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Abstract

We propose a variational regularisation approach for the problem of template-based
image reconstruction from indirect, noisy measurements as given, for instance, in
X-ray computed tomography. An image is reconstructed from such measurements
by deforming a given template image. The image registration is directly incorpo-
rated into the variational regularisation approach in the form of a partial differential
equation that models the registration as either mass- or intensity-preserving transport
from the template to the unknown reconstruction. We provide theoretical results for
the proposed variational regularisation for both cases. In particular, we prove exis-
tence of a minimiser, stability with respect to the data, and convergence for vanishing
noise when either of the abovementioned equations is imposed and more general dis-
tance functions are used. Numerically, we solve the problem by extending existing
Lagrangian methods and propose a multilevel approach that is applicable whenever
a suitable downsampling procedure for the operator and the measured data can be
provided. Finally, we demonstrate the performance of our method for template-based
image reconstruction from highly undersampled and noisy Radon transform data. We
compare results for mass- and intensity-preserving image registration, various reg-
ularisation functionals, and different distance functions. Our results show that very
reasonable reconstructions can be obtained when only few measurements are avail-
able and demonstrate that the use of a normalised cross correlation-based distance
is advantageous when the image intensities between the template and the unknown
image differ substantially.
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1 Introduction

In medical imaging, an image can typically not be observed directly but only through
indirect and potentially noisy measurements, as it is the case, for example, in computed
tomography (CT) [41]. Due to the severe ill-posedness of the problem, reconstructing
an image from measurements is rendered particularly challenging when only few or
partial measurements are available. This is, for instance, the case in limited-angle CT
[22,41], where limited-angle data is acquired in order to minimise exposure time of
organisms to X-radiation. Therefore, it can be beneficial to impose a priori information
on the reconstruction, for instance, in the form of a template image. However, typically
neither its exact position nor its exact shape is known.

Inimage registration, the goal is to find a reasonable deformation of a given template
image so that it matches a given target image as closely as possible according to a
predefined similarity measure, see [39,40] for an introduction. When the target image
is unknown and only given through indirect measurements, it is referred to as indirect
image registration and has been explored only recently [13,24,31,45]. As a result, a
deformation together with a transformed template can be computed from tomographic
data. The prescribed template acts as a prior for the reconstruction and, when chosen
reasonably close in a deformation sense, gives outstanding reconstructions in situations
where only few measurements are available and competing methods such as filtered
backprojection [41] or total variation regularisation [47] fail, see [13, Sect. 10].

In our setting, deformations are maps from the image domain 2 C R", n €
N, to itself together with an action that specifies exactly how such a map deforms
elements in the shape space, which in this work is the space L2(Q2, R) of greyscale
images supported in the image domain. Natural problems are to characterise admissible
deformations and to compute these numerically in an efficient manner.

One possible approach is diffeomorphic image registration, where the set of admis-
sible deformations is restricted to diffeomorphisms in order to preserve the topology
of structures within an image [58]. One can, for instance, consider the group of diffeo-
morphisms together with the composition as group operation. Elements in this group
act on greyscale images by means of the group action and thereby allow for a rich set of
non-rigid deformations, as required in many applications. For instance, the geometric
group action transforms greyscale images in a way such that its intensity values are
preserved, whereas the mass-preserving group action ensures that, when the image is
regarded as a density, the integral over the density is preserved.

A computational challenge in using the above group formalism is that it lacks a
natural vector space structure, which is typically desired for the numerical realisation
of the scheme. Hence, it is convenient to further restrict the set of admissible defor-
mations. One way to obtain diffeomorphic deformations is to perturb the identity map
with a displacement vector field. Provided that the vector field is reasonably small and
sufficiently regular, the resulting map is invertible [58, Proposition 8.6]. For indirect
image registration this idea was pursued in [45].

The basic idea of the large deformation diffeomorphic metric mapping (LDDMM)
[4,18,37,38,50,53,58] framework is to generate large deformations by considering
flows of diffeomorphisms that arise as the solution of an ordinary differential equation
(ODE), the so-called flow equation, with velocity fields that stem from a reproducing
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kernel Hilbert space. In order to ensure that the flow equation admits a unique solution,
one typically chooses this vector space so that it can be continuously embedded into
C1(Q2, R™), allowing the application of existence and uniqueness results from Cauchy—
Lipschitz theory for ODEs, see [15, Chap. 1] for a brief introduction. In [13], the
LDDMM framework is adapted for indirect image registration and the authors prove
existence, stability, and convergence of solutions for their variational formulation.
Numerically, the problem is solved by gradient descent.

The variational problem associated with LDDMM is typically formulated as an
ODE-constrained optimisation problem. As the flow equation can be directly related
to hyperbolic partial differential equations (PDEs) via the method of characteristics
[21, Chap. 3.2], the problem can equivalently be rephrased as a PDE-constrained opti-
misation problem [33]. The resulting PDE is determined by the chosen group action,
see [13, Sect. 6.1.1] for a brief discussion. For instance, the geometric group action is
associated with the transport (or advection) equation, while the mass-preserving group
action is associated with the continuity equation. It is important to highlight that the
PDE constraint implements both the flow equation and the chosen diffeomorphic group
action.

Such an optimal control approach was also pursued for motion estimation and
image interpolation [2,6,7,9,12,29,44]. In the terminology of optimal control, the PDE
represents the state equation, the velocity field the control, and the transformed image
the resulting state. We refer to the books [5,16,26,32] and to the article [30] for a
general introduction to PDE-constrained optimisation and suitable numerical methods.
Let us mention that other methods, such as geodesic shooting [3,37,49,56], exist and
constitute particularly efficient numerical approaches. In particular, this direction has
recently been combined with machine learning methods [57].

A particularly challenging scenario for diffeomorphic image registration occurs
when the target image is not contained in the orbit of the template image under above-
mentioned group action of diffeomorphisms. For instance, this could happen in the
case of the geometric group action due to the appearance of new structures in the
target image or due to a discrepancy between the image intensities of the template
and the target image. A possible solution is provided by the metamorphosis frame-
work [36,46,51,52], which is an extension to LDDMM that allows for modulations of
the image intensities along characteristics of the flow. The image intensities change
according to an additional flow equation with an unknown source. See [58, Chap. 13]
for a general introduction and, for instance, [33] for an application to magnetic reso-
nance imaging. Let us also mention [43], which adopts a discrete geodesic path model
for the purpose of image reconstruction, and [34], in which the metamorphosis model
is combined with optimal transport.

In [24], the metamorphosis framework is adapted for indirect image registration.
The authors prove that their formulation constitutes a well-defined regularisation
method by showing existence, stability, and convergence of solutions. However, in
the setting where only few measurements—e.g. a few directions in CT—are avail-
able, reconstruction of appearing or disappearing structures seems very challenging.

Therefore, in order to obtain robustness with respect to differences in the intensities
between the transformed template and the sought target image, we follow a different
approach. We consider not only the standard sum-of-squared differences (SSDs) but
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also a distance that is based on the normalised cross correlation (NCC) [40, Chap. 7.2],
as it is invariant with respect to a scaling of the image intensities.

While image registration itself is already an ill-posed inverse problem that requires
regularisation [20], the indirect setting as described above is intrinsically more
challenging. It can be phrased as an inverse problem, where measurements (or obser-
vations) g € Y are related to an unknown quantity f € X via the operator equation

K(f)=g+n’. )

Here, K : X — Y isa(notnecessarily linear) operator that models the data acquisition,
often by means of a physical process, n® are measurement errors such as noise, and
X and Y are Banach spaces. When f constitutes an image and g are tomographic
measurements, solving (1) is often referred to as image reconstruction.

We use a variational scheme [48] to solve the inverse problem of indirect image
registration, which can be formulated as a PDE-constrained optimisation problem [13,
Sect. 6.1.1]. It is given by

ﬁi‘r} Jy,g(V),

(2)
s.t. C(v),
where Jy, o V — [0, +0o0] is the functional
v DK (fo(T. ). 8) + v vl (3)
Here, V is an admissible vector space with norm || - ||y, D: Y x Y — Rspis a

data fidelity term that quantifies the misfit of the solution against the measurements,
and y > 0 is a regularisation parameter. Moreover, f,(T,-): 2 — R denotes the
evaluation at time 7 > 0 of the (weak) solution of C(v), which is either the Cauchy
problem

%f(t,x) +v(t, x)V, f(t,x) =0, for(t,x) €[0,T] x ,

C(v) = [
f0,x) = fo(x), forx € Q,

governed by the transport equation, or

B f(t,x) + dive (e, x) f(1,x)) =0, for (7, x) € [0, T] x K,

Clv) = {
O, x) = folx), forx € Q,

involving the continuity equation. Here, fj € L2(Q, R) denotes an initial condition,

which in our case is the template image.

The main goals of this article are the following. First, to study variational and
regularising properties of problem (2), and to develop efficient numerical methods for
solving it. Second, to investigate alternative choices of distance functions D, such
as the abovementioned NCC-based distance. Third, to demonstrate experimentally
that excellent reconstructions can be computed from highly undersampled and noisy
Radon transform data.
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Our numerical approach is based on the Lagrangian methods developed in [35],
called LagLDDMM. In contrast to most existing approaches, which are mainly first-
order methods (see [35] for a brief classification and discussion), LagLDDMM uses
a Gauss—Newton—Krylov method paired with Lagrangian solvers for the hyperbolic
PDE:s listed above. The characteristics associated with these PDEs are computed with
an explicit Runge—Kutta method. One of the main advantages of this approach is
that Lagrangian methods are unconditionally stable with regard to the admissible step
size. Furthermore, the approach limits numerical diffusion and, in order to evaluate
the gradient or the Hessian required for optimisation, does not require the storage of
multiple space-time vector fields or images at intermediate time instants. The scheme
can also be implemented matrix-free.

In comparison to abovementioned existing methods for indirect image registration,
such as [13,24,31,45], our method is conceptually different in several ways. The first
difference concerns the discretisation. While [13,24,45] are mainly based on small
deformations and use reproducing kernel Hilbert spaces, our method relies on non-
parametric registration. The main advantages are that it directly allows for a multilevel
approach and no kernel parameters need to be chosen. Moreover, due to the flexibility
of the underlying framework it is straightforward to extend our method to parametric
registration. Second, our approach relies on second-order methods for optimisation
by using a Gauss—Newton method paired with line search, while the other methods
mainly rely on gradient descent. This allows for a fast decrease of the objective within
only few iterations. Third, our method allows to easily exchange the underlying PDE
solver. Essentially, any solver can be used as long as it can be differentiated efficiently.
The used explicit Runge—Kutta method has the advantage that it does not require
the storage of multiple images or repeated interpolation of the template, which can
potentially lead to a blurred solution. Finally, let us mention that [31] is conceptually
different since both a deformation and a template image are computed. Our main focus,
however, are applications where only very few and noisy measurements are available
and the problem of estimating an additional template seems highly underdetermined
in such situations.

1.1 Contributions

The contributions of this article are as follows. First, we provide the necessary theoret-
ical background on (weak) solutions of the continuity and the transport equation, and
recapitulate existence and uniqueness theory for characteristic curves for the associated
ODE. In contrast to the results derived in [13], where the template image is assumed
to be contained in the space SBV (2, R) N L*° (L2, R) of essentially bounded func-
tions with special bounded variation, our results only require L>($2, R) regularity. In
addition, by using results from [17], we are able to consider the transport equation
in the setting with H! regularity of vector fields in space as well as in time and with
bounded divergence. Moreover, we show the existence of a minimiser of the problem
(2), stability with respect to the data, and convergence for vanishing noise.

Second, in order to solve the problem numerically, we follow a discretise-then-
optimise approach and extend the LagLDDMM framework [35] to the indirect setting.
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The library itself is an extension of FAIR [40] and, as a result, our implementation
provides great flexibility regarding the selected PDE, and can easily be extended to
other distances as well as to other regularisation functionals. The source code of our
MATLAB implementation is available online.!

Finally, we present numerical results for the abovementioned distances and PDEs.
To the best of our knowledge, the results obtained for indirect image reconstruction
based on the continuity equation are entirely novel. Moreover, we propose to use the
NCC-based distance instead of SSD whenever the image intensities of the template
and the unknown target are far apart, and show its numerical feasibility.

2 Theoretical Results on the Transport and Continuity Equation

In this section, we review the necessary theoretical background, and state results on the
existence and stability of weak solutions of the transport and the continuity equation.
Compared to [13], our results are stronger since we do not require space regularity of
the template image.

2.1 Continuity Equation

In what follows, we consider well-posedness of the continuity equation that arises in
the LDDMM framework using the mass-preserving group action via the method of
characteristics. The regularity assumptions on v are such that we can apply the theory
from [51].

Let 2 C R” be a bounded, open, convex domain with Lipschitz boundary and let
T > 0. In the following, we examine the continuity equation

a%f(t, x) +divy (v, x) f(t,x)) =0 for(t,x) €[0,T] x 2,
S0, x) = folx) forx € Q,

“

with coefficients v € L2([0, T, V) and initial condition fy € L?($2, R), where V is
a Banach space which is continuously embedded into c(}’“(sz, R"™) for some o > 0.
Here Cé’“(Q, R™) denotes the closure of C2°(£2, R") under the C* norm. Note that
such velocity fields can be continuously extended to the boundary. Clearly, Eq. (4) has
to be understood in a weak sense, i.e.a function f € CO([0, T, L3(2, R)) is said to
be a weak solution of (4) if

T
/ /f(t,x)(v(t,x)Vxn(t,x)vLin(t,x))dxdt+/ Fo@)n(0, x)dx = 0 (5)
0o Ja ot Q

1 https://doi.org/10.5281/zenodo.2598138.
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holds for all n € C°([0, T') x 2). The corresponding characteristic ODE is

%X(r,s,x) =v(t, X(¢,s,x)) for(t,s,x) [0, T] x[0,T] x , )

X(s,s,x) =x for x € Q.

In this notation, the first argument of X is the time dependence, the second the initial
time, and the third the initial space coordinate. The following theorem is a reformula-
tion of [51, Theorems 1 and 9] and characterises solutions of (6).

Theorem 2.1 Let v € L2([0,T1, V) and s € [0, T] be given. There exists a unique
global solution X (-, s,-) € C°([0, T], C'(Q, R")) such that X(s, s, x) = x for all
x € Qand

d
—X(t,5,x) =v(, X(1,s,x))
dr
inweak sense (absolltely continuous solutions). The solution operator X, L? ([0, T1,
V) — CO([0, T1 x Q, R") assigning a flow X, to every velocity field v is continuous
with respect to the weak topology in L*>([0, T1, V).

Since X (0,1, X(¢,0,x)) = x, we can directly conclude that X(z, 0, -) is a diffeo-
morphism for every ¢t € [0, T]. Now, the diffeomorphism X (0, ¢, x) can be used to
characterise solutions of (4) as follows.

Proposition 2.2 [fv € L2([0, T1, V), then the unique weak solution of (4), as defined
in(5),is given by f(t, x) = det(D, X(0, t, x)) fo(X(0, t, x)), where Dy X denotes the
Jacobian of X.

Proof The proof is divided in three steps. First, we want to show that f satisfies
the regularity conditions of weak solutions. For this purpose, the first step is to show
X, ) e CO([O, T1, Co(ﬁ, R™)), i.e. that the flow is continuous in the initial values.
Clearly, X(0,¢,-) € Co(ﬁ, R") forevery ¢t € [0, T']. For an arbitrary sequence t; — ¢
we get

1X(0. 11, ) = X0, 1, )| oy < IDxX (0. 11, Ml coggy I — X @1, 1, )l oy — O,
where the first factor is bounded due to [51, Lemma 9]. Next, using the sequence
X;() = X(0,4,-), it follows fo(X(0,-,-) e C°(0,T], L*(Q,R)), where
the continuity in time follows from [42, Corollary 3]. Then, by differentiating
X(0,¢, X(z,0, x)) = x and rearranging the terms we obtain

det(D, X (0, -, -)) = det(D X (-, 0, )~ (X (0, -, -)) € C°([0, T] x Q),

since all involved expressions are continuous. Finally, we conclude f € C°([0, T,
L%($2, R)), which follows from
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1f@ ) = f )
< [1det(Dx X (0, ¢, x)) — det(Dx X (0, £;, X))l co g | fo(X (0, 2, X)) I 12(@)

1 det(Dx X (0, 1i, )l co ) fo(X (0, 7, %)) — fo(X (O, i, X)) 12y, (7)
since both summands converge to zero.
The second step is to show that (5) is satisfied. Note that X (-, 0, x) is differentiable

int for a.e. t € [0, T], since it is absolutely continuous by definition. By inserting f
into (5) and using the transformation formula, we get

r an(t, x)
/ / f(t,x) <v(r,x>vxn<r,x>+ >dxdr+ f Fo(x)n(0, x) dx
0 Q Q

at

T
_ / / det(Dy X (1, 0, ¥)) £ (£, X(t, 0, ) -nt, X (2,0, %)) dx dt
0 Jo dt
+ /Q Folom 0, ) dx
T d
=/ /fo(x)—n(t,X(I,O,x))dxdtJr/ So()n(0, x)dx = 0. )
0 Ja dt Q

For the last equality we used that n(z, X (¢, 0, x)) is absolutely continuous.

The last step is to prove uniqueness of weak solutions, i.e. that every solution has
the given form. Let f1, f> be two different solutions, then we can find a ¢ such that
I /1@, )= f2(z, )l 12(q) > 0. By continuity in time we can find an interval / of length
& > 0 that contains ¢, and a constant ¢ > 0 such that

I f1(s, ) = fa(s, )2 = €

for all s € 1. However, weak solutions are unique in L*°([0, T], L%(Q, R)), see [17,
Corollary II.1], where we used the embedding of V into Cé (€2, R™). This yields a
contradiction. O

Additionally, we can state and prove the following stability result for solutions of (4).

Proposition 2.3 (Stability) Let v;—v in L2([0, T, V) and f; denote the weak solution
of (4) corresponding to v;. Then for every t € [0, T], there exists a subsequence, also
denoted with f;, such that fi(t,-) — f(t,-)in L2(Q, R).

Proof The solution of (6) corresponding to v; is denoted by X;. Fix an arbitrary
t € [0, T]. From Theorem2.1 we conclude || X;(0,7,-) — X (0,1, -)||C0(§) — 0.
Further, [19, Theorem 3.1.10] implies that X; (0, ¢, -) is uniformly bounded for all
i € Nin C1%(Q), which implies fo(X;(0,1,-)) — fo(X(0,1,-)) in L2(2,R) by
[42, Corollary 3].

It is left to show that a subsequence, also denoted by X;, exists such that
X;0,¢t,) > X(0,¢,)in c! (5, R™). This concludes the proof since it also implies
the convergence of det(D;X;(0,7,-)) — det(Dy+X(0,¢,-)) in CY(Q). However,
X;(0,1,-) is uniformly bounded in C*(Q, R") and it follows that D, X; (0,1, -)
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is uniformly bounded in CcO%(Q, R™"). By using the compact embedding of
COx(Q, R™™ ") into CO(2, R"™*™) [23, Lemma 6.33], there exists a subsequence of
X; (0, 1, -) that converges to X (0, ¢, -) in C1(Q, R"). ]

2.2 Transport Equation with H' Regularity

Here, we prove well-posedness of the transport equation that arises in the LDDMM
framework using the geometric group action. Compared to the previous section, the
space regularity assumptions on v are weaker and fit the setting in [17].

The transport equation reads as

%f(t, x)+ v, x)Vyf(t,x) =0 for(t,x) €[0,T] x Q,
0, x) = folx) forx € Q,

&)

with coefficients

veA:= {v e H'([0, T] x )" N L0, T1, H (™) | divy vl 1o (0.71x2) < c}

(10)
for some fixed constant C and initial value fy € L?(2, R). The admissible set A
consists of all H! functions that are zero on the boundary of the spatial domain and
have bounded divergence in the L°° norm.

Note that the set A is a subset of H!([0, T] x )", which is closed and convex so
that it is a weakly closed subset of a reflexive Banach space. In the following, we only
check that A is closed. Let v; be a convergent sequence in A with limit v. Since the two
involved spaces are Banach spaces, we only have to check that v satisfies the constraint.
Assume that || divy v| 1oo([0,71x2) > C. then there exists a set B with positive measure
and an € > 0 such that for all x € B we have |div, v(x)| > C + €. Hence, we get
| divy vi —divy V7250, 71x2) = v/ (B)€, which contradicts the convergence in H'.

Again, Eq.(9) has to be understood in weak sense so that f € co(o, 71,
L?($2, R)) is said to be a solution of (9) if it satisfies

T ) 9
/ / fa, x)(dlvx(v(t,x)n(t,x)) + an(z,x)) dxdr +/ fo()n(0, x)dx = 0
0 Ja Q
(11)
forall n € C°([0, T') x 2). The next theorem is an existence and stability result, see
[17, Corollaries II.1 and II.2, Theorem II.5].

Theorem 2.4 (Existence and Stability) For every v € A there exists a unique weak
solution f e C°([0, T], L>(2,R)) of (9). If v; € A converges to v € A in the
norm of L*([0, T] x 2, R"), then the corresponding sequence of weak solutions
fi € C([0, T1, L3(2, R)) converges to f in C°([0, T1, L*(2, R)).

Proof The existence and uniqueness of weak solutions follows from [17, Corol-
laries II.1 and II.2]. Note that these solutions are also renormalised due to [17,
Theorem I1.3].
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We recast the second part of the theorem such that it has the exact form of [17,
Theorem I1.5]. First, note that both the velocity fields and the initial condition can
be extended to R” by zero outside of Q2 due to boundary condition of A. Due to
the conditions on v, the weak formulation is equivalent to the one for the extension
in the R” setting. The uniform boundedness condition on f; is satisfied since 2 is
bounded. O

Corollary 2.5 Let v;—v € A with the inner product of H'([0, T] x Q)". Then, f;
converges to f in CO([0, T1, L*(2, R)).

Proof Combine the previous theorem with the compact embedding of H' ([0, T]x )"
into L2([0, T] x Q)" (Rellich embedding theorem [1, A6.4]). O

Remark 2.6 Note that the same arguments can be used if we use higher spatial reg-
ularity, such as H 2 in this section. From a numerical point of view, the bound on
the divergence is always satisfied for C large enough if we use linear interpolation
for the velocities on a fixed grid. Here we use that all norms are equivalent on finite
dimensional spaces.

3 Regularising Properties of Template-Based Image Reconstruction

In this section, we prove regularising properties of template-based reconstruction as
defined in (2). Recall that the problem reads

min D(K (f,(T.). ) + 7]

s.t. C(v),

where C(v) is the Cauchy problem with either the transport or the continuity equa-
tion. The admissible set V is chosen such that the regularity requirements stated in
the previous section are satisfied. For the following considerations we require these
assumptions on K and D:

(1) The operator K is continuous, D(-, g) is lower semi-continuous for each g € Y,
and D(g, -) is continuous foreach g € Y.

(2) If f,, gn are two convergent sequences with limits f and g, respectively, then D
must satisfy lim inf,, . oo D(fy, g) < liminf,_, o D(fy, gn)-

(3) If D(f,g) =0, then [ = g.

Note that the requirements on D are satisfied if D is a metric. The obtained results are
along the lines of [13] but are adapted to our setting and to our notation. For simplicity
we stick to the notation of the continuity equation, but want to mention that the same
derivations hold for the transport equation with coefficients in the set A. First, we
prove that a minimiser of the problem exists.

Proposition 3.1 (Existence) For every fo € L>(Q2, R), the functional Jy.¢ defined in
(3) has a minimiser.
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Proof The idea of the proof is to construct a minimising sequence which is weakly
convergent and then use that the functional is weakly lower semi-continuous. Let
us consider a sequence v, such that J, ¢(v,) converges to inf, J,, ;(v). By con-
struction of the functional, v, is bounded in L2([0, T], V) and hence there exists
a subsequence, also denoted with v,, such that v,—vy. By Proposition2.3, there
exists a subsequence, also denoted with v,, such that f, (T',-) — fu (T,-) in
L%(Q2, R). With this at hand, we are able to prove weak lower semi-continuity
of the data term. Indeed, as K is continuous, from f, (T',) — fu (T,:) we
get K(f,,(T,:)) — K(fu(T,-)). Since D(-, g) is lower semi-continuous, we
obtain that D(K (fy. (T, ), g) < liminf, o D(K(f,,(T, ")), g). This concludes
the proof, since the whole functional is (weakly) lower semi-continuous, and hence
Jy.e(Veo) < infy Jy o (V). O

Next, we state a stability result.

Proposition 3.2 (Stability) Ler fo € L*(Q,R) and y > 0. Let g, be a sequence in
Y converging to g € Y. For each n, we choose v, as minimiser of J,, o, . Then, there
exists a subsequence of v, which weakly converges towards a minimiser v of J, .

Proof By the properties of D it holds, for every n, that
’ 1 1 1 1
lvnlly < ;Jy,gn(vn) =< ;Jy,gn(o) = ;D(K(fo), &n) —> ;D(K(f())» g) < .

Hence, v,, is bounded in LZ([O, T1,V) and there exists a subsequence, also denoted
with v,, such that v,—v. From the weak convergence we obtain y||v||%, <
y iminf,,— o0 ([0, 11%.

By passing to a subsequence and by using Proposition2.3, we deduce that
Jo,(T,-) = fu(T,-). Together with the convergence of g, and the convergence
property of D this implies

D(K(fu(T,-)), g) <liminf D(K (f,,(T,-)), g) < liminf D(K(fy,(T, ")), gu)-
n—>oo n—>0oo
Thus, for any v, it holds that

Jy.@) = iminf y vy + DK (fu, (T ), &)
= lkrggéf Jy.gn(Un) < llnn_l)loréf Jy,g, (V),

because v, minimises J ,,. Then, as J,, 4, (V) converges to J,, ¢ (v) by the assumptions
on D, we deduce J,, ;(v) < Jy, ¢(¥) and hence that v minimises J,, . O

Finally, we state a convergence result for the method.

Proposition 3.3 (Convergence) Let fo € L>(2,R) and g € Y, and suppose that
there exists O € L%([0,T1, V) such that K(f;(T,-)) = g. Further, assume that
y: Rog = Rog satisfies y(5) — 0 and % — 0as 8 — 0. Now let 8, be a
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sequence of positive numbers converging to 0 and assume that g, is a data sequence
satisfying D(g, gn) < 8y foreachn. Let v, be aminimiser of J,, o, , where y, =y (5,).
Then, there exists a subsequence of v, which weakly converges towards an element v
such that K (f,(T, ")) = g.

Proof For every n, it holds that

i(D(é% gn) + valldlly) =< on + 19115
n n (12)
From the requirements on y and § we deduce that v,, is bounded in L2([0, T1,V) and
then that up to an extraction, v, weakly converges to some v in L2([O, T1,V).
Further, it holds D(K (f,(T, -)), g) < liminf,_, o D(K(fy,(T, ")), g,) with the
same arguments as in the previous proposition. Finally, for every 7, it holds that

1 1 N
”Un ”%/ E y_‘]}/n;gn(v”) S V_J)/mgn (U) =
n n

D(K(fvn(T’ )R gn) =< Jy,,,g,, (vp) < Jy,,,g,,(i}) = D(g, gn) + Vn”i}”%/v (13)

where the two rightmost terms both converge to zero. Thus, K (f,(T, -)) = g by the
assumptions on D. O

We conclude with a remark on data discrepancy functionals that satisfy the conditions
and will be used in our numerical experiments in Sect. 5.

Remark 3.4 We now assume that the data space Y is a real Hilbert space. Clearly,
the conditions are satisfied if Dssp(f,g) = |f — g||%,. We will only check the
convergence condition. It holds

liminf || f, — gll3 = liminf || f, — gull} +2(f0 — &n, 80 — &) + g — gull3,
n—o n—oo

where the last two terms converge to zero since convergent sequences are bounded.
Another function that satisfies the conditions is Dncc: Y \ {0} x Y \ {0} — [0, 1]
with

(f.8)?

Dnece(f.8) =1— ,
I£12 1%

~ 2
which is based on the NCC. First, note that D(-, g) = <”';’|7‘>2 and the function || - ||172
Y

are continuous. Thus, we get that Dncc(:, g) is continuous. By symmetry, this also
holds for Dncc(g, -). It remains to check the convergence property:

_ 2 2
lim 1 — Dnce(fy, g) = lim ((fn. 8 gni + <{n» 8n)) — lim (fngn) .
S n=oo I fall5 gl n=o0 || f, 12 llgll3

2
— m % = lim 1 — DNCC(fn’ gn)
n—=oo || fullyllgnlly — n—>

From this we conclude liminf, . Dncc(fn,g) = liminf,_ o Dnce(frs &n)-
Unfortunately, Dncc(f, &) = 0 only implies f = cg, with ¢ € R.
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4 Numerical Solution

The focus of this section is to approximately solve problem (2). Our approach is
based on the Lagrangian methods developed in [35] and the inexact multilevel Gauss—
Newton method used in [40]. Both methods and their necessary modifications are
briefly outlined here.

As customary in PDE-constrained optimisation [16, Chap. 3], we eliminate the
state equation by defining a control-to-state operator, which parametrises the final
state fy, (T, -) in terms of the unknown velocities v. With a slight abuse of notation,
we define this solution map as

S: V> L*(Q,R),

(14)
v fu(T, ) = fv).
Here, f, denotes the unique solution to either the transport or the continuity equation,
as defined in Sect. 2. As a result, we obtain the reduced form of (2):

min D(K(f (). &) + v R(v). 15)

Here, R: V — Rx( is a regularisation functional that can be written as

T
R(v) = %fo fQ||Bv(t,x)||2dxdr (16)

with B denoting a linear (vectorial) differential operator.

In this work, we consider the operators B = V, and B = A, which are also used in
[35]. We refer to the resulting functionals R as diffusion and curvature regularisation
functionals, respectively. Note that B can as well be chosen to incorporate derivatives
with respect to time.

Amongst the operators above, we also consider a regularisation functional that
resembles the norm of the space V = L2([0, T, Hg (€2, R™)). This particular choice
is motivated by the fact that, for n = {2, 3}, the space Hg (€2, R™) can be continuously

embedded in Cé‘a(Q, R™), for some o > 0, so that the results in Sect.2 hold. The
norm of V is given by

1T 1 (7
Il = 5 fo e /0 0, g 4 (D)

Here, || gk (q rny denotes the usual H*-seminorm including only the highest-order
partial derivatives. By the Gagliardo—Nirenberg inequality, (17) is equivalent to
the usual norm of Lz([O, T1, Hg(Q,R”)). To simplify numerical optimisation,
we omit the requirement that v is compactly supported in €2 and minimise over
L2([0, T1, H3 (2, RM)).

In order to solve problem (15), we follow a discretise-then-optimise strategy. With-
out loss of generality, we assume that the domain is 2 = (0, 1)". We partition it into
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a regular grid consisting of m" equally sized cells of edge length zx = 1/m in every
coordinate direction.

The template image fo € L?(2,R) is assumed to be sampled at cell-centred
locations x. € R™", giving rise to its discrete version fy(x.) € R™". The template
image is interpolated on the cell-centred grid by means of cubic B-spline interpolation
as outlined in [40, Chap. 3.4].

Similarly, the time domain is assumed to be [0, 1] and is partitioned into m, equally
sized cells of length h; = 1/m;. We assume that the unknown velocities v: [0, 1] x
Q — R" are sampled at cell-centred locations in space as well as at cell-centred
locations in time, leading to a vector of unknowns v € RN, where N = (m; +
1) - n - m" is the total number of unknowns of the finite-dimensional minimisation
problem.

4.1 Lagrangian Solver

In order to compute the solution map f(v) numerically, i.e. to solve the hyperbolic
PDEs (4) and (9), the Lagrangian solver in [35] follows a two-step approach. First,
given a vector v € RV of velocities, the ODE (6) is solved approximately using a
fourth-order Runge—Kutta (RK4) method with N, equally spaced time steps of size
At. For simplicity, we follow the presentation in [35] based on an explicit first-order
Euler method and refer to [35, Sect. 3.1] for the full details.

Given initial pointsx € R”" and velocities v € R", an approximation Xy : [0, 11> x
R™" — R™" of the solution X, is given recursively by

Xy (0, tr41, xX) = Xy (0, #, xX) + At I(v, tx, Xy (0, t, X)), (18)

for all k = 0,1,...,N; — 1, with initial condition Xy(0,0,x) = x. Here,
I(v, tz, Xy (0, #, X)) denotes a componentwise interpolation of v at time f; =
kAt and at the points Xy (0, #x, x). Note that, since the characteristic curves
for both PDEs coincide, this step is identical regardless of which PDE we
impose.

The second step computes approximate intensities of the final state f, (1, -). This
step depends on the particular PDE. For the transport equation, in order to compute
the intensities at the grid points x., we follow characteristic curves backwards in time,
which is achieved by setting At = —1/N; in (18). The deformed template is then
given by

f(v) =fo(Xv(1, 0, xc)), 19)

where fo € R™" is the interpolation of the discrete template image.

For the continuity equation, [35] proposes to use a particle-in-cell (PIC) method,
see [14] for details. The density of particles which are initially located at grid points
X, is represented by a linear combination of basis functions, which are then shifted by
following the characteristics computed in the first step. To determine the final density
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at grid points, exact integration over the grid cells is performed. By setting At = 1/N,
in (18), the transformed template can be computed as

f(v) = FXy(0, 1, x:)fo(xc), (20)

where F € RV*N is the pushforward matrix that computes the integrals over the
shifted basis functions. See [35, Sect. 3.1] for its detailed specification using linear,
compactly supported basis functions. By design, the method is mass-preserving at the
discrete level.

4.2 Numerical Optimisation

Let us denote by K: RN — RM M e N, afinite-dimensional, Fréchet differentiable
approximation of the (not necessarily linear) operator K : L2(©2, R) — Y. With the
application to CT in mind, we will outline a discretisation of (15) suitable for the n-
dimensional Radon transform, which maps a function on R” into the set of its integrals
over the hyperplanes in R” [41, Chap. 2].

An element K (f(v)) € Y is a function on the unit cylinder S*~! x R of R**1,
where §"~! is the (n — 1)-dimensional unit sphere. We discretise this unit cylinder
as follows. First, we sample p € N directions from S§"~1 When n = 2, as it is the
case in our experiments in Sect.5, directions are parametrised by angles from the
interval [0, 180] degrees. For simplicity, we say (slightly imprecise) that we take one
measurement in each direction. Second, similarly to the sampling of 2, we use an
interval (0, 1) instead of R and partition it into ¢ equally sized cells of lengthhy = 1/4.
Depending on n and the diameter of €2, the interval length may require adjustment.
Each measurement i is then sampled at cell-centred points y. € RY and denoted by
g; (y.) € R?. All measurements are then concatenated into a vector g := g(y.) € RM,
where M = p - q.

The finite-dimensional optimisation problem in abstract form is then given by

min {Jy ¢(v) ;= D(K(f(v)), g + ¥ R(V)}, (21)
veRN

where D and R are chosen to be discretisations of a distance and of (16), respectively.

In further consequence, we approximate integrals using a midpoint quadrature rule.
As we are mainly interested in the setting where only few directions are given, we
disregard integration over the unit sphere. For vectors x, y € RY | the corresponding
approximations of the distance based on SSDs and the NCC-based distance are then

(x"y)?
IxI%lyl?’

h
Dssp(x,y) ~ TY(X —y) (x—y) and Dncc(x,y) ~ 1 (22)

respectively. See [40, Chaps. 6.2 and 7.2] for details. Note that, due to cancellation,
no (spatial) discretisation parameter occurs in the approximation of the NCC above.
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Moreover, we approximate the regularisation functional in (16) with
h hn
R(V) ~ %VTBTBV, (23)

where B € RV*V is a finite-difference discretisation of the differential operator in
(16), analogous to [39, Chap. 8.5]. In our implementation we use zero Neumann
boundary conditions and pad the spatial domain to mitigate boundary effects arising
from the discretisation of the operator.

In order to apply (inexact) Gauss—Newton optimisation to problem (21), we require
first- and (approximate) second-order derivatives of J, ¢(v). By application of the
chain rule, we obtain

0 0 0
—Jyg(v) = —f( )" K(f( ))T—D(K(f(V)) g)+V—R(V)
av

where 0K/0f is the Fréchet derivative of K and of(v)/dv is the derivative of the
solution map (14) with respect to the velocities, which is given below.

The partial derivatives of the distance functions (22) with respect to its first argument
are given by

2

a a
—Dssp(X,y) =hy(x—y) and ™= ~—Dssp(x,y) = hyly, (24)

0x

where Iy € RV*¥ is the identity matrix of size N, and

2xTy)y  2(x"y)’x
IXIZNyI%  Ix*lyl?

d
—Dnee(x,y) = —
ox

respectively. Moreover, the derivatives of (23) are given by

9 92
a—vR(v) = hh",B"Bv and WR(V) = h, "y BTB.

In order to obtain an efficient iterative second-order method for solving (21), one
requires an approximation of the Hessian H € RV *¥ that balances the following trade-
off. Ideally, it is reasonably efficient to compute, consumes limited memory (sparsity
is desired), and has sufficient structure so that preconditioning can be used. However,
each iteration of the Gauss—Newton method should also provide a suitable descent
direction. For these reasons, we approximate the Hessian by

32 T 9
H(V) = 5 Jyg(V) ~ —f( )" K(f( )’ —D(K(f(v)) g)—K(f(v))—f(v)

+yhth’§(B B+ eIN,
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where € > 0 ensures positive semidefiniteness. For simplicity, the term involving
92t W)/ 9v?2 is omitted and, regardless of the chosen distance, we use the second deriva-
tive in (24) as an approximation of 32D (x, y)/dx>. In our numerical experiments we
found that this choice works well for the problem considered in Sect.5.

It remains to discuss the derivative of the solution map. For the transport equation,
the application of the chain rule to (19) yields

aa—vf(V) Vifo(Xv(1, 0, X)) 5o Xv(l 0. %),

where V. fy denotes the gradient of the interpolation of the template image and Xy /ov
is the derivative of the endpoints of the characteristic curves with respect to the veloc-
ities, see below. Similarly, for the solution map (20) that corresponds to the continuity
equation, we obtain

d
gf(v)

))fO(Xc)) X v, I, xc).

Here, 0F /90X is the derivative of the pushforward matrix with respect to the endpoints
of the characteristics, again see [35, Sect. 3.1].

If explicit time stepping methods are used to solve the ODE (6), the partial derivative
90Xy /dv can be computed recursively. For example, for the forward Euler approach in
(18) it is given by

d ad a
EXV(O’ tk+la XC) = EXV(Os tk9 XC) + At _I(Vv tkv XV(Os tks XC))

+A8
X

Xy (0, tk,Xc)) X v (0, 1, Xc),

forall k = 0,1,..., N, — 1, with 9I/dv and 0I/9Xy being the derivatives of the
interpolation schemes with respect to the velocities and with respect to the endpoints
of the characteristics, respectively. We refer to [40, Chap. 3.5] for details. The case
where characteristics are computed backwards in time can be handled similarly.

In order to solve the finite-dimensional minimisation problem (21), we apply a
inexact Gauss—Newton—Krylov method, which proceeds as follows. Given an initial
guess vO — 0, we update the velocities in each iteration i = 0, 1, ... by vi+th —
v® 4+ 418v until a termination criterion is satisfied. Here, 1 € R denotes a step size
that is determined via Armijo line search and v € R" is the solution to the linear
system

. 9 4
@) - _ (@)
HO )0y = =y g (v). (25)

For details on the stopping criteria and the line search we refer to [40, Chap. 6.3.3]. We
solve the system (25) approximately by means of a preconditioned conjugate gradient
method, which can be implemented matrix-free whenever the derivative of K and its
adjoint can be computed matrix-free. See [35, Sect. 3.2] for further details on the
preconditioning.
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Due to the non-convexity of (15) and to speed up computation, we use a multilevel
strategy in order to reduce the risk of ending up in a local minimum, see [27]. On
each level, we use a subsampled version of the velocities that were computed on the
previous, more coarser, discretisation as initial guess.

While standard image registration typically uses resampling of the template and the
target image [40, Chap. 3.7], the approach described here requires multilevel versions
of the operator K together with a suitable method for resampling the measurements
g. We stress that, if these are not available, optimisation can as well just be performed
on the finest discretisation level.

In the following, we assume that K is a discretisation of the Radon transform [41],
which is a linear operator, and outline a suitable procedure for creating multilevel
versions of the operator and the measured data. The former is easily achieved with
a computational backend such as ASTRA [54,55], which allows to explicitly specify
the number of grid cells used to discretise the measurement geometry. For the sake of
simplicity, we restrict the presentation here to the case where n = 2, i.e. @ C R?, and
K is linear.

Let us assume that the number of grid cells used to discretise €2 at the finest level
ism = 2% ¢ € N. In our experiments, we set the number of grid cells of the one-
dimensional measurement domain (0, 1) at the current level k < £to g®) = 1.5.2®
and set the length of each cell to hgc) = 1/g"®. Then, a multilevel representation of
each measurement g;, i < p, atcell-centred grid points y; = (j — 1 /2)h§f€71) is given
by

where the denominator arises from averaging over two neighbouring grid points and
dividing the edge length of the imaging domain €2 in each coordinate direction in half.
The approach can be extended to higher dimensions.

5 Numerical Examples

In our numerical experiments we use the Radon transform [41] as operator. Other
choices are possible and, assuming that one has access to a suitable resampling pro-
cedure for the measured data, the multilevel strategy can be applied as well. The aim
here is to investigate the reconstruction quality with different regularisation function-
als, distances, and noise levels for both PDE constraints. We show synthetic examples
for the settings n = 2 and 3, and non-synthetic examples for n = 2 using real X-ray
tomography data. In the synthetic case, all shown reconstructions were computed from
measurements taken from at most 10 directions (i.e. angles) sampled from intervals
within [0, 180] degrees.

All computations were performed using an Intel Xeon E5-2630 v4 2.2 GHz server
equipped with 128 GB RAM and an NVIDIA Quadro P6000 GPU featuring 24 GB of
memory. The GPU was only used for computing the Radon transform of 3D volumes.

Before we proceed, we give a brief idea of suitable parameter choices. For the
multilevel approach we used in each synthetic example 32 x 32 pixels at the coarsest
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(a) Template image. (b) Unknown image. (¢) Measured (sinogram) data
without noise.

Fig. 1 Synthetic example based on an artificial brain image [25] that has been deformed manually. We
generated six Radon transform measurements that correspond to six equally spaced angles from the interval
[0, 60] degrees

(a) Reconstruction (b) Reconstruction (¢) Reconstruction (d) Reconstruction
using filtered using Ry (TV using Ry with given using the
back-projection. reconstruction). template. metamorphosis

approach [24].

Fig.2 Comparison of different reconstruction models applied to an artificial brain image [40] that has been
deformed manually. We generated six measurements that correspond to six equally spaced angles from the
interval [0, 60] degrees

level and 128 x 128 pixels at the finest level, i.e. £ = 7. The size of the reconstructed
images in the nonsynthetic examples was 128 x 128. Again, three levels were used. In
the synthetic 3D example the reconstructed volume was 32 x 32 x 32 and the coarsest
level was 8 x 8 x 8.

We used time dependent velocity fields with only one time step, i.e. n; = 1,
since this keeps the computational cost reasonable and sufficed for our examples. The
characteristics were computed using five Runge—Kutta steps, i.e. N; = 5.

The spatial regularisation parameter depends on the chosen regularisation func-
tional and the noise level, and was chosen in the order of 1073, 10°, and 10° for
third-order, curvature, and diffusion regularisation, respectively, in the noisefree case
and using the NCC-based distance. The temporal regularisation parameter is less sen-
sitive and was chosen in the order of 10?. Furthermore, the parameter corresponding
to the norm of L2(£2, R") in (17) was set to 107°.

In our first example, we investigate different regularisation functionals with differ-
ent noise levels together with the transport equation. The target is 2D Radon transform
data based on a digital brain image and the template is a deformed version thereof, see
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Fig. 1. Since we want to focus on the behaviour of the regularisation functionals, we
do not treat the continuity equation here. The data was generated using parallel beam
tomography with only six equally distributed angles from the interval [0, 60] degrees
and was corrupted with Gaussian white noise of different levels.

Figure 2 shows results obtained from the generated noisefree measurements using
four existing methods. In Fig.2a filtered backprojection was used. In Fig.2b, c, the
following two total variation regularisation-based models, see e.g. [10],

min |[Ku — g||* + y R (w),

with Ri(u) := TV(u), Ra(u) := TV(u — fp), and y > 0 were used. Here, R, (u)
incorporates template information. Approximate minimisers of both functionals were
computed using the primal-dual hybrid gradient method [11]. For the case of fil-
tered backprojection, the standard MATLAB implementation was used. The results in
Fig.2a—c highlight why more sophisticated methods, such as the proposed template-
based approach, are necessary to obtain satisfying reconstructions in this setting, and
illustrate the challenges when dealing with very sparse data.

Asoutlined in Sect. 1, one possibility is the metamorphosis approach [24]. In Fig. 2d
we show a result obtained with this method using the recommended parameters.
However, 200 iterations of gradient descent were performed, and the regularisation
parameters were set to y = 107> and T = 1. Observe the change in image intensities
compared to Fig. 1a and the blur in the heavily deformed regions.

In Fig.3, we show results for the different noise levels and different regularisa-
tion functionals computed with our approach. All results were obtained using the
NCC-based distance. As expected, the quality of the reconstruction gets worse for
higher noise levels and, consequentially, larger regularisation parameters were nec-
essary. Since data is acquired from only six directions, the influence of the noise is
very strong. Especially for the diffusive regularisation we needed to choose large reg-
ularisation parameters for higher noise levels, see Fig. 3a. Since diffusion corresponds
to first-order regularisation, it is much easier to reconstruct the noise with “rough”
deformations. Overall, we found that second- and third-order regularisation performed
similar when appropriate regularisation parameters were chosen. Even though some
theoretical results only hold for higher-order regularity, second-order regularisation
seems sufficient for our use case. The computation time for the results in Fig.3 was
between 200 and 700s.

In the second example, see Fig.4, we compare the behaviour of the SSD and the
NCC-based distance. The example consists of two different hands which, in addition,
are rotated relative to each other. Here, the deformation is much larger than in the
previous example, but still fairly regular. The data was generated similarly to the
previous example, but with only five angles from the interval [0, 75] degrees. Note
also that the intensities of the template and target image are different (roughly by a
factor of two). First, we discuss the transport equation. The intensity difference is
a serious issue if we use the SSD distance, as we can see in Fig.4a. The hand is
deformed into a smaller version in order to compensate the differences. If we use the
NCC-based distance instead, which can deal with such discrepancies, the result is
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(a) Diffusion regularisation, no  (b) Diffusion regularisation, (¢) Diffusion regularisation,
noise, SSIM 0.920. 5 % noise, SSIM 0.867. 10 % noise, SSIM 0.798.

(d) Curvature regularisation, (e) Curvature regularisation, (f) Curvature regularisation,
no noise, SSIM 0.955. 5 % noise, SSIM 0.897. 10 % noise, SSIM 0.823.

(g) Third-order regularisation, (h) Third-order regularisation, (i) Third-order regularisation,
no noise, SSIM 0.950. 5 % noise, SSIM 0.901. 10 % noise, SSIM 0.798.

Fig.3 Reconstructions for the artificial brain image in Fig. 1 using our method and different regularisation
functionals. Note that only six measurements were used. The measured data was corrupted with noise of
different levels

much better from a visual point of view. The shapes are well-aligned. The resulting
SSIM value is still low, which is not surprising since SSIM is not invariant with respect
to intensity differences between perfectly aligned images. However, neither of the two
approaches is able to remove or create any of the additional (noise) structures in the
images. For the combination SSD with continuity equation, no satisfactory results
could be obtained. Since no change of intensity is possible by changing the size of
the hand, part of it is moved outside of the image. This behaviour could potentially
be corrected if other boundary conditions are used in the implementation. Therefore,
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(a) Template image. (b) Unknown image. (¢) Measured noisy (sinogram)
data.

(d) NCC-based distance with (e) SSD distance with (f) NCC-based distance with
transport equation, SSIM transport equation, SSIM continuity equation, SSIM
0.562. 0.568. 0.555.

Fig.4 Reconstructions of manually deformed Hand [40] images with different image intensity levels using
our method. We generated five measurements that correspond to five equally spaced angles from the interval
[0, 75] degrees and added 5% noise

we do not provide an example image for this case. Using the NCC-based distance,
the results look similar as for the transport equation with slightly worse SSIM value.
These results suggest that the NCC-based distance is a more robust choice that avoids
unnatural deformations, which would be required in the case of SSD to compensate
intensity differences. In this example, the computation time was between 50 and 3255s.

In the next example, see Fig.5, we compare the continuity equation with the trans-
port equation as constraint together with the NCC-based distance. The continuity
equation allows for limited change of mass along the deformation path. Since the
intensity change scales with the determinant of the Jacobian, bigger changes are only
possible if areas are compressed or extended a lot. In the presented example this occurs
only to a mild extent. For this example, the continuity equation and the transport equa-
tion yield visually similar results with minor differences in the SSIM value. As in the
previous examples, higher-order regularisation is beneficial and artefacts occur for the
diffusion regularisation. The computation time amounted to roughly 64 to 360 in this
example.

In Fig. 6, we created an artificial pair of images consisting of a disk to show the
possibilities of intensity changes when using the continuity equation as a constraint.
Both template and unknown image were constructed so that their total mass is equal.

@ Springer



Applied Mathematics & Optimization (2020) 82:1081-1109 1103

(a) Template image. (b) Unknown image. (¢) Measured noisy (sinogram)
data.

(d) Continuity equation with  (e) Continuity equation with (f) Continuity equation with
third-order regularisation, curvature regularisation, diffusion regularisation,

SSIM 0.910. SSIM 0.753. SSIM 0.560.

(g) Transport equation with (h) Transport equation with (i) Transport equation with
third-order regularisation, curvature regularisation, diffusion regularisation,
SSIM 0.913. SSIM 0.912. SSIM 0.580.

Fig. 5 Reconstructions for the HNSP [40] image using our approach, different regularisation functionals,
and different PDE constraints. Here, ten measurements corresponding to ten angles equally distributed in
the interval [0, 180] degrees were taken. The measured data was corrupted with 5% noise

The measurements were generated as before using only five angles uniformly dis-
tributed in the interval [0, 90] degrees. Furthermore, we used curvature regularisation.
For the transport equation we observe that the shape is matched, but the intensity is
not correct, see Fig. 6a. If we use the continuity equation instead, intensity changes are
possible, which can be observed in Fig. 6b. The computation time for the two results
was 90 and 500s.
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(a) Template (b) Unknown (¢) Measured (d) Transport (e) Continuity
image. image. noisy equation, equation,
(sinogram) SSIM 0.880. SSIM 0.922.
data.

Fig. 6 Reconstructions of an image showing a disk obtained with our method. Five measurements were
taken at directions corresponding to five angles equally distributed in [0, 90] degrees. As before, 5% noise

was added
i
L] [
[ 1
|

(a) Template image. (b) Unknown image. (¢) Reconstruction, (d) Measured Radon
SSIM 0.984. transform data.
(e) Template image. (f) Unknown image. (g) Reconstruction, (h) Measured Radon
SSIM 0.992. transform data.

Fig.7 Reconstructions based on nonsynthetic X-ray tomographic measurements [8,28] computed with our
method using the transport equation together with curvature regularisation. Measurements from 12 to 6
directions with angles in [0, 180] degrees were used

In order to demonstrate the practicality of our method, we computed results from
nonsynthetic X-ray tomography data [8,28], which are available online.>* See Fig.7
for these two examples (‘lotus’ and ‘walnut’). The template was generated by applying
filtered backprojection to the full measurements and by subsequently deforming it.
Then, this deformed templated was used in our method to compute a reconstruction
from only few measurement directions. The computation time amounted to roughly 80
and 600s in these examples. In both nonsynthetic examples the use of the NCC-based
distance proved crucial and no satisfactory result could be obtained using SSD.

2 https://doi.org/10.5281/zenodo.1254204.
3 https://doi.org/10.5281/zenodo. 1254206.
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(a) Template volume. (b) Unknown volume.

olefele] ]

(¢) Measured noisy Radon transform data. (d) Reconstruction using the SSD distance,
curvature regularisation, and the transport

equation, SSIM 0.887.

Fig.8 Reconstruction of a 3D volume (‘mice3D’, see [40]) using our method. In a, b, d, slices (left to right,
top to bottom) of each volume along the third coordinate direction are shown. In ¢, slices of the 3D Radon
transform measurements are shown. Each slice corresponds to one measurements direction. In total, only
10 measurements were taken at angles equally distributed in [0, 180] degrees. As before, 5% noise was
added

In Fig. 8, we demonstrate that our framework is also capable of reconstructing 3D
volumes. Here, we used the SSD distance together with curvature regularisation and
the transport equation. We applied the 3D Radon transform to obtain ten measurements
from angles within [0, 180]. The total computation time was roughly 800 s.

Allin all, our results demonstrate that, given a suitable template image, very reason-
able reconstructions can efficiently be obtained from only a few measurements, even
in the presence of noise. Moreover, our examples show that the NCC-based distance
adds robustness to the approach with regard to discrepancies in the image intensities.
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6 Conclusions

Overall, our numerical examples show that our implementation yields good results,
as long as the deformation between template and target is fairly regular. By using the
NCC-based distance, robustness with respect to intensity differences between the tem-
plate and the target image can be achieved. As already mentioned in the introduction,
we do not follow the metamorphosis approach, since there is too much flexibility in
the model and the source term is very likely to reproduce noise and artefacts if the
data is too limited. It is left for further research to investigate possible adaptations of
the model that allow for the appearance of new objects or structures in the reconstruc-
tion without reproducing noise or artefacts. Possibly, the results of our method can be
used as better template for other algorithms that require template information. Finally,
note that due to the great flexibility of the FAIR library, it is also possible to use a
great variety of regularisation functionals for the velocities and other distances, see
[40, Chaps. 7 and 8]. Additionally, our implementation is not necessarily restricted
to the Radon transform and essentially every (continuous) operator can be used. The
multilevel approach can be applied as long as a meaningful resampling procedure for
the operator and the measured data can be provided.
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