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Abstract
We consider a two player, zero sum differential game with a cost of Bolza type,
subject to a state constraint. It is shown that, under a suitable hypothesis concerning
existence of inward pointing velocity vectors for theminimizing player at the boundary
of the constraint set, the lower value of the game is Lipschitz continuous and is the
unique viscosity solution (appropriately defined) of the lower Hamilton-Jacobi-Isaacs
equation. If the inward pointing hypothesis is satisfied by the maximizing player’s
velocity set, then the upper game is Lipschitz continuous and is the unique solution
of the upper Hamilton-Jacobi-Isaacs equation. Under the classical Isaacs condition,
the upper and lower Hamilton-Jacobi-Isaacs equation coincide. In this case, even if
the inward pointing hypothesis is satisfied w.r.t. both players, the value of the game
might fail to exist; however imposing stronger constraint qualifications (involving the
existence of inward pointing vectors associatedwith saddle points for theHamiltonian)
the game value does exist and is the unique solution to this Hamilton-Jacobi-Isaacs
equation. The novelty of our work resides in the fact that we permit the two players’
controls to be completely coupled within the dynamic constraint, state constraint and
the cost functional, in contrast to earlier work, in which the players’ controls are
decoupled w.r.t. the dynamics and state constraint, and interaction between them only
occurs through the cost function. Furthermore, the inward pointing hypotheses that
we impose are of a verifiable nature and less restrictive than those earlier employed.

Keywords Differential games · State constraints · Hamilton-Jacobi-Isaacs · Viscosity
solutions

1 Introduction

We shall consider a two-player differential game with state-constraints. The dynamic
constraint for the game, which relate the state trajectory x(.) to the control actions u(.)

and v(.) of each of the two players, takes the form:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = f (x(t), u(t), v(t)), for a.e.t ∈ [t0, T ]
u(t) ∈ U for a.e. t ∈ [t0, T ]
v(t) ∈ V for a.e. t ∈ [t0, T ]
x(t0) = x0 ∈ A
x(t) ∈ A for all t ∈ [t0, T ] .

(1)

Here, T > 0, t0 ∈ [0, T ], f : Rn × R
m1 × R

m2 → R
n is a given function, A ⊂ R

n ,
U ⊂ R

m1 and V ⊂ R
m2 are given closed sets. For any left end-point x0 ∈ A, any initial

time t0 ∈ [0, T ] and any choice of measurable controls (u(.), v(.)) : [t0, T ] → U×V ,
we denote by x[t0, x0; u(.), v(.)](.) the solution of system (1) (which always exists
and is unique under our assumptions).

For arbitrary initial data (t0, x0) ∈ [0, T ]× A, we associate with controls (u(.) and
v(.)), chosen by each of the two players, the following cost functional:

J (t0, x0; u(.), v(.)) :=
∫ T

t0
L
(
t, x(t), u(t), v(t)

)
dt + g

(
x(T )

)
, (2)

in which x(t) = x[t0, x0; u(.), v(.)](t). The function L : R×R
n ×R

m1 ×R
m2 → R

is called Lagrangian (or running cost) and g : Rn → R is the final cost.
The aim of the first player is to choose u(.) to minimize the cost function and that

of the second player to choose v(.) to maximize it. These objectives are, of course, in
conflict. The precise nature of ‘control’ (non-anticipative or open loop) employed by
the players will be made precise below.

We shall assume that the data for system (1) and the cost (2) satisfy the following
four hypotheses, which we shall refer to as ‘standing hypotheses’:

(H1): U ⊂ R
m1 and V ⊂ R

m2 are closed sets; f (x, ., .) is Bm1 × Bm2 measurable
for each x ; L(t, x, ., .) is Bm1 × Bm2 measurable for each (t, x);
(here, Bmi is the collection of Borel sets of Rmi )

(H2): there exists M > 0 such that
| f (x, u, v)| ≤ M(1 + |x |) and |L(t, x, u, v)| ≤ M(1 + |x |), for all (t, x) ∈
[0, T ] × R

n, u ∈ U , v ∈ V ;
(H3): for every R > 0, there exist k f > 0, kg > 0 and kL > 0 such that

| f (x, u, v) − f (x ′, u, v)| ≤ k f |x − x ′|, for all t ∈ [0, T ], x, x ′ ∈ RB,
u ∈ U and v ∈ V ;
|L(t, x, u, v) − L(t ′, x ′, u, v)| ≤ kL(|t − t ′| + |x − x ′|),
for all t, t ′ ∈ [0, T ], x, x ′ ∈ RB, u ∈ U and v ∈ V ;
|g(x) − g(x ′)| ≤ kg|x − x ′|, for all x, x ′ ∈ RB;
(here, B is the closed unit ball in Euclidean space, and RB is the closed ball of
radius R)

(H4): A is a set with non-empty interior having representation:

A = {x ∈ R
n : h(x) ≤ 0} , (3)

for a given function h(.) : Rn → R of class C1+ (i.e. h is a C1 function with
locally Lipschitz gradient) such that ∇h(x) �= 0 whenever h(x) = 0.
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We shall also find it necessary, at different stages of our investigations, to invoke one
or other of the following hypotheses

(CQ1): for every R > 0 there exists η > 0 such that

sup
v∈V

inf
u∈U ∇h(x) · f (x, u, v) ≤ −η, x ∈ ∂A ∩ RB ;

(CQ2): for every R > 0 there exists η > 0 such that

sup
u∈U

inf
v∈V ∇h(x) · f (x, u, v) ≤ −η, x ∈ ∂A ∩ RB ,

We shall refer to (CQ1) and (CQ2) as inward pointing conditions for player 1 and
player 2, respectively.We shall also invoke a strengthening of the standing hypotheses,
namely:

(H5): U ⊂ R
m1 and V ⊂ R

m2 are compact sets; f (x, ., .) is continuous for each x ;
L(t, x, ., .) is continuous for each (t, x).

Given a subinterval [t0, T0] ⊂ [0, T ] we shall write

U[t0, T0] := {u(.) : [t0, T0] → U measurable} ;
V[t0, T0] := {v(.) : [t0, T0] → V measurable} .

If, in addition we are given a point x0 ∈ A, we shall consider the sets of admissible
(also referred to as feasible) controls, for the left end-point x0 on the subinterval
[t0, T0] ⊂ [0, T ], which are defined as follows:

AD([t0, T0], x0)
:= {(u(.), v(.)) ∈ U[t0, T0] × V[t0, T0] : x[t0, x0; u(.), v(.)](t) ∈ A, ∀ t ∈ [t0, T0]} ;

U([t0, T0], x0)
:= {u(.) ∈ U[t0, T0] : ∃ v(.) s.t. (u(.), v(.)) ∈ AD([t0, T0], x0)} ;

V([t0, T0], x0)
:= {v(.) ∈ V[t0, T0] : ∃ u(.) s.t. (u(.), v(.)) ∈ AD([t0, T0], x0)} .

We shall often consider the case in which T0 = T . In this case we will employ a
simplified notation in which T0 = T is not explicitly written:

U(t0, x0) := U([t0, T ], x0) and V(t0, x0) := V([t0, T ], x0) .

We shall see that, under assumptions (H1)-(H4), if in addition (CQ1) (respectively
(CQ2)) is satisfied, then, for all x0 ∈ A and t0 ∈ [0, T ], we have (cf. Proposition 3.4
below):

V(t0, x0) = V[t0, T ] and U([t0, T ], x0) �= ∅
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(respectively

U(t0, x0) = U[t0, T ] and V([t0, T ], x0) �= ∅) .

We consider the upper value V � and the lower value V � (see the Definitions (4) and
(5) below), whose definition involves the notion of nonanticipative strategies (in the
Varayia–Roxin–Elliot–Kalton sense). More precisely, fix an initial datum (t0, x0) ∈
[t0, T ] × A. We recall that a map α : V(t0, x0) → U(t0, x0) is a non-anticipative
strategy for the first player at the point x0 if, for any τ ∈ [0, T − t0], for all controls
v1(.) and v2(.) belonging to V(t0, x0), which coincide a.e. on [t0, t0 + τ ], α(v1)(.)

and α(v2)(.) coincide a.e. on [t0, t0 + τ ]. Analogously we can define non-anticipative
strategies β for the second player. Taking the time interval of reference [t0, T0] ⊂
[0, T ], we shall use the following notation for the admissible strategies of, respectively,
player 1 and player 2

SU ([t0, T0], x0) := {α : V([t0, T0], x0) → U([t0, T0], x0) s.t. α(.) is nonanticipative

and x[t0, x0;α(v), v](t) ∈ A for all t ∈ [t0, T0] and for all v ∈ V([t0, T0], x0) }

and

SV ([t0, T0], x0) := {β : U([t0, T0], x0) → V([t0, T0], x0) s.t. β(.) is nonanticipative

and x[t0, x0; u, β(u)](t) ∈ A for all t ∈ [t0, T0] and for all u ∈ U([t0, T0], x0) }.

When T0 = T , to simplify notation we write SU (t0, x0) and SV (t0, x0) the sets of
admissible nonanticipative strategies for the first and second player, respectively.

The lower value V � is then defined by:

V �(t0, x0) := inf
α∈SU (t0,x0)

sup
v(.)∈V(t0,x0)

J (t0, x0;α(v)(.), v(.)) . (4)

The upper value function is written as follows:

V �(t0, x0) := sup
β∈SV (t0,x0)

inf
u(.)∈U(t0,x0)

J (t0, x0; u(.), β(u)(.)) . (5)

Our goal in this paper is to prove, under hypotheses (H1)-(H5) (referred to as the
‘standing assumptions’) and also hypothesis (CQ1), that the lower value function is a
Lipschitz continuous function that is characterized as the unique uniformly continuous
viscosity solution of an appropriateHamilton-Jacobi-Isaacs (HJI) equation.Analogous
properties of the upper value function are established, when (CQ2) replaces (CQ1).
We establish also that, under the standing hypotheses, when the Isaacs condition and
both (CQ1) and (CQ2), strengthened to include (CQ3) (or (CQ4)) below, are satisfied,
the value functions coincide, i.e. the game has a value.

The zero sum differential games literature has, since its inception [16], heavily
focused on conditions under which the game has a value. But the lower game is
of independent importance, because of its relevance to robust controller design for
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bounded disturbances. This is a well-established field of control engineering design
which, it is argued, is better suited to applications involving low frequency, persistent
disturbances than those based on stochastic models. One well-developed approach
for ‘bounded disturbances’ robust design, based on ‘worst case disturbance’ analysis
of the effects of the disturbance, involves solving a lower game, in which the con-
troller and disturbance in the controller design problem are interpreted as the first
and second control in the lower game, respectively; the lower cost function provides
an assessment of the quality of a chosen robust controller design strategy, regarding
disturbance suppression and other objectives [4]. By including a state constraint set
in the formulation of the lower game, we can take account of the presence of a ‘safe
region’ of the state space. Here, the requirement that the chosen feedback control
maintains the state in the safe region, regardless of the disturbance, is built into the
design specifications.

A link between the lower value function and viscosity solutions to a HJI equation,
with potential application to robust control design, is established in this paper, only
when the constraint qualification (CQ1) is satisfied. (CQ1) requires that there exist
control values driving the state into the interior of the state constrained region, that
the disturbances are ‘matched’ to the control action, and that the control actuator is
designed to have sufficient power to dominate the anticipated bounded disturbances.
Robust control design methodologies based on such assumptions are standard in the
robust control literature, see, e.g. [13].

Aspects of the state-constrained zero sum differential games in this paper that deal
with the existence of a value are less relevant to practical control engineering. This
is because existence of a value is established only under the assumption that (CQ1),
(CQ2) and (CQ3) (or (CQ4)) are satisfied. This is a highly restrictive hypothesis,
since (CQ1) and (CQ2), which require that, simultaneously, the control dominates the
disturbance and the disturbance dominates the control, are in some sense in conflict.
Fortunately, as we have argued, it is only the lower game that is relevant to robust
controller design.

Our treatment of state-constrained zero-sum differential games differs from earlier
work by Koike [17] on this subject, in three respects. First, we replace the implicit
uniform controllability hypotheses in Koike by directly verifiable constraint qualifi-
cations (CQ1) or (CQ2). Second, we show that the lower and upper associated value
functions are unique viscosity solutions of HJI equations for the upper and lower
games respectively, in a simple sense that avoids redefinition of the Hamiltonians on
the boundary of the state constraint set, as well consideration of lower and upper enve-
lope solutions, employed in [17]. Third, we provide conditions under which the game
has a value.

The paper is organized as follows. We state our main results in Sect. 2. Section 3 is
devoted to nonanticipative constructions of feasible controls and strategies. In Sect. 4
we establish the Lipschitz regularity of the upper and lower values, characterizing
them as constrained viscosity solutions of an Hamilton–Jacobi–Isaacs equation. We
provide a comparison result in Sect. 5.
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2 Main Results

In this section we state our main results, which characterize the lower value, the upper
value, and the value functions as generalized solutions in the viscosity sense to the
following HJI equation:

{
−∂tW (t, x) + H

(
t, x, ∂xW (t, x)

)
= 0 on [0, T ) × A

W (T , x) = g(x) on A,
(6)

in which the function H : R × R
n × R

n → R is the Hamiltonian associated with
either the lower or upper game.

Take the (un-max-minimized) Hamiltonian function for the differential game asso-
ciated with (1)–(2) to be:

H(t, x, p, u, v) := − f (x, u, v) · p − L(t, x, u, v) .

The lower Hamiltonian and the upper Hamiltonian are defined respectively to be

H �(t, x, p) := inf
v∈V sup

u∈U
H(t, x, p, u, v) , (7)

and
H �(t, x, p) := sup

u∈U
inf
v∈V H(t, x, p, u, v) . (8)

Clearly we have H � ≤ H �.
We adopt the following definition of viscosity supersolution and subsolution for

state constrained problems, namely.

Definition 2.1 (i) [Viscosity supersolution] A continuous function W : [0, T ] ×
A −→ R is a viscosity supersolution on D ⊂ [0, T ) × A of the Hamilton-
Jacobi-Isaacs equation (6) if for any test function ϕ : R × R

n → R of class C1
such thatW −ϕ has a local minimum (relative to [0, T ]× A) at (t0, x0) ∈ D, then

−∂tϕ(t0, x0) + H(t0, x0, ∂xϕ(t0, x0)) ≥ 0.

(ii) [Viscosity subsolution] A continuous functionW : [0, T ]×A −→ R is a viscosity
subsolution on D ⊂ [0, T ) × A of (6) if for all ϕ : R×R

n → R of class C1 such
that W − ϕ has a local maximum (relative to [0, T ] × A) at (t0, x0) ∈ D, then

−∂tϕ(t0, x0) + H(t0, x0, ∂xϕ(t0, x0)) ≤ 0.

We say that a continuous function W is a viscosity solution on D ⊂ [0, T ) × A of
(6) if it is simultaneously a supersolution and a subsolution of (6) on D ⊂ [0, T )× A.

Theorem 2.2 Assume that conditions (H1)–(H4) are satisfied.
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(i) Suppose, in addition, that (CQ1) is verified. Then, the lower value function V �

is locally Lipschitz continuous.
(ii) Suppose, in addition, that (CQ1) and (H5) are verified. Then V � is a viscosity

supersolution on [0, T ) × A and a viscosity subsolution on [0, T ) × int A of
equation (6) in which H = H �.

(iii) Suppose, in addition, that (CQ1) and (H5) are verified, and A is compact. Then
V � is the unique function which is simultaneously a supersolution on [0, T )× A
and a subsolution on [0, T )× intA of (6), with H = H �, in the class of uniformly
continuous functions.

Observe that V � is a constrained viscosity solution of (6) in the sense of [21] (cf. [2]).

Theorem 2.3 Assume that (H1)–(H4) are satisfied.

(i) Suppose, in addition, that (CQ2) is verified. Then, the lower value function V �

is locally Lipschitz continuous.
(ii) Suppose, in addition, that (CQ2) and (H5) are verified. Then V � is a viscosity

supersolution on [0, T ) × int A and a viscosity subsolution on [0, T ) × A of
equation (6) in which H = H �.

(iii) Suppose, in addition, that (CQ2) and (H5) are verified, and A is compact. Then
V � is the unique function which is simultaneously a viscosity supersolution on
[0, T ) × int A and a viscosity subsolution on [0, T ) × A of equation (6), with
H = H �, in the class of uniformly continuous functions.

The proofs of these theorems, which are given in later sections of the paper, are built
up in several stages. To be more precise, properties (i) and (ii) of Theorems 2.2 and
2.3 follow respectively from Proposition 4.2 and Theorem 4.3 below. The comparison
Theorem 5.1 establishes part (iii) of Theorems 2.2 and 2.3.

We highlight the fact that, for the proof of the Lipschitz regularity of the two value
functions, assumption (H5) is not required. It is invoked onlywhenwe seek to interpret
the values as viscosity subsolutions or supersolutions of (6).

We introduce additional constraint qualifications to derive further properties of the
game values.

(CQ3): For every x0 ∈ ∂A and for every p0 ∈ R
n there exist u0 ∈ U and v0 ∈ V

such that

(i) H(t0, x0, p0, u0, v0) = infv∈V supu∈U H(t0, x0, p0, u, v) and
(ii) ∇h(x0) · f (x0, u0, v0) < 0 .

(CQ4): For every x0 ∈ ∂A and for every p0 ∈ R
n there exist u0 ∈ U and v0 ∈ V

such that

(i) H(t0, x0, p0, u0, v0) = supu∈U infv∈V H(t0, x0, p0, u, v) and
(ii) ∇h(x0) · f (x0, u0, v0) < 0 .

Observe that the two conditions (CQ3) and (CQ4) coincide when the Isaacs condition,
namely

H �(t, x, p) = H �(t, x, p), ∀ (t, x, p) ∈ [0, T ) × A × R
n , (9)

is satisfied.
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Theorem 2.4 Assume that (H1)–(H5), (CQ1) and (CQ2) hold true. Suppose moreover
that the Isaacs condition (9) and (CQ3) (or equivalently (CQ4)) are satisfied. Then,
the game has a value namely: V � = V � and V := V � = V � is a viscosity solution on
[0, T )×A of (6)with H = H � = H �. If, in addition, A is compact, then V is the unique
the unique continuous viscosity solution on [0, T ) × A of (6) with H = H � = H �.

This theorem is a direct consequence of Corollary 4.6 and Theorem 5.1.

Remark 2.5 (i) The assertions of Theorems 2.2 and 2.3 remain valid if we replace
the Hamiltonians H � and H � with the Hamiltonians H− and H+, respectively,
where:

H−(t, x, p) := inf
v∈V sup

u∈U (x,v)

H(t, x, p, u, v) , and

H+(t, x, p) := sup
u∈U

inf
v∈V (x,u)

H(t, x, p, u, v) .

Here, U (x, v) := {u ∈ U | f (x, u, v) ∈ TA(x)} and V (x, u) := {v ∈
V | f (x, u, v) ∈ TA(x)}, in which TA(x) denotes the Clarke tangent cone to
the set A at x . Notice that H− and H+ are in general discontinuous, therefore, in
this case, the notion of viscosity solution requires consideration of the (upper and
lower) semicontinuous envelopes of the Hamiltonians H− and H+, indicated by
the upper and lower ‘∗’ notation (cf. [2,17]). But using the fact that, under our
hypotheses, we have

H−(t, x, p) = H �(t, x, p),

H+(t, x, p) = H �(t, x, p) for all (t, x, p) ∈ [0, T ] × intA × R
n ,

and

H−∗(t, x, p) = H �(t, x, p),

H+∗(t, x, p) = H �(t, x, p) for all (t, x, p) ∈ [0, T ] × ∂A × R
n ,

wecan easily reduce the analysis to the casewhenwe consider the reference lower
and upper Hamiltonians H � and H �. We also observe that, if all the assumptions
of Theorem 2.4 are satisfied (included the Isaacs condition (9), precisely with
H � and H �), then the value V := V � = V � is still the unique bounded uniformly
continuous viscosity solution on [0, T ) × A of (6) with H = H− and, also, with
H = H+.

(ii) Similar results were earlier proved in [5], but only in the case of separated dynam-
ics.

(iii) Observe that, if the standing hypotheses are merely supplemented by the Isaacs
condition and (CQ1)-(CQ2), from Corollary 4.5 and Theorem 5.1 we can only
conclude that V � ≤ V � on [0, T ] × A . To obtain the existence of the value for
the game we need to impose also (CQ3) (or (CQ4)). While (CQ3) and (CQ4) are
very strong, the value of the game may not exist, if they are not imposed. This is
illustrated by Example 1 below.
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Example 1 Consider the following two-player differential gamewith state-constraints:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = u(t) + v(t), for a.e. t ∈ [t0, 1]
u(t) ∈ U := {−3,+1} for a.e. t ∈ [t0, 1]
v(t) ∈ V := {−2,+2} for a.e. t ∈ [t0, 1]
x(t0) = x0 ∈ A

x(t) ∈ A := {x ∈ R : x ≤ 0} for all t ∈ [t0, T ] .

For arbitrary initial data (t0, x0) ∈ [0, 1]× A, and controls (u(.) and v(.)), we consider
the following cost functional:

J (t0, x0; u(.), v(.)) :=
∫ 1

t0
(−u(t) + v(t)) dt .

Observe that, for this example, the Isaacs condition and the two constraint qualifica-
tions (CQ1) and (CQ2) are satisfied, but (CQ3) (and (CQ4)) is violated. We claim that
we have the strict inequality:

V �(0, 0) > V �(0, 0) .

Proof of the claim Notice that

U(0, 0) = {w(.) ∈ L∞ : w(t) ∈ {−3,+1} a.e.},
V(0, 0) = {w(.) ∈ L∞ : w(t) ∈ {−2,+2} a.e.}.

Consider the lower game. Take any ε > 0. Then, there exists a non-anticipative strategy
α ∈ SU (0, 0) such that x[0, 0;α(v), v](t) ∈ A for all t ∈ [0, 1] and v(.) ∈ V(0, 0),
and

V �(0, 0) ≥ sup
v(.)∈V(0,0)

∫ 1

0
(−α(v)(t) + v(t))dt − ε .

We also know that, for any v(.) ∈ V(0, 0), u(.) = α(v)(.) must satisfy the state
constraint and hence

∫ 1

0
u(t) dt ≤ −

∫ 1

0
v(t) dt .

It follows that

sup
v(.)∈V(0,0)

J (0, 0;α(v)(.), v(.)) ≥ sup
v(.)∈V(0,0)

(

2 ×
∫ 1

0
v(t) dt

)

= 4 .
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Since ε > 0 is arbitrary, we deduce that

V �(0, 0) ≥ 4 .

Consider now the upper game. Take any ε > 0. Then, there exists a non-anticipative
strategy β ∈ SV (0, 0) such that x[0, 0; u, β(u)](t) ∈ A for all t ∈ [0, 1] and u(.) ∈
U(0, 0), and

V �(0, 0) ≤ inf
u(.)∈U(0,0)

∫ 1

0
(−u(t) + β(u)(t))dt + ε .

For any u(.) ∈ U(0, 0), v(.) = β(u)(.) must satisfy

∫ 1

0
v(t) dt ≤ −

∫ 1

0
u(t) dt .

It follows that

inf
u(.)∈U(0,0)

J (0, 0; u(.), β(u)(.)) ≤ inf
u(.)∈U(0,0)

(

−2 ×
∫ 1

0
u(t) dt

)

= −2 .

Since ε > 0 is arbitrary, we obtain that

V �(0, 0) ≤ −2 ,

confirming the claim. ��

Remark 2.6 Koike [17] also provides viscosity solution characterizations of the upper
and lower values. To be specific, [17] establishes that they are unique viscosity solu-
tions, up to the boundary of the state constraint, of the upper and lower HJI equation,
defined in terms of the upper and lower semicontinuous envelopes of the Hamiltonians
H− and H+, under a controllability condition. (Some information about the relation
of our definitions of viscosity solutions and those of Koike are provided by Remark
2.5.) Direct comparisons with Theorems 2.2 and 2.3 are not possible: examples can
be given in which (CQ1) and (CQ2) are satisfied but Koike’s controllability condi-
tion is not satisfied, and vice versa. Our hypotheses have the advantage however that
they are expressed in terms of the defining sets and functions of the dynamic game
formulation, and are more amenable to direct verification than Koike’s hypotheses,
because of their implicit nature. We mention that, in Example 1, (CQ1) and (CQ2)
and also Koike’s controllability hypotheses are satisfied. Example 1 therefore illus-
trates that, also in Koike’s framework, the value of the dynamic game may fail to
exist.
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3 State Constrained Control Systems: Nonanticipative Constructions
of Feasible Controls

Consider the state-constrained control system, described as follows:

ẋ(t) = f̃ (t, x(t), u(t)) a.e. t ∈ [0, T ] (10)

u(t) ∈ Ũ (t)

x(t) ∈ A for all t ∈ [0, T ] , (11)

in which f̃ (., ., .) : R×R
n ×R

m → R
n is a given function, and Ũ (.) : R � R

m is a
given multifunction.

We shall refer to a couple (x(.), u(.)), comprising a measurable function u(.) :
I → R

m and an absolutely continuous function x(.) : I → R
n which satisfy ẋ(t) =

f̃ (t, x(t), u(t)) and u(t) ∈ Ũ (t) a.e., as a process (on the subinterval I ⊂ [0, T ]).
The function x(.) is called a state trajectory and the function u(.) is called a control
function. If x(.) satisfies the state constraint (11), the process is ‘feasible’.

We shall assume that the control system data satisfy the following hypotheses, in
which r0 is some positive real number. There exist constants ρ > 0, η > 0 and M > 0,
and k̃ f (.) ∈ L1([0, T ],R) such that:

(H1)′: f̃ (., x, .) isL×Bm measurable for each x ,whereL is the collection ofLebesgue
measurable sets of R and Bm the collection of Borel sets of Rm ; the set-valued
map Ũ (.) has Borel-measurable graph.

(H2)′: | f̃ (t, x, u)| ≤ M(1 + |x |) for all (t, x) ∈ [0, T ] × R
n, u ∈ Ũ (t) .

(H3)′: | f̃ (t, x, u)− f̃ (t, x ′, u)| ≤ k̃ f (t)|x−x ′| for all t ∈ [0, T ], x, x ′ ∈ eMT (1+
r0)B and u ∈ U (t).

(CQ): (Inward pointing condition)

inf
u∈Ũ (t)

∇h(x) · f̃ (t, x, u) ≤ −η ,

for all (t, x) ∈ [0, T ] × eMT (1 + r0)B for which −ρ ≤ h(x) ≤ 0.

Employing the L∞-metric on the set of trajectories, and the (Ekeland) metric:

dI (u1(.), u2(.)) = meas {t ∈ I : u1(t) �= u2(t)} ,

on the set of controls, we derive linear estimates w.r.t. the left-end points of a
reference process and its approximating process. Such estimates, often referred as
nonanticipative Filippov-type theorems (cf. [6,7]), ensure that it is possible to con-
struct approximating feasible controls (and trajectories) in a nonanticipative way, and,
therefore, build up suitable nonanticipative strategies.

Here, we restrict attention to the case in which the boundary of A is smooth,
illustrating how the approach suggested in [8] can be extended to obtain Filippov’s
type theorems. The basic idea is to modify the control on a suitable measurable set
whose measure is bounded above by a number which depends linearly on the distance
of two distinct left-end points. Imposing stronger inward pointing conditions (as in
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[9] and [15]), we can construct controls with similar properties for state constraints
sets that are merely assumed to be closed.

Theorem 3.1 [Nonanticipative Filippov’s Theorem] Fix r0 > 0. Assume that hypothe-
ses (H1)′–(H3)′, (H4) and (CQ) are satisfied. Then there exists a constant K > 0
(whose magnitude depends only on the parameter r0 and the data of assump-
tions (H1)′-(H3)′, (H4) and (CQ)) with the following property: given any (τ, y1) ∈
[0, T ] × (

((r0 + 1)eMτ − 1)B∩ A
)
and feasible process (x1(.), u1(.)) on [τ, T ] such

that x1(τ ) = y1, for any y2 ∈ A ∩ ((r0 + 1)eMτ − 1)B, and any d > 0 such that
d ≥ |y2 − y1|, there exists a feasible process (x2(.), u2(.)) on [τ, T ] with x2(τ ) = y2
such that the construction of u2(.) is nonanticipative, and

x2(t) ∈ int A, for all t ∈ (τ, T ] , (12)

d[τ,T ](u1(.), u2(.)) ≤ K d , (13)

‖x1(.) − x2(.)‖L∞(τ,T ) ≤ K d . (14)

We start by proving a local version of the theorem in the form of the following lemma.

Lemma 3.2 Fix r0 > 0. Assume that (H1)′–(H3)′, (H4) and (CQ) are satisfied. Then,
there exist constants δ0 > 0, K0 > 0 and K1 > 1 (depending only on the parameter
r0 and the data provided by assumptions (H1)′-(H3)′, (H4) and (CQ)) satisfying the
following property: take any τ ∈ [0, T ], y, y′ ∈ A ∩ ((r0 + 1)eMτ − 1)B, any d > 0
such that d ≥ |y − y′|, and any feasible process (x(.), u(.)) on [τ, T ] with x(τ ) = y.
Then, there exists a process (x ′(.), u′(.)) on [τ, T ] such that x ′(τ ) = y′,

x ′(t) ∈ int A for all t ∈ (τ, (τ + δ0) ∧ T ] ,

the construction of u′(.) is nonanticipative, and

d[τ,T ](u(.), u′(.)) ≤ K0 d ,

‖x(.) − x ′(.)‖L∞(τ,T ) ≤ K1

(
|y − y′| + d[τ,T ](u(.), u′(.))

)
.

Proof Fix any r0 > 0, τ ∈ [0, T ], and y, y′ ∈ A∩ ((r0 +1)eMτ −1)B, and any d > 0
such that d ≥ |y − y′|. The number R0 := eMT (1 + r0) is an upper bound on the
magnitude of all state trajectories x(.) on [τ, T ] such that x(τ ) ∈ ((r0 +1)eMτ −1)B,
and, from (H2)′, M(1 + R0) is an upper bound for the corresponding velocities ẋ(.).
Write kh and k′

h the Lipschitz constants for h(.) and ∇h(.) respectively, on R0B.
Denote by ω(.) a modulus of continuity for the function t → ∫ t

0 k̃ f (s) ds
Assumptions (H1)′–(H3)′, (H4) and (CQ) guarantee also the existence of ρ0 > 0

and δ̄ > 0 with the following property: for any τ ∈ [0, T ] and any process (x(.), u(.))

on [τ, (τ + δ̄) ∧ T ] with x(τ ) ∈ A ∩ ((r0 + 1)eMτ − 1)B, one of the following two
cases occurs: either
Case 1 h(x(τ )) ≤ −ρ0; if we have this initial condition, then x(t) ∈ A for all t ∈
[τ, (τ + δ̄) ∧ T ]

or
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Case 2:−ρ0 < h(x(τ )) ≤ 0; in this case there exists a control ū(.) : [τ, (τ+δ̄)∧T ] →
R
m such that ū(t) ∈ Ũ (t) a.e. and

∇h(x(t)) · f̃ (t, x(t), ū(t)) ≤ −η a.e. [τ, (τ + δ̄) ∧ T ] .

We define the continuous function β(.) : R+ → R+ as follows:

β(δ) := 2M(1 + R0)
(
k′
hM(1 + R0)δ + khω(δ)

)
e
∫ T
0 k̃ f (s) ds . (15)

Since β(.) is monotone increasing and β(0) = 0, we can choose δ0 := δ(r0) ∈ (0, δ̄)
such that β(δ0) < η . We also select K0 := K (r0) > 0 such that

K0 >
khe

∫ T
0 k̃ f (s) ds

η − β(δ0)
. (16)

Now we fix any τ ∈ [0, T ] and a feasible process (x(.), u(.)) on [τ, T ] such that
x(τ ) = y. Write τ̄ := (τ + δ0) ∧ T to simplify notation. We shall construct a second
process (x ′(.), u′(.)) on [τ, T ] such that x ′(τ ) = y′,

x ′(t) ∈ int A ∀ t ∈ (τ, τ̄ ]

and

d[τ,T ](u(.), u′(.)) ≤ K0 d ,

‖x(.) − x ′(.)‖L∞(τ,T ) ≤ K1

(
|y − y′| + d[τ,T ](u(.), u′(.))

)
.

Consider the (non necessarily feasible) process (x̂(.), u(.))with left-end point x̂(τ ) =
y′. We shall assume that case 2) occurs for, otherwise, (x ′(.), u′(.)) = (x̂(.), u(.))

has already the desired properties. Notice that from the Gronwall inequality (cf. for
instance [22, Lemma 2.4.4]) we obtain:

||x(.) − x̂(.)||L∞(τ,t) ≤ e
∫ T
0 k̃ f (s) ds |y − y′| , ∀t ∈ [τ, T ] . (17)

For all t ∈ [τ, τ̄ ] we denote by A(t) the measurable set

A(t) =
{

s ∈ [τ, t] : d

ds
h(x̂(s)) ≥ 0

}

, (18)

where d
ds h(x̂(s)) is the total derivative of the map s → h(x̂(s)). Consider now the

process (x ′(.), u′(.)) on [τ, T ] such that x ′(τ ) = y′ and

u′(t) =
{
ū(t) if t ∈ [σ, T ], d

dt h(x̂(t)) ≥ 0 and meas{A(t)} < K0d
u(t) otherwise ,

(19)

where the control ū(t) ∈ Ũ (t) satisfies the following inward pointing property (recall
that we are in case 2):
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∇h(x̂(t)) · f̃ (t, x̂(t), ū(t)) ≤ −η a.e. t ∈ [τ, τ̄ ] .

Observe that the construction above is nonanticipative, in the sense that if two controls
u1(.) and u2(.) are such that u1(.) = u2(.) a.e. on some time interval [τ, τ ∗] ⊂ [τ, T ],
then the corresponding controls u′

1(.) and u′
2(.), defined by (19), satisfy the property

u′
1(.) = u′

2(.) a.e. on [τ, τ ∗].
Set

σ̄ := sup{t ∈ [τ, τ̄ ] : meas{A(t)} < K0d} .

Notice that

d[τ,T ](u(.), u′(.)) = d[τ,τ̄ ](u(.), u′(.)) ≤ meas{A(σ̄ )} ≤ K0d ,

and, owing to Gronwall’s Inequality, we also have

||x ′(.) − x̂(.)||L∞(τ,t) ≤ 2M(1 + R0) e
∫ T
0 k̃ f (s) ds d[τ,τ̄ ](u(.), u′(.))

≤ 2M(1 + R0) e
∫ T
0 k̃ f (s) ds meas {[τ, t ∧ σ̄ ] ∩ A(t)} , ∀t ∈ [τ, T ] . (20)

Then, from (17) and (20), taking K1 := (1+2M(1+ R0)) e
∫ T
0 k̃ f (s) ds , we also derive

||x(.) − x ′(.)||L∞(τ,t) ≤ K1

(
|y − y′| + d[τ,T ](u(.), u′(.))

)
, ∀t ∈ [τ, T ] .

It remains to prove that the process (x ′(.), u′(.)) is feasible on [τ, τ̄ ], andmore precisely
x ′(t) ∈ int A, for all t ∈ (τ, τ̄ ].

Clearly, for each t ∈ [τ, τ̄ ], we obtain

h(x ′(t)) = h(x ′(τ )) +
∫ t

τ

∇h(x ′(s)) · f̃ (s, x ′(s), u′(s))ds

≤ h(x ′(τ )) +
∫ t

τ

∇h(x̂(s)) · f̃ (s, x ′(s), u′(s))ds

+ k′
hM(1 + R0) |t − τ | ||x ′(.) − x̂(.)||L∞(τ,t)

≤ h(x ′(τ )) +
∫ t

τ

∇h(x̂(s)) · f̃ (s, x̂(s), u′(s)) ds

+
(
k′
hM(1 + R0)|t − τ | + khω(|t − τ |)

)
||x ′(.) − x̂(.)||L∞(τ,t) . (21)

We claim that h(x(t)) < 0 for all t ∈ (τ, τ̄ ]. We consider the following two possible
cases:

Case (i) t ∈ [τ, σ̄ ]. We have

∫ t

τ

∇h(x̂(s)) · f̃ (s, x̂(s), u′(s)) ds ≤
∫

[τ,t]\A(t)
∇h(x̂(s)) · f̃ (s, x̂(s), u(s)) ds
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+
∫

[τ,t]∩A(t)
∇h(x̂(s)) · f̃ (s, x̂(s), ū(t)) ds

< 0 − η meas {A(t)} .

As a consequence from the definition of β(δ0) and inequalities (20) and (21), it follows
that

h(x ′(t)) < −(η − β(δ0)) meas {A(t)} < 0 . (22)

Case (ii) t ∈ [σ̄ , τ̄ ]. In this case, since h(x̂(τ )) = h(x ′(τ )) we have that

∫ t

τ

∇h(x̂(s)) · f̃ (s, x̂(s), u′(s)) ds =
∫ t

τ

∇h(x̂(s)) · f̃ (s, x̂(s), u(s)) ds

+
∫ t

τ

∇h(x̂(s)) · [ f̃ (s, x̂(s), u′(s)) − f (s, x̂(s), u(s))] ds
≤ h(x̂(t)) − h(x̂(τ )) − η meas {A(σ̄ )} = h(x̂(t)) − h(x ′(τ )) − η K0d .

From this estimate, (16) and inequalities (17), (20) and (21), we derive that

h(x ′(t)) ≤ kh ||x(.) − x̂(.)||L∞(τ,t) − (η − β(δ0)) K0 d

≤ [khe
∫ T
0 ω(s) ds − (η − β(δ0)) K0] d

< 0 .

This confirms our claim and the proof of the lemma is now complete. ��

Proof of Theorem 3.1 Assume that (H1)′–(H3)′, (H4) and (CQ) are satisfied, and fix
r0 > 0. Then consider the constants δ0 > 0, K0 > 0 and K1 > 1 provided by Lemma
3.2. Choose the integer N0 in such a manner that it is the first index value i for which
τ + (iδ0) ≥ T . Observe that N0 satisfies N0 ≤ T /δ0 + 1, and does not depend on
the choice of reference time τ , or the choice of the left-end points y1 and y2, or the
process (x1(.), u1(.)).

We recursively apply Lemma 3.2 to the reference process (x(.), u(.)) =
(x1(.), u1(.)) on [τ, T ], to obtain a finite sequence of processes (x ′

i (.), u
′
i (.)) on [τ, T ],

i = 1, . . . , N0, where the i th process is an extension of the (i −1)th process, which is
feasible on [τ, (τ + iδ0)∧ T ] (more precisely x ′

i (t) ∈ int A for all (τ, (τ + iδ0)∧ T ]),
and the i th control u′

i (.) is constructed in a nonanticipative way. We shall finally
take (x2(.), u2(.)) := (x ′

N0
(.), u′

N0
(.)). This process, then, is such that x2(τ ) = y2,

x2(t) ∈ int A for all t ∈ (τ, T ], and satisfies all the required properties established in
the statement of the proposition.

Writing τ0 = τ , τi = τ + (iδ0), y = x(τ0) = y1, y′ = x ′
1(τ0) = y2, we have, for

i = 1, . . . , N0

d[τi−1,T ](u(.), u′
i (.)) ≤ K0 di−1

‖x(.) − x ′
i (.)‖L∞(τi−1,T ) ≤ K1

(
|x(τi−1) − x ′

i (τi−1)| + d[τi−1,T ](u(.), u′
i (.))

)
,
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where di−1 = |x(τi−1) − x ′
i (τi−1)|, for i = 1, . . . , N0, and d0 = d (≥ |y − y′|).

Therefore, for i = 1, . . . , N0, we obtain

d[τi−1,T ](u(.), u′
i (.)) ≤ K0 K

i−1
1 (1 + K0)

i−1d (23)

and
‖x(.) − x ′

i (.)‖L∞(τi−1,T ) ≤ Ki−1
1 (1 + K0)

i−1d. (24)

As a consequence we derive, from (23),

d[τ,T ](u(.), u′
N0

(.)) ≤
N0∑

i=1

d[τi−1,T ](u(.), u′
i (.))

≤
N0∑

i=1

K0 K
i−1
1 (1 + K0)

i−1 d

≤ K N0
1 (1 + K0)

N0 d ,

and, from (24),

‖x(.) − x ′
N0

(.)‖L∞(τ,T ) ≤ max
i=1,...,N0

‖x(.) − x ′
i (.)‖L∞(τi−1,T )

≤ K N0
1 (1 + K0)

N0 d .

Thus, taking K := K N0
1 (1 + K0)

N0 , all the assertions of the Theorem 3.1 are con-
firmed. ��
Assume that we are given initial data and a control function (non necessarily feasible).
A modification of the proof of Theorem 3.1 provides a nonanticipative construction
of a feasible control for the reference initial data which satisfy some specific inward
pointing properties, paying the (sometimes) ‘affordable price’ of neglecting the dis-
tance estimates between the employed controls. In particular we obtain that for any
initial data, the set of feasible processes is non-empty.

Proposition 3.3 Fix any r0 > 0. Assume that (H1)′–(H3)′, (H4) and (CQ) are satisfied.
Take any initial time t0 ∈ [0, T ] and any x0 ∈ A ∩ (eMt0(r0 + 1) − 1)B. Consider a
measurable function u(.) defined on [t0, T ] with u(t) ∈ Ũ (t) a.e.. We can construct
a feasible process (x̃(.), ũ(.)) on [t0, T ] such that x̃(t0) = x0, x̃(t) ∈ int A for all
t ∈ (t0, T ], and the map u(.) → γt0,x0(u(.)) := ũ(.) is nonanticipative.

Proof Consider the process (x(.), u(.)) on [t0, T ] such that x(t0) = x0. The construc-
tion of a feasible process (x̃(.), ũ(.)) can be provided following the lines of the proof
of Lemma 3.2 and Theorem 3.1, in which we do not fix an upper bound to the measure
of the set in which we modify the reference control u(.). More precisely, starting from
(x(.), u(.)), we can construct a selection ū(.) as in case 2) of the proof of Lemma
3.2. Let M0 > 0 un upper bound for the velocities of all trajectories having x0 as
left end-point. Take δ0 ∈ (0,min{ ρ

2khM0
; η

M2
0 k

′
h+khk f M0

}) such that β(δ0) < η. Here,
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kh and k′
h the Lipschitz constants for h(.) and ∇h(.) respectively, on eMT (1 + r0)B,

ρ and η are the positive constants provided by (CQ), and β(.) is the positive func-
tion defined in (15) (cf. the proof of Lemma 3.2). It is not restrictive to assume that
−ρ/2 < h(x0) ≤ 0. Then, we consider the process (x̃(.), ũ(.)) on [t0, T ] such that
x̃(t0) = x0 and

ũ(t) :=
{
ū(t) if t ∈ [t0, T ] and d

dt h(x(t)) > −η

u(t) otherwise ,

where the control function ū(.) ∈ Ũ (.) is chosen to satisfy the inward pointing condi-
tion:

∇h(x(t)) · f̃ (t, x(t), ū(t)) ≤ −η a.e. t ∈ [t0, T ] .

Observe that the construction of ũ(.) is nonanticipative and, for all t ∈ [t0, (t0 + δ0)∧
T ],

d[τ,t](u(.), ũ(.)) = meas

{

Ã(t) :=
{

s ∈ [t0, t] : d

dt
h(x(t)) > −η

}}

.

Gronwall’s inequality yields

||x(.) − x̃(.)||L∞(τ,t) ≤ 2M(1 + R0) e
∫ T
0 k̃ f (s) ds d[τ,t](u(.), ũ(.))

= 2M(1 + R0) e
∫ T
0 k̃ f (s) ds meas{Ã(t)} .

The same analysis leading to inequalities (21) and (22) now gives:

h(x̃(t)) < 0 for all t ∈ (t0, (t0 + δ0) ∧ T ] .

The recursive argument appearing in the proof of Theorem 3.1 may be used, once
again, to extend the process (x̃(.), ũ(.)), preserving non-anticipativity. The proof of
the proposition is complete. ��

3.1 Construction of Nonanticipative Maps and Strategies

Consider system (1), and fix an initial time t0 ∈ [0, T ] and a control ṽ(.) ∈ V[t0, T ].
Observe that assumptions (H1)–(H3) and (CQ1) guarantee that conditions (H1)′–(H3)′
and (CQ) are satisfied by the function

f̃ (t, x, u) := f (x, u, ṽ(t)) . (25)

The same property is valid when we fix a control ũ(.) ∈ U[t0, T ] and consider the
function (t, x, v) → f (x, ũ(t), v). A consequence of Proposition 3.3 is the following
proposition.
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Proposition 3.4 Assume that (H1)–(H4) are satisfied. Take any (t0, x0) ∈ [0, T ] × A.

(i) If in addition (CQ1) is satisfied, then

V(t0, x0) = V[t0, T ], U([t0, T ], x0) �= ∅ and SU (t0, x0) �= ∅ .

In particular, there exists a nonanticipative strategy �t0,x0 ∈ SU (t0, x0) such
that for any v(.) ∈ V(t0, x0) we have x(t) ∈ int A for all t ∈ (t0, T ], where
x(t) := x[t0, x0;�t0,x0(v)(.), v(.)](t), for t ∈ [t0, T ].

(ii) If in addition (CQ2) is satisfied, then

U(t0, x0) = U[t0, T ], V([t0, T ], x0) �= ∅ and SV (t0, x0) �= ∅ .

In particular, there exists a nonanticipative strategy �̃t0,x0 ∈ SV (t0, x0) such
that for any u(.) ∈ U(t0, x0) we have x(t) ∈ int A for all t ∈ (t0, T ], where
x(t) := x[t0, x0; u(.), �̃t0,x0(u)(.)](t), for t ∈ [t0, T ].

Proof We show only (i), since (ii) can be proved in a similar way. Fix û ∈ U[t0, T ].
Take any v(.) ∈ V[t0, T ]. Then we can consider

f̃ (t, x, u) := f (x, u, v(t))

and apply Proposition 3.3 to obtain a feasible control γt0,x0(û)(.) ∈ U([t0, T ], x0). We
define

�t0,x0(v)(.) := γt0,x0(û)(.) . (26)

It immediately follows that V(t0, x0) = V[t0, T ], U([t0, T ], x0) �= ∅ and x(t) ∈
int A for all t ∈ (t0, T ], where x(.) := x[t0, x0;�t0,x0(v)(.), v(.)](.). It remains to
show that �t0,x0 is nonanticipative. Take v1(.), v2(.) ∈ V[t0, T ]. If v1(.) = v2(.)

a.e. on [t0, t0 + τ ], for some τ ∈ [0, T − t0]. Write f̃1(t, x, u) := f (x, u, v1(t)) and
f̃2(t, x, u) := f (x, u, v2(t)). Letγ 1

t0,x0 andγ 2
t0,x0 be the nonanticipativemaps provided

by Proposition 3.3 and associated respectively with f̃1 and f̃2. Since f̃1(t, x, u) =
f̃2(t, x, u) a.e. on [t0, t0 + τ ], it immediately follows that

γ 1
t0,x0(û)(t) = γ 2

t0,x0(û)(t), for a.e. t ∈ [t0, t0 + τ ]

and therefore

�t0,x0(v1)(t) = �t0,x0(v2)(t), for a.e. t ∈ [t0, t0 + τ ],

confirming that �t0,x0 ∈ SU (t0, x0). ��
In Sect. 1 we have introduced the notion of nonanticipative strategies SU and SV for
the two players controlling in system (1). We shall make use also of an extension to
this concept, introducing a notion of nonanticipative maps between sets of admissible
controls, not necessarily employed by different players, and having possibly differ-
ent initial times. Take a pair of initial data points (t1, x1), (t2, x2) ∈ [0, T ] × A. If
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conditions (H1)-(H4) and (CQ1) are satisfied, from Proposition 3.4, we know that
U(t1, x1) �= ∅ and U(t2, x2) �= ∅. A map γ : U(t1, x1) → U(t2, x2) is called nonan-
ticipative if for any τ ∈ [0, T − t1], given u, u′ ∈ U(t1, x1) such that u(.) = u′(.) a.e.
on [t1, t1 + τ ], then also γ (u)(.) = γ (u′)(.) a.e. on [t2, (t2 + τ) ∧ T ]. An equivalent
notion is valid for maps γ ′ : V(t1, x1) → V(t2, x2).

We draw attention to an immediate consequence of Theorem 3.1, Propositions 3.3
and 3.4 summarized as the following corollary.

Corollary 3.5 Fix any r0 > 0. Assume that (H1)–(H4) and (CQ1) are satisfied. Then
there exists a constant K > 0 such that for any initial time t0 ∈ [0, T ], for any
x1, x2 ∈ A ∩ r0B, and for any v(.) ∈ V[t0, T ], we can find a nonanticipative map
γv : U(t0, x1) −→ U(t0, x2) with the following property: for any u1(.) ∈ U(t0, x1)
we have

d[t0,T ](u1(.), γv(u1)(.)) ≤ K |x1 − x2| , (27)

‖x1(.) − x2(.)‖L∞(t0,T ) ≤ K |x1 − x2| . (28)

where x1(.) and x2(.) are the trajectories associated with the admissible controls
(u1(.), v(.)) ∈ AD(t0, x1) and (u2(.) := γv(u1)(.), v(.)) ∈ AD(t0, x2) for system
(1).

Remark 3.6 Corollary 3.5 has an obvious symmetric counterpart in which we can take
any x1, x2 ∈ A ∩ r0B and any u(.) ∈ U[t0, T ], obtaining a nonanticipative map
γu : V(t0, x1) −→ V(t0, x2) and estimates as (27) and (28).

4 Properties of the Lower and Upper Value Functions

Proposition 4.1 (Dynamic Programming Principle) Assume (H1)–(H4). For any
(t0, x0) ∈ [0, T ] × A and for all σ ∈ (0, T − t0] we have the following properties:

(i) if in addition (CQ1) is satisfied, then

V �(t0, x0) = inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0
L(t, x[t0, x0;α(v), v](t),

α(v)(t), v(t)) dt + V �
(
t0 + σ, x[t0 + σ, x0;α(v), v](t0 + σ)

)
}

.

(29)

(ii) if in addition (CQ2) is satisfied, then

V �(t0, x0) = sup
β∈SV ([t0,t0+σ ],x0)

inf
u∈U(t0,x0)

{ ∫ t0+σ

t0
L(t, x[t0, x0; u, β(u)](t),

u(t), β(u)(t)) dt + V �
(
t0 + σ, x[t0 + σ, x0; u, β(u)](t0 + σ)

)}
,

(30)
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The proof of Proposition 4.1 is based on standard arguments and there is no substantial
difference from the case without state constraints (cf. [2,11,14,17,19]).

Proposition 4.2 (Lipschitz continuity) Suppose that assumptions (H1)–(H4) and
(CQ1) (respectively (CQ2)) are satisfied. Then, the lower value function V � (respec-
tively the upper value function V �) is locally Lipschitz continuous on [0, T ] × A.

Proof We prove the local Lipschitz regularity just for V �, since the case for V � can be
treated in a similar way.

Fix any r0 > 0. Let (t0, x0), (t1, x1) ∈ [0, T ]×(A∩r0B).Write R0 := eMT (1+r0),
T1 := (T + t1 − t2) ∧ T and T2 := (T + t2 − t1) ∧ T . For any given ε > 0, invoking
the definition of V �, there exists a nonanticipative strategy α1 ∈ SU (t1, x1), such that

V �(t1, x1) + ε ≥ sup
v∈V(t1,x1)

J (t1, x1, α1(v), v) .

We claim that there exist a constant K > 0, which depends only on the data of the
problem, a nonanticipative map φ : V(t2, x2) → V(t1, x1) and a nonanticipative
strategy α2 ∈ SU (t2, x2) such that, for all v(.) ∈ V(t2, x2) = V[t2, T ], we have:

d[t1,T1](α1(φ(v))(.), α2(v)(. − t1 + t2)) ≤ K |x1 − x2| , (31)

and
‖x1(.) − x2(. − t1 + t2)‖L∞(t1,T1) ≤ K |x1 − x2| , (32)

in which x1(t) := x[t1, x1;α1(φ(v)), φ(v)](t) and x2(t) := x[t2, x2;α2(v), v](t).
We start defining the nonanticipative map φ : V(t2, x2) → V(t1, x1). We observe

that only one of the following two cases might occur: either T1 < T or T1 = T .
If T1 < T (i.e. T2 = T ), then we fix a measurable function v̂ ∈ V[T1, T ] and, for

all v(.) ∈ V(t2, x2) = V[t2, T ], we set

φ(v)(t) :=
{

v(t − t1 + t2) on [t1, T1] ,

v̂(t) on (T1, T ] ,
(33)

On the other hand, if T1 = T , then, for all v(.) ∈ V(t2, x2) = V[t2, T ], we write

φ(v)(.) := v(. − t1 + t2)|[t1,T ].

Observe that the map V(t2, x2) → AD(t1, x1) defined by

v → (α1(φ(v)), φ(v))

is nonanticipative and can be modified giving a nonanticipative map V(t2, x2) →
AD(t2, x1) as follows:

v → (α̃1(φ(v)), v) ,

123



Applied Mathematics & Optimization (2019) 80:765–799 785

in which, if T1 < T , then

α̃1(φ(v))(.) := α1(φ(v))(. − t2 + t1)|[t2,T ] .

Otherwise, if T1 = T (i.e. T2 < T ), then we set

α̃1(φ(v))(t) =
{

α1(φ(v))(t − t2 + t1) on [t2, T2] ,

�T2,x2(T2)(v)(t) on (T2, T ] ,
(34)

in which x2(T2) := x[t2, x2;α1(φ(v)), v](T2) and �T2,x2(T2) is the nonanticipative
map defined in (26) (for a fixed measurable function û ∈ U[T2, T ]).

Given any v ∈ V(t2, x2) we consider the nonanticipative map γv : U(t2, x2) →
U(t2, x1) provided by Corollary 3.5. It follows that the map V(t2, x2) → AD(t2, x2)
defined by

v → (γv(α̃1(φ(v))), v)

is non anticipative and, setting α2(v) := γv(α̃1(φ(v))) we obtain a strategy satisfying
all the requirements of the claim, and, in particular, estimates (31) and (32).

Using again the definition of V �, employing the strategy α2 ∈ SU (t2, x2) con-
structed above, we have

V �(t2, x2) ≤ sup
v∈V(t2,x2)

J (t2, x2, α2(v), v) .

And, therefore, there exists a feasible control v̄2 ∈ V(t2, x2) = V[t2, T ] such that

V �(t2, x2) ≤ J (t2, x2, u2, α2(v̄2), v̄2) + ε .

Write x̄1(t) := x[t1, x1;α1(φ(v̄2)), φ(v̄2)](t) and x̄2(t) := x[t2, x2;α2(v̄2), v̄2](t).
Owing to the inequalities above, bearing in mind estimates (31)–(32), the Lipschitz
continuity properties of L and g (see condition (H3)) and the upper bound M(1+ R0)

for both the velocity of trajectories emanating from A ∩ r0B and for the Lagrangian
L along these trajectories (see (H2)), some routine analysis yields

V �(t2, x2) − V �(t1, x1) ≤ J (t2, x2, α2(v̄2), v̄2)

−J (t1, x1, α1(φ(v̄2)), φ(v̄2)) + 2ε

≤
∫ T

t2
L(t, x̄2(t), α2(v̄2)(t), v̄2(t)) dt

−
∫ T

t1
L(t, x̄1(t), α1(φ(v̄2))(t), φ(v̄2)(t)) dt + g(x̄1(T )) − g(x̄2(T )) + 2ε

≤
∫ T1

t1
|L(t, x̄1(t), α1(φ(v̄2))(t), φ(v̄2)(t))

− L(t + t2 − t1, x̄2(t + t2 − t1), α2(v̄2)(t + t2 − t1), v̄2(t + t2 − t1))| dt
+ M(1 + R0)|t1 − t2| + kgK |x1 − x2| + kgM(1 + R0)|t1 − t2| + 2ε
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≤
∫ T1

t1
|L(t, x̄1(t), α1(φ(v̄2))(t), φ(v̄2)(t))

−L(t, x̄1(t), α2(v̄2)(t + t2 − t1), φ(v̄2)(t))| dt
+

∫ T1

t1
|L(t, x̄1(t), α2(v̄2)(t + t2 − t1), φ(v̄2)(t))

− L(t + t2 − t1, x̄2(t + t2 − t1), α2(v̄2)(t + t2 − t1), v̄2(t + t2 − t1))| dt
+ kgK |x1 − x2| + M(1 + R0)(1 + kg)|t1 − t2| + 2ε

≤
∫ T1

t1
kL(|t1 − t2| + ‖x̄1(.) − x̄2(. − t1 + t2)‖L∞(t1,T1)) dt + kgK |x1 − x2|

+M(1 + R0)d[t1,T1](α1(φ(v̄2))(.), α2(v̄2)(. − t1 + t2))

+ M(1 + R0)(1 + kg)|t1 − t2| + 2ε

≤ T kL(|t1 − t2| + K |x1 − x2|) + kgK |x1 − x2|
+ M(1 + R0)

[
(1 + kg)|t1 − t2| + K |x1 − x2|

] + 2ε .

Exchanging the roles of (t1, x1) and (t2, x2) in the above inequalities, and letting ε ↓ 0
we finally obtain that

|V �(t1, x1) − V �(t2, x2)| ≤ K �(|t1 − t2| + |x1 − x2|) ,

for some constant K � > 0 (which depends only on r0 and the data of the differential
game), confirming the proposition statement. ��

4.1 Solutions of Hamilton–Jacobi–Isaacs equations

Theorem 4.3 Assume that conditions (H1)–(H5) are satisfied.

(i) If in addition (CQ1) is satisfied, then the lower value function V � is a viscosity
supersolution on [0, T ) × A and a viscosity subsolution on [0, T ) × int A of
equation (6) in which H = H �;

(ii) If in addition (CQ2) is satisfied, then the upper value function V � is a viscosity
supersolution on [0, T ) × int A and a viscosity subsolution on [0, T ) × A of
equation (6) in which H = H �.

Proof We start observing that the continuity of H � and H � follows immediately from
Berge Maximum Theorem (cf. [1, Theorem 1.4.16]). We shall prove below part (i).
Part (ii) is proved by applying part (i) to characterize −V �(t, x) as the lower value
function of a modified game, in which the original cost J (., ., ., .) is replaced by
−J (., ., ., .), and using the fact that a subgradient of −V � is expressible as −(ξ0, ξ1)

in which (ξ0, ξ1) is a supergradient of V � and vice-versa. Here, sub- and supergradients
are understood in the sense of gradients of minorizing or majorizing C1 test functions,
as in Definition 2.1.

Step 1 V � is a viscosity supersolution on [0, T ) × A of equation (6) with H = H �.
Take any (t0, x0) ∈ [0, T ) × A and let ϕ : R × R

n → R be a C1 function
such that V � − ϕ has a local minimum at (t0, x0) (relative to [0, T ] × A). It is not
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restrictive to assume that V �(t0, x0) = ϕ(t0, x0) and so there exists r0 ∈ (0, 1) such
that V �(t, x) ≥ ϕ(t, x), for all (t, x) ∈ (

(t0, x0) + r0B
) ∩ ([0, T ] × A

)
. Suppose in

contradiction that, for some θ > 0, we have

H �(t0, x0, ∂xϕ(t0, x0)) − ∂tϕ(t0, x0) ≤ −θ , (35)

and so

inf
v∈V sup

u∈U
H(t0, x0, ∂xϕ(t0, x0), u, v) − ∂tϕ(t0, x0) ≤ −θ .

Take v0 ∈ V such that

sup
u∈U

H(t0, x0, ∂xϕ(t0, x0), u, v0) − ∂tϕ(t0, x0) ≤ −θ ,

and, by continuity of the functions involved in the expression above, we obtain, fol-
lowing a reduction in the size of r0 > 0 if required,

sup
u∈U

H(t, x, ∂xϕ(t, x), u, v0) − ∂tϕ(t, x) ≤ −θ

2
, (36)

for all (t, x) ∈ (
(t0, x0) + r0B

) ∩ ([0, T ] × A
)
. Define the control ṽ(.) ≡ v0. From

Proposition 3.4 we know that the control ṽ ∈ V(t, x). Since an upper bound can be
established for the speed of all trajectories emanating from

(
(t0, x0)+B

)∩([0, T ]×A
)
,

from (36) we deduce that there exists σ0 ∈ (0, T − t0) such that for every strategy
α ∈ SU (t0, x0) and for every s ∈ [0, σ0], we have

H(s, x(s), ∂xϕ(s, x(s)), α(ṽ)(s), ṽ(s)) − ∂tϕ(s, x(s)) ≤ −θ

2
,

where x(s) := x[t0, x0;α(ṽ), ṽ](s). It follows that, for every strategy α ∈ SU (t0, x0)
and for every σ ∈ [0, σ0], we obtain

∫ t0+σ

t0

[
H(s, x̃(s), ∂xϕ(s, x̃(s)), α(ṽ)(s), ṽ(s)) − ∂tϕ(s, x̃(s))

]
ds ≤ −θσ

2
, (37)

where x̃(s) := x[t0, x0;α(ṽ), ṽ](s).
On the other hand, invoking the Dynamic Programming Principle (Proposition 4.1),

writing x(s) := x[t0, x0;α(v), v](s), we deduce:

0 = inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0
L(s, x(s), α(v)(s), v(s)) ds

+ V �
(
t0 + σ, x(t0 + σ)

) − V �(t0, x0)

}
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≥ inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0
L(s, x(s), α(v)(s), v(s)) ds

+ϕ
(
t0 + σ, x(t0 + σ)

) − ϕ(t0, x0)

}

= inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0

[
L(s, x(s), α(v)(s), v(s))

+ ∂xϕ(s, x(s)) · f (s, x(s), α(v)(s), v(s)) + ∂tϕ(s, x(s))
]
ds

}

= inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{

−
∫ t0+σ

t0

[
H(s, x(s), ∂xϕ(s, x(s)), α(v)(s), v(s))

− ∂tϕ(s, x(s))
]
ds

}

≥ inf
α∈SU ([t0,t0+σ ],x0)

{

−
∫ t+σ

t

[
H(s, x̃(s), ∂xϕ(s, x̃(s)), α(ṽ)(s), ṽ(s))

− ∂tϕ(s, x̃(s))
]
ds

}

.

This relation together with (37) provides a contradiction.
Step 2 V � is a viscosity subsolution on [0, T ) × int A of equation (6) with H = H �.

Take any (t0, x0) ∈ [0, T ) × int A and let ϕ : R × R
n → R be a C1 function such

that V � − ϕ has a local maximum at (t0, x0) (relative to [0, T ] × A). Again it is not
restrictive to assume that V �(t0, x0) = ϕ(t0, x0) and so there exists r0 ∈ (0, 1) such
that

(
(t0, x0) + r0B

) ∩ ([0, T ] × A
) ⊂ [0, T ] × int A, and V �(t, x) ≤ ϕ(t, x) for

all (t, x) ∈ (
(t0, x0) + r0B

) ∩ ([0, T ] × A
)
. Suppose in contradiction that, for some

θ > 0, we have
H �(t0, x0, ∂xϕ(t0, x0)) − ∂tϕ(t0, x0) ≥ θ (38)

that is

inf
v∈V sup

u∈U
H(t0, x0, ∂xϕ(t0, x0), u, v) − ∂tϕ(t0, x0) ≥ θ .

We also have that the multifunction

v � G(v) := argmax{H(t0, x0, ∂xϕ(t0, x0), u, v) − ∂tϕ(t0, x0) | u ∈ U }

takes values (non-empty) compact subsets ofU and is upper-semi-continuous (owing
to Berge’s Theorem). Then, classical results on set-valued maps (cf. [1, Prop. 8.2.1])
imply that G(.) is Borel-measurable and, therefore, there exists a Borel-measurable
selection ū(v) ∈ G(v) (cf. [1, Thm. 8.1.3] for a measurable selection theorem). Con-
sider any control v ∈ V(t0, x0). The map (defined on [t0, T ])

t → ū(v(t)) is measurable on [t0, T ]
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and takes values in U . Observe also, from the construction above, that

H(t0, x0, ∂xϕ(t0, x0), ū(v(t)), v(t)) − ∂tϕ(t0, x0) ≥ θ .

Write x̄(.) := x[t0, x0; ū(v), v](.). From the regularity of ϕ and of the functions
involved in the definition ofH, and since there exists an upper bound for the speed of
all trajectories starting from x0, we can find σ0 ∈ (0, (T − t0) ∧ r0/2) such that

x̄(s) ∈ x0 + r0
2
B ⊂ int A, for all s ∈ [t0, t0 + σ0],

and

H(s, x̄(s), ∂ϕx (s, x̄(s)), ū(v(s)), v(s))−∂ϕt (s, x̄(s)) ≥ θ

2
, for all s ∈ [t0, t0+σ0].

(39)
Define now the map ᾱ : V(t0, x0) → U(t0, x0) as follows

ᾱ(v)(t) :=
{
ū(v(t)) ∀t ∈ [t0, t0 + σ0)

�t0+σ0,x̄(t0+σ0)(v)(t) ∀t ∈ [t0 + σ0, T ] ,

where �t0+σ0,x ∈ SU (t0 + σ0, x) is the strategy defined as in (26) (we can always
fix a measurable function û ∈ U[t0 + σ0, T ] to construct �t0+σ0,x , for all x ∈ A).
Clearly ᾱ ∈ SU (t0, x0), and also ᾱ ∈ SU ([t0, t0 + σ ], x0) for all σ ∈ [0, σ0]. Now,
for a given control v ∈ V(t0, x0), we still use notation x̄(.) := x[t0, x0; ᾱ(v), v](.) for
the (admissible) trajectory which now involves the strategy-control pair (ᾱ, v). From
(39) we immediately deduce that

H(s, x̄(s), ∂ϕx (s, x̄(s)), ᾱ(v)(s), v(s))

−∂ϕt (s, x̄(s)) ≥ θ

2
, for all s ∈ [t0, t0 + σ0].

Therefore, for all σ ∈ [0, σ0], integrating on [t0, t0 + σ ], we obtain that

inf
v∈V(t0,x0)

∫ t0+σ

t0

[
H(s, x(s), ∂xϕ(s, x̄(s)), ᾱ(v)(s), v(s)) − ∂tϕ(s, x̄(s))

]
ds ≥ θσ

2
.

(40)
But, the Dynamic Programming Principle Proposition 4.1 (writing x(s) := x[t0, x0;
α(v), v](s)) yields:

0 = inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0
L(s, x(s), α(v)(s), v(s)) ds

+ V �
(
t0 + σ, x(t0 + σ)

) − V �(t0, x0)

}

≤ inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{∫ t0+σ

t0
L(s, x(s), α(v)(s), v(s)) ds
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+ϕ
(
t0 + σ, x(t0 + σ)

) − ϕ(t0, x0)

}

= inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{

−
∫ t0+σ

t0

[
H(s, x(s), ∂xϕ(s, x(s)), α(v)(s), v(s))

− ∂tϕ(s, x(s))
]
ds

}

≤ sup
v∈V(t0,x0)

{

−
∫ t+σ

t

[
H(s, x̄(s), ∂xϕ(s, x̄(s)), ᾱ(v)(s), v(s))

− ∂tϕ(s, x̄(s))
]
ds

}

.

We have arrived at a contradiction to (40) and the proof is complete. ��
Proposition 4.4 Assume that conditions (H1)–(H5) are satisfied.

(i) If in addition (CQ1) and (CQ3) are satisfied, then the lower value function V � is
simultaneously a viscosity supersolution and a viscosity subsolution on [0, T )× A
of equation (6) in which H = H �;

(ii) If in addition (CQ2) and (CQ4) are satisfied, then the upper value function V � is
simultaneously a viscosity supersolution and a viscosity subsolution on [0, T )× A
of equation (6) in which H = H �.

Proof Again we provide just the proof of (i) since (ii) can be derived arguing in a
similar way. The fact that V � is a viscosity supersolution on [0, T ) × A of equation
(6) with H = H � has been already established in Theorem 4.3. So we have to prove
that V � is a viscosity subsolution on [0, T ) × A of equation (6) with H = H �.

Take any (t0, x0) ∈ [0, T ) × A and let ϕ : R × R
n → R be a C1 function such

that V � − ϕ has a local maximum at (t0, x0) (relative to [0, T ] × A). We can restrict
attention to the case when x0 ∈ ∂A, since otherwise, if x0 ∈ int A, then the analysis
is like in step 2 of the proof of Theorem 4.3. And it is not restrictive to assume that
V �(t0, x0) = ϕ(t0, x0) and that there exists r0 ∈ (0, 1) such that V �(t, x) ≤ ϕ(t, x)
for all (t, x) ∈ (

(t0, x0)+r0B
)∩([0, T ]× A

)
. Suppose in contradiction that, for some

θ > 0, we have

θ ≤ H �(t0, x0, ∂xϕ(t0, x0)) − ∂tϕ(t0, x0)

= inf
v∈V sup

u∈U
H(t0, x0, ∂xϕ(t0, x0), u, v) − ∂tϕ(t0, x0) .

Invoking (CQ3)we can find u0 ∈ U , v0 ∈ V and η0 > 0 such that, eventually reducing
the size of the radius r0, from the continuity ofH, ∂tϕ and ∂xϕ, we obtain

H(t, x, ∂xϕ(t, x), u0, v0) − ∂tϕ(t, x) ≥ θ

2
, (41)

and
∇h(x) · f (x, u0, v0) < −η0 , (42)
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for all (t, x) ∈ (
(t0, x0) + r0B

) ∩ ([0, T ] × A
)
. We also know that we can find

σ0 ∈ (0, (T − t0) ∧ r0/2) such that all trajectories x(.)s starting from x0 satisfy the
inclusion x(s) ∈ x0 + r0

2 B for all s ∈ [t0, t0 + σ0]. Fix the control ũ(.) ≡ u0 and
consider the admissible strategy for player one α0 ∈ SU (t0, x0) defined as in (26) of
the proof of Proposition 3.4 taking ũ(.) ≡ u0 as reference control:

α0(.) := �t0,x0(v)(.) = γt0,x0(ũ ≡ u0)(.).

Observe that α0 ∈ SU (t0 + σ0, x0) and, from (42) and the construction of γt0,x0(ũ ≡
u0), for the (constant) control ṽ(.) ≡ v0 ∈ V(t0, x0) we obtain α0(ṽ ≡ v0)(s) = u0
for a.e. s ∈ [t0, t0 + σ0].

Therefore, invoking once again the Dynamic Programming Principle Proposi-
tion 4.1 and using inequality (41) (writing x(.) := x[t0, x0;α(v), v](.), x̃(.) :=
x[t0, x0;α0(v), v](.) and x̃0(.) := x[t0, x0;α0(ṽ ≡ v0), ṽ ≡ v0](.) to make the nota-
tion simpler), for all σ ∈ [0, σ0] we arrive at the following sequence of inequalities:

0 ≤ inf
α∈SU ([t0,t0+σ ],x0)

sup
v∈V(t0,x0)

{

−
∫ t0+σ

t0

[
H(s, x(s), ∂xϕ(s, x(s)), α(v)(s), v(s))

− ∂tϕ(s, x(s))
]
ds

}

≤ sup
v∈V(t0,x0)

{

−
∫ t+σ

t

[
H(s, x̃(s), ∂xϕ(s, x̃(s)), α0(v)(s), v(s))

− ∂tϕ(s, x̃(s))
]
ds

}

≤
{

−
∫ t+σ

t

[
H(s, x̃0(s), ∂xϕ(s, x̃0(s)), α0(v0)(s), v0) − ∂tϕ(s, x̃0(s))

]
ds

}

≤ −θ

2
σ < 0 .

This is a contradiction and the proof is complete. ��
Immediate consequences of Theorem 4.3 and Proposition 4.4 are the following corol-
laries.

Corollary 4.5 Assume that (H1)–(H5), (CQ1) and (CQ2) hold true. Suppose moreover
that the Isaacs condition

H �(t, x, p) = H �(t, x, p), ∀ (t, x, p) ∈ [0, T ) × A × R
n

is satisfied. Then,

(i) the lower value function V � is a viscosity supersolution on [0, T ) × A and a
viscosity subsolution on [0, T ) × int A of equation (6) also with H = H �

(ii) the upper value function V � is a viscosity supersolution on [0, T ) × int A and a
viscosity subsolution on [0, T ) × A of equation (6) also with H = H �.
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Corollary 4.6 Assume that (H1)–(H5) and (CQ1)–(CQ2) hold true. Suppose moreover
that the Isaacs condition

H �(t, x, p) = H �(t, x, p), ∀ (t, x, p) ∈ [0, T ) × A × R
n

and (CQ3) (or equivalently (CQ4)) are satisfied. Then,

(i) the lower value function V � is a viscosity solution on [0, T ) × A of equation (6)
also with H = H �

(ii) the upper value function V � is a viscosity solution on [0, T ) × A of equation (6)
also with H = H �.

5 Comparison and Uniqueness Results

Theorem 5.1 Assume that conditions (H1)–(H5) are satisfied and that A is compact.

(i) Suppose in addition that (CQ1) is satisfied and consider equation (6) in which
we take H = H �. Take two continuous functions W1, W2 : [0, T ] × A −→ R

satisfying the following properties

(a) W1(T , .) = W2(T , .) (= g(.)) on A;
(b) W1(t, x) is a viscosity subsolution on [0, T ) × int A of equation (6);
(c) W2(t, x) is a viscosity supersolution on [0, T ) × A of equation (6).

Then we obtain:

W1(t, x) ≤ W2(t, x), ∀(t, x) ∈ [0, T ] × A .

(ii) Suppose in addition that (CQ2) is satisfied and consider equation (6) in which
we take H = H �. Take two continuous functions W1, W2 : [0, T ] × A −→ R

satisfying the properties (a)-(c) of (i) above. Then we obtain:

W1(t, x) ≤ W2(t, x), ∀(t, x) ∈ [0, T ] × A .

Proof We shall prove only part (i) of Theorem 5.1, in which we take the Hamiltonian
to be H = H �. The proof of part (ii) is similar.

Step 1 Suppose, in contradiction, that sup(t,x)∈[0,T ]×A W1(t, x)−W2(t, x) > 0. Then,
there would exist a point (s̄0, x̄0) ∈ [0, T ) × A such that:

W1(s̄0, x̄0) − W2(s̄0, x̄0) > 0 . (43)

We now follow an approach based on a Kruzkov type transform. Let M ∈ R be a
lower bound for both W1 and W2. We can choose the constant M in such a manner
that M ≤ 0 and

L(s, x, u, v) − M ≥ 1 , for all u ∈ U , v ∈ V , (44)
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for all s ∈ [0, T ], and x ∈ A. Take a positive constant c such that c ≥ 1−MT . Define
the functions

W̃i (t, x) := 1

1 + t
log

(
Wi (T − t, x) + M(T − t) − M + c

)
, i = 1, 2 ,

and the Hamiltonian H̃ � : R1+n+1+1+n → R:

H̃ �(t, x, w, pt , px ) := inf
v∈V sup

u∈U
H̃(t, x, w, pt , px , u, v) ,

where

H̃(t, x, w, pt , px , u, v) : = (1 + t)pt − (1 + t) f (x, u, v) · px
− L(T − t, x, u, v) − M

e(1+t)w
.

Write t̄0 := T−s̄0(> 0). Observe that, passing to functions W̃i ’s (which are continuous
on [0, T ]× A), from (43) and the compactness of A there would exist a number σ > 0
and a point (t̄, x̄) ∈ (0, T ] × A such that:

σ := W̃1(t̄, x̄) − W̃2(t̄, x̄) = max
(t,x)∈[0,T ]×A

(W̃1(t, x) − W̃2(t, x))

≥ W̃1(t̄0, x̄0) − W̃2(t̄0, x̄0) > 0 . (45)

We restrict attention to the case when ‘x̄ ∈ ∂A’, since dealing with the case ‘x̄ ∈ int A’
is similar, but simpler (cf. [2,14]).

We claim that W̃1 and W̃2 satisfy the conditions for being a viscosity subsolution
on (0, T ) × int A, and a viscosity supersolution on (0, T ] × A, respectively, of

{
W (t, x) + H̃ �

(
t, x,W (t, x), ∂tW (t, x), ∂xW (t, x)

)
= 0 on (0, T ) × A

W (0, x) = g̃(x) on A ,
(46)

where g̃(x) := log(g(x) − M + c).
Indeed, assume that (t0, x0) ∈ (0, T ]×A is a localminimizer for W̃2−ψ whereψ is

a C1 function. It is not restrictive to suppose that (W̃2 −ψ)(t0, x0) = 0 and, so, locally
we have W̃2 ≥ ψ . Consider the C1 test function ϕ(s, x) := e(1+T−s)ψ(T−s,x) − Ms +
M − c. From the monotonicity of the exponential function, we obtain that (T − t0, x0)
is a local minimizer for (t, x) → (W2−ϕ)(t, x). Consequently, sinceW2 is a viscosity
supersolution of (6), we have

H �(T − t0, x0, ∂xϕ(T − t0, x0)) − ∂tϕ(T − t0, x0) ≥ 0 ,

which yields

inf
v∈V sup

u∈U
H(T − t0, x0, ∂xϕ(T − t0, x0), u, v) − ∂sϕ(T − t0, x0) ≥ 0 . (47)
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On the other hand, from the definition of ϕ, we also have:

∂sϕ(T − t0, x0) = −e(1+t0)ψ(t0,x0) [(1 + t0)∂tψ(t0, x0) + ψ(t0, x0)] − M ;
∂xϕ(T − t0, x0) = e(1+t0)ψ(t0,x0) (1 + t0) ∂xψ(t0, x0) .

Substituting these quantities in (47), we obtain

0 ≤ ψ(t0, x0) + inf
v∈V sup

u∈U

{
(1 + t0)∂tψ(t0, x0)

−(1 + t0) f (x0, u, v) · ∂xψ(t0, x0) − L(T − t0, x0, u, v) − M

e(1+t0)ψ(t0,x0)

}

= ψ(t0, x0) + H̃ �
(
t0, x0, ψ(t0, x0), ∂tψ(t0, x0), ∂xψ(t0, x0)

)
.

which yields that W̃2 is a viscosity supersolution of (46) on (0, T ] × A.
The fact that W̃1 is a viscosity subsolution on (0, T ) × int A of (46) can be shown

by similar techniques. So we omit its proof.

Step 2 This step consists in selecting suitable test functions. Define ξ̄ := −∇h(x̄) (∈
int TA(x̄)). From the characterization of the interior of the Clarke tangent cone of A
at x̄ , TA(x̄), (cf. [20]), we can find constants δ ∈ (0, 1) and η ∈ (0, 1) such that

z + (0, δ](ξ̄ + ηB) ⊂ intA , for all z ∈ (x̄ + 2δB) ∩ A .

Write ω(.) : R+ → R+ for a modulus of continuity for functions W̃i ’s. Notice that
ω(.) can be considered bounded from above by a constant C > 0, since the W̃i ’s are
bounded on [0, T ] × A.

For any n ∈ N fixed, we define the continuous (bounded from above) function φn

depending on the variables s, t ∈ [0, T ], x, y ∈ A:

φn(s, t, x, y) := W̃1(s, x) − W̃2(t, y) − n2
∣
∣
∣
∣x − y − 1

n
ξ̄

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣s − t + 1√

n

∣
∣
∣
∣

2

−|y − x̄ |2 − |t − t̄ |2 . (48)

Let (sn, tn, xn, yn) ∈ [0, T ]2 × A2 be a point of maximum for φn , which exists since
A is compact:

φn(sn, tn, xn, yn) = max
(s,t,x,y)∈[0,T ]2×A2

φn(s, t, x, y) .

Observe that, for all n > max{ 1
δ
; ( 4

t̄

)2}, (t̄ − 1√
n
, x̄ + 1

n ξ̄ ) ∈ (0, T ) × intA and we
have

φn(sn, tn, xn, yn) ≥ φn

(

t̄ − 1√
n
, t̄, x̄ + 1

n
ξ̄ , x̄

)

. (49)

We claim that

lim
n→∞ xn = lim

n→∞ yn = x̄ and lim
n→∞ sn = lim

n→∞ tn = t̄ .
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Indeed, from (48) and (49), for each n > max{ 1
δ
; ( 4

t̄

)2} we obtain

0 ≤ W̃1(sn, xn) − W̃2(tn, yn)) −
[

W̃1

(

t̄ − 1√
n
, x̄ + 1

n
ξ̄

)

− W̃2(t̄, x̄)

]

−n2
∣
∣
∣
∣xn − yn − 1

n
ξ̄

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣sn − tn + 1√

n

∣
∣
∣
∣

2

− |yn − x̄ |2 − |tn − t̄ |2 .

As a consequence, since from (45) the term (W̃1(sn, xn)− W̃2(sn, xn))− (W̃1(t̄, x̄)−
W̃2(t̄, x̄)) ≤ 0, and making use of the modulus of continuity ω(.) (which is bounded
by C), we deduce that

n2
∣
∣
∣
∣xn − yn − 1

n
ξ̄

∣
∣
∣
∣

2

+ n2
∣
∣
∣
∣sn − tn + 1√

n

∣
∣
∣
∣

2

+ |yn − x̄ |2 + |tn − t̄ |2

≤ ω(|(sn − tn, xn − yn)|) + ω

(∣
∣
∣
∣

(
1√
n
,
ξ̄

n

)∣
∣
∣
∣

)

≤ 2C . (50)

It follows that
∣
∣
∣
∣xn − yn − 1

n
ξ̄

∣
∣
∣
∣ ,

∣
∣
∣
∣sn − tn + 1√

n

∣
∣
∣
∣ ≤

√
2C

n
,

|yn − x̄ |, |tn − t̄ | ≤ √
2C ,

|xn − yn| ≤ 1

n

(√
2C + |ξ̄ |

)
,

|sn − tn| ≤ 1√
n

(√
2C√
n

+ 1

)

.

Extracting a subsequence, we obtain in the limit

lim
n→∞ xn = lim

n→∞ yn = x̃ and lim
n→∞ sn = lim

n→∞ tn = t̃ ,

for some (t̃, x̃) ∈ [0, T ] × A. Using again (50), and observing that

lim
n→∞

[

ω(|(sn − tn, xn − yn)|) + ω

(∣
∣
∣
∣

(
1√
n
,
ξ̄

n

)∣
∣
∣
∣

)]

= 0 , (51)

we deduce that (t̃, x̃) = (t̄, x̄).

Step 3 Take n̄ ∈ N large enough such that

n̄ > max

{
1

δ
;
(
4

t̄

)2
}

,
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and, for all n ≥ n̄, we have:

ω(|(sn − tn, xn − yn)|) + ω

(∣
∣
∣
∣

(
1√
n
,
ξ̄

n

)∣
∣
∣
∣

)

≤ min

{

η2; δ2; t̄
2

4

}

. (52)

Considering (50) with this choice of n̄, we see that, for all n ≥ n̄,

0 < tn , 0 < sn < T , yn ∈ (x̄ + δB) ∩ A ,

xn ∈ yn + 1

n
[ξ̄ + ηB] ⊂ yn + δ[ξ̄ + ηB] ⊂ intA .

As a consequence (sn, xn) ∈ (0, T ) × int A, and (tn, yn) ∈ (0, T ] × A.
Fix n ∈ N with n ≥ n̄. We define the test functions ψ1, ψ2 : [0, T ] × R

n → R as
follows:

ψ1(s, x) := W̃2(tn, yn) + n2
∣
∣
∣
∣x − yn − 1

n
ξ̄

∣
∣
∣
∣

2

+ n2
∣
∣
∣
∣s − tn + 1√

n

∣
∣
∣
∣

2

+|yn − x̄ |2 + |tn − t̄ |2 ,

and

ψ2(t, y) := W̃1(sn, xn) − n2
∣
∣
∣
∣xn − y − 1

n
ξ̄

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣sn − t + 1√

n

∣
∣
∣
∣

2

+|y − x̄ |2 + |t − t̄ |2 .

Observe that the point (sn, xn) is a local maximizer for the function W̃1 − ψ1 (on
[0, T ]×A). Since W̃1 is a viscosity subsolution of (46) on (0, T )×int A, it immediately
follows that

W̃1(sn, xn) + H̃ �
(
sn, xn, W̃1(sn, xn), ∂sψ1(sn, xn), ∂xψ1(sn, xn)

)
≤ 0 . (53)

Similarly, since (tn, yn) is a local minimizer for the function W̃2 − ψ2 on [0, T ] × A,
and W̃2 is a viscosity supersolution of (46) on (0, T ] × A, we also have

0 ≤ W̃2(tn, yn) + H̃ �
(
tn, yn, W̃2(tn, yn), ∂tψ2(tn, yn), ∂yψ2(tn, yn)

)
. (54)

Taking into account inequalities (53) and (54), for all n ≥ n̄ we obtain:

W̃1(sn, xn) − W̃2(tn, yn) ≤ H̃ �
(
tn, yn, W̃2(tn, yn), ∂tψ2(tn, yn), ∂yψ2(tn, yn)

)

−H̃ �
(
sn, xn, W̃1(sn, xn), ∂sψ1(sn, xn), ∂xψ1(sn, xn)

)
.

Letting n → +∞, taking into account the regularity properties of all the functions
involved (W̃i and ψi for i = 1, 2 and H̃ �), it follows that
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0 < σ = W̃1(t̄, x̄) − W̃2(t̄, x̄)

≤ H̃ �
(
t̄, x̄, W̃2(t̄, x̄), ∂tψ2(t̄, x̄), ∂xψ2(t̄, x̄)

)

−H̃ �
(
t̄, x̄, W̃1(t̄, x̄), ∂tψ1(t̄, x̄), ∂xψ1(t̄, x̄)

)
. (55)

Therefore, considering the expressions for the derivatives of ψ1 and ψ2, bearing in
mind the limit behaviour of the sequences (sn, xn) and (tn, yn) (cf. also (50) and (51)),
using the definition of the Hamiltonian H̃ �, the inequality (55) above, for suitable
ū ∈ U and v̄ ∈ V , implies

0 < σ ≤ − L(T − t̄, x̄, ū, v̄) − M

e(1+t̄)W̃2(t̄,x̄)
− L(T − t̄, x̄, ū, v̄) − M

e(1+t̄)W̃1(t̄,x̄)

= (
L(T − t̄, x̄, ū, v̄) − M

)eW̃2(t̄,x̄) − eW̃1(t̄,x̄)

eW̃1(t̄,x̄)+W̃2(t̄,x̄)
.

From (44) it follows that

eW̃2(t̄,x̄) − eW̃1(t̄,x̄) > 0 .

But this contradicts (45).
We conclude that W1(t, x) − W2(t, x) ≤ 0 for all (t, x) ∈ [0, T ] × A, confirming

the assertions of the theorem. ��
Observe that in step 2 of the proof of Theorem 5.1 we can replace the continuous
function φn defined in (48) by the function φ̃n (still depending on the variables s, t ∈
[0, T ], x, y ∈ A), in which we have exchanged x and y in the term n2|y − x − 1

n ξ̄ |2:

φ̃n(s, t, x, y) := W̃1(s, x) − W̃2(t, y) − n2
∣
∣
∣
∣y − x − 1

n
ξ̄

∣
∣
∣
∣

2

− n2
∣
∣
∣
∣s − t + 1√

n

∣
∣
∣
∣

2

−|y − x̄ |2 − |t − t̄ |2 .

It is then easy to check that thisminormodificationproduces a sequence {(sn, tn, xn, yn)}
in [0, T ]2 × A2 such that, this time, we have yn ∈ int A for each n large enough. This
suits very well with the fact that (tn, yn) is a local minimizer for the function W̃2 − ψ̃2
(where ψ̃2 is a function obtained by a suitable modification of ψ2), and now W̃2 is a
viscosity supersolution of (46) (on (0, T ] × int A). Then, arguing as in the proof of
Theorem 5.1, we obtain the following proposition.

Proposition 5.2 Assume that conditions (H1)–(H5) are satisfied and that A is compact.
Then all the assertions of Theorem 5.1 remain valid when we replace (b) and (c) by
(b)′ and (c)′ below:

(b)′ W1(t, x) is a viscosity subsolution on [0, T ) × A of equation (6);
(c)′ W2(t, x) is a viscosity supersolution on [0, T ) × int A of equation (6).
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