there is a number ẑ ∈ [ξ1, ξ2]
between ξ0 and z, such that

d(U (z))
U ′(z) −U ′(ξ0)

z − ξ0
= − cU ′(ẑ) − g(U (ẑ)) .
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Letting z → ξ0 we get also ẑ → ξ0 and, consequently, the second derivative U ′′(ξ0)
of U at ξ0 exists and satisfies

d(U (ξ0))U
′′(ξ0) = − cU ′(ξ0) − g(U (ξ0)) = − g(U (ξ0)) > 0 ,

where d(U (ξ0)) > 0. Hence, U ′(ξ0) = 0 and U ′′(ξ0) > 0 show that ξ0 ∈ (ξ1, ξ2) is
also a strict local minimizer for the function U in the open interval (ξ1, ξ2). But this
contradicts our construction of ξ0 as a (global) maximizer for U over [ξ1, ξ2].

This proves U (z) ≤ 1 for all z ∈ R. ��
Now we are ready to calculate the wave speed c explicitly from the wave profileU .

Lemma 3.2 (Wave speed.) Let (x, t) �→ u(x, t) = U (x − ct) : R × R+ → R be a
TW with speed c ∈ R and profile U : R → R. Then we have 0 ≤ U (z) ≤ 1 and
g(U (z)) ≥ 0 for every z ∈ R, together with

0 < c =
∫ +∞

−∞
g(U (z′)) dz′ < ∞ . (3.2)

Moreover, Eq. (2.5) is equivalent with

d

dz
D(U (z)) + cU (z) −

∫ +∞

z
g(U (z′)) dz′ = 0 for all z ∈ R . (3.3)

Proof We have 0 ≤ U (z) ≤ 1 for every z ∈ R, by Lemma 3.1, which yields g(U (z))
≥ 0, by Hypothesis (H2).

For every fixed n = 1, 2, 3, . . . we take the pair (z∗, z) = (ξ∗
n , ξn) in Eq. (2.5),

where the latter pair has been specified in Remark 2.3, Part (iii). Applying (2.2) and
(2.6) to Eq. (2.5) and letting n → ∞, we arrive at

− c +
∫ +∞

−∞
g(U (z′)) dz′ = 0 ,

by the Lebesgue monotone convergence theorem. This proves Eq. (3.2) with c ≥ 0.
However, the integrand g(U (z′)) ≥ 0 cannot vanish identically for all z′ ∈ R, by
the continuity of the wave profile U : R → R and the limits (2.2) which guarantee
U (ẑ) = 1

2 ∈ (0, 1) for some ẑ ∈ R; hence, g(U (ẑ)) > 0. Since also g : R → R is
continuous, by Hypothesis (H2), we must have c > 0, by Eq. (3.2).

To verify also Eq. (3.3), we now take the pair (z∗, z) = (ξ∗
n , z), where ξ∗

n ∈
(−n − 1,−n) is as above and z ∈ R is arbitrary. Applying (2.2) and (2.6) to Eq. (2.5)
again and letting n → ∞, we obtain

d

dz
D(U (z)) + c (U (z) − 1) +

∫ z

−∞
g(U (z′)) dz′ = 0 for all z ∈ R .

Finally, we apply (3.2) to the last equation to derive (3.3). ��
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We continue with the constant sections of the travelling wave.

Lemma 3.3 (Constant sections.) Let (x, t) �→ u(x, t) = U (x − ct) : R × R+ → R

be a TW with speed c ∈ R and profile U : R → R. Assume that ξ ∈ R is such that
U (ξ) ∈ {0, 1}. Then the following two alternatives are valid:

(i) If U (ξ) = 0 then U (z) ≡ 0 for every z ≥ ξ .
(ii) If U (ξ) = 1 then U (z) ≡ 1 for every z ≤ ξ .

Proof We recall that 0 ≤ U (z) ≤ 1 for every z ∈ R, by Lemma 3.1.
Alt. (i): Assume that U (ξ) = 0. Suppose there is some ξ∗ ∈ (ξ,+∞) such that

U (ξ∗) > 0. We can guarantee even 0 < U (ξ∗) < 1, by taking ξ∗ ∈ (ξ,+∞) closer
to ξ . This implies g(U (ξ∗)) > 0 and, consequently, we have

∫ +∞
ξ

g(U (z′)) dz′ > 0.
Furthermore, our definition of a travelling wave, Definition 2.1, Part (b), guarantees

that also d
dz D(U (z))

∣∣∣
z=ξ

= 0, thanks toU (ξ) = 0.We insert these facts into Eq. (3.3)

with z = ξ , which yields
∫ +∞
ξ

g(U (z′)) dz′ = 0, a contradiction with the inequality
( > 0) above.

Alt. (ii): Now assume U (ξ) = 1 and suppose there is some ξ∗ ∈ (−∞, ξ) such
that U (ξ∗) < 1. Again, we can guarantee 0 < U (ξ∗) < 1, by taking ξ∗ ∈ (−∞, ξ)

closer to ξ . This implies g(U (ξ∗)) > 0 and, as above, we have
∫ ξ

−∞ g(U (z′)) dz′ > 0.

Definition 2.1, Part (b), guarantees also d
dz D(U (z))

∣∣∣
z=ξ

= 0, thanks to U (ξ) = 1.

We insert these facts into Eq. (3.3) with z = ξ , which yields
∫ +∞
ξ

g(U (z′)) dz′ = c.

A comparison of this equality with Eq. (3.2) forces
∫ ξ

−∞ g(U (z′)) dz′ = 0, a contra-
diction with the inequality ( > 0) above.

The lemma is proved. ��
Finally, we establish the monotonicity of the travelling wave (see Definition 2.1).

Proposition 3.4 (Monotonicity.) Let (x, t) �→ u(x, t) = U (x−ct) : R×R+ → R be
aTWwith speed c ∈ R and profileU : R → R. Then 0 ≤ U (z) ≤ 1 and U ′(z) ≤ 0 for
all z ∈ R. Moreover, there is an open interval (z0, z1) ⊂ R, −∞ ≤ z0 < z1 ≤ +∞,
such that U ′ < 0 on (z0, z1) together with

⎧⎨
⎩

lim
z→z0+

U (z) = 1 and U (z) = 1 if − ∞ < z ≤ z0 ,

lim
z→z1−

U (z) = 0 and U (z) = 0 if z1 ≤ z < +∞ .

Proof Recalling Lemmas 3.1, 3.2, and 3.3 , we conclude that it remains to prove
U ′(z) < 0 for every z ∈ R satisfying 0 < U (z) < 1. Suppose not; hence, there is
some ξ ∈ R such that U ′(ξ) = 0 and 0 < U (ξ) < 1. Eq. (2.5) and Remark 2.3,
Part (i), yield

d(U (z))U ′(z) − d(U (ξ))U ′(ξ) = − c (U (z) −U (ξ)) −
∫ z

ξ

g(U (z′)) dz′

(3.4)
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for all z ∈ R, in analogy with our proof of Lemma 3.1, Eq. (3.1).
Next, we show that every such point ξ must be a strict (i.e., isolated) local maximum

satisfyingU ′′(ξ) < 0. Let us choose ξ1, ξ2 ∈ R such that ξ1 < ξ < ξ2 and 0 < U (z) <

1 holds for all z ∈ [ξ1, ξ2]. We apply the mean value theorem to the right-hand side of
Eq. (3.4) to conclude that, for every z ∈ [ξ1, ξ2], z �= ξ , there is a number ẑ ∈ [ξ1, ξ2]
between ξ and z, such that

d(U (z))
U ′(z) −U ′(ξ)

z − ξ
= − cU ′(ẑ) − g(U (ẑ)) .

Letting z → ξ we conclude that ẑ → ξ , d(U (z)) → d(U (ξ)) > 0, and

d(U (ξ))U ′′(ξ) = − cU ′(ξ) − g(U (ξ)) = − g(U (ξ)) < 0 .

This yields U ′′(ξ) < 0.
Since U (z) → 1 as z → −∞, and U (ξ) < 1, there is some ξ ′

1 ∈ (−∞, ξ) such
thatU (ξ) < U (ξ ′

1) < 1. Now let ξ0 ∈ [ξ ′
1, ξ ] be a (global) minimizer for the function

U over the compact interval [ξ ′
1, ξ ]. With a help from U ′(ξ) = 0 and U ′′(ξ) < 0, we

arrive at ξ0 ∈ (ξ ′
1, ξ), U (ξ0) < U (ξ) < 1, U ′(ξ0) = 0, and Eq. (3.4) with ξ0 in place

of ξ . But then, by what we have proved above, if also U (ξ0) > 0 then we must have
U ′′(ξ0) < 0 as above. This contradicts our choice of ξ0 to be a (global) minimizer for
the function U over the open interval (ξ ′

1, ξ).
The case U (ξ0) = 0 would lead to a contradiction, by Lemma 3.3. It would force

U (z) = 0 for every z ≥ ξ0 and, in particular, also U (ξ) = 0, thus contradicting our
choice of ξ ∈ R.

We conclude that U ′(z) < 0 holds for every z ∈ (z0, z1). ��

4 A Phase Plane Transformation

We use a phase plane transformation (cf. Murray [24], Sect. 13.2, pp. 440–441,
Malaguti and Marcelli [21], Enguiça et al. [13, Sect. 1], Corli and Malaguti [7], and
Drábek and Takáč [11]) in order to describe all monotone decreasing travelling waves
u(x, t) ≡ U (x − ct − ζ ) where U : R → R is the profile of a travelling wave nor-
malized by U (0) = 1/2 as specified in Remark 2.3, Part (i), and ζ ∈ R is a suitable
translation constant; see also Proposition 3.4. We reduce the second-order differential
equation forU = U (z) to a first-order ordinary differential equation for the derivative
dz/dU of its inverse function U �→ z = z(U ) as a function of U ∈ (0, 1). In fact,
below we find a nonlinear differential equation for the derivative

U ′(z) =
(
dz

dU

)−1

≡ 1

z′(U )
< 0 as a function of U ∈ (0, 1) .

To this end, we make the substitution

V
def= − d(U )

dU

dz
> 0 for z ∈ (z0, z1) (4.1)
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and consequently look for V = V (U ) as a function of U ∈ (0, 1) that satisfies the
following differential equation obtained from Eq. (2.4):

− dV

dU
· dU
dz

+ c
dU

dz
+ g(U ) = 0 , z ∈ (z0, z1),

that is,

dV

dU
· V

d(U )
− c

V

d(U )
+ g(U ) = 0 , U ∈ (0, 1) . (4.2)

Hence, we are looking for the inverse function U �→ z(U ) with the derivative

dz

dU
= − d(U )

V (U )
< 0 for U ∈ (0, 1) , such that z(1/2) = 0 .

Finally, we multiply Eq. (4.2) by d(U ), make the substitution

y = V 2 = d(U )2
∣∣∣∣dUdz

∣∣∣∣
2

=
∣∣∣∣ ddz D(U (z))

∣∣∣∣
2

> 0 , (4.3)

and write r in place of U , thus arriving at

1

2
· dy
dr

− c
√
y + f (r) = 0 , r ∈ (0, 1) .

Here, the function f : R \ {0, 1} → R is defined by f (r)
def= d(r) g(r) for every

r ∈ R \ {0, 1}. Observe that f is continuous on R \ {0, 1} with f (r) > 0 for every
r ∈ (0, 1), and f (r) < 0 for every r ∈ (−∞, 0) ∪ (1,∞). In our existence results
in Sect. 4.1 we will assume also limr→0+ f (r) = 0 and limr→1− f (r) = 0, that is,
the restriction f |(0,1) of f to the open interval (0, 1) can be extended to a continuous
function f |[0,1] on [0, 1] by setting f (0) = f (1) = 0.

This means that the unknown function y : (0, 1) → (0,∞) of r verifies also

dy

dr
= 2

(
c
√
y+ − f (r)

)
, r ∈ (0, 1) , (4.4)

where y+ = max{y, 0}. Since we require that the function z �→ D(U (z)) : R → R

be continuously differentiable with the derivative d
dz D(U (z)) vanishing at every point

ξ ∈ R such that U (ξ) ∈ {0, 1}, that is, d
dz D(U (z) → 0 as z → z0+ and z → z1−,

the function y = y(r) = |dD(U (z))/dz|2 must satisfy the boundary conditions

y(0) = y(1) = 0 . (4.5)

The results of our phase plane transformation are collected in the following lemma.
Recall that, by Lemma 3.2, Eq. (3.2), any TWwith speed c ∈ R, if it exists, must have
speed c > 0.
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Lemma 4.1 (Existence of the wave profile.) Assume that d and g satisfy Hypotheses
(H1) and (H2), respectively. Let c ∈ (0,∞). Then problem (4.4), (4.5) has a classical
solution y ≡ yc : (0, 1) → (0,∞) if and only if problem (2.4), (2.3) has a solution
U : (z0, z1) → (0,∞) .

In Sects. 4.1 and 4.2 below we are concerned with the solvability of the overdeter-
mined first-order boundary value problem (4.4), (4.5) with a free parameter c ∈ R.
We address the natural questions, such as existence and nonexistence, and uniqueness
and nonuniqueness of a classical solution y : (0, 1) → (0,∞). But first, we explain
the method how to arrive at the existence and nonexistence results in Sects. 4.1 and
4.2, respectively, by monotone iterations (Hartman [18, Chapter III, Sect. 4]).

We begin by the observation that any classical solution y : (0, 1) → R to problem
(4.4), (4.5) must satisfy y(r) > 0 for every r ∈ (0, 1). On the contrary, suppose that
y(r0) ≤ 0 for some r0 ∈ (0, 1). Owing to the zero boundary conditions (4.5), we may
assume that y attains its global minimum at r0, i.e., y(r0) = minr∈(0,1) y(r). Hence,
we get y′(r0) = 0. But then Eq. (4.4) at r = r0 forces

0 = y′(r0) − 2c
√
y+(r0) = − 2 f (r0) < 0 ,

a contradiction. We conclude that Eq. (4.4) is equivalent with

d

dr

√
y(r) = c − f (r)√

y(r)
where y(r) > 0 for every r ∈ (0, 1) . (4.6)

In this equation we substitute Y (r) = c−1 √
y(r) which transforms it into the differ-

ential equation

d

dr
Y (r) = 1 − f (r)

c2Y (r)
where Y (r) > 0 for every r ∈ (0, 1) . (4.7)

Owing to f (r) > 0 for every fixed r ∈ (0, 1), the right-hand side of this equation,

F(r , · ) : Y �−→ 1 − f (r)

c2Y
: (0,∞) → R ,

is a strictly monotone increasing function of the variable Y ∈ (0,∞). To Eq. (4.7)
we attach the initial condition Y (0) = 0 and consider the corresponding initial value
problem (i.v.p., for short) for Y (r) on an open interval (0, δ) where δ ∈ (0, 1]. We use
δ = 1 for the existence result in Proposition 4.2 (Sect. 4.1), whereas δ ∈ (0, 1] will
have to be taken small enough for the nonexistence result in Proposition 4.3 below
(Sect. 4.2).

Our method of monotone iterations takes advantage of a standard comparison result
fromHartman [18, Chapter III, Sect. 4], Theorem 1.1 (p. 26) and Corollary 4.4 (p. 29),
proved by monotone iterations, as well.
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4.1 An Existence Result

The following existence result for problem (4.4), (4.5) is essentially a special case of
a result due to Enguiça et al. [13, Proposition 2, p. 176].

Proposition 4.2 (Existence of TW) Assume that f = dg : R \ {0, 1} → R satisfies
f (1) = 0 and

0 < μ
def= sup

r∈(0,1)

f (r)

r
< +∞ . (4.8)

Then there exists a number c∗ ∈ (
0, 2

√
μ

]
such that problem (4.4), (4.5) with speed

c ∈ R admits a unique positive solution if and only if c ≥ c∗. Consequently, also
problem (1.1) has a TW solution in the sense of Definition 2.1.

In [13, Sect. 2], this proposition is derived from [13, Proposition 1, p. 176]. Below,
we give amore detailed proofwhich hinges on themonotone iteration procedure (4.13)
starting with X0(r) = 1

2r for all r ∈ (0, δ).

Proof of Proposition 4.2 It follows from Eq. (4.7) that Y0(r) = r is a supersolution to
our i.v.p. for r ∈ (0, 1), i.e.,

d

dr
Y0(r) ≥ 1 − f (r)

c2Y0(r)
, r ∈ (0, 1) , and Y0(0) = 0 . (4.9)

Recursively for k = 1, 2, 3, . . . , let us define Yk(r) (for 0 ≤ r < δ) by its derivative

d

dr
Yk(r) = 1 − f (r)

c2Yk−1(r)
, r ∈ (0, δ) , and Yk(0) = 0 . (4.10)

If a classical solution y : (0, 1) → R to problem (4.4), (4.5) exists, with y(r) > 0 for
every r ∈ (0, 1), then we must have

0 < c−1
√
y(r) ≤ · · · ≤ Yk(r) ≤ Yk−1(r) ≤ · · · ≤ Y1(r) < Y0(r)

= r for r ∈ (0, δ) .
(4.11)

On the other hand, given any number δ ∈ (0, 1], if X0(r) = αr should be a
subsolution to our i.v.p. for r ∈ (0, δ), where α ∈ (0, 1] is some constant, i.e.,

d

dr
X0(r) ≤ 1 − f (r)

c2X0(r)
, r ∈ (0, δ) , and X0(0) = 0 , (4.12)

then this property is equivalent with the inequality f (r)/(c2r) ≤ α(1 − α) for all
r ∈ (0, δ). The least restrictive condition on the ratio f (r)/r is thus obtained for
α = 1

2 , namely, f (r)/r ≤ c2/4 for all r ∈ (0, δ). We now use the subsolution
X0(r) = 1

2r (i.e., α = 1
2 ) to establish the desired existence result for problem (4.4),
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(4.5) by a method of monotone iterations analogous to Eq. (4.10) above: Recursively
for k = 1, 2, 3, . . . , we define Xk(r) (for 0 ≤ r < δ) by its derivative

d

dr
Xk(r) = 1 − f (r)

c2Xk−1(r)
, r ∈ (0, δ) , and Xk(0) = 0 . (4.13)

Starting with X0(r) = 1
2r < Y0(r) = r for all r ∈ (0, δ), we verify the induction step

Xk−1(r) < Yk−1(r) (for all r ∈ (0, δ))

�⇒ Xk−1(r) ≤ Xk(r) < Yk(r) ≤ Yk−1(r) (for all r ∈ (0, δ))

for every k = 1, 2, 3, . . . . Either of themonotone limits, X∞(r) = limk→∞ Xk(r) and
Y∞(r) = limk→∞ Yk(r), for r ∈ (0, δ), renders a classical solution Y : (0, δ) → R

to the differential equation (4.7), with Y (r) > 0 for every r ∈ (0, δ) and Y (0) = 0.
Setting c0 = 2

√
μ we observe that f (r)/r ≤ c20/4 holds for all r ∈ (0, 1), by

Eq. (4.8). We treat Eq. (4.7) with c = c0. Next, taking δ = 1 and X0(r) = 1
2r

(for r ∈ [0, 1]) in Eqs. (4.12) and (4.13), we obtain a monotone increasing sequence
of continuous functions X0(r) ≤ X1(r) ≤ · · · ≤ Xk−1(r) ≤ Xk(r) ≤ . . . (for
r ∈ [0, 1]) which satisfies Xk(0) = 0 and Xk(r) ≤ Y0(r) = r (for r ∈ [0, 1]). It
follows from the integral form of Eq. (4.13) that Xk(r) ↗ Y (r) as k → ∞ holds
pointwise for every r ∈ [0, 1] and the monotone limit function Y : [0, 1] → R+ is
continuous and satisfies Eq. (4.7) with Y (0) = 0.

Our function [cY (r)]2 just obtained may be used in [13, Proposition 1, p. 176]
in place of the function s(u) in order to obtain the desired existence result. If the
existence of a classical solution Y ∗ : [0, 1] → R to the differential equation (4.7),
with Y ∗(r) > 0 for every r ∈ (0, 1) and Y ∗(0) = 0, is known for some speed c = c∗
satisfying 0 < c∗ ≤ c0 = 2

√
μ, then we may take any c ≥ c∗ in Eq. (4.7) and

conclude that the function X0(r) = Y ∗(r) > 0 satisfies in Eq. (4.12) for r ∈ (0, 1).
We proceed as above, in Eq. (4.13), to construct a sequence of continuous functions
Xk : [0, 1] → R+; k = 0, 1, 2, . . . , that converges to Y : [0, 1] → R+ as k → ∞.
Again, the desired existence result follows from [13, Proposition 1, p. 176]. ��

Some more related existence results can be found in Audrito and Vázquez [4,
Theorem 1.3, p. 7653] and [5, Theorem 2.1, p. 217], and Malaguti and Marcelli [21,
Theorems 2 and 3, pp. 474–475] for travelling waves distinguished by the front- or
sharp-type; see our Figs. 1, 2 or 3, respectively.

0

1

U(z)

Fig. 1 Travelling wave of front-type with z0 = −∞, z1 = +∞
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z0
0

1

U(z)

Fig. 2 Travelling wave of front-type with z0 > −∞, z1 = +∞

0

1

U(z)

z0 z1

Fig. 3 Travelling wave of sharp-type with z0 > −∞, z1 < +∞

4.2 A Nonexistence Result

Now we prove a nonexistence result for a TW u(x, t) ≡ U (x − ct − ζ ) whose profile
U : R → R should satisfy the boundary value problem (2.4), (2.3).

Proposition 4.3 (Nonexistence of TW) Let speed c ∈ (0,∞) be arbitrary and assume
that there exist δ ∈ (0, 1] and μ0 > 1

4 such that the function f = dg : R\{0, 1} → R

satisfies the following growth rate condition,

f (r)/r ≥ μ0c
2 for all r ∈ (0, δ) . (4.14)

Then problem (4.4), (4.5) has no classical solution y : (0, 1) → R.
In particular, if f satisfies

ν = lim inf
r→0+

f (r)

r
>

1

4
c2 ,

or the stronger condition

lim
r→0+

f (r)

r
= +∞ , (4.15)

then problem (4.4), (4.5) has no classical solution y : (0, 1) → R for any c ∈ R.
Consequently, also problem (1.1) has no TW solution in the sense of Definition 2.1.
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Our nonexistence result generalizes Lemma 3.1 in Enguiça et al. [13, p. 177].
Indeed, we require neither the continuity of the function f = dg on [0, 1], nor the
hypothesis μ < ∞ (assumed in [13, p. 177] and in our existence result in Proposi-
tion 4.2, Eq. (4.8), as well).

Proof of Proposition 4.3 On the contrary, assume that y : (0, 1) → R is a classical
solution to problem (4.4), (4.5). Then it must satisfy y(r) > 0 for every r ∈ (0, 1). We
recall from Eq. (4.9) that Y0(r) = r is a supersolution to our i.v.p. for r ∈ (0, 1). For
the number δ ∈ (0, 1] specified in Eq. (4.14), let us consider the sequence of functions
Yk : [0, δ) → R defined by Eq. (4.10) recursively for k = 1, 2, 3, . . . . We recall that,
if a classical solution y : (0, 1) → R to problem (4.4), (4.5) exists, with y(r) > 0
for every r ∈ (0, 1), then this sequence satisfies the inequalities in (4.11) for every
r ∈ (0, δ). Consequently, in order to derive the desired nonexistence result, it will
suffice to guarantee that there is a number r0 ∈ (0, δ) such that limk→∞ Yk(r0) = 0,
thus contradicting y(r0) > 0.

We take advantage of the growth rate condition (4.14), where δ ∈ (0, 1) is some
number and μ0 > 1

4 is to be determined below. Then problem (4.10) for k = 1 and
Y1(0) = 0 has the solution

Y1(r) = r − c−2
∫ r

0

f (s)

Y0(s)
ds = r − c−2

∫ r

0

f (s)

s
ds

≤ r − μ0r = (1 − μ0)r for all r ∈ (0, δ) .

(4.16)

Repeating this step for k = 2 and Y2(0) = 0 we arrive at

Y2(r) = r − c−2
∫ r

0

f (s)

Y1(s)
ds < r − c−2

∫ r

0

f (s)

(1 − μ0)s
ds

≤ r − μ0(1 − μ0)
−1r =

[
1 − μ0

1 − μ0

]
r for all r ∈ (0, δ) .

(4.17)

Performing this iterative process for all k = 1, 2, 3, . . . , as long as Yk−1(r) > 0 for
every r ∈ (0, δ), we finally obtain the estimate

Yk(r) ≤ akr for all r ∈ (0, δ) , where

a0 = 1 and ak = 1 − μ0/ak−1 ; k = 1, 2, 3, . . . .
(4.18)

Recalling our contradictory hypothesis that assumes the existence of a positive clas-
sical solution y : (0, 1) → R to problem (4.4), (4.5), we deduce from the inequalities
in (4.11) that the inequalities

0 < c−1
√
y(r) ≤ · · · ≤ akr ≤ ak−1r ≤ · · · ≤ a2r ≤ a1r ≤ a0r = r

hold for all r ∈ (0, δ), together with

1 = a0 ≥ a1 ≥ a2 ≥ . . . ≥ ak−1 ≥ ak ≥ a∞ = lim
k→∞ ak > 0 .
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In particular, taking the limit k → ∞ in Eq. (4.18), we get a∞(1−a∞) = μ0. Thanks
to 0 < a∞ ≤ 1, the last equation forces μ0 ≤ 1

4 which is a contradiction to our
hypothesis μ0 > 1

4 .
We conclude that if μ0 > 1/4, then problem (4.4), (4.5) has no classical solution

y : [0, 1] → R, such that y(r) > 0 for all r ∈ (0, 1). ��

Remark 4.4 In fact, in Proposition 4.2 (in Sect. 4.1), c∗ is the minimal travelling wave
speed and Eq. (4.8) provides an upper bound, c∗ ≤ 2

√
μ.

On the other hand, our nonexistence result in Proposition 4.3 above provides a
lower bound for c∗. Indeed, we have shown that

c∗ ≥ 2
√

ν , where ν = lim inf
r→0+

f (r)

r
.

The inequality ν > 1
4c

2 is equivalentwithμ0 > 1
4 in condition (4.14), where δ ∈ (0, 1]

is sufficiently small.
We have thus obtained the following estimates on the minimal travelling wave

speed, 2
√

ν ≤ c∗ ≤ 2
√

μ.

Remark 4.5 Notice that conditions (4.8) and (4.14) impose a restriction on the mutual
relation between the diffusion d(r) and the reaction g(r) as r → 0+. In particular,
given a reaction function g : R → R satisfying Hypothesis (H2), diffusion d(r)
that degenerates to zero “suitably fast” as r → 0+ may guarantee the existence of a
solution to problem (4.4), (4.5). On the other hand, diffusion d(r) that blows up to
+∞ “suitably fast” as r → 0+ may prevent the existence of a solution to (4.4), (4.5).

5 Interaction Between Diffusion and Reaction, Asymptotic Shape of
TravellingWaves

In this section we prove a number of specialized results on the profile of a travelling
wave for some simple forms of the nonlinearities d(r) and g(r) involved. Our main
goal here is to illustrate the biological meaning of our mathematical results rather than
to treat mathematically general cases. We restrict ourselves to diffusion and reaction
terms d(r) and g(r) having the following power-type asymptotic behavior as r → 0+
and r → 1−, respectively, where γ0, γ1, δ0, and δ1 are some real constants:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
r→0+

g(r)

rγ0

def= g0 ∈ (0,∞) ,

lim
r→1−

g(r)

(1 − r)γ1
def= g1 ∈ (0,∞) ,

lim
r→0+

d(r)

r δ0

def= d0 ∈ (0,∞) ,

lim
r→1−

d(r)

(1 − r)δ1
def= d1 ∈ (0,∞) .

(5.1)
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The following restrictions on the parameters γ0, γ1, δ0, and δ1 are imposed by
Hypotheses (H1) and (H2):

Hypothesis (H1) �⇒ δ0 > −1 and δ1 > −1 ,

Hypothesis (H2) �⇒ γ0 > 0 and γ1 > 0 .

In addition, recalling f (r) = d(r) g(r) for every r ∈ R \ {0, 1}, and f continuous on
[0, 1] with f (0) = f (1) = 0, we get also the restrictions

γ0 + δ0 > 0 and γ1 + δ1 > 0 .

In what follows we treat the profile of the travelling wave r = U (z) for values near
the equilibrium points r = 0 (in Sect. 5.1) and r = 1 (in Sect. 5.2).

5.1 Existence of TWs and Asymptotics (5.1) Near 0

Let us define the following parameter sets, see Fig. 4,

M 1
0

def= {(γ0, δ0) ∈ R
2 : γ0 > 0, δ0 > −1, 0 < γ0 + δ0 < 1} ,

M 2
0

def= {(γ0, δ0) ∈ R
2 : γ0 > 0, δ0 > −1, γ0 + δ0 ≥ 1} .

For the parameter pairs (γ0, δ0) ∈ M 1
0 ∪ M 2

0 we have the following conclusions
on the existence of travelling waves; see Propositions 4.3 and 4.2 above for further
details.

Theorem 5.1 (i) (γ0, δ0) ∈ M 1
0 implies Eq. (4.15) and, hence, no travelling wave

exists, by Proposition 4.3.
(ii) (γ0, δ0) ∈ M 2

0 implies Eq. (4.8) and, hence, a travelling wave exists, by
Proposition 4.2.

5.2 Profile Asymptotics Near 1

Here, we need the following parameter sets, see Fig. 5,

M 1
1

def= {(γ1, δ1) ∈ R
2 : 0 < γ1 < 1 + δ1, 0 < γ1 + δ1 ≤ 1} ,

M 2
1

def= {(γ1, δ1) ∈ R
2 : 0 < 1 + δ1 ≤ γ1, 0 < γ1 + δ1 ≤ 1} ,

M 3
1

def= {(γ1, δ1) ∈ R
2 : 0 < γ1 < 1, γ1 + δ1 > 1} ,

M 4
1

def= {(γ1, δ1) ∈ R
2 : γ1 ≥ 1, δ1 > −1, γ1 + δ1 > 1} .

From Sect. 4 we recall that r �→ y ≡ yc(r) : (0, 1) → (0,∞) is a classical
solution of problem (4.4), (4.5).
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δ0

0

1

−1

γ0

M 2
0

1

M 1
0

Fig. 4 The sets M 1
0 andM 2

0

In what follows we assume (γ0, δ0) ∈ M 2
0 , i.e., y ≡ yc(r) exists as a solution to

the nonlinear two-point boundary value problem (4.4), (4.5) for the unknown function
y : (0, 1) → (0,∞) with some speed c > 0, by Theorem 5.1(ii) and Proposition 4.2.
Consequently, a travelling wave with the profile U : z �→ U (z) is obtained by
the phase plane transformation described in Sect. 4, Lemma 4.1. We classify the
parameters γ1 and δ1 according to whether z0 > −∞ or z0 = −∞. For the parameter
pairs (γ1, δ1) ∈ ∪4

i=1M
i
1 we will prove the following conclusions.

Theorem 5.2 Assume (γ0, δ0) ∈ M 2
0 . Then we have:

(i) z0 > −∞ provided (γ1, δ1) ∈ M 1
1 ∪ M 3

1 .
(ii) z0 = −∞ provided (γ1, δ1) ∈ M 2

1 ∪ M 4
1 .

Proof We begin with
Case 1 (γ1, δ1) ∈ M 1

1 . We will compare the classical solution y ≡ yc : (0, 1) →
(0,∞) specified above with the function wκ(r)

def= κ (1 − r)γ1+δ1+1 of r ∈ [0, 1],
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δ1

0

1

−1

γ1

M 4
1

1

M 2
1

M 1
1

M 3
1

Fig. 5 The sets M 1
1 ,M

2
1 , M

3
1 , and M 4

1

where κ > 0 is a suitable number to be determined later. We set f1 = d1g1 ( > 0)
and write f (r) = ( f1 + η(r)) (1 − r)γ1+δ1 , where η : [0, 1] → R is a continuous
function with η(1) = 0.

Then the differential operator in Eq. (4.4) takes the form

A (y)(r)
def= dy

dr
− 2c

√
y+ + 2 f (r) , r ∈ (0, 1) . (5.2)

In particular, for the functionwκ defined above,with κ > 0 small enough,we calculate

A (wκ)(r) = − κ(γ1 + δ1 + 1) (1 − r)γ1+δ1 − 2c
√

κ (1 − r)(γ1+δ1+1)/2

+ 2 ( f1 + η(r)) (1 − r)γ1+δ1 , r ∈ (0, 1) .
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Since (γ1, δ1) ∈ M 1
1 implies γ1 + δ1 ≤ 1

2 (γ1 + δ1 +1), the first and third terms above
dominate the second one in the following sense, for r ∈ (0, 1) close enough to 1:

A (wκ)(r) = (1 − r)γ1+δ1

×
[

− κ(γ1 + δ1 + 1) + 2 ( f1 + η(r)) − 2c
√

κ (1 − r)(1−γ1−δ1)/2
]

,

(5.3)

provided κ > 0 is chosen small enough, relative to f1 > 0. This way we are able to
guarantee

A (wκ)(r) ≥ f1 (1 − r)γ1+δ1 > 0 for all r ∈ (0, 1) close to 1.

Hence, there is a sufficiently small number � ∈ (0, 1) such that wκ : r �→ wκ(r) is a
subsolution for the backward initial value problem

dy

dr
= 2

(
c
√
y+ − f (r)

)
, r ∈ (1 − �, 1) ; y(1) = 0 . (5.4)

Recall that c > 0. Observing that the nonlinearity y �→ √
y+ is a monotone,

nondecreasing function, we conclude that the backward initial value problem (5.4)
possesses a unique classical solution y ≡ yc(r) on the interval (1 − �, 1). By a
similar monotonicity argument, we arrive at yc(r) ≥ wκ(r) = κ (1 − r)γ1+δ1+1 for
all r ∈ (1 − �, 1). After returning to the original variables from Eqs. (4.1) and (4.3)
we obtain

V (U ) ≥ √
κ (1 −U )(γ1+δ1+1)/2 for all U ∈ (1 − �, 1) .

We combine this inequality with the last limit in (5.1) to conclude that there is a
constant c1 > 0 such that

− dz

dU
= d(U )

V (U )
≤ c1

(1 −U )(γ1−δ1+1)/2
for all U ∈ (1 − �, 1) . (5.5)

Notice that the relation (γ1, δ1) ∈ M 1
1 implies also 1

2 (γ1 − δ1 + 1) < 1. We fix an
arbitrary number Ũ ∈ (1 − �, 1), denote z̃ = z(Ũ ) ∈ (z0, z1) with U �→ z(U ) :
(0, 1) → (z0, z1) being the inverse function of U : (z0, z1) → (0, 1), and integrate
in Eq. (5.5) with respect to U ∈ (Ũ , 1), thus arriving at

z̃ − z0 =
∫ z̃

z0
dz =

∫ Ũ

1

dz

dU
dU = −

∫ 1

Ũ

dz

dU
dU ≤ c1

∫ 1

Ũ

dU

(1 −U )(γ1−δ1+1)/2
< ∞ .

This estimate forces z0 > −∞.
Case 2 (γ1, δ1) ∈ M 3

1 . Here we compare y ≡ yc : (0, 1) → (0,∞)with the new

function wκ(r)
def= κ (1 − r)2(γ1+δ1) of r ∈ [0, 1], where κ > 0 is a suitable number
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to be determined later again. Using Eq. (5.2), for κ > 0 small enough, we calculate

A (wκ)(r) = − 2κ(γ1 + δ1) (1 − r)2(γ1+δ1)−1 − 2c
√

κ (1 − r)γ1+δ1

+ 2 ( f1 + η(r)) (1 − r)γ1+δ1 , r ∈ (0, 1) .
(5.6)

Since (γ1, δ1) ∈ M 3
1 implies 2(γ1 + δ1) − 1 > γ1 + δ1, the second and third terms

above dominate the first one in the following sense, for r ∈ (0, 1) close enough to 1:

A (wκ)(r) ≥ f1 (1 − r)γ1+δ1 > 0 ,

providedκ > 0 is chosen small enough, relative to f1 > 0.Hence, there is a sufficiently
small number � ∈ (0, 1) such that wκ : r �→ wκ(r) is a subsolution for the backward
initial value problem (5.4). It follows that the backward initial value problem (5.4)
possesses a unique classical solution y ≡ yc(r) on the interval (1−�, 1)which satisfies
yc(r) ≥ wκ(r) = κ (1−r)2(γ1+δ1) for all r ∈ (1−�, 1). After returning to the original
variables from Eqs. (4.1) and (4.3) we obtain

V (U ) ≥ √
κ (1 −U )γ1+δ1 for all U ∈ (1 − �, 1) .

We combine this inequality with the last limit in (5.1) to conclude that there is a
constant c2 > 0 such that

− dz

dU
= d(U )

V (U )
≤ c2

(1 −U )γ1
for all U ∈ (1 − �, 1) . (5.7)

Notice that the relation (γ1, δ1) ∈ M 3
1 implies also γ1 < 1. Consequently, fixing an

arbitrary number Ũ ∈ (1 − �, 1), denoting z̃ = z(Ũ ) ∈ (z0, z1), and integrating in
Eq. (5.7) with respect to U ∈ (Ũ , 1), we arrive at

z̃ − z0 = −
∫ 1

Ũ

dz

dU
dU ≤ c2

∫ 1

Ũ

dU

(1 −U )γ1
< ∞ ,

which forces z0 > −∞.
Case 3 (γ1, δ1) ∈ M 2

1 . This time we compare y ≡ yc : (0, 1) → (0,∞)with the

function wκ(r)
def= κ (1− r)γ1+δ1+1 of r ∈ [0, 1], where κ > 0 is a suitable number to

be determined later again. From Eq. (5.3) we deduce that there is a sufficiently large
number κ̄ > 0 such that

A (wκ̄)(r) ≤ − κ̄(γ1 + δ1) (1 − r)γ1+δ1 < 0 for all r ∈ (0, 1) close to 1.

Hence, there is a sufficiently small number � ∈ (0, 1) such that wκ̄ : r �→ wκ̄(r) is a
supersolution for the backward initial value problem (5.4).

By similar arguments as above, we have yc(r) ≤ wκ̄(r) = κ̄ (1− r)γ1+δ1+1 for all
r ∈ (1 − �, 1). After returning to the original variables from Eqs. (4.1) and (4.3) we
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obtain, with a constant c3 > 0,

− dz

dU
= d(U )

V (U )
≥ c3

(1 −U )(γ1−δ1+1)/2
for all U ∈ (1 − �, 1) . (5.8)

Notice that the relation (γ1, δ1) ∈ M 2
1 implies also 1

2 (γ1 − δ1 + 1) ≥ 1. Again, we
fix an arbitrary number Ũ ∈ (1 − �, 1), denote z̃ = z(Ũ ) ∈ (z0, z1), and integrate in
Eq. (5.8) with respect to U ∈ (Ũ , 1), thus arriving at

z̃ − z0 = −
∫ 1

Ũ

dz

dU
dU ≥ c3

∫ 1

Ũ

dU

(1 −U )(γ1−δ1+1)/2
= +∞ .

This estimate forces z0 = −∞.
Case 4 (γ1, δ1) ∈ M 4

1 . Finally, we compare y ≡ yc : (0, 1) → (0,∞) with the

function wκ(r)
def= κ (1 − r)2(γ1+δ1) of r ∈ [0, 1], where κ > 0 is a suitable number

to be determined. From Eq. (5.6) we deduce that there is a sufficiently large number
κ̄ > 0 such that

A (wκ̄)(r) ≤ − 2κ̄(γ1 + δ1) (1 − r)2(γ1+δ1)−1 < 0 for all r ∈ (0, 1) close to 1.

Hence, there is a sufficiently small number � ∈ (0, 1) such that wκ̄ : r �→ wκ̄(r) is a
supersolution for the backward initial value problem (5.4).

Similarly as above, we have yc(r) ≤ wκ̄(r) = κ̄ (1−r)2(γ1+δ1) for all r ∈ (1−�, 1).
After returning to the original variables from Eqs. (4.1) and (4.3) we obtain, with a
constant c4 > 0,

− dz

dU
= d(U )

V (U )
≥ c4

(1 −U )γ1
for all U ∈ (1 − �, 1) . (5.9)

Notice that the relation (γ1, δ1) ∈ M 4
1 implies also γ1 ≥ 1. Again, we fix an arbitrary

number Ũ ∈ (1 − �, 1), denote z̃ = z(Ũ ) ∈ (z0, z1), and integrate in Eq. (5.9) with
respect to U ∈ (Ũ , 1), thus arriving at

z̃ − z0 = −
∫ 1

Ũ

dz

dU
dU ≥ c4

∫ 1

Ũ

dU

(1 −U )γ1
= +∞ ,

which forces z0 = −∞.
The theorem is proved. ��

5.3 Comparisons with Previous Results

The first result on the existence of travelling waves of the so-called sharp-type for
c = c∗ was obtained in Sánchez-Garduño and Maini [25, Theorem 2, p. 187]. The
authors assume d(0) = 0, d > 0 in (0, 1], g(0) = g(1) = 0, g > 0 in (0, 1), and
impose the following additional smoothness assumptions: d ∈ C2([0, 1]), d ′(s) > 0
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and d ′′(s) �= 0 for all s ∈ [0, 1], g ∈ C2([0, 1]), g′(0) > 0 and g′(1) < 0. These
assumptions areweakened to d ∈ C([0, 1])∩C1((0, 1]) and g ∈ C([0, 1]) inMalaguti
and Marcelli [21], in Theorems 2, 3, and 14 (pp. 474, 475, and 493). The authors in
[21] allow even for d ′(0) = +∞ and d(1) = 0; of particular interest to us are the
existence results for travelling waves of sharp-type [21, Theorems 2(b) and 14(b)].

Our results are related to the existence results in [21]. However, our results cover
more general asymptotic behavior of both terms, d and g, near the equilibrium points
0 and 1. Indeed, their existence result [21, Theorem 2, p. 474] corresponds to the
following parameter values in our case: γ0 > 0, δ0 = 1, γ1 > 0, and δ1 = 0.
Another existence result in [21, Theorem 3, p. 475] corresponds to our parameter
values γ0+δ0 > 1, 0 < δ0 < 1, γ1 > 0, and δ1 = 0. Furthermore, the existence result
for doubly degenerate diffusion in [21, Theorem 14, p. 493] corresponds to γ0 > 0,
δ0 = 1, γ1 > 0, and δ1 = 1. In each of these cases, for 0 < γ1 < 1, we obtain a wave
profile U with z0 > −∞, while for γ1 ≥ 1 we have z0 = −∞.

Somemore related results on qualitative properties of travelling waves can be found
also in [1,6,10,12,22].

Acknowledgements The work of Pavel Drábek was supported in part by the Grant Agency of the Czech
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