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Abstract
An existence result for a class of mean field games of controls is provided. In the
considered model, the cost functional to be minimized by each agent involves a price
depending at a given time on the controls of all agents and a congestion term. The
existence of a classical solution is demonstrated with the Leray–Schauder theorem;
the proof relies in particular on a priori bounds for the solution, which are obtained
with the help of a potential formulation of the problem.
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1 Introduction

The goal of this work is to prove the existence and uniqueness of a classical solution
to the following system of partial differential equations:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) −∂t u − σΔu + H(x, t,∇u(x, t) + φ(x, t)ᵀP(t))
= f (x, t,m(t)) (x, t) ∈ Q,

(i i) ∂tm − σΔm + div(vm) = 0 (x, t) ∈ Q,

(i i i) P(t) = Ψ
(
t,

∫

Td φ(x, t)v(x, t)m(x, t) dx
)

t ∈ [0, T ],
(iv) v(x, t) = −Hp(x, t,∇u(x, t) + φ(x, t)ᵀP(t)) (x, t) ∈ Q,

(v) m(x, 0) = m0(x), u(x, T ) = g(x) x ∈ T
d ,

(MFGC)

where u = u(x, t) ∈ R, m = m(x, t) ∈ R, v = v(x, t) ∈ R
d , P = P(t) ∈ R

k , with
(x, t) ∈ Q := T

d × [0, T ]. The parameters T > 0, σ > 0 are given and

H : (x, t, p) ∈ Q × R
d → R, Ψ : (t, z) ∈ [0, T ] × R

k → R
k,

φ : (x, t) ∈ Q → R
k×d , f : (x, t,m) ∈ Q × D1(T

d) → R,

m0 ∈ D1(T
d), g : x ∈ T

d → R

are given data. The set D1(T
d) is defined as

D1(T
d) =

{
m ∈ L∞(Td) |m ≥ 0,

∫

Td
m(x) dx = 1

}
. (1)

We work with Z
d -periodic data and we set the state set as the d-dimensional torus

T
d , that is a quotient set Rd/Zd . The Hamiltonian H is assumed to be such that

H(x, t, p) = L∗(x, t,−p), for some mapping L , where L∗(x, t, p) denotes the
Fenchel transform with respect to p:

H(x, t, p) := sup
v∈Rd

−〈p, v〉 − L(x, t, v).

The mapping L is assumed to be convex in its third variable.
The function u, as a solution to the Hamilton–Jacobi–Bellman (HJB) in equation (i)

(MFGC) is the value function corresponding to the stochastic optimal control problem:

u(x, t) = inf
α

E

[ ∫ T

t
L(Xs, s, αs) + 〈φ(Xs, s)

ᵀP(s), αs〉 ds

+
∫ T

t
f (Xs, s,m(s)) ds + g(XT )

]
, (2)

subject to the stochastic dynamics dXs = αs ds + √
2σ dBs, Xt = x ∈ T

d . The
feedback law v given by (iv) (MFGC) is then optimal for this stochastic optimal control
problem. Equation (ii) (MFGC) is the Fokker–Planck equation which describes the
evolution of the distribution m(t) of the agents, when the optimal feedback law is
employed. At last, (iii) (MFGC) makes the quantity P(t) endogenous.

An interpretation of the system (MFGC) is as follows. Consider a stock trading
market. A typical trader, with an initial level of stock X0 = x , controls its level
of stock (Xt )t∈[0,T ] through the purchasing rate αt with stochastic dynamic dXt =
αtdt+

√
2σdBt . The agent aims at minimizing the expected cost (2) where P(t) is the
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price of the stock at time t . The agent is considered to be infinitesimal and has no impact
on P(t), so it assumes the price as given in its optimization problem.On the other hand,
in the equilibrium configuration, the price P(t) (t ∈ [0, T ]) becomes endogenous and
indeed, is a function of the optimal behaviour of the whole population of agents as
formulated in (iii) (MFGC). The expression D(t) := ∫

Td φ(x, t)v(x, t)m(x, t) dx
can be considered as a weighted net demand formulation and the relation P = Ψ (D)

is the result of supply-demand relation which determines the price of the good at
the market. Concerning the role of the mapping φ, one can think for example to
the case of two exchangeable goods, i.e. x ∈ R

2, with a price given by P(t) =
Ψ (

∫

Td (φ1(x, t)v1(x, t)+φ2(x, t)v2(x, t))m(x, t) dx), whereΨ : R → R. The use of
a mapping φ, which is valued in R1×2 and whose values depend on the scale choosed
for the goods, is in such a situation necessary. Thus, the system (MFGC) captures
an equilibrium configuration. Similar models have been proposed in the electrical
engineering literature, see for example [2,10,11] and the references therein.

In most mean field game models, the individual players interact through their posi-
tion only, that is, via the variablem. The problem that we consider belongs to the more
general class of problems, called extended mean field games, for which the players
interact through the joint probability distribution μ of states and controls. Several
existence results have been obtained for such models: in [13] for stationary mean
field games, in [15] for deterministic mean field games. In [6, Section 5], a class of
problems where μ enters in the drift and the integral cost of the agents is considered.
We adopt the terminology mean field games of controls employed by the authors of
the latter reference. Let us mention that our existence proof is different from the one
of [6], which includes control bounds. In [3, Section 1], a model where the drift of
the players depends on μ is analyzed. In [14], a mean field game model is considered
where at all time t , the average control (with respect to all players) is prescribed. We
finally mention that extended mean field games have been studied with a probabilistic
approach in [1,8] and in [7, Section 4.6], and that a class of linear-quadratic extended
mean field games has been analyzed in [20].

A difficulty in the study of mean field games of controls, directly related to the
supply-demand relation mentioned above, is the fact that the control variable, at a
given time t , cannot be expressed in an explicit fashion as a function of m(·, t) and
u(·, t). Instead, one has to analyze the well-posedness and the stability of a fixed point
equation (see for example [6, Lemma 5.2]). In our model, if we combine (iii) and (iv)
(MFGC), we obtain the fixed point equation

v = −Hp(∇u + Ψ (∫φvm)) (3)

for the control variable v. A central idea of the present article is the following: equation
(3) is equivalent to the optimality conditions of a convex optimization problem, when
L is convex and Ψ is the gradient of a convex function Φ. This observation allows to
show the existence and uniqueness of a solution v (to equation (3)) and to investigate
its dependence with respect to ∇u and m in a natural way. More precisely, we prove
that this dependence is locally Hölder continuous.

The existence of a classical solution of (MFGC) is established with the Leray–
Schauder theorem and classical estimates for parabolic equations. A similar approach

123



1434 Applied Mathematics & Optimization (2021) 83:1431–1464

has been employed in [16], [17], and [18] for the analysis of ameanfield game problem
proposed by Chan and Sircar [9]. In this model, each agent exploits an exhaustible
resource and fixes its price. The evolution of the capacity of a given producer depends
on the price set by the producer, but also on the average price (with respect to all
producers).

The application of the Leray–Schauder theorem relies on a priori bounds for fixed
points. These bounds are obtained in particular with a potential formulation of the
mean field game problem: we prove that all solutions to (MFGC) are also solutions to
an optimal control problem of the Fokker–Planck equation. We are not aware of any
other publication making use of such a potential formulation for a mean field game
of controls, with the exception of [17] for the Chan and Sircar model. Let us mention
that besides the derivation of a priori bounds, the potential formulation of the problem
can be very helpful for the numerical resolution of the problem and the analysis of
learning procedures (which are out of the scope of the present work).

The article is structured as follows. We list in Sect. 2 the assumptions employed
all along. The main result (Theorem 1) is stated in Sect. 3. We provide in Sect. 4 a
first incomplete potential formulation of the problem, incomplete in so far as the term
f (m) is not integrated. We also introduce some auxiliary mappings, which allow to
express P and v as functions of m and u. We give some regularity properties for these
mappings in Sect. 5. In Sect. 6 we establish some a priori bounds for solutions to the
coupled system. We prove our main result in Sect. 7. In Sec. 8, we give a full potential
formulation of the problem, prove the uniqueness of the solution to (MFGC) and prove
that (u, P, f (m)) is the solution to an optimal control problem of the HJB equation,
under an additional monotonicity condition on f . Some parabolic estimates, used all
along the article, are provided and proved in the appendix.

2 Assumptions on Data

Let us introduce the main notation used in the article. Recall thatD1(T
d) was defined

in (1). For all m ∈ D1(T
d), for all measurable functions v : Td → R

d such that
|v(·)|2m(·) is integrable, the following inequality holds true,

∣
∣
∣

∫

Td
v(x)m(x) dx

∣
∣
∣
2 ≤

∫

Td
|v(x)|2m(x) dx, (4)

by the Cauchy–Schwarz inequality.
The gradient of the data functions with respect to some variable is denoted with

an index, for example, Hp denotes the gradient of H with respect to p. The same
notation is used for the Hessian matrix. The gradient of u with respect to x is denoted
by ∇u. Let us mention that very often, the variables x and t are omitted, to alleviate
the calculations. We also denote by

∫
φvm the integral

∫

Td φvm dx when used as a
second argument of Ψ . For a given normed space X , the ball of center 0 and radius R
is denoted B(X , R).

Along the article, we use the following Hölder spaces: Cα(Q), C2+α(Td), and
C2+α,1+α/2(Q), defined as usual with α ∈ (0, 1). Sobolev spaces are denoted by
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Wk,p, the order of derivation k being possibly non-integral (see their definition in
[19, section II.2]). We fix now a real number p such that

p > d + 2.

We will also make use of the following Banach space:

W 2,1,p(Q) = L p(0, T ;W 2,p(Td)) ∩ W 1,p(Q).

2.1 Convexity Assumptions

We collect below the required assumptions on the data. As announced in the intro-
duction, H is related to the convex conjugate of a mapping L : Q × R

d → R as
follows:

H(x, t, p) = L∗(x, t,−p) = sup
v∈Rd

−〈p, v〉 − L(x, t, v). (5)

The mapping L is assumed to be strongly convex in its third variable, uniformly in x
and t , that is, we assume that L is differentiable with respect to v and that there exists
C > 0 such that

〈Lv(x, t, v2) − Lv(x, t, v1), v2 − v1〉 ≥ 1

C
|v2 − v1|2, (A1)

for all (x, t) ∈ Q and for all v1 and v2 ∈ R
d . This ensures that H takes finite values

and that H is continuously differentiable with respect to p, as can be easily checked.
Moreover, the supremum in (5) is reached for a unique v, which is then given by
v = −Hp(x, t, p), i.e.

H(x, t, p) + L(x, t, v) + 〈p, v〉 = 0 ⇐⇒ v = −Hp(x, t, p), (6)

for all (x, t, p, v) ∈ Q × R
d × R

d .
We also assume that Ψ has a potential, that is, there exists a mapping Φ : [0, T ] ×

R
k → R, differentiable in its second argument, such that

Ψ (t, z) = Φz(t, z), ∀(t, z) ∈ [0, T ] × R
k . (7)

2.2 Regularity Assumptions

We assume that Lv is differentiable with respect to x and v and that φ is differentiable
with respect to x . All along the article, we make use of the following assumptions.
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2.3 Growth Assumptions

There exists C > 0 such that for all (x, t) ∈ Q, y ∈ T
d , v ∈ R

d , z ∈ R
k , and

m ∈ D1(T
d),

• L(x, t, v) ≤ C |v|2 + C (A2)

• |L(y, t, v) − L(x, t, v)| ≤ C |y − x |(1 + |v|2) (A3)

• |Ψ (t, z)| ≤ C |z| + C (A4)

• | f (x, t,m)| ≤ C . (A5)

2.4 Hölder Continuity Assumptions

• For all R > 0, there exists α ∈ (0, 1) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L ∈ Cα(BR),

Lv ∈ Cα(BR,Rd),

Lvx ∈ Cα(BR,Rd×d),

Lvv ∈ Cα(BR,Rd×d),

⎧
⎪⎨

⎪⎩

Ψ ∈ Cα(B ′
R,Rd),

φ ∈ Cα(Q,Rk×d),

Dxφ ∈ Cα(Q,Rk×d×d),

(A6)

where BR = Q × B(Rd , R) and B ′
R = [0, T ] × B(Rk, R).

• There exists α ∈ (0, 1) and C > 0 such that

| f (x2, t2,m2) − f (x1, t1,m1)|
≤ C

(|x2 − x1| + |t2 − t1|α + ‖m2 − m1‖α
L∞(Td )

)
,

(A7)

for all (x1, t1) and (x2, t2) ∈ Q and for all m1 and m2 ∈ D1(T
d).

• There exists α ∈ (0, 1) such that m0 ∈ C2+α(Td), g ∈ C2+α(Td). (A8)

Let us mention here that the variables C > 0 and α ∈ (0, 1) used all along the
article are generic constants. The value of C may increase from an inequality to the
next one and the value of the exponent α may decrease.

Some lower bounds for L and for Φ can be easily deduced from the convexity
assumptions. By assumption (A6), L(x, t, 0) and Lv(x, t, 0) are bounded. It follows
then from the strong convexity assumption (A1) that there exists a constant C > 0
such that

1

C
|v|2 − C ≤ L(x, t, v), for all (x, t, v) ∈ Q × R

d . (8)
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Without loss of generality, we can assume that Φ(t, 0) = 0, for all t ∈ [0, T ]. Since
Φ is convex, we have thatΦ(t, z) ≥ 〈Ψ (t, 0), z〉, for all z ∈ R

k . We deduce then from
assumption (A4) that

Φ(t, z) ≥ −C |z|, for all z ∈ R
k, (9)

where C is independent of t and z.
Some regularity properties for the Hamiltonian can be deduced from the convexity

assumption (A1) and the Hölder continuity of L and its derivatives (assumption (A6)).
They are collected in the following lemma.

Lemma 1 The Hamiltonian H is differentiable with respect to p and Hp is differen-
tiable with respect to x and p.Moreover, for all R > 0, there existsα ∈ (0, 1) such that
H ∈ Cα(BR), Hp ∈ Cα(BR,Rd), Hpx ∈ Cα(BR,Rd×d), and Hpp ∈ Cα(BR,Rd×d)

Proof For a given (x, t, p) ∈ Q×R
d , there exists a unique v := v(x, t, p)maximizing

the function v ∈ R
d �→ −〈p, v〉 − L(x, t, v), which is strongly concave by (A1). It

is then easy to deduce from (8) and the boundedness of L(x, t, 0) that there exists
a constant C , independent of (x, t, p), such that |v(x, t, p)| ≤ C(|p| + 1). For all
(x, t, p) ∈ Q × R

d , we have

p + Lv(x, t, v(x, t, p)) = 0. (10)

Since Lv is continuously differentiable with respect to x and v, we obtain with the
inversemapping theorem that v(x, t, p) is continuously differentiablewith respect to x
and p. Let R > 0 and let (x1, t1, p1) and (x2, t2, p2) ∈ Q× BR . Let vi = v(xi , ti , pi )
for i = 1, 2.We have |vi | ≤ C , whereC does not depend on xi , ti , and pi (but depends
on R). Moreover, we have

〈p2 − p1, v2 − v1〉 + 〈Lv(x2, t2, v2) − Lv(x1, t1, v2), v2 − v1〉
+ 〈Lv(x1, t1, v2) − Lv(x1, t1, v1), v2 − v1〉 = 0.

We deduce from (A1), Young’s inequality, and (A6) that there exists C > 0 and
α ∈ (0, 1), both independent of xi , ti , and pi such that

1

C
|v2 − v1|2 ≤ |〈p2 − p1, v2 − v1〉| + |〈Lv(x2, t2, v2) − Lv(x1, t1, v2), v2 − v1〉|

≤ 1

2ε
|p2 − p1|2 + ε|v2 − v1|2 + C

ε

(|x2 − x1|α + |t2 − t1|α
)
,

for all ε > 0. Taking ε = 1/2C , we deduce that the mapping (x, t, p) ∈ BR �→
v(x, t, p) is Hölder continuous. Since L is Hölder continuous on bounded sets, we
obtain that the Hamiltonian H(x, t, p) = −〈p, v(x, t, p)〉 − L(x, t, v(x, t, p)) is
Hölder continuous on BR .

One can easily check that Hp(x, t, p) = −v(x, t, p), which proves that Hp is
Hölder continuous on BR . Finally, differentiating relation (10) with respect to x and
p, we obtain that
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Dxv(x, t, p) = − Lvv(x, t, v(x, t, p))−1Lvx (x, t, v(x, t, p))

Dpv(x, t, p) = − Lvv(x, t, v(x, t, p))−1.

We deduce then with assumption (A6) that Dxv(x, t, p) and Dpv(x, t, p) (and thus
Hpx and Hpp) are Hölder continuous on BR , as was to be proved. ��

An example of coupling term We finish this section with an example of a mapping
f satisfying the regularity assumptions (A5) and (A7). Let ϕ ∈ L∞(Rd) be a given
Lipschitz continuous mapping, with modulus C1. Let us set C2 = ‖ϕ‖L∞(Rd ). Let
K : Q × [−C2,C2] → R be a measurable mapping satisfying the following assump-
tions:

1. The mapping x ∈ T
d �→ K (x, 0, 0) lies in L1(Td).

2. There exist a mapping C3 ∈ L1(Td) and α ∈ (0, 1) such that for a.e. x ∈ T
d , for

all t1 and t2 ∈ [0, T ] and for all w1 and w2 ∈ [−C2,C2],

|K (x, t2, w2) − K (x, t1, w1)| ≤ C3(x)
(|t2 − t1|α + |w2 − w1|α

)
.

Let us set ϕ̃(x) := ϕ(−x). We identify m ∈ L∞(Td) with its extension by 0 over Rd

so that the convolution product below is well-defined:

m ∗ ϕ(x) :=
∫

Rd
m(x − y)ϕ(y) dy, x ∈ T

d . (11)

We keep in mind that m ∗ ϕ is a function over Td . Then

‖m ∗ ϕ‖L∞(Td ) ≤ ‖ϕ‖L∞(Td ) = C2, for all m ∈ D1(T
d). (12)

In a similar way we can define

fK (x, t,m) = (K (·, t,m ∗ ϕ(·)) ∗ ϕ̃)(x), (13)

and we have that

‖ fK (x, t,m)‖L∞(Td ) ≤ ‖K (·, t,m ∗ ϕ)‖L1(Td )‖ϕ̃‖L∞(Td )

≤ (‖K (·, 0, 0)‖L1(Td ) + ‖C3‖L1(Td )(T
α + ‖ϕ‖L∞(Td )))‖ϕ̃‖L∞(Td ). (14)

The specific structure of fK is actually motivated by the fact that under an additional
monotonicity assumption, fK derives from a potential (as proved in [4, Example 1.1]).
For the moment, we have the following regularity result.

Lemma 2 The above mapping fK satisfies assumptions (A5) and (A7).

Proof Assumption (A5) follows from (14). We next prove (A7). Let (x1, t1) and
(x2, t2) ∈ Q, let m1 and m2 ∈ D1(T

d). Then

| fK (x2, t2,m2) − fK (x1, t2,m2)|
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≤ ‖K (·, t2,m2 ∗ ϕ(·))‖L∞(Td )‖ϕ(x2 − ·) − ϕ(x1 − ·)‖L∞(Td )

≤ C1C |x2 − x1|.

Also,

| fK (x1, t2,m2) − fK (x1, t1,m1)|
≤ ‖K (·, t2,m2 ∗ ϕ(·)) − K (·, t1,m1 ∗ ϕ(·))‖L1(Td )‖ϕ‖L∞(Td )

≤ C2‖C3‖L1(Td )

(|t2 − t1|α + ‖(m2 − m1) ∗ ϕ‖α
L∞(Td )

)
.

Finally, we have ‖(m2 − m1) ∗ ϕ‖L∞(Td ) ≤ ‖m2 − m1‖L∞(Td )‖ϕ‖L∞(Td ) and thus,
assumption (A7) follows. ��

3 Main Result and General Approach

Theorem 1 There exists α ∈ (0, 1) such that (MFGC) has a classical solution
(u,m, v, P), with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m ∈ C2+α,1+α/2(Q),

u ∈ C2+α,1+α/2(Q),

P ∈ Cα(0, T ;Rk),

v ∈ Cα(Q,Rd), Dxv ∈ Cα(Q,Rd×d).

(15)

The result is obtained with the Leray–Schauder theorem, recalled below.

Theorem 2 (Leray–Schauder) Let X be a Banach space and let T : X × [0, 1] → X
be a continuous and compact mapping. Let x0 ∈ X. Assume that T (x, 0) = x0 for all
x ∈ X and assume there exists C > 0 such that ‖x‖X < C for all (x, τ ) ∈ X × [0, 1]
such that T (x, τ ) = x. Then, there exists x ∈ X such that T (x, 1) = x.

A proof of the theorem can be found in [12, Theorem 11.6], for x0 = 0. The
extension to a general value of x0 canbe easily obtainedwith a translation argument that
we do not detail. The application of the Leray–Schauder theorem and the construction
of T will be detailed in Sect. 7. Let us mention that the set of fixed points of T (·, τ ),
for τ ∈ [0, 1], will coincide with the set of solutions of the following parametrization
of (MFGC):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) −∂t u − σΔu + τH(∇u + φᵀP(t)) = τ f (m(t)) (x, t) ∈ Q,

(i i) ∂tm − σΔm + τdiv(mv) = 0 (x, t) ∈ Q,

(i i i) P(t) = Ψ
(
t,

∫

Td φ(x, t)v(x, t)m(x, t) dx
)

t ∈ [0, T ],
(iv) v(x, t) = −Hp(x, t,∇u(x, t) + φ(x, t)ᵀP(t)) (x, t) ∈ Q,

(v) m(x, 0) = m0(x), u(x, T ) = τg(x) x ∈ T
d ,

(MFGCτ )
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Of course, (MFGCτ ) corresponds to (MFGC) for τ = 1. Let us introduce the spaces
X and X ′, used for the formulation of the fixed-point equation:

X := (
W 2,1,p(Q)

)2
, X ′ := X × L∞(Q,Rd) × L∞(0, T ;Rk).

TheHJB equation (i) and the Fokker–Planck equation (ii) are classically understood in
the viscosity and weak sense, respectively. However, due to the choice of the solution
spaces, we may interpret these equations as equalities in L p(Q): in particular, if
u ∈ W 2,1,p(Q) and P ∈ L∞(0, T ;Rk), we have that ∇u ∈ L∞(Q;Rd) (by Lemma
12), and thus H(∇u + φᵀP(t)) ∈ L∞(Q). A first and important step of our analysis
is the construction of auxiliary mappings allowing to express v and P as functions of
m and u. These mappings cannot be obtained in a straightforward way, since in (iii),
P depends on v and in (iv), v depends on P .

Lemma 3 Let τ ∈ [0, 1], let (m, v) ∈ W 2,1,p(Q) × L∞(Q,Rd) be a weak solution
to the Fokker–Planck equation ∂tm − σΔm + τdiv(vm) = 0, m(·, 0) = m0(·). Then
m ≥ 0 and for all t ∈ [0, T ], ∫

Td m(x, t) dx = 1.

Proof Multiply (MFGCτ )(ii) by μ(x, t) := min(0,m(x, t)). Use ∇μ(x, t) =
1{m(x,t)<0}∇m(x, t), so that integrating (by parts) over Qt := T

d × (0, t), since v

is essentially bounded, we get that

1

2

∫

Td
μ(x, t)2 dx + σ

∫∫

Qt

|∇μ(x, s)|2 dx ds = τ

∫∫

Qt

〈v,∇μ〉m dx ds

= τ

∫∫

Qt

〈v,∇μ〉μ dx ds ≤ C
∫∫

Qt

|μ|2 dx ds + σ

∫∫

Qt

|∇μ|2 dx ds,

so that after cancellation of the contribution of ∇μ, we obtain, applying Gronwall’s
lemma to a(t) := ∫

Td μ(x, t)2, that a(t) = 0 for all t which means that m is non-
negative. Moreover, for all t ∈ [0, T ],

∫

Td
m(x, t) dx =

∫

Td
m(x, 0) dx +

∫∫

Qt

σΔm − τdiv(vm) dx ds.

Integrating by parts the double integral we see that it is equal to 0, and we conclude
by noting that

∫

Td m(x, 0) dx = ∫

Td m0(x) dx = 1. ��

4 Potential Formulation

In this section,wefirst establish a potential formulation of themeanfield gameproblem
(MFGCτ ), that is to say, we prove that for (uτ ,mτ , vτ , Pτ ) ∈ X ′ satisfying (MFGCτ ),
(mτ , vτ ) is a solution to an optimal control problem. We prove then that for all t ,
vτ (·, t) is the unique solution of some optimization problem, which will enable us to
construct the announced auxiliary mappings.
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Let us introduce the cost functional B : W 2,1,p(Q)× L∞(Q,Rd)× L∞(Q) → R,
defined by

B(m, v; f̃ ) =
∫∫

Q

(
L(x, t, v(x, t)) + f̃ (x, t)

)
m(x, t) dx dt

+
∫ T

0
Φ

(
t,

∫

Td
φ(x, t)v(x, t)m(x, t) dx

)
dt +

∫

Td
g(x)m(x, T ) dx . (16)

We have the following result.

Lemma 4 For all τ ∈ [0, 1] and (uτ ,mτ , vτ , Pτ ) ∈ X ′ satisfying (MFGCτ ), the pair
(mτ , vτ ) is the solution to the following optimization problem:

min
m ∈ W 2,1,p(Q)

v ∈ L∞(Q,Rd)

B(m, v; f̃τ ), s.t.:

{
∂tm − σΔm + τdiv(vm) = 0,

m(x, 0) = m0(x),
(17)

where f̃τ (x, t) = f (x, t,mτ (t)).

Remark 1 Let us emphasize that the above optimal control problem is only an incom-
plete potential formulation, since the term f̃τ still depends on mτ .

Proof (Lemma 4) Let us consider the casewhere τ ∈ (0, 1]. Let (m, v) ∈ W 2,1,p(Q)×
L∞(Q,Rd) be a feasible pair, i.e., it satisfies the constraint in (17). For all (x, t) ∈ Q,
we have vτ = −Hp(∇uτ + φᵀPτ ). Therefore, by (5) and (6), we have that

L(v) ≥ −H(∇uτ + φᵀPτ ) − 〈∇uτ + φᵀPτ , v
〉
,

L(vτ ) = −H(∇uτ + φᵀPτ ) − 〈∇uτ + φᵀPτ , vτ

〉
,

for all (x, t) ∈ Q. Moreover, by Lemma 3, m ≥ 0 and mτ ≥ 0. Therefore,

L(v)m − L(vτ )mτ

≥ −H(∇uτ + φᵀPτ )(m − mτ ) − 〈∇uτ + φᵀPτ , vm − vτmτ

〉
. (18)

Using (i) (MFGCτ ), we obtain

L(v)m − L(vτ )mτ

≥ 1

τ
(−∂t uτ − σΔuτ − τ f̃τ )(m − mτ ) − 〈∇uτ + φᵀPτ , vm − vτmτ

〉
.

After integration with respect to x , we obtain that for all t ,

∫

Td
(L(v)m − L(vτ )mτ ) + f̃τ (m − mτ ) dx

123



1442 Applied Mathematics & Optimization (2021) 83:1431–1464

≥ 1

τ

∫

Td
(−∂t uτ − σΔuτ )(m − mτ ) dx −

∫

Td
〈∇uτ , vm − vτmτ 〉 dx

− 〈Pτ ,
∫
φ(vm − vτmτ )〉.

We obtain with the convexity of Φ and (iii) (MFGCτ ) that

Φ(
∫
φmv) − Φ(

∫
φvτmτ ) ≥ 〈Ψ (

∫
φmτ vτ ),

∫
φ(vm − vτmτ )〉

= 〈Pτ ,
∫
φ(mv − mτ vτ )〉. (19)

Using the previous calculations to bound B(m, v; f̃τ ) − B(mτ , vτ ; f̃τ ) from below,
we observe that the term 〈Pτ ,

∫
φ(m − mτ vτ )〉 cancels out and obtain

B(m, v; f̃τ ) − B(mτ , vτ ; f̃τ )

≥
∫∫

Q

1

τ
(−∂t uτ − σΔuτ )(m − mτ ) − 〈∇uτ ,mv − mτ vτ 〉 dx dt

+
∫

Td
g(x)(m(x, T ) − mτ (x, T )) dx .

Integrating by parts and using (ii) (MFGCτ ), we finally obtain that

B(m, v; f̃τ ) − B(mτ , vτ ; f̃τ ) ≥ 1

τ

∫

Td
uτ (0, x)(m(0, x) − mτ (0, x)) dx = 0,

as was to be proved. We do not detail the proof for the case τ = 0, which is actually
simpler. Indeed, for τ = 0, the solution to the Fokker–Planck equation is independent
of v and thus m = mτ in the above calculations. ��

We have proved that the pair (mτ , vτ ) is the solution to an optimal control problem.
Therefore, for all t , vτ (·, t) minimizes the Hamiltonian associated with problem (17).
Let us introduce some notation, in order to exploit this property. For m ∈ D1(T

d),
we denote by L2

m(Td ,Rd) the Hilbert space of measurable mappings v : Td → R
d

such that
∫

Td |v|2m < ∞, equipped with the scalar product
∫

Td 〈v1, v2〉m. An element
of L2

m(Td) is an equivalent class of functions equal m-almost everywhere. Note that
L∞(Td) ⊂ L2

m(Td).
For t ∈ [0, T ], m ∈ D1(T

d), and w ∈ L∞(Td ,Rd), we consider the mapping

v ∈ L2
m(Td ,Rd) �→ J (v; t,m, w) := Φ

(
t,

∫
φvm

) +
∫

Td

(
L(v) + 〈w, v〉)m dx .

Combining inequalities (18) and (19) (with m = mτ ), we directly obtain that for all
t ∈ [0, T ], for all v ∈ L2

m(Td ,Rd) with m = mτ (·, t),

J
(
v; t,mτ (t),∇uτ (t)

) ≥ J
(
vτ (t); t,mτ (t),∇uτ (t)

)
.
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The following lemma will enable us to express Pτ (t) and vτ (·, t) as functions of
mτ (·, t) and uτ (·, t). The key idea is, roughly speaking, to prove the existence and
uniqueness of a minimizer to J (·; t,m, w).

Lemma 5 For all t ∈ [0, T ], for all m ∈ D1(T
d), for all R > 0, and for

all w ∈ L∞(Td ,Rd) such that ‖w‖L∞(Td ,Rd ) ≤ R, there exists a unique pair
(v, P) ∈ L∞(Td ,Rd) × R

k , such that

{
v(x) = −Hp(x, t, w(x) + φ(x, t)ᵀP), for a.e. x ∈ T

d ,

P = Ψ (t,
∫
φvm).

(20)

The pair (v, P) is then denoted (v(t,m, w),P(t,m, w)). Moreover, we have

‖v(t,m, w)‖L∞(Td ,Rd ) ≤ C and |P(t,m, w)| ≤ C, (21)

where the constant C is independent of t , m, and w (but depends on R).

Proof If the pair (v, P) satifies (20), then

v = −Hp(w + φᵀΨ (
∫
φvm)) a.e. on T

d . (22)

One can easily check that for proving the existence and uniqueness of a pair (v, P) sat-
isfying (20), it is sufficient to prove the existence and uniqueness of v ∈ L∞(Td ,Rd)

satisfying (22). For future reference, let us observe that by (6), relation (22) is equiv-
alent to

φᵀ(x, t)Ψ (t,
∫
φvm) + Lv(x, t, v(x)) + w(x) = 0, for a.e. x ∈ T

d . (23)

Step 1 existence and uniqueness of a minimizer of J (·; t,m, w).
In view of (A1), v �→ ∫

Td L(v)m dx is strongly convex over L2
m(Td ,Rd). Since the

sum of a l.s.c. convex function and of a l.s.c. strongly convex function is l.s.c. and
strongly convex, so is the function J (·; t,m, w). Thus, it possesses a uniqueminimizer
v̄ in L2

m(Td ,Rd). We obtain

C‖v̄‖2L2
m (Td ,Rd )

− C ≤ J (v̄; t,m, w)) ≤ J (0; t,m, w)) = C, (24)

so that ‖v̄‖2
L2
m (Td ,Rd )

≤ C , with C independent of t , m, and w, but depending on R,

as all constants C used in the proof.
Step 2 existence of v(t,m, w) and a priori bound.

One can check that the mapping δv ∈ L∞(Td ,Rd) �→ J (v̄ + δv; t,m, w) is differ-
entiable. Since v̄ is optimal, the derivative of the above mapping is null at δv = 0 and
thus

[
φᵀ(x, t)Ψ (t,

∫
φ(x ′)v̄(x ′)m(x ′) dx ′) + Lv(x, t, v̄(x)) + w(x)

]
m(x) = 0,
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for a.e. x ∈ T
d . Using then the equivalence of (22) and (23), we obtain that

m(x) > 0 �⇒ v̄(x) = −Hp
(
x, t, w(x) + φᵀ(x, t)Ψ (t,

∫
φ(x ′, t)v̄(x ′)m(x ′) dx ′)

)
,

for a.e. x ∈ T
d . Consider now the measurable function v defined by

v(x) = −Hp
(
x, t, w(x) + φᵀ(x, t)Ψ (t,

∫
φ(x ′, t)v̄(x ′)m(x ′) dx ′),

for a.e. x ∈ T
d . The two functions v and v̄ may not be equal for a.e. x ifm(x) = 0 on a

subset ofTd of non-zeromeasure. Still they are equal in L2
m(Td ,Rd), which ensures in

particular that
∫
φ(x ′, t)v̄(x ′)m(x ′) dx ′ = ∫

φ(x ′, t)v(x ′)m(x ′) dx ′ and finally that v

satisfies (22) and lies in L∞(Td ,Rd), as a consequence of the continuity of Hp (proved
in Lemma 1).We also have that ‖v̄‖L2

m (Td ,Rd ) = ‖v‖L2
m (Td ,Rd ) ≤ C , by (24). Using the

Cauchy–Schwarz inequality and assumption (A6), we obtain that |∫ φvm| ≤ C . We
obtain then with assumption (A4) that for P = Ψ (

∫
φvm), we have |P| ≤ C . Using

assumption (A6) and the continuity of Hp, we finally obtain that ‖v‖L∞(Td ,Rd ) ≤ C .
Thus the bound (21) is satisfied.

Step 3 uniqueness of v(t,m, w).
Let v1 and v2 ∈ L∞(Td ,Rd) satisfy (22). Then DJ (vi ; t,m, w) = 0, proving that v1
and v2 are minimizers of J (·; t,m, w) and thus are equal in L2

m(Td ,Rd). Therefore∫
φ(x ′, t)v1(x ′)m(x ′) dx ′ = ∫

φ(x ′, t)v2(x ′)m(x ′) dx ′ and finally that v1 = v2, by
(22). ��

5 Regularity Results for the Auxiliary Mappings

We provide in this section some regularity results for the mappings v and P. We begin
by proving that P(·, ·, ·) is locally Hölder continuous. For this purpose, we perform a
stability analysis of the optimality condition (23).

Lemma 6 Let t1 and t2 ∈ [0, T ], let w1 and w2 ∈ L∞(Td ,Rd), let m1 and m2 ∈
D1(T

d). Let R > 0 be such that ‖wi‖L∞(Td ,Rd ) ≤ R, for i = 1, 2. Then, there exist a
constant C > 0 and an exponent α ∈ (0, 1), both independent of t1, t2, w1, w2, m1,
and m2 but depending on R, such that

|P(t2,m2, w2) − P(t1,m1, w1)|
≤ C

(|t2 − t1|α + ‖w2 − w1‖α
L∞(Td ,Rd )

+ ‖m2 − m1‖α
L1(Td )

)
. (25)

Proof Note that all constants C > 0 and all exponents α ∈ (0, 1) involved below are
independent of t1, t2, w1, w2, m1, and m2. They are also independent of x ∈ T

d and
ε > 0. For i = 1, 2, we set vi = v(ti ,mi , wi ) and φi = φ(·, ti ) ∈ L∞(Td). By (21),
we have

‖vi‖L∞(Td ,Rd ) ≤ C . (26)

By the optimality condition (23), we have that

φ
ᵀ
i Ψ

(
ti ,

∫
φivimi

) + Lv(ti , vi ) + wi = 0, for a.e. x ∈ T
d . (27)
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Consider the difference of (27) for i = 2 with (27) for i = 1. Integrating with respect
to x the scalar product of the obtained difference with v2m2 − v1m1, we obtain that
(a1) + (a2) + (a3) = 0, where

(a1) =
∫

Td

〈
φ

ᵀ
2 Ψ (t2,

∫
φ2v2m2) − φ

ᵀ
1 Ψ (t1,

∫
φ1v1m1), v2m2 − v1m1

〉
dx,

(a2) =
∫

Td
〈Lv(t2, v2) − Lv(t1, v1), v2m2 − v1m1〉 dx,

(a3) =
∫

Td
〈w2 − w1, v2m2 − v1m1〉 dx .

We look for a lower estimate of these three terms. Let us mention that the term v2m2−
v1m1, appearing in the three terms, will be estimated only at the end.

Estimation from below of (a1). We have (a1) = (a11) + (a12), where

(a11) =
∫

Td

〈
φ

ᵀ
2 Ψ (t2,

∫
φ2v2m2) − φ

ᵀ
1 Ψ (t1,

∫
φ1v2m2), v2m2 − v1m1〉 dx

(a12) =
∫

Td

〈
φ

ᵀ
1 Ψ (t1,

∫
φ1v2m2) − φ

ᵀ
1 Ψ (t1,

∫
φ1v1m1), v2m2 − v1m1

〉
dx .

By monotonicity of Ψ , we have that

(a12) =
〈
Ψ (t1,

∫
φ1v2m2) − Ψ (t1,

∫
φ1v1m1),

∫

Td
φ1v2m2 − φ1v1m1 dx

〉
≥ 0.

Let us consider (a11). We set

{
Ψi = Ψ (ti ,

∫
φiv2m2), for i = 1, 2,

ξ(x) = φ2(x)ᵀΨ2 − φ1(x)ᵀΨ1,

so that (a11) = ∫

Td 〈ξ, v2m2 − v1m1〉 dx . Using assumption (A6), one can check that
|Ψi | ≤ C and that

∣
∣Ψ2 −Ψ1

∣
∣ ≤ C |t2 − t1|α . Since ξ = (φ2 −φ1)

ᵀΨ2 +φ
ᵀ
1 (Ψ2 −Ψ1),

we obtain with assumption (A6) again that

‖ξ‖L∞(Td ,Rd ) ≤ C
(|Ψ2 − Ψ1| + ‖φ2 − φ1‖L∞(Td ,Rk×d )

) ≤ C |t2 − t1|α

and further with Young’s inequality that

|(a11)| ≤ C

ε
|t2 − t1|α + ε

2
‖v2m2 − v1m1‖2L1(Td ,Rd )

.

Estimation from below of (a2). We have (a2) = (a21) + (a22) + (a23), where

(a21) =
∫

Td
〈Lv(t2, v2) − Lv(t1, v2), v2m2 − v1m1〉 dx
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(a22) =
∫

Td
〈Lv(t1, v2) − Lv(t1, v1), v2(m2 − m1)〉 dx

(a23) =
∫

Td
〈Lv(t1, v2) − Lv(t1, v1), (v2 − v1)m1〉 dx .

As a consequence of (26), assumption (A6), and Young’s inequality, we have

|(a21)| ≤ 1

2ε
‖Lv(t2, v2(·)) − Lv(t1, v2(·))‖2L∞(Td )

+ ε

2
‖v2m2 − v1m1‖2L1(Td ,Rd )

≤ C

ε
|t2 − t1|α + ε

2
‖v2m2 − v1m1‖2L1(Td ,Rd )

.

By (26) and assumption (A6), |Lv(t1, x, vi (x))| ≤ C , therefore

|(a22)| ≤ C‖m2 − m1‖L1(Td ,Rd ).

Finally, since m1 ≥ 0 and by assumption (A1), we have

(a23) ≥ 1

C

∫

Td
|v2 − v1|2m1 dx .

Estimation from below of (a3). Using (29) and Young’s inequality, we obtain that

|(a3)| ≤ 1

2ε
‖w2 − w1‖2L∞(Td ,Rd )

+ ε

2
‖v2m2 − v1m1‖2L1(Td ,Rd )

.

Conclusion. We have proved that

1

C

∫

Td
|v2 − v1|2m1 dx ≤ (a23) = (a2) − (a21) − (a22)

= −(a1) − (a21) − (a22) − (a3)

≤ −(a11) − (a21) − (a22) − (a3)

≤ C

ε
|t2 − t1|α + 1

2ε
‖w2 − w1‖2L∞(Td ,Rd )

+ C‖m2 − m1‖L1(Td ,Rd ) + 3

2
ε‖v2m2 − v1m1‖2L1(Td ;Rd )

. (28)

Let us estimate ‖v2m2 − v1m1‖L1(Td ;Rd ). Using the Cauchy–Schwarz inequality, we
obtain that

‖v2m2 − v1m1‖L1(Td ,Rd ) ≤ ‖v2(m2 − m1)‖L1(Td ,Rd ) + ‖(v2 − v1)m1‖L1(Td ,Rd )

≤ C‖m2 − m1‖L1(Td ,Rd ) +
( ∫

Td
|v2 − v1|2m1 dx

)1/2
. (29)
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Injecting this inequality in (28) and taking ε = 1/3C , we obtain that

∫

Td
|v2 −v1|2m1 ≤ C

(
|t2 − t1|α +‖m2 −m1‖L1(Td ) +‖w2 −w1‖2L∞(Td ,Rd )

)
. (30)

Let us prove (25). We have

∫

Td
φ2v2m2 dx −

∫

Td
φ1v1m1 dx =

∫

Td
(φ2 − φ1)v2m2 dx

+
∫

Td
φ1v2(m2 − m1) dx +

∫

Td
φ1(v2 − v1)m1 dx .

Therefore, using assumption (A6) and (30), we obtain that

∣
∣
∣

∫

Td
φ2v2m2 dx −

∫

Td
φ1v1m1 dx

∣
∣
∣

≤ C
(
‖φ2 − φ1‖L∞(Td ,Rk×d ) + ‖m2 − m1‖L1(Td ) +

( ∫

Td
|v2 − v1|2m1

)1/2)

≤ C
(
|t2 − t1|α + ‖m2 − m1‖1/2L1(Td )

+ ‖w2 − w1‖L∞(Td ,Rd )

)
.

Inequality (25) follows, using assumption (A6). The lemma is proved. ��

Given m ∈ L∞(0, T ;D1(T
d)) and w ∈ L∞(Q), we consider the Nemytskii oper-

ators associated with v and P, that we still denote by v and Pwithout risk of confusion:

v(m, w) ∈ L∞(Q,Rd), v(m, w)(x, t) = v(t,m(·, t), w(·, t))(x),
P(m, w) ∈ L∞(0, T ;Rk), P(m, w)(t) = P(t,m(·, t), w(·, t)),

for all (x, t) ∈ Q.We use nowLemma6 to prove regularity properties of theNemytskii
operators v and P. We recall that X = (

W 2,1,p(Q)
)2.

Lemma 7 For all R > 0, the mapping

(m, w) ∈ L∞(0, T ;D1(T
d)) × B

(
L∞(Q,Rd), R)

�→ P(m, w) ∈ L∞(0, T ;Rk) (31)

and the mapping

(u,m) ∈ B(W 2,1,p(Q), R) × L∞(0, T ;D1(T
d))

�→ v(m,∇u) ∈ L∞(Q,Rd) ∩ L p(0, T ;W 1,p(Td)) (32)
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are both Hölder continuous, that is, there exist α ∈ (0, 1) and C > 0 such that

‖P(m2, w2) − P(m1, w1)‖L∞(0,T ;Rk )

≤ C
(‖m2 − m1‖α

L∞(Q) + ‖w2 − w1‖α
L∞(Q)

)
,

‖v(m2,∇u2) − v(m1,∇u1)‖L∞(Q,Rd )∩L p(0,T ;W 1,p(Td ))

≤ C
(‖u2 − u1‖α

W 2,1,p(Q)
+ ‖m2 − m1‖α

L∞(Q)

)
,

for all m1 and m2 ∈ L∞(0, T ;D1(T
d)), for all w1 and w2 ∈ B(L∞(Q,Rd), R), and

for all u1 and u2 in B(W 2,1,p(Q), R).

Proof The Hölder continuity of the first mapping is a direct consequence of Lemma 6.
As a consequence, the mapping

(u,m) ∈ B(W 2,1,p(Q), R) × L∞(0, T ;D1(T
d))

�→ ∇u + φᵀP(m,∇u) ∈ L∞(Q,Rd)

is Hölder continuous. Using then the relations

v(m,∇u) = −Hp(∇u + φᵀP(m,∇u)),

Dxv(m,∇u) = −Hpx (∇u + φᵀP(m,∇u))

−Hpp(∇u + φᵀP(m,∇u))(∇2u + DφᵀP(m,∇u)),

(33)

and the Hölder continuity of Hp, Hpx , and Hpp on bounded sets (Lemma 1), we obtain
that the second mapping is Hölder continuous. ��
Remark 2 As a consequence of Lemma 7, the images of the mappings given by (31)
and (32) are bounded. This fact will be used in the steps 3 and 5 of the proof of
Proposition 1.

Lemma 8 Let R > 0 and β ∈ (0, 1). Then, there exists α ∈ (0, 1) and C > 0 such
that for all u ∈ B(W 2,1,p(Q), R) and for all m ∈ B(Cβ(Q), R)∩L∞(0, T ;D1(T

d)),
‖P(m,∇u)‖Cα(0,T ;Rk ) ≤ C.

Proof We recall that by Lemma 12, ‖∇u‖Cα(Q,Rd ) ≤ C‖u‖W 2,1,p(Q). We obtain then
the bound on ‖P(m,∇u)‖Cα(0,T ;Rk ) with Lemma 6. ��
Lemma 9 Let R > 0 and β ∈ (0, 1). There exist α ∈ (0, 1) and C > 0 such that for
all u ∈ B(C2+β,1+β/2(Q), R) and for all m ∈ B(Cβ(Q), R) ∩ L∞(0, T ;D1(T

d)),

‖v(m,∇u)‖Cα(Q,Rd ) ≤ C and ‖Dxv(m,∇u)‖Cα(Q,Rd×d ) ≤ C .

Proof The result follows from relations (33), Lemma 8, and from theHölder continuity
of Hp, Hpx , and Hpp on bounded sets. ��
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6 A Priori Estimates for Fixed Points

Proposition 1 There exist a constant C > 0 and an exponent α ∈ (0, 1) such that for
all τ ∈ [0, 1], for all (uτ ,mτ , vτ , Pτ ) ∈ X ′ satisfying (MFGCτ ),

mτ ∈C2+α,1+α/2(Q), ‖mτ‖C2+α,1+α/2(Q) ≤ C,

uτ ∈C2+α,1+α/2(Q), ‖uτ‖C2+α,1+α/2(Q) ≤ C,

Pτ ∈Cα(0, T ;Rk), ‖Pτ‖Cα(0,T ;Rk ) ≤ C,

vτ ∈Cα(Q,Rd), ‖vτ‖Cα(Q,Rd ) ≤ C,

Dxvτ ∈Cα(Q,Rd×d), ‖Dxvτ‖Cα(Q,Rd×d ) ≤ C .

Proof Let us fix τ ∈ [0, 1] and (uτ ,mτ , vτ , Pτ ) ∈ X ′ satisfying (MFGCτ ). All
constants C and all exponents α ∈ (0, 1) involved below are independent of
(uτ ,mτ , vτ , Pτ ) and τ . Let us recall that f̃τ ∈ L∞(Q) has been defined in Lemma 4
by f̃τ (x, t) = f (x, t,mτ (t)).

Step 1 ‖Pτ‖L2(0,T ;Rk ) ≤ C .
Let v0 = 0 and let m0 be the solution to ∂tm0 − σΔm0 = 0, m0(x, 0) = m0(x). By
Lemma 4, B(mτ , vτ ; f̃τ ) ≤ B(m0, v0; f̃τ ). Since ‖φ‖L∞(Q,Rk×d ) ≤ C , we have for
all ε > 0 and for all t ∈ [0, T ] that

∣
∣
∣

∫

Td
φvτmτ dx

∣
∣
∣ ≤ C

∫

Td
|vτ |mτ dx

≤ C
( ∫

Td
|vτ |2mτ dx

)1/2 ≤ C

ε
+ Cε

∫

Td
|vτ |2mτ dx,

by the Cauchy–Schwarz inequality and Young’s inequality. The constant C is also
independent of ε. Using then the lower bounds (8) and (9) and assumptions (A5) and
(A8), we obtain that

C ≥ B(m0, v0; f̃τ ) ≥ B(mτ , vτ ; f̃τ )

≥
∫∫

Q

1

C
|vτ |2mτ dx dt − C

∣
∣
∣

∫

Q
φvτmτ dx dt

∣
∣
∣ − C

≥
( 1

C
− Cε

) ∫∫

Q
|vτ |2mτ dx dt − C

(
1 + 1

ε

)
.

Taking ε = 1/(2C2), we deduce that
∫∫

Q |vτ |2mτ dx dt ≤ C . Using then assumption
(A4), the boundedness of φ, the Cauchy–Schwarz inequality and the estimate obtained
previously, we deduce that

‖Pτ‖L2(0,T ;Rk ) =
∫ T

0
|Ψ (t,

∫
φvτmτ )|2 dt ≤ C + C

∫ T

0

∣
∣
∣

∫

Td
φvτmτ dx

∣
∣
∣
2
dt

≤ C + C
∫∫

Q
|vτ |2mτ dx dt ≤ C . (34)
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Step 2 ‖uτ‖L∞(Q) ≤ C , ‖∇uτ‖L∞(Q,Rd ) ≤ C .
The argument is classical. We have that uτ is the unique solution to the HJB equation
(i) (MFGCτ ). It is therefore the value function associated with the following stochastic
optimal control problem:

uτ (x, t) = τ
(

inf
α∈L2

F
(t,T ;Rd )

Jτ (x, t, α)
)
, (35)

where Jτ (x, t, α) is defined by

E

[ ∫ T

t

(
L(Xs, s, αs) + 〈

φ(Xs, s)
ᵀPτ (s), αs

〉 + f̃τ (Xs, s)
)
ds + g(XT )

]
,

and (Xs)s∈[t,T ] is the solution to the stochastic dynamic dXs = ταsds +√
2σdBs, Xt = x . Here, L2

F
(t, T ;Rd) denotes the set of stochastic processes on

(t, T ), with values inRd , adapted to the filtration F generated by the Brownian motion
(Bs)s∈[0,T ], and such that E

[ ∫ T
t |α(s)|2 ds] < ∞. Then, the boundedness of uτ from

above can be immediately obtained by choosing α = 0 in (35) and using the bound-
edness of g. We can as well bound uτ from below since for all (x, s) ∈ Q and for all
α ∈ R

d , we have

L(x, s, α) + 〈
φ(x, s)ᵀPτ (s), α

〉 ≥ 1

C
|α|2 − ‖φ‖L∞(Q,Rk×d )|Pτ (s)||α| − C

≥ 1

C
|α|2 − C |Pτ (s)|2 − C,

for some constant C independent of (x, s), α, and Pτ (s). We already know from the
previous step that ‖Pτ‖L2(0,T ;Rk ) ≤ C . So we can conclude that uτ is also bounded
from below, and thus ‖uτ‖L∞(Q) ≤ C . We also deduce from the above inequality that
for all α ∈ L2

F
(t, T ;Rd),

E

[ ∫ T

t
|αs |2 ds

]
≤ C

(
Jτ (x, t, α) + 1

)
. (36)

Let us bound∇uτ . Choose ε ∈ (0, 1). For arbitrary (x, t), take an ε-optimal stochas-
tic optimal control α̃ for (35). We can deduce from the boundedness of the map uτ

and inequality (36) that

E

[ ∫ T

t
|α̃s |2 ds

]
≤ C

(
Jτ (x, t, α) + 1

) ≤ C(uτ (x, t) + ε + 1) ≤ C, (37)

where C is independent of (τ, x, t) and ε. Let y ∈ T
d . Set

dXs = τ α̃sds + √
2σdBs, Xt = x, and Ys = Xs − x + y, (38)
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then obviously dYs = α̃sds + √
2σdBs, Yt = y. We have

uτ (x, t) + ε ≥ τE
[ ∫ T

t
L(Xs, s, α̃s) + 〈

Pτ (s), φ(Xs, s)
ᵀα̃s

〉
ds

+
∫ T

t
f̃τ (Xs, s) ds + g(XT )

]
,

uτ (y, t) ≤ τE
[ ∫ T

t

(
L(Ys, s, α̃s) + 〈

φ(Ys, s)
ᵀPτ (s), α̃s

〉
ds

+
∫ T

t
f̃τ (Ys, s)

)
ds + g(YT )

]
.

Therefore, uτ (y, t) − uτ (x, t) ≤ ε + |(a)| + |(b)| + |(c)| + |(d)|, where (a), (b), (c),
(d) are given by

(a) = τE
[ ∫ T

t
L(Ys, s, α̃s) − L(Xs, s, α̃s) ds

]
,

(b) = τE
[ ∫ T

t

(
φ(Ys, s) − φ(Xs, s)

)ᵀ
Pτ (s), α̃s〉 ds

]
,

(c) = τE
[
g(YT ) − g(XT )

]
,

(d) = τE
[ ∫ T

t

(
f̃τ (Ys, s) − f̃ (Xs, s)

)
ds

]
.

First, we have

|(a)| ≤ τE
[ ∫ T

t

∣
∣L(Ys, s, α̃s) − L(Xs, s, α̃s)

∣
∣ ds

]

≤C |y − x |
(
1 + E

[ ∫ T

t
|α̃s |2 ds

])
≤ C |y − x |,

as a consequence of assumption (A3) and (37). Then, using assumption (A6), (34),
and (37), we obtain

|(b)| ≤ τE
[ ∫ T

t
|φ(Ys, s) − φ(Xs, s)||Pτ (s)||α̃(s)| ds

]

≤C |y − x | ‖Pτ‖L2(0,T ;Rk ) E

[ ∫ T

t
|α̃(s)|2 ds

]
≤ C |y − x |.

By assumption (A8), |(c)| ≤ E
[|g(YT ) − g(XT )|] ≤ C |y − x |. Finally, since f̃τ is a

Lipschitz function (by assumption (A7)),

|(d)| ≤ τE
[ ∫ T

t

∣
∣ f̃τ (Ys, s) − f̃τ (Xs, s)

∣
∣ ds

]
≤ C |y − x |. (39)
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Letting ε → 0, we obtain that uτ (y, t) − uτ (x, t) ≤ C |y − x |. Exchanging x
and y, we obtain that uτ is Lipschitz continuous with modulus C and finally that
‖∇uτ‖L∞(Q,Rd ) ≤ C .

Step 3 ‖Pτ‖L∞(0,T ;Rk ) ≤ C .
By Lemma 3, mτ ∈ L∞(0, T ;D1(T

d)). We have that ‖∇uτ‖L∞(Q,Rd ) ≤ C and
Pτ = P(mτ ,∇uτ ). The bound on ‖Pτ‖L∞(0,T ;Rk ) follows then from Lemma 7 and
Remark 2.

Step 4 ‖uτ‖W 2,1,p(Q) ≤ C .
By assumption (A6), φ is bounded. We have proved that ‖Pτ‖L∞(0,T ;Rk ) ≤ C and
by Lemma 1, H is continuous. Thus, ‖H(∇uτ + φᵀPτ )‖L∞(Q) ≤ C . By assumption
(A5), ‖τ f̃τ‖L∞(Q) ≤ C . It follows that uτ , as the solution to the HJB equation (i)
(MFGCτ ), is the solution to a parabolic equation with bounded coefficients. Thus, by
Theorem 6, ‖uτ‖W 2,1,p(Q) ≤ C . We also obtain with Lemma 12 that ‖uτ‖Cα(Q) ≤ C
and ‖∇uτ‖Cα(Q,Rd ) ≤ C .

Step 5 ‖vτ‖L∞(Q,Rd ) ≤ C , ‖Dxvτ‖L p(Q,Rd×d ) ≤ C .
We have proved that vτ = v(mτ ,∇uτ ) and ‖uτ‖W 2,1,p(Q) ≤ C . The estimate follows
directly with Lemma 7 and Remark 2.

Step 6 ‖mτ‖Cα(Q) ≤ C .
The Fokker–Planck equation can be written in the form of a parabolic equation
with coefficients in L p: ∂tmτ − σΔmτ + τ 〈vτ ,∇mτ 〉 + τmτdiv(vτ ) = 0, since
‖Dxvτ‖L p(Q,Rd×d ) ≤ C . Combining Theorem 4 and Lemma 12, we get that
‖mτ‖Cα(Q) ≤ C .

Step 7 ‖Pτ‖Cα(0,T ;Rk ) ≤ C .
We already know that ‖uτ‖W 2,1,p(Q) ≤ C , that ‖mτ‖Cα(Q) ≤ C , and that mτ ∈
L∞(0, T ;D1(T

d)). Thus Lemma 8 applies and yields that ‖Pτ‖Cα(0,T ;Rk ) ≤ C .
Step 8 ‖uτ‖C2+α,1+α/2(Q) ≤ C .

We have proved that ‖∇uτ‖Cα(Q,Rd ) ≤ C and ‖Pτ‖Cα(0,T ;Rk ) ≤ C . Moreover, we
have assumed that φ is Hölder continuous and know that H is Hölder continuous on
bounded sets. It follows that ‖H(∇uτ +φᵀPτ )‖Cα(Q) ≤ C . It follows from assumption
(A7) that τ f̃τ is Hölder continuous. Since g ∈ C2+α(Td), we finally obtain that
‖uτ‖C2+α,1+α/2(Q) ≤ C , by Theorem 7.

Step 9 ‖vτ‖Cα(0,T ;Rd ) ≤ C and ‖Dxvτ‖Cα(0,T ;Rd×d ) ≤ C .
We have ‖uτ‖C2+α,1+α/2(Q) ≤ C and ‖mτ‖Cα(Q) ≤ C . Thus Lemma 9 applies and the
announced estimates hold true.

Step 10 ‖mτ‖C2+α,1+α/2(Q) ≤ C .
A direct consequence of Step 9 is that mτ is the solution to a parabolic equation with
Hölder continuous coefficients. Therefore ‖mτ‖C2+α,1+α/2(Q) ≤ C , by Theorem 7,
which concludes the proof of the proposition. ��

7 Application of the Leray–Schauder Theorem

Proof (Theorem 1) Step 1 construction of T .
Let us define the mapping T : X ×[0, 1] → X which is used for the application of the
Leray–Schauder theorem. A difficulty is that the auxiliary mappings P and v are only
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defined for m ∈ L∞(0, T ;D1(T
d)). Therefore we need a kind of projection operator

on this set. Note that
∫

Td 1 dx = 1. We consider the mapping

ρ : m ∈ L∞(Q) �→ ρ(m) ∈ L∞(0, T ;D1(T
d)),

defined by

ρ(m) = m+(x, t)

max(1,
∫
m+(y, t) dy)

+ 1 −
∫
m+(y, t) dy

max(1,
∫
m+(y, t) dy)

,

where m+(x, t) = max(0,m(x, t)). For checking that ρ(m) ∈ L∞(0, T ;D1(T
d)),

we suggest to consider the two cases:
∫
m+(y, t) dy < 1 and

∫
m+(y, t) dy ≥ 1

separetely. The following properties can be easily checked:

– For all m ∈ L∞(0, T ;D1(T
d)), ρ(m) = m.

– The mapping ρ is locally Lipschitz continuous, from L∞(Q) to L∞(Q).
– For all α ∈ (0, 1), there exists a constant C > 0 such that if m ∈ Cα(Q), then

ρ(m) ∈ Cα(Q) and ‖ρ(m)‖Cα(Q) ≤ C‖m‖Cα(Q).

For a given (u,m, τ ) ∈ X × [0, 1], the pair (ũ, m̃) = T (u,m, τ ) is defined as
follows: ũ is the solution to

{
−∂t ũ − σΔũ + τH(∇u + φᵀP(ρ(m),∇u)) = τ f (ρ(m(t))) (x, t) ∈ Q,

ũ(x, T ) = τg(x) x ∈ T
d ,

and m̃ is the solution to

{
∂t m̃ − σΔm̃ + τdiv(v(ρ(m),∇ũ)m) = 0 (x, t) ∈ Q,

m̃(x, 0) = m0(x)x ∈ T
d .

It directly follows from the definition of T that T (u,m, 0) is constant, as required by
the Leray–Schauder theorem.

Step 2 a priori bound.
Let τ ∈ [0, 1] and let (uτ ,mτ ) be such that (uτ ,mτ ) = T (uτ ,mτ , τ ). Then, by
Lemma 3, mτ ∈ L∞(0, T ;D1(T

d)). Thus, mτ = ρ(mτ ) and finally, by Lemma 5,
the quadruplet (uτ ,mτ , Pτ , vτ ), with Pτ = P(mτ ,∇uτ ) and vτ = v(mτ ,∇uτ ), is a
solution to (MFGCτ ).We directly conclude with Proposition 1 that ‖(uτ ,mτ )‖X ≤ C ,
where C is independent of τ .

Step 3 continuity of T .
Using the continuity of ρ, Lemma 7, the Hölder continuity of H , and assumption (A7),
we obtain that the mappings

(u,m) ∈ X �→ H(∇u + φ�P(ρ(m),∇u)) − f (ρ(m)) ∈ L∞(Q),

(u,m) ∈ X �→ div(v(ρ(m),∇u)m) ∈ L p(Q)
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are continuous. By Theorem 6, the solution to a parabolic equation of the form
(51), with b and c null (in W 2,1,p(Q)) is a continuous mapping of the right-
hand side (in L p(Q)). Thus, ũ ∈ W 2,1,p(Q) depends in a continuous way on
τH(∇u+φ�P(ρ(m),∇u)) and therefore ũ depends in a continuous way on (τ, u,m)

by composition. Again, by Theorem 6, m̃ ∈ W 2,1,p(Q) depends in a continuous way
on τdiv(v(ρ(m),∇ũ)m) and therefore depends in a continuous way on (τ, u,m).

Step 4 compactness of T .
Let R > 0, let (u,m) ∈ B(X , R).We have ‖ρ(m)‖Cα(Q) ≤ C , whereC is independent
of (u,m) (but depends on R). As a consequence of assumption (A7), and since H is
Hölder continuous on bounded sets, we have

‖H(∇u + φᵀP(ρ(m),∇u)) − f (ρ(m))‖Cα(Q) ≤ C,

where C > 0 and α ∈ (0, 1) are both independent of (u,m) (but depend on R). It
follows then that ‖u‖C2+α,1+α/2(Q) ≤ C by Theorem 7. Using Lemma 9, we deduce
then that

‖div(v(ρ(m),∇ũ)m)‖Cα(Q) ≤ C,

and finally obtain that ‖m‖C2+α,1+α/2(Q) ≤ C , by Theorem 7 again. The compactness
of T follows, since C2+α,1+α/2(Q) is compactly embedded in W 2,1,p(Q), by the
Arzelà–Ascoli theorem.

Step 5 Conclusion.
The existence of a fixed point (u,m) to T (·, ·, 1) follows. With the same arguments as
those of Step 2, we obtain that (u,m,P(m,∇u), v(m,∇u)) is a solution to (MFGCτ )
with τ = 1 and that (15) holds, by Proposition 1. ��

8 Uniqueness and Duality

In this section we prove the uniqueness of the solution (u,m, v, P) to (MFGC). We
also prove that (P, v) is the solution to a dual problem to (17). Both results are
obtained under the following additional monotonicity assumption of f : There exists
a measurable mapping F(t,m) : [0, T ] × D1(T

d) → R such that

F(t,m2) − F(t,m1) ≥
∫

Td
f (x, t,m1)(m2(x) − m1(x)) dx, (40)

for all m1 and m2 ∈ D1(T
d) and for a.e. t . Thus, F(t, ·) is a supremum of the exact

affine minorants appearing in the above right-hand side, and is therefore a convex
function of m.

Remark 3 1. It follows from (40) that f is monotone:

∫

Td
( f (x, t,m2) − f (x, t,m2))(m2(x) − m1(x)) dx ≥ 0, (41)
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for all m1 and m2 ∈ D1(T
d) and for a.e. t . Conversely, (40) holds true if (41) is

satisfied and if F is a primitive of f (., t, .) in the sense that

F(t,m2) − F(t,m1) =
∫ 1

0

∫

Td
f (x, t, sm2 + (1 − s)m1)(m2(x) − m1(x)) ds.

Werefer to [5, Proposition1.2] for a further characterizationof functions f deriving
from a potential.

2. Consider the mapping fK proposed in Lemma 2. Assume that for all (x, t) ∈ Q,
K (x, t, ·) is non-decreasing and consider the functionK defined byK(x, t, w) :=∫ w

0 K (x, t, w′) dw′, for (x, t, w) ∈ Q × [−C2,C2]. Then inequality (40) holds
true with FK defined by

FK (t,m) =
∫

Td
K(x, t,m ∗ ϕ(x)) dx .

Indeed, since K is convex in its third argument, we have

FK (t,m2) − FK (t,m1) =
∫

Td
K(x, t,m2 ∗ ϕ(x)) − K(x, t,m1 ∗ ϕ(x)) dx

≥
∫

Td
K (x, t,m1 ∗ ϕ(x))((m2 − m1) ∗ ϕ)(x) dx

=
∫

Td
(K (·, t,m1 ∗ ϕ(·)) ∗ ϕ̃)(x)(m2(x) − m1(x)) dx

=
∫

Td
fK (x, t,m)(m2(x) − m1(x)) dx,

as was to be proved.

Without loss of generality, we can assume that F(t,m0) = 0 for a.e. t ∈ (0, T ). It
can then be easily deduced from assumption (A5) and (40) that there exists a constant
C such that

|F(t,m)| ≤ C, ∀m ∈ D1(T
d), for a.e. t ∈ (0, T ). (42)

Let us consider the potential B : W 2,1,p(Q) × L∞(Q;Rk) → R, defined by

B(m, v) =
∫∫

Q
L(x, t, v(x, t))m(x, t) dx dt +

∫ T

0
F(t,m(t)) dt

+
∫ T

0
Φ

(
t,

∫

Td
φ(x, t)v(x, t)m(x, t) dx

)
dt +

∫

Td
g(x)m(x, T ) dx . (43)
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Proposition 2 There exists a unique solution (u,m, v, P) ∈ X ′ to (MFGC).Moreover,
the pair (m, v) is the solution to the following optimal control problem

min
m̂ ∈ W 2,1,p(Q)

v̂ ∈ L∞(Q,Rd)

B(m̂, v̂), s.t.:

{
∂t m̂ − σΔm̂ + div(v̂m̂) = 0,

m̂(x, 0) = m0(x).
(44)

Proof Let (u,m, v, P) ∈ X ′ be a solution to (MFGC). Let us prove that (m, v) is a
solution to (44). Let (m̂, v̂) be a feasible pair. Denoting f̃ (x, t) = f (x, t,m(t)), we
have

B(m̂, v̂) − B(m, v) = (
B(m̂, v̂; f̃ ) − B(m, v; f̃ )

)

+
( ∫ T

0
F(t, m̂(t)) − F(t,m(t)) −

∫

Td
f̃ (x, t)(m̂(x, t) − m(x, t)) dx dt

)
.

The two terms in the right-hand side are both nonnegative, as a consequence of
Lemma 4 and assumption (40), respectively.

It remains to prove the uniqueness of the solution to (MFGC). Let us prove first a
classical property: There exists a constant C > 0 such that for all (x, t) ∈ Q, for all
p ∈ R

d and for all v ∈ R
d ,

H(x, t, p) + L(x, t, v) + 〈p, v〉 ≥ 1

2C
|v + Hp(x, t, p)|2. (45)

Let us set v̄ = −Hp(x, t, p). For a fixed triple (x, t, p), we have H(x, t, p) =
−〈p, v̄〉 − L(x, t, v̄). Moreover, Lv(x, t, v̄) = −p and thus by (A1),

L(x, t, v) ≥ L(x, t, v̄) − 〈p, v − v̄〉 + 1

2C
|v − v̄|2.

Inequality (45) follows.
Let (u1,m1, v1, P1) and (u2,m2, v2, P2) be two solutions to (MFGC) in X ′. We

obtain with inequality (45) that

L(v2) ≥ −H(∇u1 + φᵀP1) − 〈∇u1 + φᵀP1, v2
〉 + 1

2C
|v2 − v1|2,

L(v1) = −H(∇u1 + φᵀP1) − 〈∇u1 + φᵀP1, v1
〉
.

Proceeding then exactly like in the proof of Lemma 4, we arrive at the following
inequality:

B(m2, v2) − B(m1, v1) ≥ 1

2C

∫∫

Q
|v2 − v1|2m2 dx dt .
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We also have that B(m1, v1) − B(m2, v2) ≥ 0, thus
∫∫

Q |v2 − v1|2m2 dx dt = 0. As
a consequence, (v2 − v1)m2 = 0, since m2 ≥ 0. We obtain then that

v2m2 − v1m1 = v1(m2 − m1). (46)

Let us set m = m2 − m1. Using relation (46), we obtain that m is the solution to the
following parabolic equation: ∂tm − σΔm + div(v1m) = 0, m(x, 0) = 0. Therefore
m = 0 and m2 = m1. We already know that v2m2 = v1m2, we deduce then that
v2m2 = v1m1. We obtain further with (iii) that P1 = P2, then with (i) that u1 = u2
and finally with (iv) that v1 = v2, which concludes the proof. ��

We finish this section with a duality result. For γ ∈ L∞(Td), we recall that the
convex conjugate of F(t, ·) is defined by

F∗(t, γ ) = sup
m∈D1(Td )

∫

Td
γ (x)m(x) dx − F(t,m).

It directly follows from the above definition that |F∗(t, γ )| ≤ ‖γ ‖L∞(Td ) + C ,
where C is the constant obtained in (42) and thus for γ ∈ L∞(Q), the integral
∫ T
0 F∗(t, γ (·, t)) dt is well-defined.
Consider the dual criterion D : (u, P, γ ) ∈ W 2,1,p(Q) × L∞(0, T ;Rk) ×

L∞(Q) �→ D(u, p, γ ) ∈ R ∪ {−∞}, defined by

D(u, P, γ ) =
∫

Td
u(x, 0)m0(x) dx −

∫ T

0
Φ∗(t, P(t)) dt −

∫ T

0
F∗(t, γ (t)) dt .

The function Φ∗ is the convex conjugate of Φ with respect to its second argument.
Since Φ(t, 0) = 0, we have that Φ∗(t, ·) ≥ 0 and thus the first integral is well-defined
in R ∪ {∞}.
Lemma 10 Let (ū, m̄, v̄, P̄) be the solution to (MFGC). Let f̃ be defined by f̃ (x, t) =
f (x, t, m̄(t)). Then, (ū, P̄, f̃ ) is a solution to the following problem:

max
u ∈ W 2,1,p(Q)

P ∈ L∞(0, T ;Rk)

γ ∈ L∞(Q)

D(u, P, γ ), s.t.

{
−∂t u − σΔu + H(∇u + φᵀP) ≤ γ

u(x, T ) ≤ g(x).

(47)
Moreover, for all solutions (u, P, γ ) to the dual problem, P = P̄. If in addition,
γ = f̃ and the above inequalities hold as equalities, then u = ū.

Proof For all t ∈ [0, T ], we have

−
∫ T

0
Φ∗(P) dt =

∫ T

0
Φ(

∫
φv̄m̄) dt −

∫∫

Q
〈φᵀP, v̄m̄〉 dx dt + (a) (48)
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with

(a) =
∫ T

0
−Φ∗(P) − Φ(

∫
φv̄m̄) + 〈P,

∫
φv̄m̄〉 dt ≤ 0.

We also have that

−
∫ T

0
F∗(t, γ (t)) dt +

∫∫

Q
γ (x, t)m̄(x, t) dx dt =

∫ T

0
F(t, m̄(t)) dt + (b), (49)

where

(b) =
∫∫

Q
γ (x, t)m̄(x, t) dx dt −

∫ T

0
F(t, m̄(t)) dt −

∫ T

0
F∗(t, γ (t)) dt ≤ 0.

Integrating by parts (in time), we obtain that

∫

Td
u(x, 0)m0(x) dx =

∫∫

Q
−∂t um̄ − u∂t m̄ dx dt +

∫

Td
u(x, T )m̄(x, T ) dx

=
∫∫

Q
(σΔu + γ − H(∇u + φᵀP))m̄ + (−σΔm̄ + div(v̄m̄))u dx dt

+
∫

Td
g(x)m̄(x, T ) dx + (c) + (d),

where

(c) =
∫∫

Q
(−∂t u − σΔu + H(∇u + φᵀP) − γ )m̄ dx dt ≤ 0

(d) =
∫

Td
(u(x, T ) − g(x))m̄(x, T ) dx ≤ 0.

Integrating by parts (in space), we further obtain that

∫

Td
u(x, 0)m0(x) dx =

∫∫

Q

(
γ − H(∇u + φᵀP) − 〈∇u, v̄〉)m̄

+
∫

Td
g(x)m̄(x, T ) dx + (c) + (d)

=
∫∫

Q

(
L(v̄) + γ

)
m̄ + 〈φᵀ P̄, v̄〉m̄ dx dt

+
∫

Td
g(x)m̄(x, T ) dx + (c) + (d) + (e), (50)

where

(e) =
∫∫

Q

( − H(∇u + φᵀP) − L(v̄) − 〈∇u + φᵀP, v̄〉)m̄ dx dt ≤ 0.

123



Applied Mathematics & Optimization (2021) 83:1431–1464 1459

Combining (48), (49) and (50) together, we finally obtain that

D(u, P, γ ) =
∫ T

0
Φ(

∫
φv̄m̄) dt +

∫∫

Q
L(v̄)m̄ dx dt +

∫ T

0
F(t,m(t)) dt

+
∫

Td
g(x)m̄(x, T ) dx + (a) + (b) + (c) + (d) + (e)

=B(m̄, v̄) + (a) + (b) + (c) + (d) + (e).

The five terms (a), (b), (c), (d), (e) are non-positive and equal to zero if (u, P, γ ) =
(ū, P̄, f̃ ), as can be easily verified. This proves the optimality of (ū, P̄, f̃ ). Moreover,
since Φ is differentiable (with gradient Ψ ), the term (a) is null if and only if P(t) =
Ψ (

∫
φv̄m̄) = P̄(t), for a.e. t ∈ [0, T ]. Therefore, for all optimal solutions (u, P, γ ),

P = P̄ . If moreover γ = f̃ and the inequality constraints in (47) hold as equalities,
then (since the HJB equation has a unique solution) u = ū, which concludes the proof.

��
Remark 4 It is of interest to check when the density m(x, t) is a.e. positive, since this
is clearly a necessary condition for the uniqueness of the solution of (44). We note
that a sufficient condition for the positivity of m is given in [21, Proposition 3.10].

Conclusion

The existence and uniqueness of a classical solution to a mean field game of controls
have been demonstrated. A particularly important aspect of the analysis is the fact that
the equations (iii) and (iv) (MFGC), encoding the coupling of the agents through the
controls, are equivalent to the optimality system of a ‘static’ convex problem. This
observation enabled us to eliminate the variables v and P from the coupled system.

The analysis done in this article can be extended in different ways. Amore complex
interaction between the agents could be considered. For example, it would be possible
to replace equations (iii) and (iv) by the following ones:

P(t) = Ψ (t,
∫

Td ϕ(x, t, v(x, t))m(x, t) dx)
v(x, t) = −Hp(x, t,∇u(x, t)Dvϕ(x, t, v(x, t)ᵀP(t)),

assuming that ϕ is convex with respect to v and Ψ ≥ 0. For a fixed t ∈ [0, T ], this
system is equivalent to the optimality system associated with the following convex
problem:

inf
v : Td→Rd

Φ
(
t,

∫

Td
ϕ(x, t, v(x))m(x, t) dx

)

+
∫

Td

(
L(v(x)) + 〈∇u(x, t), v(x)〉)m(x, t) dx .

Another possibility of extension of our analysis would be to add convex constraints
on the control variable.

123



1460 Applied Mathematics & Optimization (2021) 83:1431–1464

Future research will aim at exploiting the potential structure of the problem, which
can be used to solve it numerically and to prove the convergence of learning procedures,
as was done in [5].
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A Appendix: A Priori Bounds for Parabolic Equations

In this appendix we provide estimates for the following parabolic equation:

∂t u − σΔu + 〈b,∇u〉 + cu = h, (x, t) ∈ Q,

u(x, 0) = u0(x), x ∈ T
d ,

(51)

for different assumptions on b, c, h, and u0. The technique is based on the following
idea. By standard parabolic estimates detailed below, (51) has a unique solution u
in L2(0, T ; H1(Td)), that we may identify with a periodic function over Rd . Let
ϕ : Rd → R be of class C∞, with value 1 in a neighbourhood of the closure of Td ,
and with compact support in Ω := B(0, 2). Set Q′ := Ω × (0, T ). Then v := uϕ is
solution of

∂tv − σΔv + 〈b,∇v〉 + cv = h[u], (x, t) ∈ Q′,
v(x, 0) = v0(x), x ∈ Ω,

(52)

with v0 := u0ϕ and

h[u] := hϕ − 2σ 〈∇ϕ,∇u〉 − σuΔϕ + 〈b,∇φ〉u. (53)

Observe that the solution v of (52) is equal to 0 in a vicinity of (∂Ω) × (0, T ), and
hence, satisfies the homogeneous Neumann condition; this allows us to apply some
results of [19].

Lemma 11 Let y ∈ W 2,1,q(Q′), with q ∈ (1,∞). Then y ∈ Lq ′
(Q′) and ∇ y ∈

Lq ′′
(Q′), where

{
1
q ′′ = 1

q − 1
d+2 , if q < 2 + d,

q ′′ = ∞, otherwise,

{
1
q ′ = 1

q − 2
d+2 , if q < 1 + d

2 ,

q ′ = ∞, otherwise,
(54)
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with continuous inclusion:

‖y‖Lq′
(Q′) + ‖∇ y‖Lq′′

(Q′) ≤ c(q)‖y‖W 2,1,q (Q′). (55)

Proof See [19, Lemma 3.3, page 80]. ��
Theorem 3 Let q ∈ (1,∞), w0 ∈ W 2−2/q,q(Ω), and h ∈ Lq(Q′). Then the heat
equation

∂tw − σΔw = h, (x, t) ∈ Q′,
w(x, 0) = w0(x), x ∈ Ω,

(56)

with homogeneousNeumannboundary conditionon ∂Ω×(0, T ), has aunique solution
in W 2,1,q(Q′) that satisfies

‖w‖W 2,1,q (Q′) ≤ C
(‖w0‖W 2−2/q,q (Ω) + ‖h‖Lq (Q′)

)
.

Proof See [19, Theorem IV.9.1, page 341]. ��
Theorem 4 Let p > d + 2. For all R > 0, there exists C > 0 such that for all
u0 ∈ W 2−2/p,p(Td), for all b ∈ L p(Q,Rd), for all c ∈ L p(Q), for all h ∈ L p(Q),
satisfying

‖u0‖W 2−2/p,p(Td ) ≤ R, ‖b‖L p(Q,Rd ) ≤ R, ‖c‖L p(Q) ≤ R, ‖h‖L p(Q) ≤ R,

equation (51) has aunique solutionu inW 2,1,p(Q) satisfyingmoreover‖u‖W 2,1,p(Q) ≤
C.

Proof We first check that there is a solution in the standard variational setting with
spaces H := L2(Td), V := H1(Td). Let us show that, if y ∈ V , then 〈b,∇ y〉 and cy
belong to V ∗. By the Sobolev inclusion, V ⊂ Lq1(Td), 1/q1 = 1/2−1/d, with dense
inclusion, so that V ∗ ⊂ Lq1(Td)∗ = Lq2(Td), with 1/q2 = 1 − 1/q1 = 1/2 + 1/d.
Now 〈b,∇ y〉 ∈ Lr (Td) with

1

r
= 1

2
+ 1

p
<

1

2
+ 1

d + 2
<

1

q2
,

so that 〈b,∇ y〉 belongs to V ∗. Similarly, cy ∈ Lr (Td) with

1

r
= 1

q1
+ 1

p
<

1

2
− 1

d
+ 1

1 + d/2
<

1

q2
,

so that cy belongs to V ∗. So, (51) has a unique solution in the space

W (0, T ) := {v ∈ L2(0, T ; V ); ∂tv ∈ L2(0, T ; V ∗)}. (57)

Then we easily check that h[u] ∈ Lq0(Q′), for some q0 ∈ (1, 2). Then, by Theorem 3,
v ∈ W 2,1,q0(Q). We next compute by induction a finite sequence (qk)k=0,1,...,K such
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that

(i) v ∈ W 2,1,qk (Q′), ∀k = 0, . . . , K , (i i) qk ∈ (1, d + 2), ∀k = 0, . . . , K − 1,

(i i i) qK ≥ d + 2.

The first element q0 has already been fixed and satifies v ∈ W 2,1,q0(Q′). If q0 ≥ d+2,
we can stop and set K = 0. Let k ∈ N, assume that qk ∈ (1, d + 2) and that
v ∈ W 2,1,qk (Q′). Then v is solution of

∂tv − σΔv = h′′[u], (x, t) ∈ Q′,
u(x, 0) = v0(x), x ∈ Ω,

(58)

where

h′′[u] := hϕ − 2σ 〈∇ϕ,∇u〉 − σuΔϕ + u〈b,∇ϕ〉 − ϕ(〈b,∇u〉 + cu). (59)

We construct now qk+1 in such a way that h′′[u] ∈ Lqk+1(Q′). Since v ∈ W 2,1,qk (Q′),
we have that u ∈ W 2,1,qk (Q) and thus by Lemma 11, 〈b,∇u〉 ∈ Lr ′

(Q′) with

1

r ′ = 1

qk
+ 1

p
− 1

d + 2
. (60)

If qk < 1 + d/2, then cu ∈ Lr ′′
(Q′) with

1

r ′′ = 1

qk
+ 1

p
− 2

d + 2
. (61)

Note that r ′′ > r ′. If qk ≥ 1 + d/2, then u ∈ L∞(Q′) and thus cu ∈ L p(Q′). We
set now qk+1 = min(r ′, p). We observe that in both cases, cu ∈ Lqk+1(Q′). One can
verify that the other terms of h′′[u] also lie in Lqk+1(Q′). Therefore, by Theorem 3,
v ∈ W 2,1,qk+1(Q′). If qk+1 ≥ d + 2, we stop the construction of the sequence and
set K = k + 1. It remains to prove that the construction of the sequence stops after
finitely many iterations. If that was not the case, we would have that qk+1 = r ′, with
r ′ defined in (60), for all k ∈ N, implying that

1

qk
= 1

q0
+ k

( 1

p
− 1

d + 2

)
−→
k→∞ −∞,

which is a contradiction. Now we know that v ∈ W 2,1,qK (Q′), with qK ≥ d + 2.
This implies that u ∈ L∞(Q′) and ∇u ∈ L∞(Q′,Rd) (by Lemma 11) and thus that
h′′[u] ∈ L p(Q′). Finally, v ∈ W 2,1,p(Q′) (by Theorem 3) and u ∈ W 2,1,p(Q), since
u and v coincide on Q.

Observing that q0,…,qK only depend on p and d, the reader can check that v (and
thus u) can be bounded in W 2,1,p(Q′) by a constant depending on R only. ��
Theorem 5 For q ∈ (1,∞), the trace at time t = 0 of elements of W 2,1,q(Q′) belongs
to W 2−2/q,q(Ω).

123



Applied Mathematics & Optimization (2021) 83:1431–1464 1463

Proof See [19, Lemma 3.4, page 82]. ��
Theorem 6 Let p > d + 2. There exists C > 0 such that for all u0 ∈ W 2−2/p,p(Td)

and for all h ∈ L p(Q), the unique solution u to (51) (with b = 0 and c = 0) satisfies
the following estimate:

‖u‖W 2,1,p(Q) ≤ C
(‖u0‖W 2−2/p,p(Td ) + ‖h‖L p(Q)

)
.

Proof Consider the map u ∈ W 2,1,p(Q) �→ (u(·, 0), ∂t u − σΔu − h) ∈
W 2−2/p,p(Ω), L p(Q)). By Theorem 5, it is continuous and by Theorem 6, it is bijec-
tive. As a consequence of the open mapping theorem, its inverse is also continuous.
The result follows. ��
Lemma 12 Let p > d + 2. There exists δ ∈ (0, 1) and C > 0 such that for all
u ∈ W 2,1,p(Q),

‖u‖Cδ(Q) + ‖∇u‖Cδ(Q,Rd ) ≤ C‖u‖W 2,1,p(Q).

Proof See [19, Lemma II.3.3, page 80 and Corollary, page 342]. ��
Theorem 7 Let p > d + 2. For all α ∈ (0, 1), for all R > 0, there exist β ∈ (0, 1)
and C > 0 such that for all u0 ∈ C2+α(Td), b ∈ Cα,α/2(Q,Rd), c ∈ Cα,α/2(Q) and
h ∈ Cα,α/2(Q) satisfying

‖u0‖C2+α(Td ) ≤ R, ‖b‖Cα,α/2(Q,Rd ) ≤ R, ‖c‖Cα,α/2(Q) ≤ R, and ‖h‖Cα,α/2(Q) ≤ R,

the solution to (51) lies in C2+β,1+β/2(Q) and satisfies ‖u‖C2+β,1+β/2(Q) ≤ C.

Proof In the proof, C denotes constants that depend only on α and R. Combining
Theorem 4 and Lemma 12, we obtain that h[u] is Hölder continuous, with exponent
β := min(δ, α) (where δ is given by Lemma 12; we use the fact that a product
of Hölder functions is Hölder, with exponent equal to the minimum exponent), and
‖h[u]‖Cβ,β/2(Q) ≤ C .By [19, Theorem IV.5.1, page 320], ‖v‖C2+β,1+β/2(Q) ≤ C . Since
u and v coincide on T

d , the conclusion follows. ��
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