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Abstract
The main purpose of this paper is to show the global stabilization and exact controlla-
bility properties of a fourth order nonlinear Schrödinger system on a periodic domain
T with internal control supported on an arbitrary sub-domain of T. More precisely, by
certain properties of propagation of compactness and regularity in Bourgain spaces,
for the solutions of the associated linear system, we show that the system is globally
exponentially stabilizable. This property together with the local exact controllability
shows that fourth order nonlinear Schrödinger is globally exactly controllable.
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1 Introduction

1.1 Presentation of theModel

Fourth-order cubic nonlinear Schrödinger (4NLS) equation or biharmonic cubic non-
linear Schrödinger equation

i∂t u + ∂2x u − ∂4x u = λ|u|2u, (1.1)
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has been introduced by Karpman [19] and Karpman and Shagalov [20] to take into
account the role of small fourth-order dispersion terms in the propagation of intense
laser beams in a bulk medium with Kerr nonlinearity. Equation (1.1) arises in many
scientific fields such as quantum mechanics, nonlinear optics and plasma physics, and
has been intensively studied with fruitful references (see [3,9,19,31,32] and references
therein).

The past twenty years such 4NLS has been deeply studied from different mathe-
matical viewpoint. For example, Fibich et al. [14] worked various properties of the
equation in the sub-critical regime, with part of their analysis relying on very inter-
esting numerical developments. The well-posedness and existence of solutions for
different domains have been shown (see, for instance, [8,22,30–32,34–36]) by means
of the Fourier restrictionmethod, energymethod, forcing boundary operators, Laplace
transform, harmonic analysis, Fokas method, etc.

It is interesting to point out that there are many works related to the Eq. (1.1) not
only dealing with well-posedness theory. For example, recently Natali and Pastor [29],
considered the fourth-order dispersive cubic nonlinear Schrödinger equation on the
line with mixed dispersion. They proved the orbital stability, in the H2(R)—energy
space by constructing a suitable Lyapunov function. Considering the equation (1.1)
on the circle, Oh and Tzvetkov [35], showed that the mean-zero Gaussian measures
on Sobolev spaces Hs(T), for s > 3

4 , are quasi-invariant under the flow. For instance,
there has been a significant progress over the recent years and the reader can have a
great view in [6,7] for the nonlinear Schrödinger equation.

1.2 Setting of the Problem

In this article our purpose is to study properties of stabilization and, consequently, con-
trollability for the periodic one-dimensional fourth order cubic nonlinear Schrödinger
equation:

{
i∂t u + ∂2x u − ∂4x u = λ|u|2u, (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T.
(1.2)

In order to determine if the system (1.2) is controllable in large time for a control
supported in any small open subset of T, we will study the Eq. (1.2) from a control
point of viewwith a forcing term f = f (x, t) added on the equation as a control input

{
i∂t u + ∂2x u − ∂4x u = λ|u|2u + f , (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T,
(1.3)

where f is assumed to be supported in a given open subset ω of T. Therefore, the
following classical issues related with the control theory are considered in this work:

Exact control problem Given an initial state u0 and a terminal state u1 in a certain
space, can one find an appropriate control input f so that the Eq. (1.3) admits a solution
u which satisfies u(·, 0) = u0 and u(·, T ) = u1 ?
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Stabilization problem Can one find a feedback control law f so that the system (1.3)
is asymptotically stable as t → ∞?

1.3 Previous Results

When we consider (1.1) on a periodic domain T is not of our knowledge any result
about control theory. However, there are interesting results in a bounded domain of
R or R

n , which we will summarize on the paragraphs below for the following fourth
order linear Schrödinger equation

i∂t u + ∂4x u = 0. (1.4)

The first result about the exact controllability of the linearized fourth order Schrödinger
equation (1.4) on a bounded domain � of the R

n is due to Zheng and Zhongcheng in
[40]. In this work, bymeans of an L2—Neumann boundary control, the authors proved
that the solution is exactly controllable in Hs(�), s = −2, for an arbitrarily small time.
They used Hilbert Uniqueness Method (HUM) (see, for instance, [13,28]) combined
with the multiplier techniques to get the main result of the article. More recently, in
[39], Zheng proved another interesting problem related with the control theory. To do
this, he showed a global Carleman estimate for the fourth order Schrödinger equation
posed on a finite domain. TheCarleman estimate is used to prove the Lipschitz stability
for an inverse problem consisting in retrieving a stationary potential in the fourth order
Schrödinger equation from boundary measurements.

Still on control theory Wen et al. in two works [36,37] studied well-posedness and
control theory related with the Eq. (1.4) on a bounded domain of R

n , for n ≥ 2. In
[36], they proved the Neumann boundary controllability with collocated observation.
With this result in hands, the exponential stability of the closed-loop system under
proportional output feedback control holds. Recently, the authors, in [37], gave positive
answers when considered the equation with hinged boundary by either moment or
Dirichlet boundary control and collocated observation, respectively.

Lastly, to get a general outline of the control theory alreadydone for the system (1.4),
two interesting problemswere studied recently byAksas and Rebiai [1] and Peng [16]:
Uniform stabilization and stochastic control problem, in a smooth bounded domain �

of R
n and on the interval I = (0, 1) of R, respectively. The first work, by introducing

suitable dissipative boundary conditions, the authors proved that the solution decays
exponentially in L2(�) when the damping term is effective on a neighborhood of a
part of the boundary. The results are established by using multiplier techniques and
compactness/uniqueness arguments.Regarding the secondwork, abovementioned, the
author showed a Carleman estimate for forward and backward stochastic fourth order
Schrödinger equations which provided to prove the observability inequality, unique
continuation property and, consequently, the exact controllability for the forward and
backward stochastic system associated with (1.4).
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1.4 Notations andMain Results

Before to present ourmain results, let us introduce theBourgain spaces associated to the
biharmonic Schrödinger equation. For given b, s ∈ R and a function u : T × R → C,
in S(T × R), defines the quantity

‖u‖Xb,s
:=
( ∞∑
k=−∞

∫
R

〈k〉2s 〈τ − p (k)〉2b ∣∣û (k, τ )
∣∣2 dτ

) 1
2

,

where û (k, τ ) denotes the Fourier transform of u with respect to the space variable x
and the time variable t , 〈·〉 =

√
1 + | · |2 and p (k) = −k4 − k2. We denote by Dr

the operator defined on D′ (T) by

D̂r u (k) =
{ |k|r û (k) if k 
= 0,
û (0) if k = 0.

(1.5)

The Bourgain space Xb,s associated to the fourth order linear dispersive Schrödinger
equation on T is the completion of the Schwartz space S (T × R) under the norm
‖u‖Xb,s

. Note that for any u ∈ Xb,s ,

‖u‖Xb,s
= ‖W (−t) u‖Hb(R,Hs (T)) ,

where {W (·)} is the free group associated to the linearized biharmonic Schödinger
equation. For a given interval I , let Xb,s (I ) be the restriction space of Xb,s to the
interval I with the norm

‖u‖Xb,s (I ) = inf
{
‖ũ‖Xb,s

| ũ = u on T × I
}

.

By simplicity, we denote Xb,s (I ) by XT
b,s when I = (0, T ).

To clarify, the first issue to be proved in this article is the following one.
Given T > 0 and u0, u1 ∈ L2(T), is there a control input g ∈ C([0, T ]; L2(T)) in
order to make the solution of

{
i∂t u + ∂2x u − ∂4x u = λ|u|2u + g, (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T
(1.6)

satisfying u(·, T ) = u1?
The strategy to answer the global controllability question is first to prove a local

exact controllability result and to combine it with a global stabilization of the solutions
to get the global controllability of the system (1.6). Thus, in this spirit, we first need
to prove the control property of 4NLS (1.6) near to 0, that will be proved using a
perturbation argument introduced by Zuazua in [41]. More precisely, we will show
the following local controllability result:
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Theorem 1.1 Let ω be any nonempty open subset of T and T > 0. There exists ε > 0
such that for any u0 ∈ L2(T) with

‖u0‖L2(T) < ε,

one can find a control input g ∈ C([0, T ]; L2(T)), with supp(g) ⊂ ω × (0, T ) such
that the unique solution u ∈ XT

b,0, for 1/2 < b < 21/16, of the system (1.6) satisfies
u(x, T ) = 0.

Let us now introduce our main results of the article. Consider a(x) ∈ L∞(T) real
valued, the stabilization system that we will consider is the following

{
i∂t u + ∂2x u − ∂4x u + ia2u = λ |u|2 u on T× (0, T ) ,
u (x, 0) = u0 (x) on T,

(1.7)

where λ ∈ R and u0 ∈ L2 (T), in L2–level.
Note that, easily, we can check that the solution of (1.7) satisfies the mass decay

‖u (·, t)‖2L2(T)
= ‖u (·, 0)‖2L2(T)

−
∫ t

0
‖au(τ )‖2L2(T)

dτ, ∀t ≥ 0. (1.8)

Observe that for a(x) = 0 we have, by (1.8), the mass of the system is indeed con-
served. However, assuming that a(x)2 > η > 0 on some nonempty open set ω of T,
identity (1.8) states that we have an possibility of a exponential decay of the solutions
related of (1.7). In fact, following the ideas of Dehman and Lebeau [10], see also [12],
by using techniques of semi-classical and microlocal analysis, the result that we are
able to prove, for large data, can be read as follows:

Theorem 1.2 Let a(x) := a ∈ L∞(T) taking real values such that a2(x) > η on a
nonempty open set ω ⊂ T, for some constant η > 0. Then, for every R0 > 0 there
exist C := C(R0) > 0 and γ > 0 such that inequality

‖u (·, t)‖L2(T) ≤ Ce−γ t ‖u0‖L2(T) , ∀t > 0, (1.9)

holds for every solution u of (1.7)with initial data u0 ∈ L2 (T) satisfying ‖u0‖L2(T) ≤
R0.

Finally, the global controllability result which one can be established is the follow-
ing:

Theorem 1.3 Let 1/2 < b < 21/16 and ω be any nonempty open subset of T. For any
R0 > 0, there exists T := T (R0) > 0 such that for any u0 and u1 in L2(T) with

‖u0‖L2(T) ≤ R0 and ‖u1‖L2(T) ≤ R0

one can find a control input g ∈ C([0, T ]; L2(T)), with supp(g) ⊂ ω × (0, T ), such
that the unique solution u ∈ XT

b,0 of the system (1.6) satisfies u(x, T ) = u1.
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Let us describe briefly themain arguments of the proof of these theorems. Precisely,
the control result for large data (Theorem 1.3) will be a combination of a global
stabilization result (Theorem 1.2) and the local control result (Theorem 1.1), as is
usual in control theory, see e.g. [11,12,24–26].

With respect to the proof of Theorem 1.2, in general lines, the functional spaces
used here are the Bourgain spaces which are especially suited for solving dispersive
equations. Thus, the step one is to prove the following Strichartz estimate for the
operator of fourth order Schrödinger equation:

‖u‖L4([0,T ]×T) ≤ C ‖u‖XT
5
16 ,0

,

this allows to prove the following multilinear estimates in XT
b,s :

‖u1u2u3‖XT
b−1,s

≤ C ‖u1‖XT
5
16 ,0

‖u2‖XT
5
16 ,0

‖u3‖XT
5
16 ,s

,

∥∥∥|u|2u − |v|2v
∥∥∥
XT
b−1,s

≤ C

(
‖u‖2

XT
5
16 ,s

+ ‖v‖XT
5
16 ,s

)2

‖u − v‖XT
5
16 ,s

,

where s ≥ 0, b < 21
16 and T ≤ 1 are given and C := C(s) > 0. On the step two,

Hs(T) propagation of regularity and compactness (see Sect. 5 below) from the state to
the control are obtained using these properties for the linear control and a local linear
behavior. Lastly, results of propagation together with a unique continuation property
(UCP), bellow presented, guarantees the proof of Theorem 1.2.

Proposition 1.4 For every T > 0 and ω any nonempty open set of T, the only solution
u ∈ C∞([0, T ] × T) of the system

{
i∂t u + ∂2x u − ∂4x u = b(x, t)u on T× (0, T ) ,
u = 0 on ω × (0, T ) ,

where b(x, t) ∈ C∞([0, T ] × T), is the trivial one

u (x, t) = 0 on T× (0, T ) .

To end our introduction, we present the outline of our paper. Section 2 is to establish
estimates needed in our analysis, namely, Strichartz estimates and trilinear estimates.
Existence of solution for 4NLS with source and damping terms will be presented
in Sect. 3. In Sect. 4, we prove the local controllability result, Theorem 1.1. Next,
Sect. 5, the propagation of compactness and regularity in Bourgain space are proved
and, with this in hands, Sect. 6 is aimed to present the proof of unique continuation
property, Proposition 1.4. Section 7, is devoted to prove Theorem 1.2. Finally, we
present concluding remarks in Sect. 8.
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2 Linear Estimates

In this section, we introduce some results which are essential to establish the exact
controllability and stabilization of the nonlinear system (1.6) and (1.7), respectively.

2.1 Strichartz and Trilinear Estimates

The next estimate is a Strichartz type estimate.

Lemma 2.1 The following estimate holds

‖u‖L4(T×R) ≤ C ‖u‖XT
5
16 ,0

. (2.1)

Proof We closely follow the argument for the L4-Strichartz estimate for the usual
(second and fourth order) Schrödinger equation presented in [33] and [34].

Given a dyadic M ≥ 1, let uM the restriction of u onto the modulation size 〈τ −
p(k)〉 ∼ M . Then, it suffices to show that there exists ε > 0 such that

‖uMu2mM‖L2
x L

2
t

≤ 2−εmM
5
16 ‖uM‖L2

x,t
(2mM)5/16‖u2mM‖L2

x,t
, (2.2)

for any M ≥ 1 and m ∈ N ∪ {0}. Indeed, assuming (2.2), by Cauchy–Schwarz
inequality, we have that

‖u‖2L4(T×R)
=
∑
M

∑
m≥0

‖uMu2mM‖L2
x,t

�
∑
M

∑
m≥0

2−εmM
5
16 ‖uM‖L2

x,t
(2mM)5/16‖u2mM‖L2

x,t

�
∑
m≥0

2−εm

(∑
M

M
5
8 ‖uM‖2

L2
x,t

)1/2 (∑
M

(2mM)5/8‖u2mM‖2
L2
x,t

)1/2

� ‖u‖2
XT

5
16 ,0

.

This proves (2.1).
Nowwe prove (2.2). By Plancherel’s identity andHölder’s inequality, the following

inequality holds

‖uMu2mM‖L2
x L

2
t

=
∥∥∥∥∥∥
∑

k=k1+k2

∫
τ=τ1+τ2

ûM (k1, τ1)ûM2m (k2, τ2)dτ1

∥∥∥∥∥∥
l2k L

2
τ

�
(
sup
k,τ

A(k, τ )

)1/2

‖uM‖L2
x,t

‖u2mM‖L2
x,t

,
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where the function A(k, τ ) is given by

A(k, τ ) =
∑

k=k1+k2

∫
τ=τ1+τ2

1τ1−p(k1)∼M1τ2−p(k2)∼2mMdτ1. (2.3)

Integrating in τ1 holds that

A(k, τ ) ≤ M
∑

k=k1+k2

1τ∼−p(k1)−p(k2)+2mM .

Here, we have used that the Lebesgue measure of set {τ1 ∈ R; τ1 − p(k1) ∼ M} is
comparable with M and τ = τ1 + τ2 ∼ p(k1) + p(k2) + M + 2mM .

Now, a direct calculation gives

(k − k1)
4 + k41 = 2k41 − 4k31k + 6k21k

2 − 4k1k
3 + k4

= 2

(
k1 − 1

2
k

)4

+ 3k2
(
k1 − 1

2
k

)4

+ 1

8
k4

(2.4)

and

(k − k1)
2 + k21 = 2k21 − 2k1k + k2

= 2

(
k1 − 1

2
k

)2

+ 1

2
k2.

(2.5)

It follows that

p(k − k1) + p(k1) = 2

(
k1 − 1

2
k

)4
+ 1

2
k2 + (3k2 + 2)

(
k1 − 1

2
k

)4
+ 1

8
k4

= 2

((
k1 − 1

2
k

)2
+
(
3

2
k2 + 1

)2)2
+ 1

2
k2 + 1

8
k4 − 2

(
3

2
k2 + 1

)2
,

(2.6)

which implies

τ − p(k1) − p(k − k1) = −2

((
k1 − 1

2
k

)2

+
(
3

2
k2 + 1

)2)2

+ C(k, τ ), (2.7)

whereC(k, τ ) = 1
2k

2+ 1
8k

4−2
( 3
2k

2 + 1
)2
. Thus, for fixed k and τ , 1τ − p(k1)− p(k2)

∼ 2mM(k1) = 1 only when

((
k1 − 1

2
k

)2

+
(
3

2
k2 + 1

)2)2

= C(k, τ ) + O(2mM), (2.8)
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that is, k1 belongs at most four intervals of length 2m/4M1/4. It yields that,

∑
k=k1+k2

1τ∼−p(k1)−p(k2)+2mM = 2m1/4M1/4.

So, from (2.3), we have

A1/2(k, τ ) � 2m/8M5/8 ≤ 2− 3m
16 (2mM)5/16M5/16.

This finishes the proof of Lemma 2.1. ��

Lemma 2.1 allow us to prove the following multilinear estimates in XT
b,s .

Lemma 2.2 Let s ≥ 0, b ≥ 5
16 and T ≤ 1 be given. There exists a constant C :=

C(s) > 0 such that the following trilinear estimates holds

‖u1u2u3‖XT−b,s
≤ C ‖u1‖XT

5
16 ,s

‖u2‖XT
5
16 ,0

‖u3‖XT
5
16 ,0

,

∥∥∥|u|2u − |v|2v
∥∥∥
XT−b,s

≤ C(‖u‖2
XT

5
16 ,s

+ ‖v‖XT
5
16 ,s

)2 ‖u − v‖XT
5
16 ,s

.

Moreover, there exist constants C and Cs := C(s) > 0, independent on T ≤ 1, such
that for every s ≥ 1, follows that

∥∥∥|u|2u
∥∥∥
XT−b,s

≤ C ‖u‖2
XT

5
16 ,0

‖u‖XT
5
16 ,s

+ Cs ‖u‖XT
5
16 ,s−1

‖u‖XT
5
16 ,1

‖u‖XT
5
16 ,0

.

Proof Here we will use the ideas contained in [5]. Let w = u1u2u3, by duality we
have that

‖w‖XT−b,s
= sup

‖c‖
l2k L

2
τ
≤1

+∞∑
k=−∞

∫
τ

〈k〉s〈τ − p(k)〉−bŵ(k, τ )c(k, τ )dτ

= sup
‖c‖

l2k L
2
τ
≤1

+∞∑
k,k2,k3=−∞

∫
τ,τ2,τ3

〈k〉s〈τ − p(k)〉−bû1(k1, τ1)

× û2(k2, τ2)û3(k3, τ3)c(k, τ )dτdτ2dτ3

(2.9)

where k = k1 + k2 − k3 and τ = τ1 + τ2 − τ3.
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Assume that max{|k1|, |k2|, |k3|} = |k1| and define f̂ (k, τ ) = c(k, τ )〈τ − p(k)〉−b

and v̂(k1, τ1) = 〈k1〉s û1(k1, τ1). Then, last expression of (2.9) is bounded by

3 sup
‖c‖

l2k L
2
τ
≤1

+∞∑
k,k2,k3=−∞

∫
τ,τ2,τ3

| f̂ (ξ, τ )v̂(ξ1, τ1)û2(k2, τ2)û3(k3, τ3)|dτdτ2dτ3

≤ 3‖ f v u2 u3‖L1
τ l

1
k

≤ 3 sup
‖c‖

l2k L
2
τ
≤1

‖ f ‖L4
τ l

4
k
‖v‖L4

τ l
4
k
‖u2‖L4

τ l
4
k
‖u3‖L4

τ l
4
k

≤ 3 sup
‖c‖

l2k L
2
τ
≤1

‖ f ‖X 5
16 ,0

‖v‖X 5
16 ,0

‖u2‖X 5
16 ,0

‖u3‖X 5
16 ,0

≤ 3 sup
‖c‖

l2k L
2
τ
≤1

‖c‖L2
τ l

2
k
‖u1‖X 5

16 ,s
‖u2‖X 5

16 ,0
‖u3‖X 5

16 ,0
,

where we have used Lemma 2.1 and the fact b > 5
16 . ��

2.2 Auxiliary Lemmas

This subsection is devoted to present auxiliaries results related to the Bourgain space
Xb,s which are used several times in this work and play an important role on the main
results of this article.

Lemma 2.3 Let −1 ≤ b ≤ 1, s ∈ R and ϕ ∈ C∞ (T). Then, for any u ∈ Xb,s ,
ϕ (x) u ∈ Xb,s−3|b|. Similarly, the multiplication by ϕ maps XT

b,s into XT
b,s−3|b|.

Proof We first consider the case of b = 0 and b = 1. The other cases of b will be
derived later by interpolation and duality.

For b = 0,

X0,s = L2 (
R; Hs (T)

)
and the result is obvious. For b = 1, we have u ∈ X1,s if and only if

u ∈ L2 (R; Hs (T)) and i∂t u + ∂2x u − ∂4x u ∈ L2 (R; Hs (T)) ,

with the norm

‖u‖2X1,s
= ‖u‖2L2(R;Hs (T))

+
∥∥∥i∂t u + ∂2x u − ∂4x u

∥∥∥2
L2(R;Hs (T))

.

Thus,
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‖ϕ (x) u‖2X1,s−3
= ‖ϕu‖2L2(R;Hs−3(T))

+ ∥∥i∂t (ϕu) + ∂2x (ϕu) − ∂4x (ϕu)
∥∥2
L2(R;Hs−3(T))

≤ C
(
‖u‖2L2(R;Hs−3(T))

+ ∥∥ϕ (i∂t u + ∂2x u − ∂4x u
)∥∥2

L2(R;Hs−3(T))

)
+ ∥∥[ϕ, ∂2x − ∂4x

]
u
∥∥2
L2(R;Hs−3(T))

≤ C
(
‖u‖2L2(R;Hs−3(T))

+ ∥∥i∂t u + ∂2x u − ∂4x u
∥∥2
L2(R;Hs−4(T))

+ ‖u‖2L2(R;Hs (T))

)
≤ C ‖u‖2X1,s

.

Here, we have used the fact

[
ϕ, ∂2x − ∂4x

]
= 4

(
∂3xϕ
)

∂x + 12
(
∂2xϕ
)

∂2x − 2∂xϕ∂x + 4∂xϕ∂3x +
(
∂4xϕ − ∂2xϕ

)

is a differential operator of order 3.
To conclude, we prove that the Xb,s spaces are in interpolation. Using Fourier trans-

form, Xb,s may be viewed as the weighted L2 space L2(
Rτ × Zk, 〈k〉2s

〈
τ + k4 + k2

〉2b
λ ⊗ δ

)
, where λ is the Lebesgue measure on R and

δ is the discrete measure on Z. Then, we use the complex interpolation theorem of
Stein-Weiss for weighted L p spaces (see [4, p. 114]): For θ ∈ (0, 1)

(
X0,s, X1,s′

)
[θ] ≈ L2

(
R × Z, 〈k〉2s(1−θ)+2s′θ

〈
τ + k4 + k2

〉2θ
μ ⊗ δ

)
≈ Xθ,s(1−θ)+s′θ .

Since the multiplication by ϕ maps X0,s into X0,s and X1,s into X1,s−3, we conclude
that for b ∈ [0, 1], it maps Xb,s = (

X0,s, X1,s
)
[b] into

(
X0,s, X1,s−3

)
[b] = Xb,s−3b,

which yields the 3b loss of regularity as announced.
Then, by duality, this also implies that for b ∈ [0, 1], the multiplication by ϕ (x)

maps X−b,−s+3b into X−b,−s . As the number s may take arbitrary values in R, we
also have the result for b ∈ [−1, 0] with a loss of−3b = 3 |b|. Finally, to get the same
result for the restriction spaces XT

b,s , consider

ũ =
{
u, if x ∈ T,
0, other cases,

thus

‖ϕu‖XT
b,s−3|b|

≤ ‖ϕũ‖Xb,s−3|b| ≤ C ‖ũ‖Xb,s
.

Taking the infimum on all the ũ, the result is achieved. ��
Finally, to close this section, more four auxiliaries lemmas are enunciated. We

follow [15], where the reader can also find the proofs, thus will be omitted it.

Lemma 2.4 Let 1
2 ≤ b < 1, s ∈ R and T > 0 be given. Then, there exists a constant

C > 0 such that:
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(i) For any φ ∈ Hs (T),

‖W (t) φ‖XT
b,s

≤ C ‖φ‖Hs (T) ;

(ii) For any f ∈ XT
b−1,s ,∥∥∥∥
∫ t

0
W (t − τ) f (τ ) dτ

∥∥∥∥
XT
b,s

≤ C ‖ f ‖XT
b−1,s

.

Lemma 2.5 Let b ∈ [0, 1] and u ∈ XT
b,s , then the function

f : (0, T ) → R

t �→ ‖u‖Xt
b,s

is continuous. Moreover, if b > 1
2 , there exists C := C(b) > 0 such that

lim
t→0+ f (t) ≤ C‖u(0)‖Hs (R). (2.10)

Lemma 2.6 Let b ∈ [0, 1]. If ∪n
k=1(ak, bk) is a finite covering of (0, 1), then there

exists a constant C > 0 depending only of the covering such that for every u ∈ Xb,s ,
we have

‖u‖Xb,s [0,1] ≤ C
n∑

k=1

‖u‖Xb,s [ak ,bk ].

Lemma 2.7 Let s ∈ R.

(i) For any b ∈ R, we have that

‖ψ(t)eit(∂
2
x−∂4x )‖Xb,s ≤ c‖ψ(t)‖Hb(R)‖u0‖Hs (T).

(ii) Let ψ ∈ C∞
0 (R) and b, b′ satisfying 0 < b′ < 1

2 < b and b + b′ ≤ 1. We have
the following inequality

∥∥∥∥ψ
(
t

T

)∫ t

0
ei(t−t ′)(∂2x−∂4x )F(t ′)dt ′

∥∥∥∥
Xb,s

≤ CT 1−b−b′ ‖F‖X−b′,s ,

for T ≤ 1.

3 Well-Posedness for 4NLS

In this section, we are interested in the existence of solution for 4NLS with source and
damping terms. More precisely, the following result can be proved:
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Theorem 3.1 Let T > 0, s ≥ 0, λ ∈ R and 1
2 ≤ b < 11

16 . Let a ∈ C∞
0 (T) and

ϕ ∈ C∞
0 (R) taking real values. For every g ∈ L2([−T , T ]; Hs(T)) and u0 ∈ Hs(T),

there exists a unique solution u ∈ XT
b,s of the Cauchy problem

{
i∂t u + ∂2x u − ∂4x u + iϕ2(t)a2(x)u = λ|u|2u + g, (x, t) ∈ T × R,

u0(x) = u0(x), x ∈ T.
(3.1)

Furthermore, the flow map

F : Hs(T) × L2([−T , T ]; Hs(T)) → XT
b,s

(u0, g) �→ u

is Lipschitz on every bounded subset. The same result is valid for a ∈ L∞(T).

Proof Initially, we notice that g ∈ XT
−b′,s , for b

′ ≥ 0. Let us restrict yourself to positive
times. The solution on [−T , 0] can be obtained similarly.

Define the integral operator by

�(u)(t) = e−i t(∂2x−∂4x )u0 − i
∫ t

0
e−i(t−t ′)(∂2x−∂4x )(λ|u|2u − iϕ2(t)a2u + g)dt ′. (3.2)

We are interested in applying the fixed point argument on the space XT
b,s . To do this,

let ψ ∈ C∞
0 (R) such that ψ(t) = 1 for t ∈ [−1, 1]. By Lemmas 2.7 and 2.2, for

0 < b′ < 1
2 < b and b + b′ ≤ 1, we have that

‖�(u)‖XT
b,s

≤ C‖u0‖Hs (T) + CT 1−b−b′ ‖λ|u|2u − iϕ2(t)a + g‖XT
−b′,s

≤ C‖u0‖Hs (T) + CT 1−b−b′
(

‖ϕ2a2u‖XT
0,s

+ ‖|u|2u‖XT
b′,s

+ ‖g‖XT
−b′,s

)

≤ C‖u0‖Hs (T) + CT 1−b−b′ ‖u‖XT
b,s

(
1 + ‖u‖2

XT
b,0

)
+ CT 1−b−b′ ‖g‖XT

−b′,s
.

(3.3)

In the same way, we get that

‖�(u) − �(v)‖XT
b,s

≤ CT 1−b−b′
(1 + ‖u‖2

XT
b,s

+ ‖v‖2
XT
b,s

)‖u − v‖XT
b,s

. (3.4)

These estimates imply that if T is chosen small enough� is a contraction on a suitable
ball of XT

b,s .

Now, we prove the uniqueness in the class XT
b,s for the integral equation (3.2). Set

w(t) = e−i t(∂2x−∂4x )u0 − i
∫ t

0
e−i(t−t ′)(∂2x−∂4x )(λ|u|2u − iϕ2(t)a + g)dt ′. (3.5)
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By using (2.2) we have that |u|2u ∈ XT
−b′,s , for any b′ satisfying − 5

16 < b′ < 1
2 .

Moreover, we have that

∂t

[∫ t

0
e−iτ(∂2x−∂4x )(−ia2ϕ2u + λ|u|2u + g)(τ )

]
dτ

= e−i t(∂2x−∂4x )(−ia2ϕ2u + λ|u|2u + g)(τ ), (3.6)

in the distributional sense. This implies that w solves the following equation

i∂tw + ∂2xw − ∂4xw + ia2ϕ2u = λ|u|2u + g. (3.7)

It follows that v(t) = e−i t(∂2x−∂4x )(u − w) is solution of ∂tv = 0 and v(t) = 0,
respectively. Thus, v = 0 and u is solution of the integral equation.

Let us prove the propagation of regularity. Firstly, note that for u0 ∈ Hs(T), with
s > 0, we have an existence of time T for the solution u of the integral equation in XT

b,0

and another solution ũ on time T̃ in XT̃
b,s . By uniqueness in XT

b,0 booth solutions u and

ũ are the same on [0, T̃ ]. Admitting T̃ < T , we get that the blow up of ‖u(t)‖Hs (T), as
t → T̃ , while ‖u‖L2(T) remains bounded on this interval. By using local existence in

L2(T) and Lemma 2.6 we see that ‖u‖
XT̃
b,0

is finite. Thus, estimate (3.3) on [T̃ −ε, T̃ ],
with ε small enough such that

Cε1−b−b′
(1 + ‖u‖2

Xb,0[T̃−ε,T̃ ]) <
1

2
,

ensures

‖u‖Xb,s [T̃−ε,T̃ ] ≤ C(‖u(T − ε)‖Hs (T) + ‖g‖X−b′,s ).

Therefore, u ∈ XT̃
b,s , contradicting the blow up of ‖u(t)‖Hs (T) near T̃ .

The second step is to use L2(T) energy estimates to obtain global existence in L2(T)

and consequently, by using the above argument, in Hs(T). Multiplying (3.1) by u ,
taking imaginary part, integrating by parts and using Cauchy–Schwarz inequality, we
get

‖u(t)‖2L2(T)
≤ ‖u0‖2L2(T)

+ C
∫ t

0
‖u(τ )‖2L2(T)

dτ + C‖g‖L2([−T ,T ];L2(T)). (3.8)

By using Gronwall inequality, we have that

‖u(t)‖2L2(T)
≤ C(‖u0‖2L2(T)

+ ‖g‖L2([−T ,T ];L2(T)))e
C|t |.

So, the L2(T)-norm remains bounded and the solution u is global in time.
Lastly, we prove the continuity of flow. Let ũ solution of (3.1) with ũ0 and g̃, instead

u0 and g. A slight modification of (3.4) yields that
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‖u − ũ‖XT
b,s

≤ C‖u0 − ũ0‖Hs (T) + C‖g − g̃‖X−b′,s + CT 1−b−b′
(1 + ‖u‖2

XT
b,s

+ ‖ũ‖2
XT
b,s

)‖u − v‖XT
b,s

.

Then, for T small enough depending on the size of u0, ũ0, g and g̃, follows that

‖u − ũ‖XT
b,s

≤ C‖u0 − ũ0‖Hs (T) + C‖g − g̃‖XT
−b′,s

.

Thus, the map data to solution is Lipschitz continuous on bounded sets for arbitrary
T and, consequently, the proof is complete. ��

The next two propositions are to give estimates that connect the solution u of the
4NLS (3.1) with the damping term and source term.

Proposition 3.2 For every T > 0, η > 0 and s ≥ 0, there exists C(T , η, s) such that
for every u ∈ XT

b,s solution of (3.1) with ‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T)) ≤ η the
following estimate holds

‖u‖XT
b,s

≤ C(T , η, s)(‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T))).

Proof Initially, assume T ≤ 1. Using (3.3) we have that

‖u‖XT
s,b

≤ C

(
‖u0‖Hs (T) + ‖g‖XT

−b′,s

)
+ CST

1−b−b′ ‖u‖XT
b,s

(
1 + ‖u‖2

XT
b,0

)
.

Choose T such that CsT 1−b−b′ ≤ 1
2 , the following inequality holds

‖u‖XT
s,b

≤ C

(
‖u0‖Hs (T) + ‖g‖XT

−b′,s

)
+ CsT

1−b−b′ ‖u‖XT
b,s

‖u‖2
XT
b,0

. (3.9)

By using estimate (3.9), for s = 0, and choosing T1 satisfying

T 1−b−b′
1 <

1

2C0

(
‖u0‖Hs (T) + ‖g‖

X
T1
−b′,0

)2 , (3.10)

we obtain

‖u‖
X
T1
0,b

≤ C

(
‖u0‖L2(T) + ‖g‖

X
T1
−b′,0

)
≤ C

(‖u0‖L2(T) + ‖g‖L2((T1,T1+ε);L2(T))

)
.

(3.11)

On the other hand, estimate (3.8) implies

‖u(t)‖L2(T) ≤ CηeC|t | ≤ CηeC ≤ C(η), (3.12)
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where we have used that T ≤ 1. Then, thanks to (3.11) and (3.12), there exists a
constant ε = ε(η) such that

‖u(T−
1 + s)‖Xε

b,0
≤ C(‖u(T1)‖L2(T) + ‖g(t)‖L2((T1,T1+ε);L2(T))), (3.13)

and follows that the estimate (3.11) is valid for some large interval [0, T ], with T ≤ 1,
for any constant C depending of η.

Now, we back to the case s > 0. For Ts satisfying CsT 1−b−b′
s ≤ 1

2 , by using (2.9)
and (3.9), we obtain

CsT
1−b−b′
s ‖u‖2

XTs
b,0

≤ CsT
1−b−b′
s C(η)2η2.

Thus, follows that for an appropriate T ≤ ε(η, s) the last expression can be controlled
by 1/2, therefore, the following inequality is also true

‖u‖XT
s,b

≤ C
(‖u0‖Hs (T) + ‖g‖L2((0,T );Hs (T))

)
.

Again, piecing solutions together, we get the same result for large T ≤ 1 with C
depending only of η and s. Finally, the assumption T ≤ 1 is removed similarly with
a final constant C(s, η, T ). ��

Proposition 3.3 For every T > 0 and η > 0, there exists a constant C(T , η) such that
for all s ≥ 1, we can find C(T , η, s) such that u ∈ XT

b,s solution of (3.1) with

‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T)) ≤ η,

satisfies

‖u‖XT
b,s

≤ C(T , η)(‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T)))

+ C(T , η, s)
(
‖u‖XT

b,s−1
‖u‖XT

b,1
‖u‖XT

b,0
+ ‖u‖XT

b,s−1

)
.

Proof Initially, we assume T ≤ 1. By using Lemma 2.7 we have a constant C , inde-
pendent of s, such that

‖u‖XT
b,s

≤ C
(‖u0‖Hs (T) + ‖g‖L2([0,T ]:Hs (T))

)
+ CT 1−b−b′

(
‖a2ϕ2u‖L2([0,T ];Hs (T)) + ‖|u|2u‖XT

b′,s−1

)
,

for b, b′ satisfying 0 ≤ b′ < 1
2 < b, b + b′ ≤ 1.
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[24, Lemma A.1] and Lemma 2.2 give us constants C and Cs which leads to the
following inequality

‖u‖XT
b,s

≤ C(‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T)))

+ T 1−b−b′
(C‖u‖XT

b,s
+ Cs‖u‖XT

b,s−1
)

+ T 1−b−b′
(C‖u‖2

XT
b,0

‖u‖XT
b,s

+ Cs‖u‖XT
b,s−1

‖u‖XT
b,1

‖u‖XT
b,0

).

(3.14)

From Proposition 3.2, we have that

‖u‖XT
b,0

≤ C(η, T )
(‖u0‖L2(T) + ‖g‖L2([0,T ];Hs (T))

) ≤ C(η, T )η. (3.15)

Here, for T ≤ 1 in the last inequality, we get C(η) := C(η, 1).
By putting (3.15) into (3.14), for small enough T (depending only η), we get

‖u‖XT
b,s

≤ C(‖u0‖Hs (T) + ‖g‖L2([0,T ];Hs (T)))

+ C(s)(‖u‖XT
b,s−1

‖u‖XT
b,1

‖u‖XT
b,0

+ ‖u‖XT
b,s−1

).

Then, the conclusion of lemma follows by a bootstrap argument. ��

4 Local Controllability

This section is devoted to prove the local controllability near of the null trajectory of
the 4NLS (1.6) by a perturbation argument near the one done by Zuazua in [41]. Then,
we will use the fixed point theorem of Picard to deduce our result from the linear
control.

First of all, we know (see, for instance, [39,40]) that any nonempty set ω satisfies
an observability inequality in L2(T) for arbitrary small time T > 0. This means that:

For any a(x) ∈ C∞(T) and ϕ(t) ∈ C∞
0 (0, T ) real valued such that a ≡ 1 on ω

and ϕ ≡ 1 on [T /3, 2T /3], there exists C > 0 such that

‖�0‖2L2(T)
≤ C

∫ T

0

∥∥∥a(x)ϕ(t)eit(∂
2
x−∂4x )�0

∥∥∥2
L2(T)

dt, (4.1)

for every �0 ∈ L2(T).

Exact controllability property for a control system is equivalent to the observability of
its adjoint system by using the Hilbert Uniqueness Method introduced by Lions [28].
Thus, observability inequality (4.1) implies the exact controllability in L2(T) := L2

for the linear equation associated to (1.6).
To be precise, let us follow [12, Sect. 5] to construct an isomorphism of control

R :L2 → L2

�0 → R�0 = �0
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such that if � is solution of the adjoint system

{
i∂t� + ∂2x� − ∂4x� = 0, (x, t) ∈ T × R,

�(x, 0) = �0(x), x ∈ T
(4.2)

and � solution of

{
i∂t� + ∂2x� − ∂4x� = a2(x)ϕ2(t)�, (x, t) ∈ T × R,

�(x, T ) = �T (x) = 0, x ∈ T,

we get that �(x, 0) = �0(x). First, notice that application R has the following
property:

Lemma 4.1 For every s ≥ 0,R is an isomorphism of Hs(T).

Proof To get the result we need to prove that R maps Hs(T) into itself and R�0 ∈
Hs(T) implies �0 ∈ Hs(T), that is, Ds�0 ∈ L2, where Ds is defined by (1.5). Is not
difficult to see that R maps Hs(T) into itself. Thus, we check the following:
Claim: R�0 ∈ Hs(T) implies �0 ∈ Hs(T).

The claim is equivalent to show that Ds�0 ∈ L2, Ds is defined by (1.5). Remember
that,

R�0 = i
∫ T

0
e−i t(∂2x−∂4x )ϕ2a2eit(∂

2
x−∂4x )�0dt .

Since R−1 is continuous from L2 into itself we get, using [24, Lemma A.1], that

∥∥Ds�0
∥∥
L2 ≤ C

∥∥RDs�0
∥∥
L2 ≤ C

∥∥∥∥
∫ T

0
e−i t(∂2x−∂4x )ϕ2a2eit(∂

2
x−∂4x )Ds�0dt

∥∥∥∥
L2

≤ C

∥∥∥∥Ds
∫ T

0
e−i t(∂2x−∂4x )ϕ2a2eit(∂

2
x−∂4x )�0dt

∥∥∥∥
L2

+ C

∥∥∥∥
∫ T

0
e−i t(∂2x−∂4x )[a2, Ds]ϕ2eit(∂

2
x−∂4x )�0dt

∥∥∥∥
L2

≤ C ‖R�0‖Hs (T) + CsC ‖�0‖Hs−1(T) .

Thus, the result for s ∈ [0, 1] is proved. The result for s ≥ 1 can be guaranteed by
iteration. Finally, previous computation, for s ≥ 1, give us

∥∥∥R−1�0

∥∥∥
Hs (T)

≤ C(a, ψ, T ) ‖�0‖Hs (T) + C(a, ψ, s, T ) ‖�0‖Hs−1(T) . (4.3)

Therefore, the claim is proved and, consequently, the lemma is verified. ��
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4.1 Proof of Theorem 1.1

Picka(x) ∈ C∞
0 (ω) andψ(t) ∈ C∞

0 (0, T )different fromzero, such that, observability
inequality (4.1) holds. We look for the function g of the form ϕ2(t)a2(x)�, where �

is solution of (4.2) as in linear control problem.
We are interested in choosing an appropriate �0 such that we can recover the

controllability properties of the system (1.6). Consider the following two systems

{
i∂t� + ∂2x� − ∂4x� = 0, (x, t) ∈ T × R,

�(x, 0) = �0(x), x ∈ T

and {
i∂t u + ∂2x u − ∂4x u = λ|u|2u + a2ϕ2�, (x, t) ∈ T × R,

u(x, T ) = 0, x ∈ T.

We also define the operator L as follows

L : L2(T) → L2(T)

�0 �→ L�0 = u0 = u(0).
(4.4)

The goal is then to show thatL is onto on a small neighborhood of the origin of Hs(T),
for s ≥ 0. Split u as u = v + �, with � solution of

{
i∂t� + ∂2x� − ∂4x� = a2(x)ϕ2(t)�, (x, t) ∈ T × R,

�(x, T ) = 0, x ∈ T.
(4.5)

It corresponds to the linear control, and thus, �(0) = R�0. Moreover, observe that v
is solution of the system

{
i∂tv + ∂2x v − ∂4x v = λ|u|2u, (x, t) ∈ T × R,

v(x, T ) = 0, x ∈ T.
(4.6)

Therefore, u, v and � belong to XT
b,0 and u(0) = v(0) + �(0), which we can write

L�0 as follows

L�0 = K�0 + R�0,

where K�0 = v(0). Observe that L�0 = u0, or equivalently, �0 = −R−1K�0 +
R−1u0.

Define the operator

B :L2 → L2

�0 → B�0 = R−1K�0 + R−1u0.
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We want to prove that B has a fixed point. To do it, let us firstly define the following
set

F := BL2(T)(0, η) ∩
([s]−1⋂

i=1

BHi (T)(0, Ri ))

)
∩ BHs (T)(0, Rs),

for η small enough and for some large Ri . We may assume T < 1 and fix it, moreover,
we will denote C and Cs = C(s) any constant depending of a, ϕ, b, b′, T and s,
respectively.

By using Lemma 4.1, we have that R is an isomorphism of Hs(T), thus

‖B�0‖Hs (T) ≤ Cs
(‖K�0‖Hs (T) + ‖u0‖Hs (T)

)
. (4.7)

By the last inequality, we should estimate ‖K�0‖Hs (T) = ‖v0‖Hs (T). Then, we will
apply for equation (4.6) the same XT

b,s estimates which we used in Theorem 3.1, more
precisely, Lemmas 2.7 and 2.2. Thus, we get

‖v(0)‖Hs (T) ≤ C ‖v‖XT
b,s

≤ CT 1−b−b′ ∥∥∥|u|2 u
∥∥∥
XT

−b′,s
≤ C

∥∥∥|u|2 u
∥∥∥
XT

−b′,s

≤ Cs ‖u‖2
XT
b,0

‖u‖XT
b,s

.

(4.8)

By the local linear behavior of u, that is, by using Proposition 3.2, we obtain

‖u‖XT
b,0

≤ C ‖�0‖L2(T) ,

for ∥∥∥ϕ2a2�
∥∥∥
L2([0,T ];L2(T))

≤ C ‖�0‖L2(T) < Cη < 1.

Finally, applying (4.7) and (4.8), with s = 0, this ensures that

‖B�0‖L2(T) ≤ C
(
‖�0‖3L2(T)

+ ‖u0‖L2(T)

)
.

Then, by the last inequality, choosing η small enough and ‖u0‖L2(T) ≤ η
2C , we have

that

‖B�0‖L2(T) ≤ η

and, therefore, B reproduces the ball Bη in L2(T).
To prove the result on a small neighborhood of the origin Hs(T), we will divide

the proof in two steps.
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Step 1 s ∈ (0, 1]
For s ≤ 1, we came back to (4.8) with the following new estimates in XT

b,s

‖v(0)‖Hs (T) ≤ Csη
2 ‖u‖2

XT
b,s

and

‖B�0‖Hs (T) ≤ Cs

(
η2 ‖u‖XT

b,s
+ ‖u0‖Hs (T)

)
.

Thus, using Proposition 3.2 for

∥∥∥ϕ2a2�
∥∥∥
L2([0,T ];L2(T))

≤ C ‖�0‖L2(T) < Cη < 1,

we have

‖u‖XT
b,s

≤ Cs ‖�0‖2XT
b,s

(4.9)

and

‖B�0‖Hs (T) ≤ Cs

(
η2 ‖�0‖Hs (T) + ‖u0‖Hs (T)

)
.

Then, by these two inequalities, for Csη
2 < 1/2, B reproduces any ball in Hs(T) of

the radius greater than 2Cs ‖u0‖Hs (T). Therefore, we conclude that B reproduces the
ball in F , if η < C̃s , ‖u0‖Hs (T) ≤ C(η) and R ≥ C(‖u0‖Hs (T)). Furthermore, since
these estimates are uniform in s ∈ (0, 1], the bound on η is also uniform.

Step 2 s > 1
We will start choosing Ri by induction as follows: Chosen R1 as the previous

case so that B reproduces BH1(T)(0, R1). It is important, in this point, to make some
assumptions of smallness on η which on will be independent of i and s. Firstly, using
the estimate (4.3) we get

‖B�0‖Hi (T) ≤ C ‖K�0‖Hi (T) + Ci ‖K�0‖Hi−1(T) + Ci ‖u0‖Hi (T) .

Analogously, for s ∈ (0, 1], we have that

‖K�0‖Hi−1(T) ≤ Ci−1η
2 ‖�0‖Hi−1(T) ≤ Ci−1η

2Ri−1.

Using multilinear estimate, Lemma 2.2, the following holds

‖v(0)‖Hi (T) ≤ C ‖v‖XT
b,i

≤ C
∥∥∥|u|2 u

∥∥∥
XT

−b′,i

≤ C ‖u‖2
XT
b,0

‖u‖XT
b,i

+ Ci ‖u‖XT
b,i−1

‖u‖XT
b,1

‖u‖XT
b,0

.
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Right now, we would like to bound the term with maximum derivative. For this, we
use Proposition 3.3 and [24, Corollary A.2] to obtain

‖u‖XT
b,1(T) ≤ C

∥∥∥ϕ2a2�
∥∥∥
L2([0,T ];Hi (T))

+Ci ‖u‖XT
b,i−1

+Ci ‖u‖XT
b,i−1

‖u‖XT
b,1

‖u‖XT
b,0

≤ C ‖�0‖Hi (T)+Ci ‖�0‖Hi−1(T) + Ci ‖u‖XT
b,i−1

+ Ci ‖u‖XT
b,i−1

‖u‖XT
b,1

‖u‖XT
b,0

.

By (4.9), we can also bound the lower derivative, which yields

‖v(0)‖Hi (T) ≤ Cη2 ‖u‖2
XT
b,i

+ Ci Ri−1R1η

≤ Cη2 ‖�0‖2Hi (T)
+ Cη2(Ci Ri−1 + Ci Ri−1R1η) + Ci Ri−1R1η.

Finally, we ensures that

‖B�0‖Hi (T) ≤ Cη2 ‖�0‖Hi (T) + C(i, η, R1, Ri−1, ‖u0‖Hi (T)).

Choosing Cη2 < 1/2 independent of s and Ri = C(i, η, R1, Ri−1, ‖u0‖Hi (T)), then
B reproduces BHi (T)(0, Ri ). The same argument is still valid for s ≥ 1 and Step 2 is
thus proved.

To finalize, B is contracting for L2(T)−norm. Indeed, consider the following sys-
tems

{
i∂t (u − ũ) + ∂2x (u − ũ) − ∂4x (u − ũ) = λ(|u|2u − |ũ|2ũ) + a2ϕ2(� − �̃), (x, t) ∈ T × R,

(u − ũ)(x, T ) = 0, x ∈ T

(4.10)

and{
i∂t (v − ṽ) + ∂2x (v − ṽ) − ∂4x (v − ṽ) = λ(|u|2u − |ũ|2ũ), (x, t) ∈ T × R,

(v − ṽ)(x, T ) = 0, x ∈ T.

Lemma 2.2 ensures that∥∥∥B�0 − B�̃0

∥∥∥
L2(T)

≤ ‖(v − ṽ)(0)‖L2(T) ≤ C ‖(v − ṽ)‖XT
b,0

≤ CT 1−b−b′ ∥∥∥|u|2 u − |ũ|2 ũ
∥∥∥
XT

−b′,0

≤ C

(
‖u‖2

XT
b,0

+ ‖ũ‖2
XT
b,0

)
‖u − ũ‖XT

b,0

≤ Cη2 ‖u − ũ‖XT
b,0

.

(4.11)

To bound ‖u − ũ‖XT
b,0

in the last inequality (4.11), we use the equation (4.10) to deduce
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‖u − ũ‖XT
b,0(T)

≤ C
∥∥∥ϕ2a2(� − �̃)

∥∥∥
L2([0,T ];L2(T))

+ CT 1−b−b′ ∥∥∥|u|2 u − |ũ|2 ũ
∥∥∥
XT

−b′,0

≤ C
∥∥∥�0 − �̃0

∥∥∥
L2(T)

+ C

(
‖u‖2

XT
b,0

+ ‖ũ‖2
XT
b,0

)
‖u − ũ‖XT

b,0

≤ C
∥∥∥�0 − �̃0

∥∥∥
L2(T)

+ Cη2 ‖u − ũ‖XT
b,0

.

Taking η small enough (independent on s) it yields

‖u − ũ‖XT
b,0(T) ≤ C

∥∥∥�0 − �̃0

∥∥∥
L2(T)

. (4.12)

To finish, combining (4.12) into (4.11) follows that

∥∥∥B�0 − B�̃0

∥∥∥
L2(T)

≤ Cη2
∥∥∥�0 − �̃0

∥∥∥
L2(T)

.

Therefore, B is a contraction of a closed set F of L2(T), for η small enough (indepen-
dent on s). In addition, B has a fixed point which, by construction, belongs to Hs(T).
This completes the proof of Theorem 1.1. ��

5 Propagation of Compactness and Regularity in Bourgain Spaces

We present, in this section, some properties of propagation in Bourgain spaces for
the linear differential operator L = i∂t + ∂2x − ∂4x associated with the fourth order
Schrödinger equation. We will adapt the results due Dehman et al. [12, Propositions
13 and 15], in the case of Xb,s spaces, of the Schrödinger operator. These results
of propagation are the key to prove the global stabilization. The main ingredient is
basically pseudo-differential analysis. Let us begin with a result of propagation of
compactness which will ensure strong convergence in appropriate spaces for the study
of the global stabilization.

Proposition 5.1 (Propagation of compactness) Let T > 0 and 0 ≤ b′ ≤ b ≤ 1 be
given. Suppose that un ∈ XT

b,0 and fn ∈ XT−b,−3+3b satisfying

i∂t un + ∂2x un − ∂4x un = fn,

for n = 1, 2, 3, . . .. Assume that there exists a constant C > 0 such that

‖un‖XT
b,0

≤ C (5.1)

and

‖un‖XT−b,−3+3b
+ ‖ fn‖XT−b,−3+3b

+ ‖un‖XT
−b′,−1+3b′

→ 0, as n → +∞. (5.2)
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In addition, assume that for some nonempty open set ω ⊂ T

un → 0 strongly in L2
(
0, T ; L2 (ω)

)
.

Then

un → 0 strongly in L2
loc

(
[0, T ]; L2 (T)

)
.

Proof Pick ϕ ∈ C∞ (T) and ψ ∈ C∞
0 (0, T ) real valued and set

B = ϕ (x) D−3 and A = ψ (t) B,

where D−3 is defined by (1.5). Then

A∗ = ψ (t) D−3ϕ (x) .

For ε > 0, we denote Aε = Aeε∂2x = ψ (t) Bε for the regularization of A. By a
classical way, we can write

αn,ε = i
(−ψ ′ (t) Bεun, un

)+
(
Aεun,

(
∂2x − ∂4x

)
un
)

=
([

Aε, ∂
2
x − ∂4x

]
un, un

)
− i
(
ψ ′ (t) Bεun, un

)
.

On the other hand, we have

αn,ε = ( fn, A∗
εun
)
L2(T×(0,T ))

− (Aεun, fn)L2(T×(0,T )) . (5.3)

By using Hölder inequality and Lemma 2.3, we get that

∣∣∣( fn, A∗
εun
)
L2(T×(0,T ))

∣∣∣ ≤ ‖ fn‖XT−b,−3+3b

∥∥A∗
εun
∥∥
XT
b,3−3b

≤ ‖ fn‖XT−b,−3+3b
‖un‖XT

b,0
.

Therefore, from (5.1) and (5.2), follows that

lim
n→∞ sup

0<ε≤1

∣∣∣( fn, A∗
εun
)
L2(T×(0,T ))

∣∣∣ = 0. (5.4)

Similar computations yields that

lim
n→∞ sup

0<ε≤1

∣∣(Aεun, fn)L2(T×(0,T ))

∣∣ = 0

lim
n→∞ sup

0<ε≤1

∣∣∣(ψ ′ (t) Bεun, un
)
L2(T×(0,T ))

∣∣∣ = 0.
(5.5)
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Thus, thanks to (5.3)–(5.5), the following holds

lim
n→∞ sup

0<ε≤1

∣∣αn,ε

∣∣ = 0

and, therefore,

lim
n→∞ sup

0<ε≤1

∣∣∣∣([Aε, ∂
2
x − ∂4x

]
un, un

)
L2(T×(0,T ))

∣∣∣∣ = 0,

particularly,

lim
n→∞

∣∣∣∣([A, ∂2x − ∂4x

]
un, un

)
L2(T×(0,T ))

∣∣∣∣ = 0.

As D−3
x := D−3 commutes with ∂kx , for k = 1, 2, 3, we have that

[
A, ∂2x − ∂4x

]
=
[
ψ (t) B, ∂2x − ∂4x

]
=
[
ψ (t) ϕ (x) D−3, ∂2x − ∂4x

]
= 4ψ (t)

(
∂3xϕ

)
∂x D

−3 + 12ψ (t)
(
∂2xϕ

)
∂2x D

−3 + 4ψ (t) (∂xϕ) ∂3x D
−3

− 2ψ (t) (∂xϕ) ∂x D
−3 − ψ (t)

(
∂2xϕ − ∂4xϕ

)
D−3 =:

5∑
i=1

Ii (5.6)

Note that, using (5.1) and (5.2), we control I5 by

(
ψ (t)

(
∂2x − ∂4x

)
D−3un, un

)
L2(T×(0,T ))

≤ ‖un‖XT−b,−3+3b
‖un‖XT

b,0
.

Indeed,(
ψ (t)

(
∂2x − ∂4x

)
D−3un, un

)
L2(T×(0,T ))

≤ C
∥∥∥ψ (t)

(
∂2x − ∂4x

)
ϕ∂x D

−3un
∥∥∥
XT−b,0

‖un‖XT
b,0

≤ C
∥∥∥(Lϕ)D−3un

∥∥∥
XT−b,0

‖un‖XT
b,0

≤ C
∥∥∥D−3un

∥∥∥
XT−b,3b

‖un‖XT
b,0

≤ C ‖un‖XT−b,−3+3b
‖un‖XT

b,0
.

Arguing as made in (5.4), we infer that

(
ψ (t)

(
∂2x − ∂4x

)
D−3un, un

)
→ 0, as n → +∞.

123



128 Applied Mathematics & Optimization (2021) 84:103–144

Note that for the terms Ii , i = 1, 2 and 4 in (5.6), the loss of regularity is too large if
we use the estimate with the same b. Using the index b′ instead of b, we have

(I1un, un)L2(T×(0,T )) = 4
(
ψ (t)

(
∂3xϕ
)

∂x D
−3un, un

)
L2(T×(0,T ))

≤ C
∥∥∥ψ (t)

(
∂3xϕ
)

∂x D
−3un

∥∥∥
XT
b′,2−3b′

‖un‖XT
−b′,−2+3b′

≤ C ‖un‖XT
b′,0

‖un‖XT
−b′,−2+3b′

,

(I2un, un)L2(T×(0,T )) = 12
(
ψ (t)

(
∂2xϕ
)

∂2x D
−3un, un

)
L2(T×(0,T ))

≤ C
∥∥∥ψ (t)

(
∂2xϕ
)

∂2x D
−3un

∥∥∥
XT
b′,1−3b′

‖un‖XT
−b′,−1+3b′

≤ C ‖un‖XT
b′,0

‖un‖XT
−b′,−1+3b′

(5.7)

and

(I4un, un)L2(T×(0,T )) = −2
(
ψ (t) (∂xϕ) ∂x D

−3un, un
)
L2(T×(0,T ))

≤ C
∥∥∥ψ (t) (∂xϕ) ∂x D

−3un
∥∥∥
XT
b′,2−3b′

‖un‖XT
−b′,−2+3b′

≤ C ‖un‖XT
b′,0

‖un‖XT
−b′,−2+3b′

.

(5.8)

Observe that

XT
−b′,−1+3b′ ↪→ XT

−b′,−2+3b′ , (5.9)

where ↪→ denotes a compact embedding. Thus, from (5.1), (5.2) and (5.9), we have
that (5.7)–(5.8) tends to 0 as n → +∞.

To conclude the proof we need to analyze the third term of (5.6), that is, I3. Remark
that−∂3x D

−3 is the orthogonal projection on the subspace of functions with û (0) = 0.
Furthermore,

XT
b,0 ↪→ XT

0,0 ↪→ XT
−b′,0, for 0 ≤ b′ ≤ b ≤ 1,

thus, using the Rellich Theorem, we see that

ûn (0, t) −→ û (0, t) = 0 in XT
0,0 ≡ L2 (0, T ) strongly,

and hence

(
ψ (t) (∂xϕ) ûn (0, t) , un

)
L2(T×(0,T ))

−→ 0.
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We have proved that, for any ϕ ∈ C∞ (T) and ψ ∈ C∞
0 ((0, T )),

(
ψ (t) (∂xϕ) ∂3x D

−3un, un
)
L2(T×(0,T ))

−→ 0.

Observe that φ ∈ C∞ (T) can be written in the form ∂xϕ for some function ϕ ∈
C∞ (T) if and only if

∫
T

φ (x) dx = 0. So, for any χ ∈ C∞
0 (ω) and any x0 ∈ T,

φ (x) = χ (x) − χ (x − x0) can be written as φ = ∂xϕ for some ϕ ∈ C∞ (T) . Since
un is strongly convergent to 0 in L2

(
0, T ; L2 (ω)

)
,

lim
n→∞ (ψ (t) χun, un)L2(T×(0,T )) = 0.

Then, for any x0 ∈ T,

lim
n→∞ (ϕ (t) χ (· − x0) un, un)L2(T×(0,T )) = 0.

Finally, we closed the proof constructing a partition of unity onTwith some functions
of the form χi

(· − xi0
)
, with χi ∈ C∞

0 (ω) and xi0 ∈ T. ��
To close this section, we prove the gain of regularity of the linear fourth order

Schrödinger equation.

Proposition 5.2 (Propagation of regularity) Let T > 0, 0 ≤ b < 1 and f ∈ XT−b,r be

given. Let u ∈ XT
b,r be a solution of

i∂t u + ∂2x u − ∂4x u = f .

If there exists a nonempty ω ⊂ T such that u ∈ L2
loc

([0, T ]; Hr+ρ (ω)
)
for some ρ

with

0 < ρ ≤ min

{
3

2
(1 − b),

1

2

}
,

then

u ∈ L2
loc

([0, T ]; Hr+ρ (T)
)
.

Proof We first regularize un = exp
( 1
n ∂2x
)
u := �nu and fn := �n f , with

‖un‖XT
b,r

≤ C and ‖ fn‖XT−b,r
≤ C ,

for some constant C > 0 and n = 1, 2, . . . .
Let s = r + ρ, ϕ ∈ C∞ (T) and ψ ∈ C∞

0 (0, T ) taking real values. Set Bu =
D2s−3ϕ (x) and A = ψ (t) B, where D−3 is defined by (1.5). If L = i∂t + ∂2x − ∂4x ,
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we write

(
Lun, A

∗un
)
L2(T×(0,T ))

− (Aun, Lun)L2(T×(0,T ))

=
([

A, ∂2x − ∂4x

]
un, un

)
L2(T×(0,T ))

− i
(
ψ ′ (t) Bun, un

)
L2(T×(0,T ))

and deduce that

∣∣(Aun, Lun)L2(T×(0,T ))

∣∣ = ∣∣(Aun, fn)L2(T×(0,T ))

∣∣
≤ ‖Aun‖XT

b,−r
‖ fn‖XT−b,r

≤ C ‖un‖XT
b,r+2ρ−3+3b

‖ fn‖XT−b,r
,

since r + 2ρ − 3 + 3b ≤ r . The same estimates for the other terms imply that

∣∣∣∣([A, ∂2x − ∂4x

]
un, un

)
L2(T×(0,T ))

∣∣∣∣ ≤ C .

Note that

[
A, ∂2x − ∂4x

]
= 4ψ (t) D2s−3

(
∂3xϕ
)

∂x + 12ψ (t) D2s−3
(
∂2xϕ
)

∂2x + 4ψ (t) D2s−3 (∂xϕ) ∂3x

− 2ψ (t) D2s−3 (∂xϕ) ∂x − ψ (t) D2s−3
(
∂2xϕ − ∂4xϕ

)

=:
5∑

i=1

Ii .

(5.10)

Also, observe that

2s − 3 + 2 = 2r + 2ρ − 1 ≤ 2r (5.11)

and

2s − 3 + 1 = 2r + 2ρ − 2 ≤ 2r . (5.12)

Now, we will bound the terms of (5.10). As (5.11) and (5.12) are verified, taking

ρ ≤ min

{
3

2
(1 − b) ,

1

2

}
,
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we have that

∣∣(I1un, un)L2(T×(0,T ))

∣∣ ≤ C
∥∥∥ψD2s−3

(
∂3xϕ
)

∂xun
∥∥∥
L2(0,T ;H−r (T))

‖un‖L2(0,T ;Hr (T))

≤ C ‖un‖2L2(0,T ;Hr (T))
≤ C ,∣∣(I2un, un)L2(T×(0,T ))

∣∣ ≤ C
∥∥∥ψD2s−3 (∂xϕ) ∂2x un

∥∥∥
L2(0,T ;H−r (T))

‖un‖L2(0,T ;Hr (T))

≤ C ‖un‖2L2(0,T ;Hr (T))
≤ C

(5.13)

and

∣∣(I5un, un)L2(T×(0,T ))

∣∣ = ∣∣∣∣(ψ (t) D2s−3
(
∂2xϕ − ∂4xϕ

)
un, un

)
L2(T×(0,T ))

∣∣∣∣
≤
∥∥∥ψ (t) D2s−3

(
∂2xϕ − ∂4xϕ

)
un
∥∥∥
L2(0,T ;H−r (T))

‖un‖L2(0,T ;Hr (T))

≤ C ‖un‖2L2(0,T ;Hr (T))
≤ C ,

for any n ≥ 1. Similarly of I1 estimate we can get

|I4| ≤ C .

Finally, we will control I3. For any χ ∈ C∞
0 (ω), we have that

(
ψ (t) D2s−3χ2∂3x un, un

)
L2(T×(0,T ))

=
(
ψ (t) Ds−3χ∂3x un, χDsun

)
+
(
ψ (t)

[
Ds−3, χ

]
χ∂3x un, D

sun
)

=
(
ψ (t) Ds−3χ∂3x un, D

sχun
)

+
(
ψ (t) Ds−3χ∂3x un,

[
χ, Ds] un)

+
(
ψ (t)

[
Ds−3, χ

]
χ∂3x un, D

sun
)

:= Ĩ1 + Ĩ2 + Ĩ3. (5.14)

In this moment, we need control the right hand side of (5.14). First, note that we infer
from the assumptions that

χu ∈ L2
loc

(
0, T ; Hs (T)

)
and

χ∂3x u ∈ L2
loc

(
0, T ; Hs−3 (T)

)
.

Then, as s = r + ρ ≤ r + 1, we have

χun = �nχu + [χ,�n] u ∈ L2
loc

(
0, T ; Hs (T)

)
,
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due [24, Lemma A.3]. Applying the same argument to χ∂3x un , follows that∣∣∣ Ĩ1∣∣∣ ≤ C . (5.15)

Moreover, from [24, Lemma A.1] and the fact u ∈ L2 (0, T ; Hr (T)), Ĩ2 can be
bounded in the following way

∣∣∣ Ĩ2∣∣∣ =
∣∣∣∣(ψ (t) Ds−3χ∂3x un,

[
χ, Ds] un)

L2(T×(0,T ))

∣∣∣∣
=
∣∣∣∣(ψ (t) Dr+ρ−3χ∂3x un,

[
χ, Ds] un)

L2(T×(0,T ))

∣∣∣∣
=
∣∣∣∣(ψ (t) DρDr−3χ∂3x un,

[
χ, Ds] un)

L2(T×(0,T ))

∣∣∣∣
≤
∥∥∥ψ (t) Dr−3χ∂3x un

∥∥∥
L2(T×(0,T ))

∥∥Dρ
[
χ, Ds] un∥∥L2(T×(0,T ))

≤ C ‖un‖L2(0,T ;Hr (T)) ‖un‖L2(0,T ;Hρ+s−1(T)) ≤ C .

(5.16)

Lastly, by similar computations, we ensure that

∣∣∣ Ĩ3∣∣∣ ≤ C . (5.17)

Consequently,

∣∣∣∣(ψ (t) D2s−3χ2∂3x un, un
)
L2(T×(0,T ))

∣∣∣∣ ≤ C ,

for any n ≥ 1. Then, writing ∂xϕ = χ2 (x) − χ2 (x − x0), from (5.14), (5.15), (5.16)
and (5.17) yields,

∣∣∣∣(ψ (t) D2s−3χ2 (· − x0) ∂3x un, un
)
L2(T×(0,T ))

∣∣∣∣ ≤ C ,

for all n ≥ 1. To conclude the proof, is necessary to use a partition of unity as in the
proof of Proposition 5.2, to obtain

∣∣∣∣(ψ (t) D2s−3∂3x u, u
)
L2(T×(0,T ))

∣∣∣∣ ≤ C ,

that is

∫ T

0
ψ (t)

⎛
⎝∑

k 
=0

|k|2s ∣∣û (k, t)
∣∣2 dt

⎞
⎠ ≤ C ,
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or equivalently,

‖u‖2
L2
loc([0,T ];Hs (T))

≤ C .

Thus, the proof is complete. ��

6 Unique Continuation Property

We present, in this section, the unique continuation property (UCP) for 4NLS. How-
ever, before to enunciate the UCP, let us prove an auxiliary lemma which is a
consequence of Proposition 5.2.

Lemma 6.1 Let u ∈ XT
b,0 be a solution of

i∂t u + ∂2x u − ∂4x u + λ |u|2 u = 0 on T× (0, T ) . (6.1)

Here b > 1
2 and we assume that u ∈ C∞ (ω × (0, T )), where ω ⊂ T nonempty set.

Then,

u ∈ C∞ (T× (0, T )) .

Proof Note that λ |u|2 u ∈ XT−b,0, by Lemma 2.2. Thus, from Proposition 5.2, we get

u ∈ L2
loc([0, T ]; H1+ 3

2 (1−b)(T)).

Choose t0 such that u (t0) ∈ H1+ 3
2 (1−b) (T). We can then solve (6.1) in XT

b,1+ 3
2 (1−b)

with the initial data u (t0). By uniqueness of solution in XT
b,0, we conclude that u ∈

XT
b,1+ 3

2 (1−b)
. An iterated application of Proposition 5.2 give us

u ∈ L2 (0, T ; Hr (T)
)
, ∀r ∈ R,

and, hence u ∈ C∞ (T× (0, T )). ��
The UCP is presented as follows:

Proposition 6.2 (Unique continuation property) For every T > 0 andω any nonempty
open set of T, the only solution u ∈ C∞([0, T ] × T) of the system

{
i∂t u + ∂2x u − ∂4x u = b(x, t)u on T× (0, T ) ,
u = 0 on ω × (0, T ) ,

where b(x, t) ∈ C∞([0, T ] × T), is the trivial one

u (x, t) = 0 on T× (0, T ) .
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Proof Proposition 6.2 is a direct consequence of theCarleman estimate for the operator
P = i∂t + ∂2x − ∂4x , proved by Zheng [39, Theorem 1.1] (see also [17, Corollary 6.1]),
together with Lemma 6.1. ��
Corollary 6.3 Let ω be any nonempty open set of T and u ∈ XT

1
2 ,0

solution of

{
i∂t u + ∂2x u − ∂4x u = λ |u|2 u on T× (0, T ) ,
u = 0 on ω × (0, T ) ,

then u (x, t) = 0 on T× (0, T ).

Proof By using Lemma 6.1, we infer that u ∈ C∞ (T× (0, T )) . An application of
Proposition 6.2 give us u = 0, as desired. ��
Remark 1 Proposition 6.2 assures us that for u ∈ XT

b,0 solution of

{
i∂t u + ∂2x u − ∂4x u = 0 on T× (0, T ) ,
u = 0 on ω × (0, T ) ,

we also have u (x, t) = 0 on T× (0, T ).

7 Stabilization: Global Result

This section is to establish the main result of this article. The propagation results and
unique continuation propertywill play a key role for this study. Thus, we are concerned
with stability properties of the following system

{
i∂t u + ∂2x u − ∂4x u + ia2u = λ |u|2 u on T× (0, T ) ,
u (x, 0) = u0 (x) on T,

(7.1)

where λ ∈ R and u0 ∈ L2 (T), in L2–level.

7.1 Proof of Theorem 1.2

Theorem 1.2 is a consequence of the following observability inequality:
Let T > 0 and R0 > 0 be given. There exists a constant γ > 0 such that for any
u0 ∈ L2 (T) satisfying ‖u0‖L2(T) ≤ R0, the corresponding solution u of (7.1) satisfies

‖u0‖2L2(T)
≤ γ

∫ T

0
‖au‖2L2(T)

dt . (7.2)

In fact, if (7.2) holds, the energy estimate give us

‖u (·, t)‖2L2(T)
= ‖u (·, 0)‖2L2(T)

−
∫ t

0
‖au‖2L2(T)

(τ )dτ, ∀t ≥ 0.
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The last equality ensures that

‖u (·, T )‖2L2(T)
≤ (1 − γ −1) ‖u0‖2L2(T)

.

Thus,

‖u (·,mT )‖2L2(T)
≤ (1 − γ −1)m ‖u0‖2L2(T)

,

which yields

‖u (·, t)‖L2(T) ≤ Ce−γ t ‖u0‖L2(T) , ∀t > 0.

Finally, we obtain a constant γ independent of R0 by noticing that for t >

c
(‖u0‖L2(T)

)
, the L2 norm of u(·, t) is smaller than 1, so that we can take the γ

corresponding to R0 = 1, proving the result. ��

7.2 Proof of the Observability Inequality

If (7.2) does not occurs, there exists a sequence {un}n∈N = un solution of (7.1)
satisfying

‖un (0)‖L2(T) ≤ R0

and

∫ T

0
‖aun‖2L2(T)

dt <
1

n

∥∥u0,n∥∥2L2(T)
, (7.3)

where u0,n = un (0). Since γn := ∥∥u0,n∥∥L2(T)
≤ R0, one can choose a subsequence

of γn = {γn}n∈N, still denote by γn , such that,

lim
n→∞ γn = γ .

Thus, we will analyze two cases for γ : γ > 0 or γ = 0. In both cases we will get a
contradiction.

Case one limn→∞ γn = γ > 0:
Observe that un is bounded in L∞ (0, T ; L2 (T)

)
and, therefore, in XT

b,0, for b > 1
2 .

Then, as XT
b,0 is a separable Hilbert space, we can extract a subsequence such that

un⇀u in XT
b,0,

for some u ∈ XT
b,0. By compact embedding, as we have b < 1 and −b < 0, we can

(also) extract a subsequence such that we have strong convergence in XT−b,−1+b. Now,
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we prove that the weak limit u is a solution of (7.1). Since |un|2 un is bounded in
XT

−b′,0, for b
′ > 5

16 , there is a subsequence un , still denote by un , such that

|un|2 un⇀ f in XT
−b′,0, for b′ >

5

16

and

|un|2 un → f in XT−1+b,−b, for
5

16
< b < 1.

Moreover, from (7.3) follows that

∫ T

0
‖aun‖2L2(T)

dt −→
∫ T

0
‖au‖2L2(T)

dt = 0,

which implies that u (x, t) = 0 on ω × (0, T ). Therefore, letting n → ∞, we obtain
from (7.1) that

{
i∂t u + ∂2x u − ∂4x u = f on T× (0, T ) ,
u (x, t) = 0 on ω × (0, T ) .

We affirm that

f = −ia2u + λ |u|2 u.

In fact, let wn = un − u and fn = −ia2un + λ |un|2 un − f . Remark that from (7.3),

∫ T

0
‖awn‖2L2(T)

dt −→ 0.

Thus,

fn → 0 in XT−1+b,−b.

It also implies

un → 0 in L2
(
0, T ; L2 (ω)

)
and

wn → 0 in L2
(
0, T ; L2 (ω)

)
.

Applying Proposition 5.1, we get

wn −→ 0 in L2
loc

(
[0, T ]; L2 (T)

)
.
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Then, we can pick one t0 ∈ [0, T ] such that wn(t0) tends to 0 strongly in L2(T).
Let v the solution of{

i∂tv + ∂2x v − ∂4x v + ia2v = λ |v|2 v on T× (0, T ) ,
v (t0) = u(t0).

(7.4)

We claim that u = v. Indeed, by Theorem 3.1 we have that the map data-to-solution
of (7.1) is locally Lipschitz continuous. Since un(t0) → v(t0) in L2(T) and ia2un →
ia2u in L2([0, T ]; L2(T)), we get un → v in XT

0,b, thus u = v and u is a solution
of (7.4). Unique continuation property, Corollary 6.3, implies u = 0. It follows that
‖un(0)‖L2(T) → 0, which leads a contradiction of our hypothesis γ > 0.

Case two limn→∞ γn = γ = 0:
Consider vn = un

γn
, ∀n ≥ 1. Thus, vn satisfies

i∂tvn + ∂2x vn − ∂4x vn + ia2vn = λγ 2
n |vn|2 vn,∫ T

0
‖avn‖2L2(T)

dt <
1

n
(7.5)

and

‖vn (0)‖L2(T) = 1. (7.6)

Observe that vn := {vn}n∈N is bounded in L∞ (0, T ; L2 (T)
) ∩ XT

b,0. Thus, we can
extract a subsequence, still denoted by vn , such that

vn⇀v in XT
b,0.

Furthermore, by Duhamel formula and multilinear estimates (2.2), we obtain

‖vn‖XT
b,0

≤ C ‖vn(0)‖L2(T) + CT 1−b−b′
(

‖vn‖XT
b,0

+ γ 2
n ‖vn‖3XT

b,0

)
,

for 0 < b′ < 1
2 < b and b + b′ ≤ 1.

If we take CT 1−b−b′
< 1/2, independent of vn , we get

‖vn‖XT
b,0

≤ C + Cγ 2
n ‖vn‖3XT

b,0
.

Lemma 2.5 states that ‖vn‖XT
b,0

is continuous in T . Since it is bounded near t = 0 and

γn → 0, we obtain by a classical bootstrap argument (see, e.g, [2, Lemma 2.2]) that
vn is bounded on XT

b,0. Using Lemma 2.6, we can conclude that it is bounded in XT
b,0

even for large T . Thus,

γ 2
n |vn|2 vn → 0 in XT

−b′,0
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and so

γ 2
n |vn|2 vn → 0 in XT−b,−1+b.

Then, we can extract a subsequence such that

vn⇀v in XT
b,0

and

vn → v in XT−1+b,−b.

Therefore, the weak limit v satisfies{
i∂tv + ∂2x v − ∂4x v + ia2v = 0 on T× (0, T ) ,
v (x, t) = 0 on ω × (0, T ) ,

which implies that v (x, t) is the trivial solution, that is, v (x, t) = 0, thanks to Remark
1 of Proposition 6.2.

Argument of contradiction (7.5) yields that

ia2vn −→ 0 in L2(0, T ; L2(T)), (7.7)

and so

ia2vn −→ 0 in XT−1+b,−b.

An application of Proposition 5.1, as in the case one γ > 0, ensures that

vn −→ 0 in L2
loc

(
[0, T ]; L2 (T)

)
. (7.8)

From the energy estimate for t0 ∈ (0, T ), we get

‖vn (0)‖2L2(T)
= ‖vn (t0)‖2L2(T)

+
∫ t0

0
‖avn‖2L2(T)

dt .

Passing the limit on the last equality, by using (7.7) and (7.8), we have that
‖vn (0)‖L2(T) → 0, which contradicts (7.6). Therefore, the proof is complete. ��

8 Concluding Remarks

Let us consider the following system

{
i∂t u + ∂2x u − ε∂4x u = λ|u|2u, (x, t) ∈ M × R,

u(x, 0) = u0(x), x ∈ M.
(8.1)
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When ε = 0 andM = T, system (8.1) is the well-know nonlinear Schrödinger system
(NLS) posed on a periodic domain, that can be considered with Dirichlet or Neumann
boundary conditions.

The focus of our discussion in this paper are the global properties of the control
for the fourth order nonlinear Schrödinger (4NLS) equation on periodic domain, that
is, considering ε = 1 and M = T in (8.1). The main results of this work ensure that
system (8.1) is globally exponentially stabilizable and globally exactly controllable in
the space Hs(T), for any s ≥ 0.

Remarks The following remarks are now in order.

1. If u0 ∈ Hs(T), with s ≥ 0, one can impose that g ∈ C([0, T ]; Hs(T)) on
Theorem 1.1. Analogously, if u0, u1 ∈ Hs(T), with s ≥ 0, one can impose that
g ∈ C([0, T ]; Hs(T)) on Theorem 1.3.

2. We should point out that time T used to guide the system from the initial state u0
for the terminal state u1, on Theorem 1.3, depend on the amplitude of u0 and u1,
that is,

‖u0‖L2(T) ≤ R0 and ‖u1‖L2(T) ≤ R0.

In general, the larger amplitude R0, the longer time T is needed to conduct the
control. That is why we call such controllability as large time controllability.

3. The global results, as described in Theorems 1.2 and 1.3, are truly nonlinear and
their proofs demand new tools in addition to the Bourgain spaces and Bourgain
smoothing properties. The needed tools turns out to be propagation properties of
compactness and regularity for the fourth order Schrödinger equation.

4. Theses results of propagation are in concordance with the results of controllabil-
ity and stabilization in the literature, more precisely, they are inspired by those
established first in [12] for the wave equation, after that [24] for the Schrödinger
equation, [26] for the Benjamin–Ono equation, [25] for the KdV equation and
[38] for the Kawahara equation. Thus, the results presented in this article give us a
complete picture of the study of controllability and stabilization to more classical
nonlinear dispersive equations, posed on a periodic domain T, by using certain
propagation properties given by Bourgain spaces, closing the last gap that was
missing when discussing nonlinear dispersive equations of order between 2 and 5.

8.1 Controllability Results for NLS and 4NLS

The results showed in this work can be compared with those already known for the
NLS. One of the first results to the system (8.1), considering ε = 0 andM a compact
Riemannian manifold of dimension 2 without boundary, is due Dehman et al. in [12].

In [12], the authors consider the stabilization and exact controllability problem for
NLS, more precisely, to prove the control properties, the authors were able to prove
the propagation of regularity inM. However, these properties are shown considering
ω be an open subset of M and the following two assumptions:

(A) ω geometrically controls M; i.e. there exists T0 > 0, such that every geodesic of
M traveling with speed 1 and issued at t = 0, enters the set ω in a time t < T0 .
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(B) For every T > 0, the only solution lying in the space C[0, T ], H2(M)) of the
system

{
i∂t u + �2u + b1(x, t)u + b2(x, t)u, (x, t) ∈ M × (0, T ),

u = 0, (x, t) ∈ ω × (0, T ),

where b1(t, x) and b2(t, x) ∈ L∞ (0, T , L p(M)) for some p > 0 large enough,
is the trivial one u ≡ 0.

The global controllability result can be read as follows:

Theorem 8.1 (Dehman et al. [12]) Assume that the open set ω satisfies conditions (A)

and (B). Then for every R0 > 0, there exists T > 0 such that for every data u0 and
v0 in H1(M), satisfying

‖u0‖H1(M) ≤ R0 and ‖v0‖H1(M) ≤ R0,

there exists a control g ∈ C
([0, T ], H1(M)

)
, with support in [0, T ] × ω, such that

the system ⎧⎨
⎩ i∂t u + �u − P ′ (|u|2

)
u = g̃

u(0) = u0

where g̃ = g if 0 ≤ t ≤ T , 0 if t > T , and P is a polynomial function with real
coefficients, satisfies u(·, T ) = v0.

Considering the NLS on a periodic domain T, recently, Laurent [24] applied the
method introduced byDehman et al. to prove that the nonlinear Schrödinger equation is
globally internal controllable when posed on periodic Dirichlet or Neumann boundary
conditions. The main result is the following.

Theorem 8.2 (Laurent [24]) Let b ∈ (1/2, 5/8). For any nonempty open set ω ⊂ T

and R0 > 0, there exist a T > 0 and a constant C > 0 such that for every u0 and u1
in L2(T) with

‖u0‖L2 ≤ R0 and ‖u1‖L2 ≤ R0

there exists a control g ∈ C([0, T ]; L2(T)) with supp(g) ⊂ ω × (0, T ), such that the
unique solution u ∈ XT

b,0 of the system{
i∂t u + ∂2x u = λ|u|2u + g, (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T

satisfies u(x, T ) = u1.

The result described above is consequence of the following result.
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Theorem 8.3 (Laurent [24]) Assume that a(x)2 > n > 0 on some nonempty open set.
Then, for every R0 > 0 , there exist C > 0 and γ > 0 such that inequality

‖u(t)‖L2 ≤ Ce−γ t ‖u0‖L2 , t > 0,

holds for every solution u of system

{
i∂t u + ∂2x u + ia2u = λ|u|2u, (x, t) ∈ T × R,

u(x, 0) = u0(x), x ∈ T

with initial datau0 such that ‖u0‖L2 ≤ R0

Now, let us provide a comparison between the results presented for the NLS and
for 4NLS. Taking ε = 1 and M = T in (8.1), Theorems 1.2 and 1.3 give us good
global properties of stabilization and controllability to 4NLS, however there are some
important issues to be considered.

Concerning the independence of C , γ and the time of control T on the bound R0,
our work does not give any answer, therefore are an open problem. Nevertheless, if
we want g in Hs(T), the time of controllability only depends on the size of the data
in L2(T), as in the case of NLS.

About the time of controllability, the approach used here does not give any infor-
mation about the minimal time to drive the initial data u0 to a final data u1. This is
in strong contrast with the linear case where exact controllability occurs in arbitrary
small time and the conditions are only geometric for the open set ω, in concordance
with the results for the NLS (see Theorem 8.2).

We should be note that the results presented in this work are more complex than
those that have been shown in Theorems 8.2 and 8.3. Taking into account the results
of [12] on a compact surface, in our work, we adapted the propositions related with
propagation (Propositions 5.1 and 5.2) for the linear system associated to 4NLS, with
the following main difference between the results proved in [24]: The central points
to prove the propagation results of the Schrödinger operator (L̃ = i∂t +∂2x ) and fourth
order Schrödinger operator (L = i∂t + ∂2x − ∂4x ) are the analysis of the terms given by

αn,ε = i
(−ψ ′ (t) Bεun, un

)
+
(
Aεun,

(
∂2x − ∂4x

)
un
)

=
([

Aε, ∂
2
x − ∂4x

]
un, un

)
− i
(
ψ ′ (t) Bεun, un

)
(8.2)

and

(
Lun, A

∗un
)
L2(T×(0,T ))

− (Aun, Lun)L2(T×(0,T ))

=
([

A, ∂2x − ∂4x

]
un, un

)
L2(T×(0,T ))

− i
(
ψ ′ (t) Bun, un

)
L2(T×(0,T ))

. (8.3)
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Observe that the operator L instead of L̃ in the equalities (8.2) and (8.3) demand more
attention. In fact, the bracket defined by

[
A, ∂2x − ∂4x

]
= 4ψ (t) D2s−3

(
∂3xϕ
)

∂x + 12ψ (t) D2s−3
(
∂2xϕ
)

∂2x

+ 4ψ (t) D2s−3 (∂xϕ) ∂3x

− 2ψ (t) D2s−3 (∂xϕ) ∂x − ψ (t) D2s−3
(
∂2xϕ − ∂4xϕ

)
,

is more complex than the usual Schrödinger operator, we need to bound the terms
of the bracket in appropriate norms. This analysis is crucial to get the propagation
results and, consequently, to show the global controllability and stabilization problem
mentioned at the beginning of the introduction.

It is important to realize that Proposition 5.1 applied for the fourth order
Schrödinger operator allows a source term fn bounded in a lower order Sobolev norm
L2(0, T ; H−3(T)) while un is bounded in L2(0, T ; L2(T)) instead of fn bounded in
L2(0, T ; H−1(T)) while un is bounded in L2(0, T ; L2(T)) for the Schrödinger oper-
ator (see [24, Theorem 4.1]). This fact can be extremely useful in a nonlinear context,
where the source term comes from the nonlinearity.

To finish our discussion, wewould like tomention a fact relatedwith the assumption
(A), i.e., Geometric Control Condition. The exact controllability is known to be true
when geometric control condition is realized for NLS, see for instance, Lebeau [27],
but also for any open set ω of T

n , see Jaffard [18] and Komornik and Loreti [21].
Additionally, the exact controllability holds also for general manifolds considering
the assumption (A), see for instance, Laurent [23]. We conjecture that these results
can also be extended for the fourth order nonlinear Schrödinger system. In addition,
due the regularity of the solutions to the 4NLS we expect more manifolds, in higher
dimensions, for which the controllability and stabilization are established (with or
without geometric control condition). These results are being prepared and will be
present in a forthcoming paper.
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