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Abstract
In this paper, we investigate open-loop andweak closed-loop solvabilities of stochastic
linear quadratic (LQ, for short) optimal control problem of Markovian regime switch-
ing system. Interestingly, these two solvabilities are equivalent on [0, T ). We first
provide an alternative characterization of the open-loop solvability of LQ problem
using a perturbation approach. Then, we study the weak closed-loop solvability of
LQ problem of Markovian regime switching system, and establish the equivalent rela-
tionship between open-loop and weak closed-loop solvabilities. Finally, we present
an example to shed on light on finding weak closed-loop optimal strategies within the
framework of Markovian regime switching system.
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1 Introduction

Linear quadratic (LQ, for short) optimal control can be traced back to the works of
Kalman [13] for the deterministic cases, and Wonham [25] for the stochastic cases
(also see [2,6,28], and the references therein). In the classical setting, under somemild
conditions on the weighting coefficients in the cost functional such as positive defi-
niteness of the weighting control matrix, the stochastic LQ optimal control problems
can be solved elegantly via Riccati equation approach (see [28, Chapter 6]). Chen et
al. [3] studied stochastic LQ optimal control problems with indefinite weighting con-
trol matrix as well as financial applications such as continuous time mean-variance
portfolio selection problems (see [17,35]). Since then, there has been an increasing
interest in the so-called indefinite stochastic LQ optimal control (see [1,16]).

A topic of state systems involving random jumps, such as Poisson jumps or regime
switching jumps, is of interest and of importance in various fields such as engineering,
management, finance, economics, and so on. For example, Wu andWang [26] consid-
ered the stochastic LQ optimal control problems with Poisson jumps and obtained the
existence and uniqueness of the deterministic Riccati equation. Using the technique of
completing squares, Hu andOksendal [10] discussed the stochastic LQoptimal control
problem with Poisson jumps and partial information. Yu [29] investigated a kind of
infinite horizon backward stochastic LQ optimal control problems. Li et al. [14] solved
the indefinite stochastic LQ optimal control problem with Poisson jumps. Meanwhile,
there has been dramatically increasing interest in studying this family of stochastic
control problems as well as their financial applications, see, for examples, [7,7–
9,19,21,23,27,31,33,34,36]. Moreover [11,12] formulated a class of continuous-time
LQ optimal controls with Markovian jumps. Zhang and Yin [30] developed hybrid
controls of a class ofLQsystemsmodulated by afinite-stateMarkov chain. Li et al. [16]
initiated indefinite stochastic LQ optimal controls with regime switching jumps. Liu
et al. [18] considered near-optimal controls of regime switching LQ problems with
indefinite control weight costs. Some other recent development concerning regime
switching jumps see [4,5,15].

Recently, Sun and Yong [22] investigated the two-person zero-sum stochastic LQ
differential games. It was shown in [22] that the open-loop solvability is equivalent
to the existence of an adapted solution to a forward-backward stochastic differential
equation (FBSDE, for short) with constraint and the closed loop solvability is equiv-
alent to the existence of a regular solution to the Riccati equations. As a continuation
work of [20,22] fundamentally studied the open-loop and closed-loop solvabilities
for stochastic LQ optimal control problems. Moreover, the equivalence between the
strongly regular solvability of the Riccati equation and the uniform convexity of the
cost functional is established. Wang et al. [24] introduced the notion of weak closed-
loop optimal strategy for LQ problems, and obtained its existence which is equivalent
to the open-loop solvability of the LQ problem. Zhang et al. [32] studied the open-loop
and closed-loop solvabilities for stochastic LQ optimal control problems with Marko-
vian regime switching jumps, and established the equivalent relationship between the
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strongly regular solvability of the Riccati equation and the uniform convexity of the
cost functional in the circumstance of Markovian regime switching system. In this
paper, we further study the weak closed-loop solvability of stochastic LQ optimal
control problems with Markovian regime switching system. In order to present our
work more clearly, we describe the problem in detail.

Let (�,F , F, P) be a complete filtered probability space on which a standard one-
dimensional Brownian motion W = {W (t); 0 ≤ t < ∞} and a continuous time,
finite-state, Markov chain α = {α(t); 0 ≤ t < ∞} are defined, where F = {Ft }t≥0
is the natural filtration of W and α augmented by all the P-null sets in F , and F

α =
{Fα

t }t≥0 is the filtration generated by α, with the related expectation E
α . We identify

the state space of the chain α with a finite set S � {1, 2 . . . , D}, where D ∈ N and
suppose that the chain is homogeneous and irreducible. Let 0 ≤ t < T and consider
the following controlled Markovian regime switching linear stochastic differential
equation (SDE, for short) over a finite time horizon [t, T ]:
⎧
⎪⎪⎨

⎪⎪⎩

dX(s) =
[
A(s, α(s))X(s) + B(s, α(s))u(s) + b(s)

]
ds

+
[
C(s, α(s))X(s) + D(s, α(s))u(s) + σ(s)

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,

(1.1)

where A,C : [0, T ]×S → R
n×n and B, D : [0, T ]×S → R

n×m are given determin-
istic functions, called the coefficients of the state Eq. (1.1); b, σ : [0, T ] × � → R

n

are F-progressively measurable processes, called the nonhomogeneous terms; and
(t, x, i) ∈ [0, T ) × R

n × S is called the initial pair. In the above, the process u(·),
which belongs to the following space:

U[t, T ] �
{
u : [t, T ] × � → R

m
∣
∣
∣ u is F-progressively measurable and

E

∫ T

t
|u(s)|2ds < ∞

}
,

is called the control process, and the solution X(·) of (1.1) is called the state process
corresponding to (t, x, i) and u(·). To measure the performance of the control u(·),
we introduce the following quadratic cost functional:

J (t, x, i; u(·)) � E

{〈
G(α(T ))X(T ), X(T )

〉
+ 2

〈
g(α(T )), X(T )

〉

+
∫ T

t

[ 〈(
Q(s, α(s)) S(s, α(s))�
S(s, α(s)) R(s, α(s))

)(
X(s)
u(s)

)

,

(
X(s)
u(s)

)〉

+2

〈(
q(s, α(s))
ρ(s, α(s))

)

,

(
X(s)
u(s)

)〉 ]

ds

}

, (1.2)

where G(i) ∈ R
n×n is a symmetric constant matrix, and g(i) is an FT -measurable

random variable taking values in R
n , with i ∈ S; Q : [0, T ] × S → R

n×n , S :
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[0, T ] × S → R
m×n and R : [0, T ] × S → R

m×m are deterministic functions with
both Q and R being symmetric; q : [0, T ] × S → R

n and ρ : [0, T ] × S → R
m are

deterministic functions. In the above, M� stands for the transpose of a matrix M . The
problem that we are going to study is the following:

Problem (M-SLQ). For any given initial pair (t, x, i) ∈ [0, T ) × R
n × S, find a

control u∗(·) ∈ U[t, T ], such that

J (t, x, i; u∗(·)) = inf
u(·)∈U [t,T ]

J (t, x, i; u(·)), ∀u(·) ∈ U[t, T ]. (1.3)

The above is called a stochastic linear quadratic optimal control problem of the
Markovian regime switching system. Any u∗(·) ∈ U[t, T ] satisfying (1.3) is called an
open-loop optimal control of Problem (M-SLQ) for the initial pair (t, x, i); the corre-
sponding state process X(·) = X(· ; t, x, i, u∗(·)) is called an optimal state process;
and the function V (·, ·, ·) defined by

V (t, x, i) � inf
u(·)∈U [t,T ]

J (t, x, i; u(·)), (t, x, i) ∈ [0, T ] × R
n × S, (1.4)

is called the value function of Problem (M-SLQ). Note that in the special case when
b(·, ·), σ (·, ·), g(·), q(·, ·), ρ(·, ·) = 0, the state Eq. (1.1) and the cost functional (1.2),
respectively, become

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX(s) =
[
A(s, α(s))X(s) + B(s, α(s))u(s)

]
ds

+
[
C(s, α(s))X(s) + D(s, α(s))u(s)

]
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i,

(1.5)

and

J 0(t, x, i; u(·)) = E

{〈
G(α(T ))X(T ), X(T ))

〉

+
∫ T

t

〈(
Q(s, α(s)) S(s, α(s))�
S(s, α(s)) R(s, α(s))

)(
X(s)
u(s)

)

,

(
X(s)
u(s)

)〉

ds

}

.

(1.6)

We refer to the problem of minimizing (1.6) subject to (1.5) as the homogeneous
LQ problem associated with Problem (M-SLQ), denoted by Problem (M-SLQ)0.
The corresponding value function is denoted by V 0(t, x, i). Moreover, when all the
coefficients of (1.1) and (1.2) are independent of the regime switching term α(·), the
corresponding problem (1.3) is called Problem (SLQ).

Following the works of [20,22,32] investigated the open-loop and closed-loop solv-
abilities for stochastic LQ problems of Markovian regime switching system. It was
shown that the open-loop solvability of Problem (M-SLQ) is equivalent to the solvabil-
ity of a forward-backward stochastic differential equation with constraint. They also
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showed that the closed-loop solvability of Problem (M-SLQ) is equivalent to the exis-
tence of a regular solution of the following general Riccati equation (GRE, for short):

⎧
⎨

⎩

Ṗ(s, i) + P(s, i)A(s, i) + A(s, i)�P(s, i) + C(s, i)�P(s, i)C(s, i) + Q(s, i)
−Ŝ(s, i)� R̂(s, i)−1 Ŝ(s, i) + ∑D

k=1 λik(s)P(s, k) = 0, a.e. s ∈ [0, T ], i ∈ S,

P(T , i) = G(i),

(1.7)

where

Ŝ(s, i) = B(s, i)�P(s, i) + D(s, i)�P(s, i)C(s, i) + S(s, i),

R̂(s, i) = R(s, i) + D(s, i)�P(s, i)D(s, i).

It can be found (see [32]) that, for the stochastic LQ optimal control problem of
Markovian regime switching system, the existence of a closed-loop optimal strategy
implies the existence of an open-loop optimal control, but not vice versa. Thus, there
are some LQ problems that are open-loop solvable, but not closed-loop solvable.
Such problems cannot be expected to get a regular solution (which does not exist) to
the associated GRE (1.7). Therefore, the state feedback representation of the open-
loop optimal control might be impossible. To be more convincing, let us look at the
following simple example.

Example 1.1 Consider the following one-dimensional state equation

{
dX(s) = [ − α(s)X(s) + u(s)

]
ds + √

2α(s)X(s)dW (s), s ∈ [t, 1],
X(t) = x, α(t) = i,

and the nonnegative cost functional

J (t, x, i; u(·)) = E|X(1)|2.

In this example, the GRE reads (noting that Q(·, i) = 0, R(·, i) = 0, D(·, i) = 0 for
every i ∈ S, and 0−1 = 0):

{
Ṗ(s, i) + ∑D

k=1 λik(s)P(s, k) = 0, a.e. s ∈ [t, 1],
P(T , i) = 1, i ∈ S.

(1.8)

It is not hard to check that GRE (1.8) has no regular solution (see Sect. 3 for the
definition of regular solution), thus the corresponding LQ problem is not closed-loop
solvable. A usual Riccati equation approach specifies the corresponding state feedback
control as follows (noting that Q(·, i) = 0, R(·, i) = 0, D(·, i) = 0 for every i ∈ S,
and 0−1 = 0):

u∗(s) � −
[
R(s, i)+D(s, i)�P(s, i)D(s, i)

]−1[
B(s, i)P(s, i)

+D(s, i)�P(s, i)C(s, i)+S(s, i)
]
X(s)≡0,
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which is not an open-loop optimal control for any nonzero initial state x . In fact, let
(t, x, i) ∈ [0, 1) × R ×S be an arbitrary but the fixed initial pair with x �= 0. By Itô’s
formula, the state process X∗(·) corresponding to (t, x, i) and u∗(·) is expressed as

X∗(s) = x · exp
{

−2
∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}

, s ∈ [t, 1].

Thus,

J (t, x, i; u∗(·)) = E|X∗(1)|2 = x2 > 0.

On the other hand, let ū(·) be the control defined by

ū(s) ≡ x

t − 1
· exp

{

−2
∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}

, s ∈ [t, 1].

By the variation of constants formula, the state process X̄(·), corresponding to (t, x, i)
and ū(·), can be presented by

X̄(s) = exp

{

−2
∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}

·
[

x +
∫ s

t
exp

{

2
∫ r

t
α(v)dv −

∫ r

t

√
2α(v)dW (v)

}

· ū(r)dr

]

= exp

{

−2
∫ s

t
α(r)dr +

∫ s

t

√
2α(r)dW (r)

}

·
[

x + s − t

t − 1
x

]

, s ∈ [t, 1],

which satisfies X̄(1) = 0. Hence,

J (t, x, i; ū(·)) = E|X̄(1)|2 = 0 < J (t, x, i; u∗(·)).

Since the cost functional is nonnegative, the open-loop control ū(·) is optimal for the
initial pair (t, x, i), but u∗(·) is not optimal.

The above example suggests that the usual solvability of the GRE (1.7) no longer
helpfully handles the open-loop solvability of certain stochastic LQproblems. It is then
natural to ask:When Problem (M-SLQ) is merely open-loop solvable, not closed-loop
solvable, is it still possible to get a linear state feedback representation for an open-
loop optimal control within the framework of Markovian regime switching system?
The goal of this paper is to tackle this problem.

The contribution of this paper is to study theweak closed-loop solvability of stochas-
tic LQ optimal control problems with Markovian regime switching system. In detail,
we provide an alternative characterization of the open-loop solvability of Problem
(M-SLQ) using the perturbation approach adopted in [20]. In order to obtain a linear
state feedback representation of open-loop optimal control for Problem (M-SLQ), we
introduce the notion of weak closed-loop strategies in the circumstance of stochastic
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LQ optimal control problem of Markovian regime switching system. We prove that as
long as Problem (M-SLQ) is open-loop solvable, there always exists a weak closed-
loop strategy whose outcome actually is an open-loop optimal control. Consequently,
the open-loop and weak closed-loop solvability of Problem (M-SLQ) are equivalent
on [0, T ). Comparing with [24], this paper further develops the results in [24] to the
case of stochastic LQ optimal control problems with Markovian regime switching
system, which could be applied to financial market models with Markov process, such
as interest rate, stocks return and volatility. However, the regime switching jumps will
bring some difficulties. For example, the first problem is how to define the closed-loop
solvability and weak closed-loop solvability in the circumstance of Markovian regime
switching system. The second problem is how to prove the equivalent between the
open-loop and weak closed-loop solvability of Problem (M-SLQ) in the circumstance
of Markovian regime switching system. We will use the methods of [20,24,32] to
overcome these difficulties.

The rest of the paper is organized as follows. In Sect. 2, we collect some preliminary
results and introduce a few elementary notions for Problem (M-SLQ). Section 3 is
devoted to the study of open-loop solvability by a perturbation method. In Sect. 4, we
show how to obtain a weak closed-loop optimal strategy and establish the equivalence
between open-loop and weak closed-loop solvability. Finally, an example is presented
in Sect. 5 to illustrate the results we obtained.

2 Preliminaries

Throughout this paper, and recall from the previous section, let (�,F , F, P) be a
complete filtered probability space on which a standard one-dimensional Brownian
motion W = {W (t); 0 ≤ t < ∞} and a continuous time, finite-state, Markov chain
α = {α(t); 0 ≤ t < ∞} are defined, where F = {Ft }t≥0 is the natural filtration of W
and α augmented by all the P-null sets in F . In the rest of our paper, we will use the
following notation:

R
n the n-dimensional Euclidean space;

M� the transpose of any vector or matrix M;
tr [M] the trace of a square matrix M;
R(M) the range of the matrix M;
M−1 the Moore-Penrose pseudo-inverse of the matrix M;
〈· , ·〉 the Frobenius inner products in possibly different Hilbert spaces;
R
n×m the Euclidean space of all n × m real matrices endowed with inner

product 〈M, N 〉 �→ tr [M�N ] and the norm |M | = √
tr [M�M];

S
n the set of all n × n symmetric matrices,

and for an S
n-valued function F(·) on [t, T ], we use the notation F(·) � 0 to indicate

that F(·) is uniformly positive definite on [t, T ], i.e., there exists a constant δ > 0
such that

F(s) ≥ δ I , a.e. s ∈ [t, T ].
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Next, for any t ∈ [0, T ) and Euclidean space H, we further introduce the following
spaces of functions and processes:

C([t, T ]; H) =
{
ϕ : [t, T ] → H

∣
∣ ϕ(·) is continuous

}
,

L p(t, T ; H) =
{

ϕ : [t, T ] → H

∣
∣
∣
∣

∫ T

t
|ϕ(s)|pds < ∞

}

, 1 ≤ p < ∞,

L∞(t, T ; H) =
{

ϕ : [t, T ] → H

∣
∣
∣
∣ esssup
s∈[t,T ]

|ϕ(s)| < ∞
}

,

and

L2
FT

(�; H) =
{
ξ : � → H

∣
∣ ξ is FT -measurable, E|ξ |2 < ∞

}
,

L2
F
(t, T ; H) =

{

ϕ : [t, T ] × � → H
∣
∣ ϕ(·) is F-progressively measurable,

E

∫ T

t
|ϕ(s)|2ds < ∞

}

,

L2
F
(�;C([t, T ]; H)) =

{

ϕ : [t, T ] × � → H
∣
∣ ϕ(·) is F-adapted, continuous,

E

[

sup
s∈[t,T ]

|ϕ(s)|2
]

< ∞
}

,

L2
F
(�; L1(t, T ; H)) =

{

ϕ : [t, T ] × � → H
∣
∣ ϕ(·) is

F-progressively measurable, E

(∫ T

t
|ϕ(s)|ds

)2

< ∞
}

.

Now we start to formulate our system. We identify the state space of the chain
α with a finite set S � {1, 2 . . . , D}, where D ∈ N and suppose that the chain is
homogeneous and irreducible. To specify statistical or probabilistic properties of the
chain α, for t ∈ [0,∞), we define the generator λ(t) � [λi j (t)]i, j=1,2,...,D of the
chain under P. This is also called the rate matrix, or the Q-matrix. Here, for each
i, j = 1, 2, . . . , D, λi j (t) is the constant transition intensity of the chain from state i
to state j at time t . Note that λi j (t) ≥ 0, for i �= j and

∑D
j=1 λi j (t) = 0, so λi i (t) ≤ 0.

In what follows for each i, j = 1, 2, . . . , D with i �= j , we suppose that λi j (t) > 0,
so λi i (t) < 0. For each fixed i, j = 1, 2, . . . , D, let Ni j (t) be the number of jumps
from state i into state j up to time t and set

λ j (t) �
∫ t

0
λα(s−) j I{α(s−) �= j}ds =

D∑

i=1,i �= j

λ̃i j (t), with λ̃i j (t) �
∫ t

0
λi j (s)I{α(s−)=i}ds.
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Then for each i, j = 1, 2, . . . , D, the term Ñi j (t) defined as follows is an (F, P)-
martingale:

Ñii (t) ≡ 0, Ñi j (t) = Ni j (t) − λ̃i j (t), i �= j .

To guarantee the well-posedness of the state Eq. (1.1), we adopt the following
assumption:

(H1) For every i ∈ S, the coefficients and nonhomogeneous terms of (1.1) satisfy

{
A(·, i) ∈ L∞(0, T ; R

n×n), B(·, i) ∈ L∞(0, T ; R
n×m), b(·) ∈ L2

F
(�; L1(0, T ; R

n)),

C(·, i) ∈ L∞(0, T ; R
n×n), D(·, i) ∈ L∞(0, T ; R

n×m), σ (·) ∈ L2
F
(0, T ; R

n).

The following result, whose proof is similar to the result in [22, Proposition 2.1],
establishes the well-posedness of the state equation under the assumption (H1).

Lemma 2.1 Under the assumption (H1), for any initial pair (t, x, i) ∈ [0, T )×R
n×S

and control u(·) ∈ U[t, T ], the state Eq. (1.1) has a unique adapted solution X(·) ≡
X(· ; t, x, i, u(·)). Moreover, there exists a constant K > 0, independent of (t, x, i)
and u(·), such that

E

[

sup
t≤s≤T

|X(s)|2
]

≤ KE

[

|x |2 +
( ∫ T

t
|b(s)|ds

)2 +
∫ T

t
|σ(s)|2ds +

∫ T

t
|u(s)|2ds

]

.

(2.1)

To ensure that the random variables in the cost functional (1.2) are integrable, we
assume the following holds:

(H2) For every i ∈ S, the weighting coefficients in the cost functional (1.2) satisfy

{
G(i) ∈ S

n, Q(·, i) ∈ L1(0, T ; S
n), S(·, i) ∈ L2(0, T ; R

m×n), R(·, i) ∈ L∞(0, T ; S
m),

g(i) ∈ L2
FT

(�; R
n), q(·, i) ∈ L2(0, T ; R

n), ρ(·, i) ∈ L2(0, T ; R
m).

Remark 2.2 Suppose that (H1) holds. Then according to Lemma 2.1, for any initial
pair (t, x, i) ∈ [0, T ) × R

n × S and control u(·) ∈ U[t, T ], the state Eq. (1.1)
admits a unique (strong) solution X(·) ≡ X(·; t, x, i, u(·))which belongs to the space
L2
F
(�;C([t, T ]; H)). In addition, if (H2) holds, then the random variables on the

right-hand side of (1.2) are integrable, and hence Problem (M-SLQ) is well-posed.

Let us recall some basic notions of stochastic LQ optimal control problems.
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Definition 2.3 (Open-loop) Problem (M-SLQ) is said to be

(i) (uniquely) open-loop solvable for an initial pair (t, x, i) ∈ [0, T ] × R
n × S if

there exists a (unique) u∗(·) = u∗(· ; t, x, i) ∈ U[t, T ] (depending on (t, x, i))
such that

J (t, x, i; u∗(·)) ≤ J (t, x, i; u(·)), ∀u(·) ∈ U[t, T ]. (2.2)

Such a u∗(·) is called an open-loop optimal control for (t, x, i).
(ii) (uniquely) open-loop solvable if it is (uniquely) open-loop solvable for all the

initial pairs (t, x, i) ∈ [0, T ] × R
n × S.

Definition 2.4 (Closed-loop) Let
 : [t, T ]×S → R
m×n to be deterministic function

and v : [t, T ] × � → R
m be an F-progressively measurable process.

(i) We call (
(·, ·), v(·)) a closed-loop strategy on [t, T ] if

E

∫ T

t
|
(s, α(s))|2ds < ∞, and E

∫ T

t
|v(s)|2ds < ∞. (2.3)

The set of all closed-loop strategies (
(·, ·), v(·)) on [t, T ] is denoted byC [t, T ].
(ii) A closed-loop strategy (
∗(·, ·), v∗(·)) ∈ C [t, T ] is said to be optimal on [t, T ]

if

J (t, x, i;
∗(·, α(·))X∗(·) + v∗(·)) ≤ J (t, x, i;
(·, α(·))X(·) + v(·)),
∀(x, i) ∈ R

n × S, ∀(
(·, ·), v(·)) ∈ C [t, T ], (2.4)

where X∗(·) is the solution to the closed-loop system under (
∗(·, ·), v∗(·)):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX∗(s) =
{[

A(s, α(s)) + B(s, α(s))
∗(s, α(s))
]
X∗(s) + B(s, α(s))v∗(s) + b(s)

}
ds

+
{[
C(s, α(s)) + D(s, α(s))
∗(s, α(s))

]
X∗(s)

+D(s, α(s))v∗(s) + σ(s)
}
dW (s), s ∈ [t, T ],

X∗(t) = x, α(t) = i,

(2.5)

and X(·) is the solution to the closed-loop system (2.5) corresponding to
(
(·, ·), v(·)).

(iii) For any t ∈ [0, T ), if a closed-loop optimal strategy (uniquely) exists on [t, T ],
Problem (M-SLQ) is (uniquely) closed-loop solvable.

Remark 2.5 We emphasize that, in the above definition, 
 is a deterministic function,
and in (2.3) the randomness of 
(·, α(·)) comes from α(·). Moreover, (2.4) must be
true for all (x, i) ∈ R

n × S. The same remark applies to the definition below.

Definition 2.6 (Weak closed-loop) Let 
 : [t, T ] × S → R
m×n be a deterministic

function and v : [t, T ] × � → R
m be an F-progressively measurable process such

that for any T ′ ∈ [t, T ),
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E

∫ T ′

t
|
(s, α(s))|2ds < ∞, and E

∫ T ′

t
|v(s)|2ds < ∞.

(i) We call (
(·, ·), v(·)) a weak closed-loop strategy on [t, T ) if for any initial
state (x, i) ∈ R

n × S, the outcome u(·) ≡ 
(·, α(·))X(·) + v(·) belongs to
U[t, T ] ≡ L2

F
(t, T ; R

m), where X(·) is the solution to the weak closed-loop
system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dX(s) =
{[

A(s, α(s)) + B(s, α(s))
(s, α(s))
]
X(s) + B(s, α(s))v(s) + b(s)

}
ds

+
{[
C(s, α(s)) + D(s, α(s))
(s, α(s))

]
X(s)

+D(s, α(s))v(s) + σ(s)
}
dW (s), s ∈ [t, T ],

X(t) = x, α(t) = i .

(2.6)

The set of all weak closed-loop strategies is denoted by Cw[t, T ].
(ii) A weak closed-loop strategy (
∗(·, ·), v∗(·)) ∈ Cw[t, T ] is said to be optimal

on [t, T ) if

J (t, x, i;
∗(·, α(·))X∗(·) + v∗(·)) ≤ J (t, x, i;
(·, α(·))X(·) + v(·)),
∀(x, i) ∈ R

n × S, ∀(
(·, ·), v(·)) ∈ Cw[t, T ], (2.7)

where X(·) is the solution of the closed-loop system (2.6), and X∗(·) is the
solution to the weak closed-loop system (2.6) corresponding to (
∗(·, ·), v∗(·)).

(iii) For any t ∈ [0, T ), if a weak closed-loop optimal strategy (uniquely) exists on
[t, T ), Problem (M-SLQ) is (uniquely) weakly closed-loop solvable.

3 Open-Loop Solvability: A Perturbation Approach

In this section, we study the open-loop solvability of Problem (M-SLQ) through a per-
turbation approach. We begin by assuming that, for any choice of (t, i) ∈ [0, T )×S,

J 0(t, 0, i; u(·)) ≥ 0, ∀u(·) ∈ U[t, T ], (3.1)

which is necessary for the open-loop solvability of Problem (M-SLQ) according to [32,
Theorem 4.1]. In fact, assumption (3.1) means that u(·) → J 0(t, 0, i; u(·)) is convex,
and one can actually prove that assumption (3.1) implies the convexity of the mapping
u(·) → J (t, x, i; u(·)) for any choice of (t, x, i) ∈ [0, T ) × R

n × S (see [20,32]).
For ε > 0, consider the LQ problem of minimizing the perturbed cost functional

Jε(t, x, i; u(·)) � J (t, x, i; u(·)) + εE

∫ T

t
|u(s)|2ds

= E

{〈
G(α(T ))X(T ), X(T )

〉
+ 2

〈
g(α(T )), X(T )

〉
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+
∫ T

t

[ 〈(
Q(s, α(s)) S(s, α(s))�
S(s, α(s)) R(s, α(s)) + ε Im

)(
X(s)
u(s)

)

,

(
X(s)
u(s)

)〉

+2

〈(
q(s, α(s))
ρ(s, α(s))

)

,

(
X(s)
u(s)

)〉 ]

ds

}

, (3.2)

subject to the state Eq. (1.1). We denote this perturbed LQ problem by Prob-
lem (M-SLQ)ε and its value function by Vε(·, ·, ·). Notice that the cost functional
J 0ε (t, x, i; u(·)) of the homogeneous LQ problem associated with Problem (M-SLQ)ε
is

J 0ε (t, x, i; u(·)) = J 0(t, x, i; u(·)) + εE

∫ T

t
|u(s)|2ds,

which, by (3.1), satisfies

J 0ε (t, 0, i; u(·)) ≥ εE

∫ T

t
|u(s)|2ds.

The Riccati equations associated with Problem (M-SLQ)ε follow

⎧
⎪⎪⎨

⎪⎪⎩

Ṗε(s, i) + Pε(s, i)A(s, i) + A(s, i)�Pε(s, i) + C(s, i)�Pε(s, i)C(s, i) + Q(s, i)
−Ŝε(s, i)�[R̂ε(s, i) + ε Im ]−1 Ŝε(s, i)

+∑D
k=1 λik(s)Pε(s, k) = 0, a.e. s ∈ [0, T ], i ∈ S,

Pε(T , i) = G(i),

(3.3)

where for every (s, i) ∈ [0, T ] × S and ε > 0,

Ŝε(s, i) � B(s, i)�Pε(s, i) + D(s, i)�Pε(s, i)C(s, i) + S(s, i),

R̂ε(s, i) � R(s, i) + D(s, i)�Pε(s, i)D(s, i).
(3.4)

We say that a solution Pε(·, ·) ∈ C([0, T ] × S; S
n) of (3.3) is said to be regular if

R(
Ŝε(s, i)

) ⊆ R(
R̂ε(s, i)

)
, a.e. s ∈ [0, T ], i ∈ S, (3.5)

R̂ε(·, i)−1 Ŝε(·, i) ∈ L2(0, T ; R
m×n), i ∈ S, (3.6)

R̂ε(s, i) ≥ 0, a.e. s ∈ [0, T ], i ∈ S. (3.7)

A solution Pε(·, ·) of (3.3) is said to be strongly regular if

R̂ε(s, i) ≥ λI , a.e. s ∈ [0, T ], (3.8)

for some λ > 0. The system of Riccati equation (3.3) is said to be (strongly) regularly
solvable, if it admits a (strongly) regular solution. Clearly, condition (3.8) implies
(3.5)–(3.7). Thus, a strongly regular solution Pε(·, ·) must be regular. Moreover, it
follows from [32, Theorem 6.3] that, under the assumption (3.1), Riccati equation
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(3.3) have a unique strongly regular solution Pε(·, ·) ∈ C([0, T ] × S; S
n), and from

(3.7), we have

R̂ε(s, i) + ε Im ≥ ε Im, a.e. s ∈ [0, T ].

Furthermore, let (ηε(·), ζε(·), ξ ε(·)) be the adapted solution of the following BSDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dηε(s) = −
{[

A(s, α(s)) + B(s, α(s))
ε(s, α(s))
]�

ηε(s)

+ [
C(s, α(s)) + D(s, α(s))
ε(s, α(s))

]�
ζε(s)

+ [
C(s, α(s)) + D(s, α(s))
ε(s, α(s))

]�
Pε(s, α(s))σ (s)

+ 
ε(s, α(s))�ρ(s, α(s)) + Pε(s, α(s))b(s) + q(s, α(s))
}
ds

+ζε(s)dW (s) + ∑D
k,l=1 ξε

kl(s)d Ñkl(s), s ∈ [0, T ],
ηε(T ) = g(α(T )),

(3.9)

and let Xε(·) be the solution of the following closed-loop system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXε(s) =
{[

A(s, α(s)) + B(s, α(s))
ε(s, α(s))
]
Xε(s) + B(s, α(s))vε(s) + b(s)

}
ds

+
{[
C(s, α(s)) + D(s, α(s))
ε(s, α(s))

]
Xε(s)

+D(s, α(s))vε(s) + σ(s)
}
dW (s), s ∈ [t, T ],

Xε(t) = x, , α(t) = i,
(3.10)

where 
ε : [0, T ] × S → R
m×n and vε : [0, T ] × � → R

m are defined by


ε(s, α(s)) = −[R̂ε(s, α(s)) + ε Im]−1 Ŝε(s, α(s)), (3.11)

vε(s) = −[R̂ε(s, α(s)) + ε Im]−1ρ̂ε(s, α(s)), (3.12)

with

ρ̂ε(s, i) = B(s, i)�ηε(s) + D(s, i)�ζε(s) + D(s, i)�Pε(s, i)σ (s) + ρ(s, i).
(3.13)

Then from Theorem 5.2 and Corollary 6.5 in [32], the unique open-loop optimal
control of Problem (M-SLQ)ε, for the initial pair (t, x, i), is given by

uε(s) = 
ε(s, α(s))Xε(s) + vε(s), s ∈ [t, T ]. (3.14)

Before studying the main result of this section, we prove the following lemma.

Lemma 3.1 Under Assumptions (H1) and (H2), for any initial pair (t, x, i) ∈ [0, T )×
R
n × S, one has

lim
ε ↓ 0

Vε(t, x, i) = V (t, x, i). (3.15)
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Proof Let (t, x, i) ∈ [0, T ) × R
n × S be fixed. On the one hand, for any ε > 0 and

any u(·) ∈ U[t, T ], we have

Jε(t, x, i; u(·)) = J (t, x, i; u(·)) + εE

∫ T

t
|u(s)|2ds ≥ J (t, x, i; u(·)) ≥ V (t, x, i).

Taking the infimum over all u(·) ∈ U[t, T ] on the left hand side implies that

Vε(t, x, i) ≥ V (t, x, i). (3.16)

On the other hand, if V (t, x, i) is finite, then for any δ > 0, we can find a uδ(·) ∈
U[t, T ], independent of ε > 0, such that

J (t, x, i; uδ(·)) ≤ V (t, x, i) + δ.

It follows that

Vε(t, x, i) ≤ J (t, x, i; uδ(·)) + εE

∫ T

t
|uδ(s)|2ds ≤ V (t, x, i) + δ

+εE

∫ T

t
|uδ(s)|2ds.

Letting ε → 0, we obtain

lim
ε ↓ 0

Vε(t, x, i) ≤ V (t, x, i) + δ. (3.17)

Since δ > 0 is arbitrary, by combining (3.16) and (3.17), we obtain (3.15). A similar
argument applies to the case when V (t, x, i) = −∞. ��

Now, we present the main result of this section, which provides a characterization
of the open-loop solvability of Problem (M-SLQ) in terms of the family {uε(·)}ε>0.

Theorem 3.2 Let Assumptions (H1) and (H2) and (3.1) hold. For any given initial
pair (t, x, i) ∈ [0, T ) × R

n × S, let uε(·) be defined by (3.14), which is the outcome
of the closed-loop optimal strategy (
ε(·, ·), vε(·)) of Problem (M-SLQ)ε. Then the
following statements are equivalent:

(i) Problem (M-SLQ) is open-loop solvable at (t, x, i);
(ii) The family {uε(·)}ε>0 is bounded in L2

F
(t, T ; R

m), i.e.,

sup
ε>0

E

∫ T

t
|uε(s)|2ds < ∞;

(iii) The family {uε(·)}ε>0 is convergent strongly in L2
F
(t, T ; R

m) as ε → 0.
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Proof We begin by proving the implication (i) ⇒ (ii). Let v∗(·) be an open-loop
optimal control of Problem (M-SLQ) for the initial pair (t, x, i). Then for any ε > 0,

Vε(t, x, i) ≤ Jε(t, x, i; v∗(·)) = J (t, x, i; v∗(·)) + εE

∫ T

t
|v∗(s)|2ds

= V (t, x, i) + εE

∫ T

t
|v∗(s)|2ds. (3.18)

On the other hand, since uε(·) is optimal for Problem (M-SLQ)ε with respect to
(t, x, i), we have

Vε(t, x, i) = Jε(t, x, i; vε(·)) = J (t, x, i; vε(·)) + εE

∫ T

t
|vε(s)|2ds

≥ V (t, x, i) + εE

∫ T

t
|vε(s)|2ds. (3.19)

Combining (3.18) and (3.19) yields that

E

∫ T

t
|uε(s)|2ds ≤ Vε(t, x, i) − V (t, x, i)

ε
≤ E

∫ T

t
|v∗(s)|2ds. (3.20)

This shows that {uε(·)}ε>0 is bounded in L2
F
(t, T ; R

m).
For (ii) ⇒ (i), the proof is similar to [24] (See Remark 3.3 below), and the impli-

cation (iii) ⇒ (ii) is trivially true.
Finally, we prove the implication (ii) ⇒ (iii). We divide the proof into two steps.
Step 1: The family {uε(·)}ε>0 converges weakly to an open-loop optimal control of

Problem (M-SLQ) for the initial pair (t, x, i) as ε → 0.
To verify this, it suffices to show that every weakly convergent subsequence of

{uε(·)}ε>0 has the same weak limit which is an open-loop optimal control of Problem
(M-SLQ) for (t, x, i). Let u∗

i (·), i = 1, 2 be the weak limits of two different weakly
convergent subsequences {ui,εk (·)}∞k=1 (i = 1, 2) of {uε(·)}ε>0. The same argument
as in the proof of (ii) ⇒ (i) shows that both u∗

1(·) and u∗
2(·) are optimal for (t, x, i).

Thus, recalling that the mapping u(·) �→ J (t, x, i; u(·)) is convex, we have

J

(

t, x, i; u
∗
1(·) + u∗

2(·)
2

)

≤ 1

2
J (t, x, i; u∗

1(·)) + 1

2
J (t, x, i; u∗

2(·)) = V (t, x, i).

This means that
u∗
1(·)+u∗

2(·)
2 is also optimal for Problem (M-SLQ) with respect to

(t, x, i). Thenwe can repeat the argument employed in the proof of (i)⇒ (ii), replacing

v∗(·) by u∗
1(·)+u∗

2(·)
2 to obtain (see (3.20))

E

∫ T

t
|ui,εk (s)|2ds ≤ E

∫ T

t

(u∗
1(s) + u∗

2(s)

2

)2
ds, i = 1, 2.

Now, note that
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0 ≤ E

∫ T

t
|ui,εk (s) − u∗

i (s)|2ds = E

∫ T

t

[
|ui,εk (s)|2 − 2〈ui,εk (s), u∗

i (s)〉 + |u∗
i (s)|2

]
ds,

which implies that

2E

∫ T

t
〈ui,εk (s), u∗

i (s)〉ds − E

∫ T

t
|u∗

i (s)|2ds ≤ E

∫ T

t
|ui,εk (s)|2ds.

By the definition of weak-convergence yields

E

∫ T

t
|u∗
i (s)|2ds = 2 lim inf

εk→0
E

∫ T

t
〈ui,εk (s), u∗

i (s)〉ds − E

∫ T

t
|u∗
i (s)|2ds

≤ lim inf
εk→0

E

∫ T

t
|ui,εk (s)|2ds ≤ E

∫ T

t

(u∗
1(s) + u∗

2(s)

2

)2
ds i = 1, 2.

Adding the above two inequalities and then multiplying by 2, we get

2

[

E

∫ T

t
|u∗

1(s)|2ds + E

∫ T

t
|u∗

2(s)|2ds
]

≤ E

∫ T

t
|u∗

1(s) + u∗
2(s)|2ds,

or equivalently (by shifting the integral on the right-hand side to the left-hand side),

E

∫ T

t
|u∗

1(s) − u∗
2(s)|2ds ≤ 0.

It follows that u∗
1(·) = u∗

2(·), which establishes the claim.
Step 2: The family {uε(·)}ε>0 converges strongly as ε → 0.
According to Step 1, the family {uε(·)}ε>0 converges weakly to an open-loop opti-

mal control u∗(·) of Problem (M-SLQ) for (t, x, i) as ε → 0. By repeating the
argument employed in the proof of (i) ⇒ (ii) with u∗(·) replacing v∗(·), we obtain

E

∫ T

t
|uε(s)|2ds ≤ E

∫ T

t
|u∗(s)|2ds, ε > 0. (3.21)

On the other hand, since u∗(·) is the weak limit of {uε(·)}ε>0, we have

E

∫ T

t
|u∗(s)|2ds ≤ lim inf

ε→0
E

∫ T

t
|uε(s)|2ds. (3.22)

Combining (3.21) and (3.22), we see that E
∫ T
t |uε(s)|2ds actually has the limit

E
∫ T
t |u∗(s)|2ds. Therefore (recalling that {uε(·)}ε>0 converges weakly to u∗(·)),
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lim
ε→0

E

∫ T

t
|uε(s) − u∗(s)|2ds

= lim
ε→0

[

E

∫ T

t
|uε(s)|2ds + E

∫ T

t
|u∗(s)|2ds − 2E

∫ T

t
〈u∗(s), uε(s)〉ds

]

= 0,

which means that {uε(·)}ε>0 converges strongly to u∗(·) as ε → 0. ��
Remark 3.3 A similar result recently appeared in [32], which asserts that if Problem
(M-SLQ) is open-loop solvable at (t, x, i), then the limit of any weakly/strongly
convergent subsequence of {uε(·)}ε>0 is an open-loop optimal control for (t, x, i).
Our result sharpens that in [32] by showing the family {uε(·)}ε>0 itself is strongly
convergent when Problem (M-SLQ) is open-loop solvable. This improvement has
at least two advantages. First, it serves as a crucial bridge to the weak closed-loop
solvability presented in the next section. Second, it is much more convenient for
computational purposes because subsequence extraction is not required.

Remark 3.4 In Example 1.1, since B = 1 and D = S = R = 0, we have

Ŝε(s, i) � B(s, i)�Pε(s, i) + D(s, i)�Pε(s, i)C(s, i)

+ S(s, i) = Pε(s, i) with Pε(T , i) = 1,

R̂ε(s, i) � R(s, i) + D(s, i)�Pε(s, i)D(s, i) = 0.

So the condition R(
Ŝε(s, i)

) ⊆ R(
R̂ε(s, i)

)
, a.e. s ∈ [0, T ], i ∈ S is not satisfied,

which implies that GRE (1.8) has no regular solution.

4 Weak Closed-Loop Solvability

In this section, we study the equivalence between open-loop and weak closed-loop
solvabilities of Problem (M-SLQ). We shall show that 
ε(·, ·) and vε(·) defined by
(3.11) and (3.12) converge locally in [0, T ), and that the limit pair (
∗(·, ·), v∗(·)) is
a weak closed-loop optimal strategy.

We start with a simple lemma, which enables us to work separately with 
ε(·, ·)
and vε(·). Recall that the associated Problem (M-SLQ)0 is to minimize (1.6) subject
to (1.5).

Lemma 4.1 Under Assumptions (H1) and (H2), if Problem (M-SLQ) is open-loop
solvable, then so is Problem (M-SLQ)0.

Proof For arbitrary (t, x, i) ∈ [0, T ) × R
n × S, we note that if b(·, ·),

σ (·, ·), g(·), q(·, ·), ρ(·, ·) = 0, then the adapted solution (ηε(·), ζε(·), ξ ε
1 (·), · · · ,

ξ ε
D(·)) to BSDE (3.9) is identically zero, and hence the process vε(·) defined by (3.12)
is also identically zero. By Theorem 3.2, to prove that Problem (M-SLQ)0 is open-
loop solvable at (t, x, i), we need to verify that the family {uε(·)}ε>0 is bounded in
L2
F
(t, T ; R

m), where (see (3.14) and note that vε(·) = 0),
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uε(·) = 
ε(·, α(·))Xε(·), (4.1)

with Xε(·) is the solution to the following equation:

⎧
⎨

⎩

dXε(s) = [
A(s, α(s)) + B(s, α(s))
ε(s, α(s))

]
Xε(s)ds

+ [
C(s, α(s)) + D(s, α(s))
ε(s, α(s))

]
Xε(s)dW (s), s ∈ [t, T ],

Xε(t) = x, α(t) = i,
(4.2)

To this end, we return to Problem (M-SLQ). Let vε(·) be defined in (3.12) and denote
by Xε(· ; t, x, i) and Xε(· ; t, 0, i) solutions to (3.10) with respect to the initial pairs
(t, x, i) and (t, 0, i), respectively. Since Problem (M-SLQ) is open-loop solvable at
both (t, x, i) and (t, 0, i), by Theorem 3.2, the families

uε(s; t, x, i) � 
ε(s, α(s))Xε(s; t, x, i) + vε(s),
uε(s; t, 0, i) � 
ε(s, α(s))Xε(s; t, 0, i) + vε(s),

s ∈ [t, T ], (4.3)

are bounded in L2
F
(t, T ; R

m). Note that due to that the process vε(·) is independent
of the initial state, the difference Xε(· ; t, x, i) − Xε(· ; t, 0, i) also satisfies the same
Eq. (4.2). Then by the uniqueness of adapted solutions of SDEs, we obtain that

Xε(·) = Xε(· ; t, x, i) − Xε(· ; t, 0, i),

which, combining (4.1) and (4.3), implies that

uε(·) = uε(·, t, x, i) − uε(·, t, 0, i).

Since {uε(·, t, x, i)}ε>0 and {uε(·, t, 0, i)}ε>0 are bounded in L2
F
(t, T ; R

m), so is
{uε(·)}ε>0. Finally, it follows from Theorem 3.2 that Problem (M-SLQ)0 is open-loop
solvable. ��

Next, we prove that the family {
ε(·, ·)}ε>0 defined by (3.11) is locally convergent
in [0, T ).

Proposition 4.2 Let (H1) and (H2) hold. Suppose that Problem (M-SLQ)0 is open-loop
solvable. Then the family {
ε(·, ·)}ε>0 defined by (3.11) converges in L2(0, T ′; R

m×n)

for any 0 < T ′ < T ; that is, there exists a locally square-integrable deterministic
function 
∗ : [0, T ) × S → R

m×n such that

lim
ε→0

E

∫ T ′

0
|
ε(s, α(s)) − 
∗(s, α(s))|2ds = 0, ∀ 0 < T ′ < T .

Proof We need to show that for any 0 < T ′ < T , the family {
ε(·)}ε>0 is Cauchy in
L2(0, T ′; R

m×n). To this end, let us first fix an arbitrary initial (t, i) ∈ [0, T )×S and
let �ε(·) ∈ L2

F
(�;C([t, T ]; R

n×n)) be the solution to the following SDE:
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⎧
⎨

⎩

d�ε(s) = [
A(s, α(s)) + B(s, α(s))
ε(s, α(s))

]
�ε(s)ds

+[
C(s, α(s)) + D(s, α(s))
ε(s, α(s))

]
�ε(s)dW (s), s ∈ [t, T ],

�ε(t) = In, α(t) = i .
(4.4)

Clearly, for any initial state x , from the uniqueness of SDEs, the solution of (4.2) is
given by

Xε(s) = �ε(s)x, s ∈ [t, T ].

Since Problem (M-SLQ)0 is open-loop solvable, by Theorem 3.2, the family

uε(s) = 
ε(s, α(s))Xε(s) = 
ε(s, α(s))�ε(s)x, s ∈ [t, T ], ε > 0

is strongly convergent in L2
F
(t, T ; R

m) for any x∈R
n . It follows that {
ε(·, ·)�ε(·)}ε>0

converges strongly in L2
F
(t, T ; R

m×n) as ε → 0. Denote Uε(·) = 
ε(·, ·)�ε(·) and
let U∗(·) be the strong limit of Uε(·). By Jensen’s inequality, we get

∫ T

t

∣
∣E[Uε(s)] − E[U∗(s)]∣∣2ds ≤ E

∫ T

t

∣
∣Uε(s) −U∗(s)

∣
∣2ds → 0 as ε → 0.(4.5)

Moreover, from (4.4), we see that E
α[�ε(·)] satisfies the following ODE:

{
dE

α[�ε(s)] =
{
E

α[A(s, α(s))�ε(s)] + E
α[B(s, α(s))Uε(s)]

}
ds, s ∈ [t, T ],

�ε(t) = In, α(t) = i .

By the standard results of ODE, combining (4.5), the family of continuous functions
E[�ε(·)] converges uniformly to the solution of

{
dE

α[�∗(s)] =
{
E

α[A(s, α(s))�∗(s)] + E
α[B(s, α(s))U∗(s)]

}
ds, s ∈ [t, T ],

�∗(t) = In, α(t) = i .

Note that �ε(t) = In , we can define the following stopping time:

τ � inf
{
s ∈ [t, T ]; |�ε(s)| <

1

2

}
.

We claim that the family {
ε(·, i)}ε>0 is Cauchy in L2(t, τ ; R
m×n) for each i ∈ S.

Indeed, first note that when s ∈ [t, τ ], one has for each i ∈ S,

Uε(s) = 
ε(s, α(s))�ε(s)

�⇒ E
α[
ε(s, α(s))] = E

α[Uε(s)�ε(s)
−1]

�⇒ E
α[
ε(s, α(s))] ≤ {Eα[|Uε(s)|2]} 1

2 {Eα[|�ε(s)
−1|2]} 1

2 .
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Then we have

E

∫ τ

t

∣
∣
ε1(s, α(s)) − 
ε2(s, α(s))

∣
∣2ds

≤ 2E

∫ τ

t

∣
∣Eα[Uε1(s) −Uε2(s)]

∣
∣2 · ∣∣Eα[�ε1(s)]−1

∣
∣2ds

+2E

∫ τ

t

∣
∣Eα[Uε2(s)]

∣
∣2 · ∣∣Eα[�ε1(s)]−1 − E

α[�ε2(s)]−1
∣
∣2ds

= 2E

∫ τ

t

∣
∣Eα[Uε1(s) −Uε2(s)]

∣
∣2 · ∣∣Eα[�ε1(s)]−1

∣
∣2ds

+2E

∫ τ

t

∣
∣Eα[Uε2(s)]

∣
∣2 · ∣∣Eα[�ε1(s) − �ε2(s)]

∣
∣2 · ∣∣Eα[�ε1(s)]−1

∣
∣2

·∣∣Eα[�ε2(s)]−1
∣
∣2ds

≤ 8E

∫ τ

t

∣
∣Eα[Uε1(s) −Uε2(s)]

∣
∣2ds

+32E

[ ∫ τ

t

∣
∣Eα[Uε2(s)]

∣
∣2ds ·

(
sup

t≤s≤τ

∣
∣Eα[�ε1(s) − �ε2(s)]

∣
∣2
)]

.

Since {Uε(·)}ε>0 is Cauchy in L2
F
(t, T ; R

m×n) and {�ε(·)}ε>0 converges uniformly
on [t, T ], the last two terms of the above inequality approach to zero as ε1, ε2 → 0,
which implies that {
ε(·, i)}ε>0 is Cauchy in L2(t, τ ; R

m×n) for each i ∈ S.
Next we use a compactness argument to prove that, for each i ∈ S, {
ε(·, i)}ε>0 is

actually Cauchy in L2(0, T ′; R
m×n) for any 0 < T ′ < T . Take any T ′ ∈ (0, T ). From

the preceding argument we see that for each t ∈ [0, T ′], there exists a small �t > 0
such that {
ε(·, i)}ε>0 is Cauchy in L2(t, t + �t ; R

m×n). Since [0, T ′] is compact,
we can choose finitely many t ∈ [0, T ′], say, t1, t2, ..., tk, such that {
ε(·, i)}ε>0 is
Cauchy in each L2(t j , t j + �t j ; R

m×n) and [0, T ′] ⊆ ⋃k
j=1[t j , t j + �t j ]. It follows

that

E

∫ T

t

∣
∣
ε1(s, α(s)) − 
ε2(s, α(s))

∣
∣2ds

≤
k∑

j=1

E

∫ t j+�t j

t

∣
∣
ε1(s, α(s)) − 
ε2(s, α(s))

∣
∣2ds → 0 as ε1, ε2 → 0.

The proof is therefore completed. ��
The following result shows that the family {vε(·)}ε>0 defined by (3.12) is also

locally convergent in [0, T ).

Proposition 4.3 Let (H1) and (H2) hold. Suppose that Problem (M-SLQ) is open-loop
solvable. Then the family {vε(·)}ε>0 defined by (3.12) converges in L2(0, T ′; R

m) for
any 0 < T ′ < T ; that is, there exists a locally square-integrable deterministic function
v∗(·) : [0, T ) → R

m such that

123



Applied Mathematics & Optimization (2021) 84:535–565 555

lim
ε→0

E

∫ T ′

0
|vε(s) − v∗(s)|2ds = 0, ∀ 0 < T ′ < T .

Proof Let Xε(s), 0 ≤ s ≤ T , be the solution to the closed-loop system (3.10) with
respect to initial time t = 0. Then, on the one hand, from the linearity of the state Eq.
(1.1) and Lemma 2.1, we have

E

[

sup
0≤s≤T

|Xε1(s) − Xε2(s)|2
]

≤ KE

∫ T

0
|uε1(s) − uε2(s)|2ds.

On the other hand, since Problem (M-SLQ) is open-loop solvable, Theorem3.2 implies
that the family

uε(s) = 
ε(s, α(s))Xε(s) + vε(s), s ∈ [0, T ]; ε > 0 (4.6)

is Cauchy in L2
F
(0, T ; R

m), i.e.,

E

∫ T

0
|uε1(s) − uε2(s)|2ds → 0 as ε1, ε2 → 0. (4.7)

Therefore

E

[

sup
0≤s≤T

|Xε1(s) − Xε2(s)|2
]

→ 0 as ε1, ε2 → 0. (4.8)

Now for every 0 < T ′ < T . Since Problem (M-SLQ) is open-loop solvable,
according to Lemma 4.1 and Proposition 4.2, the family {
ε(·, i)}ε>0 is Cauchy in
L2(0, T ′; R

m×n) for every i ∈ S. Thus, combining (4.8), we have

E

∫ T ′

0

∣
∣
∣
ε1(s, α(s))Xε1(s) − 
ε2(s, α(s))Xε2(s)

∣
∣
∣
2
ds

≤ 2E

∫ T ′

0
|
ε1(s, α(s)) − 
ε2(s, α(s))|2ds · E

[

sup
0≤s≤T ′

|Xε1(s)|2
]

+2E

∫ T ′

0
|
ε2(s, α(s))|2ds · E

[

sup
0≤s≤T ′

|Xε1(s) − Xε2(s)|2
]

−→ 0 as ε1, ε2 → 0,

which combing (4.6) and (4.7), implies that

E

∫ T ′

0
|vε1(s) − vε2(s)|2ds

= E

∫ T ′

0

∣
∣
∣[uε1(s) − 
ε1(s, α(s))Xε1(s)] − [uε2(s) − 
ε2(s, α(s))Xε2(s)]

∣
∣
∣
2
ds
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≤ 2E

∫ T ′

0
|uε1(s) − uε2(s)|2ds + 2E

∫ T ′

0
|
ε1(s, α(s))Xε1(s)

−
ε2(s)Xε2(s, α(s))|2ds
−→ 0 as ε1, ε2 → 0.

This shows that the family {vε(·)}ε>0 converges in L2
F
(0, T ′; R

m). ��
Weare now ready to state and prove themain result of this section,which establishes

the equivalence between open-loop and weak closed-loop solvability of Problem (M-
SLQ).

Theorem 4.4 Let (H1) and (H2) hold. If Problem (M-SLQ) is open-loop solvable, then
the limit pair (
∗(·, ·), v∗(·)) obtained in Propositions 4.2 and 4.3 is a weak closed-
loop optimal strategy of Problem (M-SLQ) on any [t, T ). Consequently, the open-loop
and weak closed-loop solvability of Problem (M-SLQ) are equivalent.

Proof FromDefinition 2.6, it is obvious that the weak closed-loop solvability of Prob-
lem (M-SLQ) implies the open-loop solvability of Problem (M-SLQ). In the following,
we consider the inverse case.

Take an arbitrary initial pair (t, x, i) ∈ [0, T ) × R
n × S and let {uε(s); t ≤ s ≤

T }ε>0 be the family defined by (3.14). Since Problem (M-SLQ) is open-loop solvable
at (t, x, i), by Theorem 3.2, {uε(s); t ≤ s ≤ T }ε>0 converges strongly to an open-
loop optimal control {u∗(s); t ≤ s ≤ T }ε>0 of Problem (M-SLQ) (for the initial pair
(t, x, i)). Let {X∗(s); t ≤ s ≤ T }ε>0 be the corresponding optimal state process; i.e.,
X∗(·) is the adapted solution of the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

dX∗(s) =
[
A(s, α(s))X∗(s) + B(s, α(s))u∗(s) + b(s)

]
ds

+
[
C(s, α(s))X∗(s) + D(s, α(s))u∗(s) + σ(s)

]
dW (s), s ∈ [t, T ],

X∗(t) = x, α(t) = i .

If we can show that

u∗(s) = 
∗(s, α(s))X∗(s) + v∗(s), t ≤ s < T , (4.9)

then (
∗(·, ·), v∗(·)) is clearly a weak closed-loop optimal strategy of Problem (M-
SLQ) on [t, T ). To justify the argument, we note first that by Lemma 2.1, we obtain

E

[

sup
t≤s≤T

|Xε(s) − X∗(s)|2
]

≤ KE

∫ T

t
|uε(s) − u∗(s)|2ds → 0 as ε → 0,

where {Xε(s); t ≤ s ≤ T }ε>0 is the solution of Eq. (3.10). Second, by Propositions
4.2 and 4.3, one has

{
limε→0 E

∫ T ′
0 |
ε(s, α(s)) − 
∗(s, α(s))|2ds = 0, ∀0 < T ′ < T ,

limε→0 E
∫ T ′
0 |vε(s) − v∗(s)|2ds = 0, ∀0 < T ′ < T .
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It follows that for any 0 < T ′ < T ,

E

∫ T ′

0

∣
∣
∣
[

ε(s, α(s))Xε(s) + vε(s)

] − [

∗(s, α(s))X∗(s) + v∗(s)

]∣∣
∣
2
ds

≤ 2E

∫ T ′

0
|
ε(s, α(s))Xε(s) − 
∗(s, α(s))X∗(s)|2ds

+2E

∫ T ′

0
|vε(s) − v∗(s)|2ds

≤ 4E

∫ T ′

0
|
ε(s, α(s))|2ds · E

[

sup
0≤s≤T ′

|Xε(s) − X∗(s)|2
]

+2E

∫ T ′

0
|vε(s) − v∗(s)|2ds

+4E

∫ T ′

0
|
ε(s, α(s)) − 
∗(s, α(s))|2ds · E

[

sup
0≤s≤T ′

|X∗(s)|2
]

−→ 0 as ε → 0.

Recall that uε(s) = 
ε(s, α(s))Xε(s)+vε(s) converges strongly to u∗
ε(s), t ≤ s ≤ T ,

in L2
F
(t, T ; R

m) as ε → 0. Thus, (4.9) must hold. The above argument shows that
the open-loop solvability implies the weak closed-loop solvability. Consequently, the
open-loop and weak closed-loop solvability of Problem (M-SLQ) are equivalent. This
completes the proof. ��

5 Examples

There are some (M-SLQ) problems that are open-loop solvable, but not closed-loop
solvable; for such problems, one could not expect to get a regular solution (which does
not exist) to the associated GRE (3.3), so that the state feedback representation of the
open-loop optimal controlmight be impossible. In fact, Example 1.1 has illustrated this
conclusion. However, Theorem 4.4 shows that the open-loop and weak closed-loop
solvability of Problem (M-SLQ) are equivalent. In the following, we present another
example to illustrate the procedure for finding weak closed-loop optimal strategies for
some (M-SLQ) problems that are open-loop solvable (and hence weakly closed-loop
solvable) but not closed-loop solvable.

Example 5.1 In order to present the procedure more clearly, we simplify the problem.
Let T = 1 and D = 2, that is, the state space of α(·) is S = {1, 2}. For the generator
λ(s) � [λi j (s)]i, j=1,2, note that

∑2
j=1 λi j (s) = 0 for i ∈ S, then

λ(s) =
(

λ11(s) λ12(s)
λ21(s) λ22(s)

)

=
(

λ11(s) −λ11(s)
−λ22(s) λ22(s)

)

, s ∈ [0, 1].
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Consider the following Problem (M-SLQ) with one-dimensional state equation

{
dX(s) =

[
− α(s)X(s) + u(s) + b(s)

]
ds + √

2α(s)X(s)dW (s), s ∈ [t, 1],
X(t) = x, α(t) = i,

(5.1)

and the cost functional

J (t, x, i; u(·)) = E|X(1)|2,

where the nonhomogeneous term b(·, ·) is given by

b(s) =
{

1√
1−s

· exp {∫ s
0

√
2α(r)dW (r) − 2

∫ s
0 α(r)dr

}
, if s ∈ [0, 1);

0, if s = 1.

It is easy to see that b(·, i) ∈ L2
F
(�; L1(0, 1; R)) for each i ∈ S. In fact,

E

(∫ 1

0
|b(s)|ds

)2

= E

(∫ 1

0

1√
1 − s

· exp
{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

ds

)2

≤ E

(∫ 1

0

1√
1 − s

· exp
{∫ s

0

√
2α(r)dW (r) −

∫ s

0
α(r)dr

}

ds

)2

≤ E

(∫ 1

0

1√
1 − s

ds · sup
0≤s≤1

exp

{∫ s

0

√
2α(r)dW (r) −

∫ s

0
α(r)dr

})2

=
(∫ 1

0

1√
1 − s

ds

)2

· E

(

sup
0≤s≤1

exp

{∫ s

0

√
2α(r)dW (r) −

∫ s

0
α(r)dr

})2

= 4 E

(

sup
0≤s≤1

exp

{∫ s

0

√
2α(r)dW (r) −

∫ s

0
α(r)dr

})2

.

Since the termexp
{∫ s

0

√
2α(r)dW (r) − ∫ s

0 α(r)dr
}
is a square-integrablemartingale,

note that α(·) belongs to S = {1, 2}, it follows from Doob’s maximal inequality that

E

(

sup
0≤s≤1

exp

{∫ s

0

√
2α(r)dW (r) −

∫ s

0
α(r)dr

})2

≤ 4E exp

{

2
∫ 1

0

√
2α(r)dW (r) − 2

∫ 1

0
α(r)dr

}

≤ 4e4.
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Thus,

E

(∫ 1

0
|b(s)|ds

)2

≤ 16e4,

which implies that b(·, i) ∈ L2
F
(�; L1(0, 1; R)) for each i ∈ S.

We first claim that this (M-SLQ) problem is not closed-loop solvable on any [t, 1].
Indeed, the generalized Riccati equation associate with this problem reads

{
Ṗ(s, 1) + λ11(s)P(s, 1) − λ11(s)P(s, 2) = 0, a.e. s ∈ [t, 1],
P(1, 1) = 1,

for i = 1,

and

{
Ṗ(s, 2) − λ22(s)P(s, 1) + λ22(s)P(s, 2) = 0, a.e. s ∈ [t, 1],
P(1, 2) = 1,

for i = 2,

whose solutions are P(s, 1) = P(s, 2) = 1, or P(s, i) ≡ 1, for (s, i) ∈ [0, 1] × S.

Then for any s ∈ [t, 1] and i ∈ S, we have

R(
Ŝ(s, i)

) = R(1) = R,

R(
R̂(s, i)

) = R(0) = {0}, �⇒ R(
Ŝ(s, i)

)
� R(

R̂(s, i)
)
.

where

Ŝ(s, i) � B(s, i)�P(s, i) + D(s, i)�P(s, i)C(s, i) + S(s, i),

R̂(s, i) � R(s, i) + D(s, i)�P(s, i)D(s, i).
(5.2)

Therefore, the range inclusion condition is not satisfied. This implies that our claim
holds.

In the following, we use Theorem 3.2 to conclude that the above (M-SLQ) problem
is open-loop solvable (and hence, by Theorem 4.4, weakly closed-loop solvable).
Without loss of generality, we consider only the open-loop solvability at t = 0. To this
end, let ε > 0 be arbitrary and consider Riccati equation (3.3), which, in our example,
read:

{
Ṗε(s, 1) − 1

ε
Pε(s, 1)2 + λ11(s)Pε(s, 1) − λ11(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 1) = 1,
for i = 1,

and

{
Ṗε(s, 2) − 1

ε
Pε(s, 2)2 − λ22(s)Pε(s, 1) + λ22(s)Pε(s, 2) = 0, a.e. s ∈ [t, 1],

Pε(1, 2) = 1,
for i = 2.
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Solving the above equations yields

Pε(s, 1) = Pε(s, 2) = ε

ε + 1 − s
, s ∈ [0, 1].

Or

Pε(s, i) = ε

ε + 1 − s
, (s, i) ∈ [0, 1] × S.

Noting that the state space of α(s) is S = {1, 2}, we let


ε(s, α(s)) � −[R̂ε(s, α(s)) + ε Im]−1 Ŝε(s, α(s))

= − Pε(s, α(s))

ε
= − 1

ε + 1 − s
, s ∈ [0, 1]. (5.3)

Then, the corresponding BSDE (3.9) reads

⎧
⎪⎨

⎪⎩

dηε(s) = −
{[


ε(s, α(s)) − α(s)
]
ηε(s) + √

2α(s)ζε(s) + Pε(s, α(s))b(s)
}
ds

+ζε(s)dW (s) + ∑2
k,l=1 ξε

kl(s)d Ñkl(s), s ∈ [0, 1],
ηε(1) = 0.

Let f (s) = 1√
1−s

. Using the variation of constants formula for BSDEs, and noting

that W (·) and Ñk(·) are (F, P)-martingales, we obtain

ηε(s) = ε

ε + 1 − s
· exp

{

2
∫ s

0
α(r)dr −

∫ s

0

√
2α(r)dW (r)

}

·E
[∫ 1

s
b(r) · exp

{∫ r

0

√
2α(r̄)dW (r̄) − 2

∫ r

0
α(r̄)dr̄

}

dr

∣
∣
∣
∣Fs

]

= ε

ε + 1 − s
· exp

{

2
∫ s

0
α(r)dr −

∫ s

0

√
2α(r)dW (r)

}

·
∫ 1

s
f (r) · E

[

exp

{

2
∫ r

0

√
2α(r̄)dW (r̄) − 4

∫ r

0
α(r̄)dr̄

} ∣
∣
∣
∣Fs

]

dr

= ε

ε + 1 − s
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

·
∫ 1

s
f (r)dr , s ∈ [0, 1].

It should be point out that, in the above equality, we use the Fibini’s Theorem and the
martingale property, i.e.,

E

[

exp

{

2
∫ r

0

√
2α(r̄)dW (r̄) − 4

∫ r

0
α(r̄)dr̄

} ∣
∣
∣
∣Fs

]

= exp

{

2
∫ s

0

√
2α(r̄)dW (r̄) − 4

∫ s

0
α(r̄)dr̄

}

, 0 ≤ s ≤ r ≤ 1.
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Now, let

vε(s) � −[R̂ε(s, α(s)) + ε Im ]−1ρ̂ε(s, α(s)) = −ηε(s)

ε

= − 1

ε + 1 − s
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

·
∫ 1

s
f (r)dr , s ∈ [0, 1].

(5.4)

Then, the corresponding closed-loop system (3.10) can be written as

{
dXε(s) =

{[

ε(s, α(s)) − α(s)

]
Xε(s) + vε(s) + b(s)

}
ds + √

2α(s)Xε(s)dW (s), s ∈ [0, 1],
Xε(0) = x,

By the variation of constants formula for SDEs, we get

Xε(s) = (ε + 1 − s) · exp
{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

·
∫ s

0

[
1

ε + 1 − r
· exp

{

−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}

·(vε(r) + b(r , α(r))
)]
dr

+x · ε + 1 − s

ε + 1
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

, s ∈ [0, 1].

In light of Theorem 3.2, in order to prove the open-loop solvability at (0, x, i), it
suffices to show the family {uε(·)}ε>0 defined by

uε(s) � 
ε(s, α(s))Xε(s) + vε(s)

= − exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

·
∫ s

0

[
1

ε + 1 − r
· exp

{

−
∫ r

0

√
2α(r̄)dW (r̄)

+2
∫ r

0
α(r̄)dr̄

}

· (vε(r) + b(r , α(r))
)
]

dr

− x

ε + 1
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

+ vε(s), s ∈ [0, 1],
(5.5)

is bounded in L2
F
(0, 1; R). For this, let us first simplify (5.5). On the one hand, by

Fubini’s theorem,
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∫ s

0

[
1

ε + 1 − r
· exp

{

−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}

· vε(r)

]

dr

= −
∫ s

0

1

(ε + 1 − r)2

∫ 1

r
f (r̄)dr̄dr

= −
∫ s

0
f (r̄)

∫ r̄

0

1

(ε + 1 − r)2
drdr̄ −

∫ 1

s
f (r̄)

∫ s

0

1

(ε + 1 − r)2
drdr̄

= −
∫ s

0

1

ε + 1 − r
· f (r̄)dr̄ + 1

ε + 1

∫ 1

0
f (r̄)dr̄ − 1

ε + 1 − r

∫ 1

s
f (r̄)dr̄ .

Similarly, on the other hand,

∫ s

0

[
1

ε + 1 − r
· exp

{

−
∫ r

0

√
2α(r̄)dW (r̄) + 2

∫ r

0
α(r̄)dr̄

}

· bε(r , α(r))

]

dr

=
∫ s

0

1

ε + 1 − r
f (r)dr .

Consequently, we get

uε(s) = −
(

x

ε + 1
+ 1

ε + 1

∫ 1

0
f (r)dr

)

· exp
{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

= − x + 2

ε + 1
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

. (5.6)

A short calculation gives

E

∫ 1

0
|uε(s)|2ds =

(
x + 2

ε + 1

)2

≤ (x + 2)2, ∀ε > 0.

Therefore, {uε(·)}ε>0 is bounded in L2
F
(0, 1; R). Now, let ε → 0 in (5.6), we get an

open-loop optimal control:

u∗(s) = −(x + 2) · exp
{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

, s ∈ [0, 1].

From the above discussion, similar to the state process X(·) of (5.1), the open-loop
optimal control u∗(·) also depends on the regime switching term α(·). That is to say,
as the value of the switching α(·) varies, the open-loop optimal control u∗(·) will be
changed too.

Finally, we let ε → 0 in (5.3) and (5.4) to get a weak closed-loop optimal strategy
(
∗(·, ·), v∗(·)):


∗(s, α(s)) = lim
ε→0


ε(s, α(s)) = − 1

1 − s
, s ∈ [0, 1),
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v∗(s) = lim
ε→0

vε(s) = − 1

1 − s
· exp

{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

·
∫ 1

s
f (r)dr

= − 2√
1 − s

· exp
{∫ s

0

√
2α(r)dW (r) − 2

∫ s

0
α(r)dr

}

, s ∈ [0, 1).

We put out that neither 
∗(·, ·) and v∗(·) is square-integrable on [0, 1). Indeed, one
has

E

∫ 1

0
|
∗(s, α(s))|2ds =

∫ 1

0

1

(1 − s)2
ds = ∞,

E

∫ 1

0
|v∗(s)|2ds = E

∫ 1

0

4

1 − s
· exp

{

2
∫ s

0

√
2α(r)dW (r) − 4

∫ s

0
α(r)dr

}

ds

= E

∫ 1

0

4

1 − s
ds = ∞.

6 Conclusions

In this paper, we mainly study the open-loop and weak closed-loop solvabilities for
a class of stochastic LQ optimal control problems of Markovian regime switching
system. The main result is that these two solvabilities are equivalent. First, using the
perturbation approach, we provide an alternative characterization of the open-loop
solvability. Then we investigate the weak closed-loop solvability of the LQ prob-
lem of Markovian regime switching system, and establish the equivalent relationship
between open-loop and weak closed-loop solvabilities. Finally, we present an exam-
ple to illustrate the procedure for finding weak closed-loop optimal strategies in the
circumstance of Markovian regime switching system.
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